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We perform a nonperturbative lattice calculation of theP-wave pion-pion scattering phase in the�-meson

decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 to

290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-

mass frame and two moving frames. Applying an effective range formula, we find a good description of our

results for the scattering phase as a function of the energy covering the resonance region. This allows us to

extract the �-meson mass and decay width and to study their quark mass dependence.
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I. INTRODUCTION

In experiments, many hadrons are observed as reso-
nances that decay via the strong interaction and have
only a short lifetime. On the theoretical side, the direct
determination of the resonance parameters from QCD is
afflicted with many difficulties, since the computation of
resonance masses and decay widths is essentially a non-
perturbative problem. An attractive way to extract the
resonance parameters nonperturbatively from first prin-
ciples is the use of lattice QCD. Among unstable hadrons,
the case of the � meson is ideal for lattice studies of a
resonance for two reasons. First, in lattice calculations, the
noise-to-signal ratio in the computation of a meson mass is

proportional to eðmM�m�Þt, where mM is the meson mass
under consideration, m� is the pion mass, and t is a typical
hadronic time scale. Since the � is one of the lightest
mesons, the statistical error of its numerically computed
mass can be well-controlled. Second, the principle decay
channel (with a branching rate of 99:9%) of the �meson is
to a pair of pions, which can be treated on the lattice very
precisely.

In the past, several lattice groups have undertaken efforts
to study the �-meson decay. A first attempt was made to
estimate the decay width from the � ! �� transition
amplitude [1–4]. This method relies on two assumptions:
first, the energy gap between the ground and the first
excited state (corresponding to �-meson and �� states
with the same quantum numbers) is small. Second, it is
assumed that the hadron interaction is not large, and

the transition amplitude h�j��i satisfies h�j��i �
h�j�i1=2h��j��i1=2. An alternative method, which does

not rely on these assumptions, is to extract the �-meson
resonance parameters from the P-wave pion-pion scatter-
ing phase in the isospin I ¼ 1 channel. The nonperturba-
tive determination of the scattering phase is possible by
using finite-size methods, which were originally proposed
by Lüscher in the center-of-mass frame (CMF) [5–9] and
later extended to more general cases employing also a
moving frame (MF) by Rummukainen and Gottlieb [10].
Making use of these finite-size methods, two lattice studies
[11,12] have been carried out to compute the �-meson
resonance parameters.1 These calculations mainly concen-
trated on the scattering phase at one or two energies for a
single ensemble. In this way, however, the scattering phase
can be extracted at only a small number of energies, and it
becomes difficult to map out the resonance region.
In this work, we study the I ¼ 1 pion-pion scattering

system using three Lorentz frames: the CMF, the first MF
with total momentum P ¼ ð2�=LÞe3 (MF1), and the sec-
ond MF with P ¼ ð2�=LÞðe1 þ e2Þ (MF2). Here, the ei
denotes a unit vector in the spatial direction i, and L is the
spatial extent of the lattice. In each frame, we evaluate the
P-wave scattering phase from the energy eigenvalues of
the ground state and the first excited state. Using three
frames allows us to obtain the scattering phase at six
energies for each set of physical parameters considered
without the need to go to larger lattices. Therefore, we
think that our calculations have two advantages compared
to the earlier works mentioned above. First, extracting
the resonance parameters from six energies allows us to
obtain more accurate results. Second, some of the scatter-
ing phases are calculated at energies that lie in the range
½m� � ��=2; m� þ ��=2�, allowing us to directly map out

the resonance region.
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Our calculations are performed using the Nf ¼ 2 maxi-

mally twisted mass fermion ensembles [15–17] from the
European Twisted Mass Collaboration (ETMC) at a lattice
spacing of a ¼ 0:079 fm. The pion masses range from 290
up to 480 MeV, ensuring that the physical kinematics for
the �-meson decay, m�=m� < 0:5, is satisfied. The com-

putation of the �-meson resonance parameters at several
values of the pion mass allows us to obtain the pion mass
dependence of the resonance mass and decay width and
hence to perform an extrapolation to the physical point.
The benefit of using twisted mass fermions is that, at
maximal twist, physical observables are automatically ac-
curate toOða2Þ in the lattice spacing, while the drawback is
that isospin symmetry, although again an Oða2Þ effect for
the observables considered in this work, is broken at non-
zero values of the lattice spacing. As a result, for any value
of a � 0, the decay of �0 to �0�0 is allowed, while, in the
continuum limit, isospin symmetry is restored, and this
decay is forbidden. In this paper, we present a first calcu-
lation to extract the �-meson resonance parameters from
three Lorentz frames and discuss the feasibility and accu-
racy achievable using this setup. Since here we use only
one value of the lattice spacing, we cannot test for the
possible effects of isospin breaking. We plan to come back
to this issue in the future when we will analyze gauge field
ensembles obtained at finer values of the lattice spacing. As
it will turn out, we are not able to match the high experi-
mental accuracy of the �-meson resonance parameters
with our lattice calculation. Still, we consider this work
an important conceptual study, and the techniques used
here will be useful for other resonances such as the �
baryon.

II. METHOD

A. Scattering phase

In an elastic scattering system, the relativistic
Breit-Wigner form (RBWF) for the scattering amplitude
al with a resonance at a center-of-mass (CM) energy MR

and with a decay width �R is [18]

al ¼ � ffiffiffi
s

p
�RðsÞ

s�M2
R þ i

ffiffiffi
s

p
�RðsÞ

; s ¼ E2
CM;

where ECM is the CM energy and al is related to the
scattering phase of the lth partial wave, �l, through al ¼
ðe2i�l � 1Þ=2i. The RBWF corresponding to �l is then

tan�l ¼
ffiffiffi
s

p
�RðsÞ

M2
R � s

: (1)

The � resonance has quantum numbers IGðJPCÞ ¼
1þð1��Þ and decays into two pions in the P wave.

A description of the scattering phase as a function of the
ECM is provided by the effective range formula (ERF) [19]

tan�1 ¼
g2���
6�

p3

ECMðm2
� � E2

CMÞ
;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
CM=4�m2

�

q
;

(2)

which fits the experimental data well. In Eq. (2), �1 is the
P-wave pion-pion scattering phase, g��� is the effective

� ! �� coupling constant, and m� is the �-meson mass.

We remark already at this point that we will use the ERF
also for our lattice calculations to fit the scattering phase,
even when using pion masses that are larger than the
physical one. Comparing Eqs. (1) and (2), we find that
the ERF is a particular case of the RBWF if the parameters
MR and �RðsÞ are chosen such that

MR ¼ m�; �RðsÞ ¼
g2���
6�

p3

s
:

The rho decay width �� can then be computed in the

following way,

�� ¼ �RðsÞ
��������s¼m2

�

¼ g2���
6�

p3
�

m2
�

;

p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�=4�m2
�

q
:

(3)

Thus, Eqs. (2) and (3) allow us to extract m� and �� by

studying the dependence of the pion-pion scattering phase
�1 on ECM.

B. Finite-size methods

1. Center-of-mass frame

A direct calculation of the phase shift from lattice QCD
is possible by using a finite-size method established by
Lüscher [5–9]. In this method, the phase shift is obtained
from the energy eigenvalues of a two-pion system enclosed
in a cubic box with spatial size L.
In the CMF, the possible energy eigenvalues for two

noninteracting pions are given by

�E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ �p2
q

; �p ¼ j �pj;
�p ¼ ð2�=LÞn; n 2 Z3:

In the interacting case, the energy eigenvalues are shifted,

E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p2
q

; p ¼ ð2�=LÞq;

where q is no longer constrained to originate from a
quantized momentum mode. Because of the presence of
the interaction, the energy eigenvalues deviate from those

XU FENG, KARL JANSEN, AND DRU B. RENNER PHYSICAL REVIEW D 83, 094505 (2011)

094505-2



in the noninteracting case. It is exactly this deviation that
contains the information of the underlying strong interac-
tion and thus can be used to determine the scattering phase,
as outlined next.

In this paper, we concentrate on the energy eigenstates
with energies E in the elastic region 2m� < E< 4m�, with
the two-pion system having the same quantum numbers as
the �meson. In the CMF, these states transform as a vector
(more specifically, the irreducible representation � ¼ T�

1 )
under the cubic group Oh. The corresponding finite-size
formula connecting the energy E to the scattering phase �1

is given by [9]

tan�1ðEÞ ¼ �3=2q

Z00ð1; q2Þ
; for � ¼ T�

1 ; (4)

with the zeta function defined through

Z 00ðs; q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
n2Z3

ðjnj2 � q2Þ�s:

2. Moving frame

Using a MF with total momentum P ¼ ð2�=LÞd,
d 2 Z3, the energy eigenvalues in the noninteracting
case are given by

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ �p2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ �p2
2

q
;

where �pi ¼ j �pij and �pi denote the three-momenta of the
pions, which satisfy the relations

�p i¼ð2�=LÞni; ni2Z3; �p1þ �p2¼P: (5)

In the MF, the center of mass is moving with a velocity of
v ¼ P= �E. Using the standard Lorentz transformation with

a boost factor � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, the �ECM can be obtained as

�ECM ¼ ��1 �E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ �p�2
q

;

with CM momenta

�p � ¼ j �p�j; �p� ¼ �p�
1¼� �p�

2¼ 1
2
~��1ð �p1� �p2Þ: (6)

Here, we use the notation

~��1p ¼ ��1pk þ p?;

pk ¼ p � v
jvj2 v;

p? ¼ p� pk:

From inspecting Eqs. (5) and (6), it can be seen that the �p�
are quantized to the values

�p� ¼ð2�=LÞn;
n2Pd¼fnjn¼ ~��1ðmþd=2Þ; for m2Z3g: (7)

In the interacting case, the ECM is given by

ECM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p�2
q

; p� ¼ ð2�=LÞq: (8)

From the energy shift between the noninteracting and
the interacting situation, ECM � �ECM (or, equivalently,
q2 � jnj2), one can compute the pion-pion scattering
phase.
In the MF1 (d ¼ e3), the energy eigenstates transform

under the tetragonal group D4h. The irreducible represen-
tations A�

2 and E� are relevant for the pion-pion scattering
states j��; l ¼ 1i in infinite volume with angular momen-
tum l ¼ 1. In this work, we calculate the energies associ-
ated with the A�

2 sector. The formula converting the ECM in
a finite volume to the scattering phase in the infinite
volume is given by Gottlieb and Rummukainen [10] as

tan�1ðECMÞ ¼ ��3=2q

Zd
00ð1; q2Þ þ ð2q�2=

ffiffiffi
5

p ÞZd
20ð1; q2Þ

;

for � ¼ A�
2 ; (9)

with the modified zeta function

Z d
lmðs;q2Þ ¼

X
n2Pd

Y�
lmðnÞ

ðjnj2 � q2Þs

and

Y lmðrÞ � rlYl;mð�rÞ; Yl �mðrÞ � rlYl;�mð�rÞ;
where�r represents the solid angle parameters (�, �) of r
in spherical coordinates and the Yl;m are the usual spherical

harmonic functions.
In order to obtain more energies in the resonance region,

we developed a second moving frame (MF2) with
d ¼ e1 þ e2. The corresponding energy eigenstates trans-
form under the orthorhombic group D2h. The irreducible
representations B�

1 , B
�
2 , and B�

3 occur for the j��; l ¼ 1i
states in infinite volume. Here, we focus on the B�

1 sector.
Our derivation of the corresponding finite-size formula for
the MF2 results in

tan�1ðECMÞ ¼ ��3=2q

Zd
00 � ðq�2=

ffiffiffi
5

p ÞZd
20 þ ið ffiffiffi

3
p

q�2=
ffiffiffiffiffiffi
10

p ÞðZd
22 �Zd

2�2
Þ ; for � ¼ B�

1 : (10)

For more details, we refer the reader to Ref. [20].

RESONANCE PARAMETERS OF THE � MESON FROM . . . PHYSICAL REVIEW D 83, 094505 (2011)

094505-3



For brevity, we represent Zd
lmð1; q2Þ with the short no-

tationZd
lm in Eq. (10). Using Eqs. (4), (9), and (10), we can

then convert a finite-volume determination of the ECM into
a calculation of the P-wave scattering phase �1. This is, of
course, exactly the situation we are confronted with in a
lattice calculation as performed here.

C. Correlation matrix

In the CMF, the value of the ECM is directly given by the
discrete energy eigenvalue E extracted from the large
time behavior of the corresponding correlation function.
In the MF, ECM is related to E through the Lorentz trans-
formation

E2
CM ¼ E2 � P2: (11)

In order to calculate the energy eigenvalues E, we con-
struct a 2� 2 correlation function matrix through

C2�2ðtÞ¼ hð��ÞðtÞð��Þyð0Þi hð��ÞðtÞ�yð0Þi
h�ðtÞð��Þyð0Þi h�ðtÞ�yð0Þi

� �
: (12)

1. �� sector

The �� correlation function is constructed with the
interpolating operators defined through

ð��ÞðtÞ ¼ d�
NG

X
R̂2G

��ðR̂Þð�þðP=2þ R̂p; tÞ��ðP=2� R̂p; tÞ

���ðP=2þ R̂p; tÞ�þðP=2� R̂p; tÞÞ; (13)

with the momenta on the lattice P and p taking discrete
values

P¼ð2�=LÞd; p¼P=2þð2�=LÞm; for d;m2Z3:

Let us explain the notation we have used in Eq. (13). The
pion interpolating operator ��ðq; tÞ is defined through

�aðq;tÞ¼ 1

L3=2

X
x

e�iq�x
�
�c�5

�a

2
c

�
ðx; tÞ; a¼�;0;

where �a denote the isospin Pauli matrices and c the two-
flavor quark fields. We also introduce the symmetry group

G as the set of all lattice rotations and reflections R̂, under
which the set of Pd, defined by Eq. (7), is invariant

G ¼ fR̂jR̂n 2 Pd;8n 2 Pdg: (14)

In the CMF, MF1, and MF2, G is given by the cubic
groups Oh, D4h, and D2h, respectively. � is the irreducible
representation of the group G, d� is the dimension of �,

and ��ðR̂Þ is the character of �. The average over all the

operations R̂ in the group G weighted by the coefficient

��ðR̂Þ projects out the scattering states that belong to the �
representation. Finally, NG ¼ P

R̂2G1.
Given the momenta fP;pg and the representation �, one

can construct the interpolating operators ð��ÞðtÞ using
Eq. (13). Here, we set � to be T�

1 , A
�
2 , and B�

1 for the
CMF, MF1, and MF2, respectively, so that the energy
eigenstates j��;�i in finite volume will approximate the
P-wave scattering states j��; l ¼ 1i in infinite volume if
one ignores states with higher angular momentum. In the
CMF, the interpolating operator is given by

ð��ÞðtÞ ¼ �þ
�
2�

L
e3; t

�
��

�
� 2�

L
e3; t

�

� �þ
�
� 2�

L
e3; t

�
��

�
2�

L
e3; t

�
:

In the two MFs, the operators are given in a unified form
through

ð��ÞðtÞ ¼ �þðP; tÞ��ð0; tÞ � �þð0; tÞ��ðP; tÞ;
with P again the total three-momentum of the scattering
system. We can use these operators to measure the energy
eigenvalues E from the corresponding correlation func-
tions, convert E into ECM by applying Eq. (11), and then
extract the P-wave scattering phase �1 using the finite-size
formulae listed above.

2. � sector

The interpolating operator for the neutral � meson is
constructed through a local vector current,

�ðtÞ ¼ �0ðP; tÞ ¼ 1

L3=2

X
x

e�iP�x
�
�c ða � �Þ �

0

2
c

�
ðx; tÞ;

a � � ¼ X3
i¼1

ai�i;

where a indicates the polarization of the vector current.
The direction of a is taken to be parallel to e3 in the CMF,
e3 in the MF1, and e1 þ e2 in the MF2, respectively. This
choice allows us to obtain a good signal-to-noise ratio for
the off-diagonal matrix element h�ðtÞð��Þyð0Þi in Eq. (12).

D. Extraction of energies

By computing the matrix of correlation functions in
Eq. (12), we are able to isolate the ground state and first
excited state in a clean way. This is of particular impor-
tance in the resonance region, where the avoided level
crossing occurs and the first excited state is potentially
close to the ground state. Such a situation renders the
extraction of the ground state energy difficult when only
a single exponential fit ansatz is used. Since we cannot
predict a priori whether our energy levels will be close to
the resonance region, we find it necessary to always use the
correlation matrix to analyze our results. To extract the
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energy eigenstates, we follow the variational method [7]
and construct a ratio of correlation function matrices as

Rðt; tRÞ ¼ C2�2ðtÞC�1
2�2ðtRÞ; for t > tR;

where tR, the reference time slice, is assumed to be large
enough such that the contributions to the matrix Rðt; tRÞ
from the excited states jni with n > 2 can be ignored.

The two eigenvalues Rnðt; tRÞ (n ¼ 1; 2) of the matrix
Rðt; tRÞ behave as

Rnðt; tRÞ ! An coshð�Enðt� T=2ÞÞ; (15)

where we assume that t is large enough (t > tR 	 0) to
neglect excited states but still far enough from the bounda-
ries (t � T=2) to ignore the unwanted thermal contribu-
tions, as discussed in the case for the pion scattering length
using twisted mass fermions in Ref. [21].

III. LATTICE CALCULATION

A. Ensemble information

The results presented here are from a sequence of en-
sembles with a lattice spacing of a ¼ 0:079 fm. The pion
masses range from m� ¼ 480 to 290 MeV. At all pion
masses, the physical kinematics of m�=m� < 0:5 is satis-

fied, such that it is physically possible for the � meson to
decay into two pions. In our analysis, we use two lattice
sizes. The first corresponds to L ¼ 1:9 fm with pion
masses of m� ¼ 480 MeV and m� ¼ 420 MeV, i.e., en-
sembles A1 and A2 in Table I. The second uses L ¼ 2:5 fm
with pion masses ofm� ¼ 330 MeV andm� ¼ 290 MeV,
i.e., ensembles A3 and A4 in Table I. Additional informa-
tion about the ensembles used is given in Table I and in
Refs. [15–17].

B. Sources

To calculate the �� correlation functions, we employ a
stochastic method using Z4 noise sources 	i

tsðxÞ that are
restricted to each three-dimensional time slice with time ts.
The sources 	i

tsðxÞ are also diluted in the color and spin

indices, which are suppressed for simplicity. The index i
runs from 1 to Ns, the number of stochastic noise sources.

In this work, we are able to achieve sufficient accuracy
with just Ns ¼ 1 samples. Using the one-end trick [22], we
need to introduce two stochastic noise sources, eiq�x	i

tsðxÞ
and 	i

tsðxÞ, for each factor of ��ðq; tsÞ in the correlation

function. For the correlation functions in the MFs, we must
account for two momentum modes (eiq�x	i

tsðxÞ, q ¼ 0,

and q ¼ P). In the CMF, there are three required momen-
tum modes (eiq�x	i

tsðxÞ, q ¼ 0, q ¼ ð2�=LÞe3, and q ¼
�ð2�=LÞe3). Since we place the source on all the time
slices ts ¼ 0; . . . ; T � 1, we therefore perform T inversions
for each configuration and each momentum mode. Note
that the time extent of our lattices is chosen to be always
twice the spatial extent. The correlator C11ðtÞ is then
calculated through

C11ðtÞ ¼ hð��ÞðtÞð��Þyð0Þi

¼ 1

T

X
ts

hð��Þðtþ tsÞð��ÞyðtsÞi:

The rather large effort to generate propagators on all the
time slices allows us to obtain the correlators with high
precision, which is important to extract the desired ener-
gies reliably.
In the calculation of the off-diagonal correlator, C21ðtÞ,

the contraction of the quark fields leads to a three-point
diagram. Since, in this three-point diagram, the two-pion
fields are located at the same source time slice ts, we use
the sequential propagator method to construct the correla-
tor. We calculate C21ðtÞ through

C21ðtÞ ¼ h�ðtÞð��Þyð0Þi ¼ 1

T

X
ts

h�ðtþ tsÞð��ÞyðtsÞi

and again average the correlator over all time slices ts. For
the second off-diagonal correlator C12ðtÞ, the two-pion
fields are placed at the sink time slice tþ ts, which would
render the computation of C12ðtÞ more difficult. However,
using the relation C12ðtÞ ¼ C�

21ðtÞ, we get the off-diagonal
matrix element C12 for free.
For the � correlator, C22ðtÞ, we have performed a com-

parison between the Z4 stochastic source method and the
point source method and found that the required computa-
tional effort to achieve a given signal-to-noise ratio is
comparable. Historically, we started our work with the
calculation of the hadronic vacuum polarization tensor
[23]. Since, in that work, we generated point source propa-
gators for the ensembles listed in Table I, we just use the
available propagators to construct the � correlator

C22ðtÞ ¼ h�yðtþ tsÞ�ðtsÞi;
where now the source time slices, ts, are chosen randomly
to reduce the autocorrelation between consecutive gauge
field configurations.
Because of the isospin symmetry breaking effects at

nonzero lattice spacing in our maximally twisted mass

TABLE I. Ensembles used in this work. We give the ensemble
name Ai, the inverse bare coupling 
 ¼ 6=g20, the bare quark

mass a�, the lattice size L=a, and the value of m� in units of
MeV. We also list the ratio m�=m� and the number N of

configurations used.

Ensemble 
 a� L=a m� m�=m� N

A1 3.90 0.0085 24 480 0.43 176

A2 3.90 0.0064 24 420 0.40 278

A3 3.90 0.0040 32 330 0.32 124

A4 3.90 0.0030 32 290 0.30 129
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setup, the disconnected diagram for the neutral � meson
does not vanish. To address the disconnected contribution
to the neutral � meson, we need to generate, in principle,
additional all-to-all propagators. However, the discon-
nected diagram correction has been studied in Ref. [24]
and has been found to be negligibly small, and hence we
neglect it also here in the computation of the neutral �
correlator. For the same reason, we neglect the discon-
nected diagrams for the off-diagonal entries, where these
contributions originate solely from the neutral � operator.
In the calculation of the correlator hð��Þð��Þyi, we are
able to address these disconnected pieces, since we put
stochastic sources on all the time slices. We find that the
disconnected diagram makes an apparently small contri-
bution to the correlator but adds a significant amount of
noise, which would destroy the signal for the connected
piece. Therefore, we drop it from the �� sector. To be
clear, neglecting these disconnected contributions is not a
genuine approximation but is simply ignoring lattice arti-
facts that would vanish in the continuum limit anyway.

IV. RESULTS

A. Energy eigenvalues

In Fig. 1, we show our lattice results for Rnðt; tRÞ
(n ¼ 1; 2) in a logarithmic scale for the CMF, MF1, and
MF2, as a function of time t together with a correlated fit to
the asymptotic form given in Eq. (15). From these fits, we
then extract the energies that will be used to determine the
scattering phase. Note that the slopes of lnðRnðt; tRÞÞ are
often very similar for n ¼ 1 and n ¼ 2, indicating that it is
indeed essential to use the correlation function matrix. In
order to extract the energies, we have to consider the two
main sources of systematic error. One originates from the
higher excited states and affects the correlator in the low-t
region. The other arises from the unwanted thermal con-
tributions that distort the correlator in the large-t region. By
defining a fitting window ½tmin; tmax� and varying the values
of tmin and tmax, we are able to control these systematic
effects. In practice, we set tmin to be tR þ 1 and increase the
reference time slice tR to reduce the higher excited state
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FIG. 1 (color online). For the ensembles A1 (upper left), A2 (upper right), A3 (lower left), and A4 (lower right), the correlator Rnðt; tRÞ
(n ¼ 1; 2) as a function of t is shown. For each ensemble, from top to bottom, the three plots present the lattice calculations in the
CMF, MF1, and MF2, respectively. The solid lines are correlated fits to Eq. (15), from which the energy eigenvalues En are extracted.
In each plot, the upper curve is n ¼ 1, and the lower curve with the slightly steeper slope is n ¼ 2.
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contaminations. Besides this, we set tmax to be sufficiently
far away from the time slice t ¼ T=2 in order that the
fitting results are protected from the unwanted thermal
contributions. The corresponding parameters tR, tmin, and
tmax used in this work are listed in Table II. All the
ensembles shown in Fig. 1 visibly agree with the corre-
sponding fit and lead to reasonable values of �2=dof. The
�2=dof, together with the fit results for En (n ¼ 1; 2), are
also given in Table II.

B. Lattice discretization effects

In the continuum limit, the ECM is simply related to the
energy spectrum En through the Lorentz transformation of
Eq. (11). However, on the lattice, the discretization effects
explicitly break Lorentz symmetry, and Eq. (11) is only
valid up to discretization errors. Another discretization
error arises from the continuum dispersion relation in
Eq. (8), which is particularly relevant for the finite-size
methods used here.

These two sources of systematic error have been studied
in Ref. [10], where the authors suggest to use the lattice
modified relations,

coshðECMÞ¼ coshðEnÞ�2
X
i

sin2ðPi=2Þ; n¼1;2;

coshðECM=2Þ¼2sin2ðp�=2Þþcoshðm�Þ; p� ¼ð2�=LÞq;
(16)

instead of the continuum relations to reduce these discre-
tization errors. Following this suggestion, we calculate the
energy ECM and the momentum p� from the energy eigen-
values En using Eq. (16) and then estimate the P-wave
scattering phase �1 by employing p� in the finite-size
formulae. The results for ECM, p

�, and �1 are given in
Table III.

C. Extraction of resonance parameters

From the ECM, we can now compute the P-wave scat-
tering phases from six different energy levels, two from
each of the three Lorentz frames employed. In order to
extract the �-meson resonance parameters, we fit the
results for the scattering phase to the effective range for-
mula Eq. (2) and show the corresponding fits in Fig. 2. At

TABLE II. Values of the energy eigenvalues for the ground
state (n ¼ 1) and the first excited state (n ¼ 2) in the CMF, MF1,
and MF2. In the table, we list the ensemble number, the reference
time tR, the lower and upper bound of the fitting window, tmin

and tmax, the fit quality �2=dof, and the fit results for energy
eigenvalues En (n ¼ 1; 2).

Frame tR=a tmin=a tmax=a n �2=dof aEn

A1

CMF 7 8 18
1 2.21 0.4559(52)

2 1.26 0.6584(90)

MF1 9 10 18
1 0.76 0.4869(35)

2 1.40 0.5563(98)

MF2 8 9 18
1 0.65 0.5660(42)

2 0.80 0.642(11)

A2

CMF 8 9 17
1 0.66 0.4301(52)

2 1.17 0.637(16)

MF1 9 10 17
1 0.48 0.4537(25)

2 0.49 0.527(12)

MF2 9 10 17
1 0.37 0.5343(57)

2 0.40 0.612(16)

A3

CMF 8 9 17
1 1.03 0.4037(68)

2 1.02 0.4931(80)

MF1 10 11 17
1 1.16 0.3638(13)

2 0.92 0.474(23)

MF2 9 10 17
1 0.07 0.4330(25)

2 0.67 0.518(18)

A4

CMF 8 9 20
1 1.36 0.3844(79)

2 1.90 0.4591(86)

MF1 9 10 20
1 1.03 0.3363(14)

2 1.12 0.440(19)

MF2 9 10 20
1 0.72 0.4035(36)

2 1.21 0.490(22)

TABLE III. We give the P-wave scattering phase �1 as ex-
tracted from the energies of the ground state and the first excited
state in the CMF, MF1, and MF2. We list the ensemble number,
the energies En and ECM, the momentum p�, and the scattering
phase �1 (in units of degree). The single result marked by a star
denotes that the corresponding ECM is above the 4m� threshold.
We therefore exclude that point from our calculations.

Frame n aEn aECM ap� �1ð
Þ

A1

CMF
1 0.4559(52) 0.1207(50) 137(3)

2 0.6584(90) 0.2686(57) 170(9)

MF1
1 0.4869(35) 0.4137(41) 0.0729(61) 4.7(0.3)

2 0.5563(98) 0.494(11) 0.1543(91) 162(5)

MF2
1 0.5660(42) 0.4356(56) 0.1000(62) 15.3(0.4)

2 0.642(11) 0.533(13) 0.1838(97) 160(6)

A2

CMF
1 0.4301(52) 0.1331(42) 128(3)

2 0.637(16) 0.2719(96) 165(15)

MF1
1 0.4537(25) 0.3737(31) 0.0794(36) 4.4(0.1)

2 0.527(12) 0.461(14) 0.157(11) 159(6)

MF2
1 0.5343(57) 0.3925(80) 0.0997(79) 12.9(0.6)

2 0.612(16) 0.495(20) 0.182(14) 159(9)

A3

CMF
1 0.4037(68) 0.1516(46) 70(6)

2 0.4931(80) 0.2081(48) 156(10)

MF1
1 0.3638(13) 0.3076(15) 0.0761(16) 2.4(0.4)

2 0.474(23) 0.433(25) 0.171(16) 103(22)

MF2
1 0.4330(25) 0.3354(33) 0.1013(27) 4(2)

2 0.518(18) 0.441(21) 0.176(13) 120(15)

A4

CMF
1 0.3844(79) 0.1534(50) 67(7)

2 0.4591(86)*

MF1
1 0.3363(14) 0.2743(17) 0.0726(15) 2.4(0.3)

2 0.440(19) 0.396(22) 0.161(13) 116(16)

MF2
1 0.4035(36) 0.2959(50) 0.0915(40) 6(2)

2 0.490(22) 0.407(27) 0.167(17) 128(17)
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the position where the scattering phase passes �=2, the
resonance mass m� is determined. Additionally, the values

of g���, and hence ��, are also evaluated from the fit. The

corresponding results are given in Table IV.
The finite-size methods are valid only for elastic scat-

tering processes. In a situation with large enough energy,
i.e., when ECM > 4m�, the inelastic scattering channel will
open, and it is unclear how to determine the scattering

phase in such a case. Therefore, in our calculations, we
exclude results with energy ECM * 4m�, which happened,
fortunately, only for the excited state in the CMF for
ensemble A4.

D. Comparison with other results

Using the resonance masses determined in the previous
section, we show our values for m�, together with those of

other groups, in Fig. 3 as a function of m�. In order to
compare these results, we scale m� and m� with

the Sommer scale r0 [25], as determined by the groups
individually. This avoids systematic effects when deter-
mining the lattice spacing from different observables and
is most appropriate when one aims only at a comparison of
results between different groups. We find a rather satisfac-
tory agreement and attribute the mild variation among the
groups with possible residual cutoff and finite-size effects
in the various calculations, although a definite conclusion
cannot be given here.
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FIG. 2 (color online). We show, for the ensembles A1 (upper left), A2 (upper right), A3 (lower left), and A4 (lower right), the
scattering phases calculated in the CMF, MF1, and MF2, together with the fits to the effective range formula Eq. (2). At the position
where the scattering phase passes �=2, the resonance mass m� (denoted as aMR in the graph) is determined. Through the fit, the

coupling constant g��� and decay width �� are also extracted.

TABLE IV. The results for the �-meson mass m�, the decay
width ��, and the effective � ! �� coupling g��� at pion

masses ranging from 480 to 290 MeV.

m� (MeV) m� (MeV) �� (MeV) g���

A1 480 1118(14) 39.5(8.2) 6.46(40)

A2 420 1047(15) 55(11) 6.19(42)

A3 330 1033(31) 123(43) 6.31(87)

A4 290 980(31) 156(41) 6.77(67)
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We remark that our values of m� in physical units result

from using the lattice spacing a ¼ 0:079 fm given earlier.
This value of the lattice spacing was determined in
Ref. [17] by fixing the physical value of the pion decay
constant f�.

E. Quark mass dependence

Having analyzed the ensembles listed in Table I allows
us to discuss now the quark mass dependence of the
�-meson resonance parameters. There are several works
using effective field theory (EFT) to describe the quark
mass dependence of the �-meson resonance parameters
[26–30]. The general structure of the pion mass depen-
dence of m� and �� can be written down as

m� ¼ M0
� þ Cm1M

2
� þ Cm2M

3
� þOðM4

�Þ;
�� ¼ �0

� þ C�1M
2
� þ C�2M

3
� þOðM4

�Þ:

However, before using these formulae, it should be realized
thatm� and �� are not only statistically correlated, but also

inherently related to each other, suggesting that the coef-
ficients Cmi and C�i (i ¼ 1; 2) are not independent from
each other. Therefore, in this work, we will follow the
strategy of Refs. [31,32], where m� and �� are considered

as the real and imaginary parts of the complex pole of the

�-meson propagator. Hence, we introduce the complex
pole parameter Z, defined through

Z ¼ ðm� � i��=2Þ2:
In this approach, the power counting is given by the
complex-mass renormalization scheme. Up to Oðq4Þ in
the chiral expansion, where q is a typical pion momentum,
Z is given by [31,32]

Z ¼ Z� þ C�M
2
� � g2!��

24�
Z1=2
� M3

�

� g2!��

32�2
M4

�

�
ln
M2

�

M2
�

� 1

�

þ g2

16�2

M4
�

M2
�

�
3� 2 ln

M2
�

M2
�

� 2i�

�
; (17)

where Z� ¼ ðM� � i��=2Þ2 is the pole of the �-meson

propagator in the chiral limit, M2
� is the lowest-order

expression of the chiral expansion for the squared pion
mass, and C�, g!��, and g are coupling constants assum-

ing real values. Using Eq. (17) to fit our results, we can
determine the value of Z at the physical point, where it can
be converted to the physical resonance mass m�;phy and

decay width ��;phy.

In practice, we perform the chiral extrapolation of Z in
terms of the pion mass m�, as extracted from the pseudo-
scalar correlation function as measured directly in the
numerical calculations. By inserting the relation

m2
� ¼ M2

�

�
1þ M2

�

32�2F2
�

ln
M2

�

�2
3

þOðM4
�Þ
�

into Eq. (17), the expression for Z in terms of m� is given
by

Z ¼ Z� þ C�m
2
� � C�m

4
�

32�2F2
�

ln
m2

�

�2
3

� g2!��

24�
Z1=2
� m3

� � g2!��

32�2
m4

�

�
ln
m2

�

M2
�

� 1

�

þ g2

16�2

m4
�

M2
�

�
3� 2 ln

m2
�

M2
�

� 2i�

�
: (18)

In Eq. (18), the values of the input parameters F� and �3

are taken from Ref. [17] with

F� ¼ 1ffiffiffi
2

p f0 ¼ 86ð1Þ MeV;

lnð�2
3=m

2
�;phyÞ ¼ �l3 ¼ 3:50ð31Þ;

where m�;phy is the physical pion mass.

Before we perform a precise test of Eq. (18), we first
confront our lattice results with a simplified fit ansatz to
order Oðq3Þ, namely
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FIG. 3 (color online). �-meson mass as function of the pion
mass squared, both scaled with r0. The �-meson resonance
masses determined in our calculations (ETMC) are compared
with those of the groups listed in the legend: chirally improved
fermions (Graz) [35], overlap fermions (JLQCD) [36,37], non-
perturbatively improved Wilson fermions (PACS-CS) [38], and
domain wall fermions (RBC-UKQCD) [39,40]. In order to be
consistent, we include only the results of those groups for which
we could readily find the values of r0 evaluated at the same
coupling and pion mass as is the �-meson mass. Also, note that
only our calculation includes a proper treatment of the resonance
nature of the � meson.
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Z ¼ Z� þ C�m
2
� � g2!��

24�
Z1=2
� m3

�: (19)

In the left panel of Fig. 4, we plot the mass of the �
meson as a function of the square of the pion mass together
with a fit to Eq. (19). Using the fit to extrapolate to the
physical point, our lattice result turns out to lie slightly
high relative to the Particle Data Group (PDG) value of the
�-meson mass and shows a deviation of 1:9�.

In order to see whether higher-order corrections could
reconcile our calculation with the experimentally deter-
mined �-meson mass, we also fit our lattice results to
Eq. (18). All the fit results are listed in Table V. From the
simplified fit to Eq. (19), the lattice result of g2!��=24� is

larger than the one suggested by EFT, which is
g2!��=24� ¼ 3:4 GeV�2 [28]. After including the terms

of Oðq4Þ in the fit, the uncertainty of the determination of
g2!��=24� becomes, unfortunately, much larger, and, in

fact, g2!��=24� cannot be determined in a statistically

significant way. A similar situation happens in the
determination of the parameter g2=ð16�2M2

�Þ. The

Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin relation
[33,34]

M2
� ¼ 2g2F2

�

suggests that g2=ð16�2M2
�Þ takes the value of

1=ð32�2F2
�Þ ¼ 0:43 GeV�2. However, we are unable to

determine g2=ð16�2M2
�Þ reliably from the fit. As can be

inferred from Table V, using a fit to Eq. (18), there is a 40%
uncertainty in the determination of C� and a more than

100% uncertainty in the determinations of both g2!��=24�

and g2=ð16�2M2
�Þ. Proceeding with these results, we plot

the mass of the � meson as a function of the square of the
pion mass together with the fit to Eq. (18) in the right panel
of Fig. 4. At the physical point, the result ofm� is still high

relative to the PDG value, suggesting that the pion masses
used in the current calculations are too high for even the
Oðq4Þ extrapolations and that yet lighter quark masses will
be necessary for quantitatively precise comparisons with
experimental measurements of the �-meson mass.
In Fig. 5, we plot the coupling g��� as a function of the

square of the pion mass and find that g��� is practically

independent of the pion mass. Moreover, the value of g���
is consistent with the PDG value. This is not entirely
unexpected. The coupling g���, being dimensionless, is

expected to be less sensitive to the pion masses and lattice
spacings used in the calculation than the resonance mass
m� is. In fact, whereas the accuracy of m� is currently

systematically limited by the pion masses used in the
calculation, the precision with which we can calculate
g��� is clearly dominated by just the statistical errors of

the current calculation.
Equation (3) shows that the decay width is determined

from the fitted values of both m� and g���. Hence, we

0 0.1 0.2

mπ
2
 (GeV

2
)

0.6

0.8

1

m
ρ (

G
eV

)

Fit to O(mπ
3
)

ETMC
PDG data

0 0.1 0.2

mπ
2
 (GeV

2
)

0.6

0.8

1

Fit to O(mπ
4
)

ETMC
PDG data

FIG. 4 (color online). The �-meson resonance mass as a
function of the square of the pion mass. In the left panel, we
fit the lattice results to Eq. (19). In the right panel, we fit them to
Eq. (18). Note that these are combined fits to m� and �� (shown

in Fig. 6).

TABLE V. The physical �-meson mass and decay width as
extracted using Eqs. (19) and (18). The values of m�;phy, ��;phy,

M�, and �� are given in units of GeV, and g2!��=24� and

g2=ð16�2M2
�Þ are in units of GeV�2.

Fit of Z to Equation (19) Equation (18)

m�;phy 0.821(24) 0.850(35)

��;phy 0.171(31) 0.166(49)

M� 0.756(24) 0.803(47)

�� 0.190(35) 0.179(58)

C� 6.42(45) 4.9(2.0)

g2!��=24� 9.8(1.5) 10(12)

g2=ð16�2M2
�Þ � � � 0.01(1.09)
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FIG. 5 (color online). The effective coupling g��� as a func-
tion of the square of the pion mass.

XU FENG, KARL JANSEN, AND DRU B. RENNER PHYSICAL REVIEW D 83, 094505 (2011)

094505-10



expect that it will reflect a combination of the aspects just
discussed. In fact, in the chiral limit, Eq. (3) reduces to
�� ¼ m�g

2
���=ð48�Þ. Thus, the fact that m� overshoots

the experimental measurement implies that �� will also be

larger than the measured value. Additionally, the error of
g��� will be enhanced in ��, leading to larger errors in the

width than in the mass. These features can indeed be seen
in Fig. 6, where we show the lattice results for �� as a

function of the square of the pion mass together with the fit
to Eq. (19) in the left panel and with the fit to Eq. (18) in the
right panel. At the physical point, the decay widths are
obtained as ��;phy ¼ 171ð31Þ MeV using the fit to Eq. (19)

and as ��;phy ¼ 166ð49Þ MeV using the fit to Eq. (18).

Both of the results are consistent with the PDG value
��;PDG ¼ 149:1ð0:8Þ MeV within 1�. Note, however, that

obviously the values determined from our lattice calcula-
tion are much less accurate than the one extracted from
experimental measurements. Therefore, we consider the
present work more as an initial study of how accurately
resonance parameters can be extracted from nonperturba-
tive lattice calculations and not as a precise determination
of these parameters. The results we have obtained here
demonstrate that resonances can indeed be analyzed on
finite lattices with numerical calculations. This is very
promising, given the number of hadrons that appear in
the physical QCD spectrum as resonances.

V. CONCLUSION

In this work, we have calculated the P-wave pion-pion
scattering phase in the I ¼ 1 channel near the �-meson

resonance region. We have performed our calculations at
pion masses ranging from 480 to 290 MeV and at a
lattice spacing of a ¼ 0:079 fm. At all the pion
masses, the physical kinematics for the �-meson decay,
m�=m� < 0:5, is satisfied. Compared to previous calcula-

tions, we have pushed the techniques much farther forward
by employing three Lorentz frames simultaneously. This
allowed us, in particular, to map out the energy region of
the resonance without having to employ larger and more
computationally demanding lattice calculations.
Making use of Lüscher’s finite-size methods, we eval-

uated the scattering phase from six energy eigenvalues per
ensemble. In this way, we could fit the scattering phase
with an effective range formula, allowing us to extract the
�-resonance mass m�, the decay width ��, and the effec-

tive coupling g���. Taking the inherent relation between

m� and �� into account, we have performed a fit to our

results, obtained at four values of the pion mass, as a
function of the complex parameter Z ¼ ðm� � i��=2Þ2.
This provided a means of extrapolation to the physical
point. Even though our fit formulae are guided by EFT,
our results are not precise enough to perform a thorough
test of the fit ansätze.
Keeping in mind the caveats just discussed, we quote for

the �-meson mass m�;phys ¼ 0:850ð35Þ GeV and for the

decay width ��;phys ¼ 0:166ð49Þ GeV. When these values

are compared to the corresponding experimentally mea-
sured quantities, it is clear that the lattice computations
cannot yet match the experimental accuracy. Although a
precise determination of resonance parameters on the lat-
tice is still a challenge, our work serves as a next step in the
attempt to understand the strong decays in a conceptually
clean way.
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FIG. 6 (color online). The �-meson decay width as a function
of the square of the pion mass. The left panel shows the lattice
results and the fit to Eq. (19). The right panel shows the fit to
Eq. (18). Note that these are combined fits to �� and m� (shown

in Fig. 4).
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