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We present results for one-loop matching factors of four-fermion operators composed of HYP-smeared

staggered fermions. We generalize previous calculations by using the tree-level improved Symanzik gauge

action. These results are needed for our companion numerical calculation of BK and related matrix

elements. We find that the impact on one-loop matching factors of using the improved gluon action is

much smaller than that from the use of either HYP-smearing or mean-field improvement. The one-loop

coefficients for mean-field improved, HYP-smeared operators with the Symanzik gauge action have a

maximum magnitude of Oð1Þ � �s, indicating that perturbation theory is reasonably convergent.
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I. INTRODUCTION

Numerical simulations of lattice QCD are now able to
calculate a range of phenomenologically interesting non-
perturbative quantities with high precision. Of particular
interest are hadronic matrix elements of operators that
appear in the electroweak Hamiltonian, or in extensions
of the standard model. For such quantities, it is necessary
(in order to make use of Wilson coefficients calculated in
continuum perturbation theory) to determine the matching
factors which relate operators regularized on the lattice
with those regularized in the continuum. For the latter, one

typically uses naive dimensional regularization with MS
subtraction.

In this paper, we calculate matching factors (which are,
in general, matrices) for four-fermion operators composed
of light staggered quarks. These arise, for example, in the
calculation of the K0 � �K0 mixing parameter BK. Their
flavor structure forbids mixing with lower-dimensional
operators, so the matching is only between operators of
dimension 6. In the electroweak theory, the operator that
arises has a ‘‘left-left’’ structure, due to the left-handed
coupling of the W-bosons. In extensions of the standard
model, however, �S ¼ 2 operators can arise with other
Dirac structures. For this reason, we calculate matching
factors for all possible Dirac structures.

In recent years, it has become increasingly common to
determine matching factors nonperturbatively, either using

the Rome-Southampton nonperturbative renormalization
method [1], or using approaches based on the
Schrödinger functional [2]. These methods replace hard-
to-estimate truncation errors by controllable statistical and
systematic errors. We are implementing such calculations
for improved staggered fermions, but have so far only
obtained results for bilinear operators [3]. We expect that
the implementation for four-fermion operators, which in-
volves mixing with a long list of lattice operators, will be
more challenging. The use of one-loop matching is a useful
intermediate step, and, as we will describe, the necessary
calculations are relatively simple generalizations of
previous work. We also note that, since our present nu-
merical calculations involve very small lattices spacings
(a � 0:045 fm), the truncation errors are quite small, since
they are proportional to �2

s with �s evaluated at a scale
�1=a [4].
Our companion numerical calculations use valence stag-

gered fermions which have been improved by the use of
HYP-smeared links (links replaced with hypercubic
blocked links [5]). The ensembles are those generated by
the MILC collaboration [6], in which the gauge action is
Symanzik-improved, and the quark action is the asqtad
staggered action. Previous calculations have obtained the
matching factors for four-fermion operators composed of
HYP-smeared staggered fermions [7], but only using the
Wilson gauge action. Here, we generalize these results to
the case of an improved gauge action. This extends our
earlier work in which we calculated matching factors for
bilinear operators using improved gauge actions and HYP-
smeared staggered fermions [8].
At first sight, the generalization from the Wilson gauge

action (for which, in Feynman gauge, the gluon propagator
is diagonal in Euclidean indices) to an improved gauge
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action (in which the propagator is not diagonal) appears
nontrivial. In particular, one-loop calculations using unim-
proved staggered fermions [9,10] were simplified using the
diagonal nature of the gluon propagator. The inclusion of
smeared links, however, leads to the natural introduction of
a ‘‘composite gluon propagator’’ which represents both the
smearing and the gluon propagator itself. This propagator
contains nonzero off-diagonal elements, and so calcula-
tions of one-loop matching factors for HYP-smeared stag-
gered fermions must already deal with the presence of such
elements [7,11]. This means that the generalization to an
improved gluon propagator requires no change to the
analytic expressions—all one needs to change is the com-
posite gluon propagator before numerical evaluation of the
loop integral. As we discuss here, this simplification holds
not only for bilinear operators [8], but also for four-fermion
operators.

The paper is organized as follows. In Sec. II, we recall
our notation and conventions for actions and operators. In
Sec. III, we present the Feynman diagrams and describe
their evaluation. Because we are building on the work of
Refs. [7,8], we provide only a minimal discussion of tech-
nical details. In Sec. IV, we present our numerical results
for matching factors, providing the complete matching
matrix for the operators relevant to BK, and a partial matrix
(the part that will likely be used in practice) for other four-
fermion operators. We conclude briefly in Sec. V.

II. ACTIONS AND OPERATORS

The HYP-smeared staggered action has the same form
as the unimproved staggered fermion action,

SHYP ¼ X
n

��ðnÞ
�X

�

��ðnÞrH
� þm

�
�ðnÞ; (1)

where ��ðnÞ ¼ ð�1Þn1þ���þn��1 , and the covariant differ-

ence operator is

rH
��ðnÞ¼1

2
½V�ðnÞ�ðnþ �̂Þ�Vy

�ðn� �̂Þ�ðn� �̂Þ�: (2)

Here and in the following, we set the lattice spacing a to
unity, except where confusion could arise. HYP improve-
ment consists of using HYP-smeared links, V�, instead of

the original ‘‘thin’’ links, U�. We set the HYP-smearing

parameters to the values that remove the tree-level cou-
pling of quarks to gluons having one or more components
of momenta equal to �. These values are �1 ¼ 0:875,
�2 ¼ 4=7 and �3 ¼ 0:25, in the notation of Ref. [5].
These are the values used in our numerical simulations.

After gauge-fixing, we expand both the thin and smeared
links in the usual way,

U�ðnÞ ¼ exp½ig0A�ðnþ �̂=2Þ�; (3)

V�ðnÞ ¼ exp½ig0B�ðnþ �̂=2Þ�; (4)

where g0 is the bare gauge coupling. The relation between
the fluctuations of smeared and thin links can be written

B�ðnþ �̂=2Þ ¼
Z �

��

d4k

ð2�Þ4
X
�

h��ðkÞA�ðkÞeik�ðnþ�̂=2Þ

þOðA2Þ: (5)

Here, h��ðkÞ is the smearing kernel, which depends on the

smearing parameters and the details of the HYP construc-
tion. It contains nonzero off-diagonal components because
a smeared link in one direction contains contributions from
thin links in all four directions. It turns out that we need
only the linear term in Eq. (5) in a one-loop calculation.
The contribution of the quadratic term (which gives rise to
tadpole diagrams) turns out to vanish due to the projection
back into the SU(3) group that is part of the definition of
HYP-smearing [9,12,13].
The smearing kernel h�� can be conveniently decom-

posed into diagonal and off-diagonal parts:

h��ðkÞ ¼ ���D�ðkÞ þ ð1� ���Þ �s� �s� ~G�;�ðkÞ; (6)

with �s� ¼ sinðk�=2Þ, and
D�ðkÞ ¼ 1� X

���

�s2� þ
X
�<�

�;���

�s2� �s
2
� � �s2� �s

2
� �s

2
	; (7)

~G�;�ðkÞ ¼ 1� ð�s2� þ �s2	Þ
2

þ �s2� �s
2
	

3
: (8)

Here,�, �, �, and	 all differ from each other. By contrast,
the smearing kernel for an action containing the original
thin links is simply h�� ¼ ���.

We use the tree-level Symanzik-improved gluon action
[14,15];

Sg ¼ 6

g20

�
5

3

X
pl

ReTrð1�UplÞ
3

� 1

12

X
rt

ReTrð1�UrtÞ
3

�
;

(9)

where ‘‘pl’’ and ‘‘rt’’ represent plaquette and rectangle,
respectively. In fact, the MILC collaboration use the (par-
tial) one-loop Symanzik-improved action determined in
Refs. [16,17]. However, the one-loop contributions to this
action contribute to matching factors of valence fermionic
operators only at two-loop level, so the consistent choice
for our one-loop calculation is the tree-level action (9). For
purposes of comparison, we also use the Wilson gluon
action, which is obtained from Eq. (9) by dropping the
rectangle term and setting the coefficient of the plaquette to
unity instead of 5=3.
Since we use MILC asqtad ensembles in our numerical

studies, the sea quarks are asqtad staggered fermions rather
than HYP-smeared. We do not display the sea-quark ac-
tion, however, since sea-quarks only enter at two-loop
order in the matching of valence fermionic operators.
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Our one-loop matching factors are thus valid for any
choice of sea quarks.

We now turn to the definitions of our lattice four-fermion
operators, which are the same as those used in Ref. [7]. Our
construction follows the hypercube method of Ref. [18].
The operators come in two classes, differing in the con-
tractions of their color indices. First we have one color-
trace operators, labeled with a subscript I:

½S�F�½S0 �F0�IðyÞ
¼ 1

44

X
A;B;A0;B0

½ ��ð1Þ
a ð2yþAÞð
S ��FÞAB�ð2Þ

b ð2yþBÞ�

� ½ ��ð3Þ
a0 ð2yþA0Þð
S0 ��F0 ÞA0B0�ð4Þ

b0 ð2yþB0Þ�
�V ab0 ð2yþA;2yþB0ÞV a0bð2yþA0;2yþBÞ: (10)

Here, y 2 Z4 is the coordinate of 24 hypercubes.
Hypercube vectors1 S and S0 denote the spins of the com-
ponent bilinears, while F and F0 denote the tastes. Indices
a, b, a0, and b0 denote colors, while superscripts (i) for
i ¼ 1, 2, 3, 4 label different flavors (not tastes). Using four
different flavors forbids penguin diagrams, which would
lead to mixing with lower-dimension operators.2 Two ‘‘fat’’

Wilson lines V ab0 ð2yþA;2yþB0Þ and V a0bð2yþA0;
2yþBÞ ensure the gauge invariance of the four-fermion

operators. A fat Wilson line V ab0 ð2yþ A; 2yþ B0Þ, for
example, is constructed by averaging over all the shortest
paths connecting 2yþ A and 2yþ B0, with each path
formed by products of HYP-smeared links V�. When we

use the unimproved staggered action the Wilson lines are
composed of unsmeared thin links, U�.

The second class are the two color-trace operators, for
which we use the subscript II:

½S� F�½S0 � F0�IIðyÞ
¼ 1

44
X

A;B;A0;B0
½ ��ð1Þ

a ð2yþ AÞð
S � �FÞAB�ð2Þ
b ð2yþ BÞ�

� ½ ��ð3Þ
a0 ð2yþ A0Þð
S0 � �F0 ÞA0B0�ð4Þ

b0 ð2yþ B0Þ�
�V abð2yþ A; 2yþ BÞV a0b0 ð2yþ A0; 2yþ B0Þ: (11)

These operators differ from those with one color-trace only
by the choice of fat Wilson lines—here they connect within
each bilinear, whereas for the one color-trace operators
they connect between bilinears.

We also consider mean-field improvement of the stag-
gered action and operators following Refs. [9,19–21]. This
is also referred to as tadpole improvement. Mean-field
improvement is achieved by rescaling the staggered fields
and the links. In the case of HYP-smeared staggered
fermions, the rescaling is

� ! c ¼ ffiffiffiffiffiffi
v0

p
�; (12)

�� ! �c ¼ ffiffiffiffiffiffi
v0

p
��; (13)

V� ! ~V� ¼ V�=v0; (14)

v0 �
�
1

3
ReTrhVpli

�
1=4

; (15)

with Vpl the plaquette composed of HYP-smeared links.

One then constructs the operators described above out of
c , �c , and ~V�. The resulting operators are expected to be

closer to their continuum counterparts because the rescaled
links fluctuate around unity. Mean-field improvement can
be implemented in simulations after the data has been
collected, as long as the contributions to the four-fermion
operators having different numbers of links are stored
separately.

III. FEYNMAN DIAGRAMS AND
THEIR EVALUATION

Feynman rules for the gauge and staggered-fermion
actions, and for insertions of the four-fermion operators,
can be found in literature and we do not reproduce them
here. The rules for unimproved staggered fermions are
given in Refs. [9,19,22], and the generalization to HYP-
smeared staggered fermions can be found in Ref. [7,11].
The gluon propagator for the Symanzik action was deter-
mined in Ref. [14]; we use the simpler form presented in
our earlier work [12].3

We show the Feynman diagrams contributing to one-
loop matching factors to the two types of four-fermion
operators in Figs. 1 and 2. Analytic formulae for these
diagrams for HYP-smeared staggered fermions with the
Wilson gluon action are given in Ref. [7]. We do not repeat
these results here, since it turns out, as already mentioned
in the Introduction, that the generalization to the improved
gluon action is relatively simple. Instead, we explain the
recipe by which the results of Ref. [7] can be generalized.
The key point is that, since all gauge links are HYP-

smeared (whether in the action or the operators), the gluon
propagator always comes with a smearing kernel on each
end. Thus what appears is the composite gluon propagator
(called the ‘‘smeared-smeared propagator’’ in Ref. [12]):

T ��ðkÞ �
X
��

h��ðkÞh��ðkÞD��ðkÞ: (16)

Here, � and � are the directions of the initial and final
smeared gauge links, h is given in Eq. (6), and D��ðkÞ is
the gluon propagator in Feynman gauge. Even with the
Wilson gauge action, where D is diagonal, the fact that h

1These are vectors whose entries are 0 or 1.
2The relation of these four-flavor operators to the �S ¼ 2

continuum operators is discussed below.

3To be precise, we use the formulae of Appendix A of
Ref. [12] with ! ¼ 1, c ¼ �1=12 and c0 ¼ 0. The result for
the Wilson gauge action is obtained by further setting c ¼ 0.
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has nonvanishing off-diagonal elements implies that T
does, too. Thus, the generalization to the Symanzik gauge
action, for which D itself has nonvanishing off-diagonal
elements, does not introduce any fundamentally new types

FIG. 1. Feynman diagrams contributing to the one-loop matrix
elements of one color-trace operators. We show only one dia-
gram of each type. Hypercube vectors (C, D, C0, and D0)
multiplied by � denote external quark momenta. a, b, a0, and
b0 are color indices. Dashed lines indicate the Wilson lines which
make the four-fermion operator gauge invariant. Boxes indicate
the hypercube bilinears of which the four-fermion operator is
composed.

FIG. 2. Feynman diagrams contributing to the one-loop matrix
elements of two color-trace operators. Notation is as in Fig. 1.
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of contribution to T . Of course, the expression for T is
much more involved, but this does not present problems
since the expression is evaluated numerically when doing
the loop integral. This situation is in contrast to what
happens if the action and operators are composed of thin
links, for then T is diagonal, which greatly simplifies the
resulting expressions.

In order to simplify the expressions for Feynman dia-
grams, Ref. [7] used the following properties of T ��: it is

symmetric, and its off-diagonal elements are proportional to
�s� �s� multiplied by a function even in each of the compo-

nents of k�. For the Wilson gauge action, with diagonalD,

these properties follow from the fact that h�� has the same

properties. For the Symanzik gauge action, it turns out that
D also has these properties, from which it is simple to show
that T does, too. Thus the simplifications used in Ref. [7]
apply for both gauge actions.

We now describe how the analytic formulae of Ref. [7]
must be changed when using the Symanzik action.4 Two
independent approaches to the matching calculation were
used in that work. In the first, explicit expressions were
given for all diagrams (Appendices A, B and C of Ref. [7]).
To obtain the expressions for the Symanzik gauge action,
one must make the following replacement:

X


h�h� !
�
4
X
�

�s2�

�X
��

h��h��D
Imp
�� : (17)

In the second method (Appendix D of Ref. [7]), maximal
use was made of the matching calculation for bilinear
operators. For this part of the calculation, one can simply
use our results for matching factors of bilinear operators
with the Symanzik gauge action [8]. For two classes of
diagrams [those of Figs. 2(f) and 2(h)], bilinear results are
not sufficient, and for these Ref. [7] gives explicit expres-
sions. These are written in terms of the diagonal and off-
diagonal parts of T , and, in particular, in terms of P� and

O�� defined through

T �� ¼ ���P� þ ð1� ���Þ4�s� �s�O��

4
P
�
�s2�

; (18)

(where repeated indices are not summed). Here, the recipe
is to construct T ��, Eq. (16), using the Symanzik gluon

propagator, use this in Eq. (18) to obtain new expressions
for P� andO��, and use the latter in the results of Ref. [7].

As in Ref. [7], we evaluate matching factors using both
methods described above and find agreement. This is a
nontrivial check on the numerical implementation of the
analytic expressions. We have also checked the relations

which follow from Fierz identities and from the Uð1Þ�
symmetry of staggered fermions.

IV. MATCHING FACTORS

We calculate the matching factors in the usual way by
evaluating the qq �q �q matrix elements of the operators both
on the lattice and in the continuum, and projecting onto the
different color and spin-taste contributions. We do so at
one-loop order, requiring the evaluation of the diagrams of
Figs. 1 and 2 on the lattice. On the continuum side, only
diagrams of types (a) and (g) contribute, since the contin-
uum four-fermion operators do not contain gauge fields. In
the continuum calculation one must choose the continu-
ation to 4þ � dimensions of the operators and the projec-
tors onto different spin structures. We follow the
conventions described in Refs. [7,23].
The matching formula between continuum and lattice-

regularized operators then takes the general form

O Cont
i ð�Þ ¼ X

j

Zijð�; aÞOLat
j ð1=aÞ; (19)

with � the continuum regularization scale, and the lattice
spacing now made explicit. At one-loop order, and with a
suitable choice of lattice operators, the matching factor has
the form

Zij ¼ �ij þ g2

ð4�Þ2 ½�
ij logð�aÞ þ cij� þOðaÞ; (20)

where 
ij and cij are, respectively, the one-loop anomalous

dimension matrix and the finite coefficients. The latter are
given by the difference of finite terms in the continuum and
lattice one-loop calculations,

cij ¼ CCont
ij � CLat

ij : (21)

The general expressions for 
ij and CCont
ij are given in

Ref. [7] and we do not reproduce them here.5 We only
note that the mixing structure in the continuum is much
simpler than that on the lattice because taste is conserved.
Mean-field improvement of the action and operators

leads to a change in CLat
ij and thus in the finite part of the

matching factors:

cijMF
!

cij � CFIMFTij; (22)

where CF ¼ 4=3, and

IMF ¼ ð4�Þ2
Z �

��

d4k

ð2�Þ4 ðð�s2Þ
2T 11 � �s1 �s2T 12Þ; (23)

4As discussed in Ref. [8], the simple recipe described here
does not work if one uses the asqtad action because not every
diagram can be expressed in terms of the composite gluon
propagator (due to the presence of the Naik term). Some dia-
grams would need to be calculated anew.

5In Ref. [7], a more elaborate notation is used in which 
 and
C become matrices in ‘‘color-trace’’ space. We do not use this
notation here. We take this opportunity to correct two typo-
graphical errors in Table XIV of Ref. [7]: the entries in the 
̂ij

column which are �4 and 4=3 should be changed to þ4 and
�4=3, respectively.
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with T �� the composite gluon propagator defined in

Eq. (16). General results for the mean-field-improvement
coefficients, Tij, can be found in Ref. [20], and are quoted

below for the operators considered here.
For each of the indices i and j, there are 164 choices of

the S, F, S0, F0. Although lattice symmetries reduce the
number of independent entries, cij remains a large matrix.

We have obtained expressions for all its entries, but present
here only the most interesting subset.

A. Matching factors for BK

The continuum �S ¼ 2 four-fermion operator whose
matrix element enters into the kaon mixing parameter
BK is

O Cont
BK

¼ ½�sa
�ð1� 
5Þda�½�sb
�ð1� 
5Þdb�: (24)

In order to calculate h �K0jOCont
BK

jK0i using staggered fermi-

ons, one must first relate it, in the continuum, to a matrix
element in an augmented theory in which there are four
tastes for each continuum flavor. In fact, as explained in
Ref. [24], one also needs to choose the quarks in each
bilinear to have different flavors [as has been done in the
lattice operators defined in Eqs. (10) and (11)]. This is
necessary so that the Wick contractions in the original and
augmented continuum theories agree. Thus, one ends up
with an eightfold increase in the number of valence flavors.
To maintain the equivalence of the sea-quark sectors (and
thus the dynamics) of these two theories one must take the
8th root of the fermion determinant. This rooting is not
controversial in the formal continuum limit, and the equal-
ity of the corresponding matrix elements in the two con-
tinuum theories is valid nonperturbatively. We do note,
however, that the need for rooting in the augmented theory
implies that this theory is partially quenched, as has been
stressed in Ref. [25].

The end result, in the ‘‘two spin-trace’’ formulation of
Refs. [24,26], is that the relevant operator in the augmented
continuum theory is (keeping only the positive parity part)

O Cont0
BK

¼ OCont0
V1 þOCont0

V2 þOCont0
A1 þOCont0

A2 ; (25)

where

OCont0
V1 � ½ �Sað
� � �5ÞDb�½ �S0bð
� � �5ÞD0

a�; (26)

OCont0
V2 � ½ �Sað
� � �5ÞDa�½ �S0bð
� � �5ÞD0

b�; (27)

OCont0
A1 � ½ �Sað
�
5 � �5ÞDb�½ �S0bð
�
5 � �5ÞD0

a�; (28)

OCont0
A2 � ½ �Sað
�
5 � �5ÞDa�½ �S0bð
�
5 � �5ÞD0

b�: (29)

Here, S, D, S0 and D0 are Dirac fields having an implicit
taste index running over four values. This index is con-
tracted with the taste matrix �5. The overall normalization
of this operator is unimportant as it cancels in the ratio
which defines BK. Note also that the choice of taste matrix

is arbitrary in the continuum theory—we use �5 since that
is what is used in lattice calculations.
The augmented continuum theory has been chosen to be

the continuum limit of the lattice staggered theory.6 In

particular, at tree-level, the operators OCont0
j match onto

lattice operators [defined in Eqs. (10) and (11)] as follows:

OCont0
V1 ¼treeOLat

V1 ¼ ½V� � P�½V� � P�I; (30)

OCont0
V2 ¼treeOLat

V2 ¼ ½V� � P�½V� � P�II; (31)

OCont0
A1 ¼treeOLat

A1 ¼ ½A� � P�½A� � P�I; (32)

OCont0
A2 ¼treeOLat

A2 ¼ ½A� � P�½A� � P�II: (33)

Thus the tree-level matching relation for the BK operator is

O Cont0
BK

¼ OLat
V1 þOLat

V2 þOLat
A1 þOLat

A2 þOðg2Þ þOða2Þ:
(34)

At one-loop order, many lattice operators contribute to
the matching formula. It is convenient to divide them into
the two classes: (A) the four operators which arise at tree-
level, which have the �5 taste matrices in both bilinears,
and (B) the remaining operators, which all turn out to have
taste matrices other than �5 in the bilinears. This division is
useful for two reasons. First, in present numerical calcu-
lations only operators from class (A) are kept, so these are
the matching coefficients that are needed.7 Second, these
are the only operators for which anomalous-dimension
matrix elements and finite continuum coefficients are non-
zero. Thus, we write the one-loop matching formula as

O Cont0
BK

¼ X
i2ðAÞ

ziOLat
i � g2

ð4�Þ2
X
j2ðBÞ

dLatj OLat
j ; (35)

zi ¼ 1þ g2

ð4�Þ2
�
�4 logð�aÞ � 11

3
� dLati

�
; (36)

where the subscripts to the sums indicate that i runs over
the four operators in class (A) while j runs over all opera-
tors in class (B). We have put in the values of the anoma-
lous dimensions and finite coefficients. The constants dLatj

are obtained by summing elements of the matrices CLat
ij

introduced above.
Numerical values for the dLat1�4 are given in Table I. We

compare the naive staggered action (with operators having
thin links) to the HYP-smeared staggered action (with

6Here we assume that rooting introduces no problems with the
continuum limit, following the discussion in Refs. [25,27–29].

7The rationale for this is that we use external kaons with taste
�5. As shown in Ref. [30], however, leaving out the operators
with other tastes leads to an error of Oð�sm

2
K=�

2
�Þ, which is of

next-to-leading order in staggered chiral perturbation theory.
This error must be accounted for when fitting.
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operators having smeared links). In the former case, we
implement mean-field improvement (since, in general,
perturbation theory is very poorly convergent without
this improvement), while for the HYP-smeared case we
show results both with and without mean-field improve-
ment. For each choice of fermion, we compare the results
obtained using the Wilson and tree-level Symanzik gauge
actions, with the former being from Ref. [7]. We see that
improving the gauge action has a small effect, which, in
most cases, reduces the size of the coefficients. A much
more significant reduction is obtained by HYP-smearing,
as can be seen by comparing, for example, columns (b) and
(f). (This is the appropriate comparison because both
columns show results with mean-field improvement im-
plemented.) The results needed for our companion numeri-
cal calculation [31] are those of column (f).

As can be seen from Eq. (36), the full one-loop correc-
tion includes the anomalous dimension and finite contin-
uum contributions as well as dLati . Thus, the total size of the
one-loop correction depends on the renormalization scale
and lattice spacing through the combination �a. A better
measure of the size of the correction is the range of the
coefficients dLat1–4, from which anomalous dimension and

continuum contributions cancel. The ranges are given in
Table I, and show a small reduction with the use of the
improved gauge action.

To give a sense of the numerical size of the matching
coefficients themselves, we show in Table II results for the
z1–4 for the ‘‘ultrafine’’ MILC lattices (a � 0:045 fm),
setting � ¼ 1=a (‘‘horizontal matching’’), and using

�s ¼ g2=ð4�Þ ¼ 0:2096 (the value in the MS scheme at
� ¼ 1=a). For the actions we use in practice [column (f)]
the one-loop corrections range between þ2% and �8%.

To give a complete view of the one-loop matching, we
present, in Tables III and IV, the coefficients dLatj for all

other operators which appear at this order. We see that
improving the gauge action leads, as above, to a small
reduction in the magnitude of all the matching coefficients.
Note that, since these mixings are pure lattice artifacts,
with no anomalous dimension or other continuum contri-
butions, reducing the size of the coefficients is an unam-
biguous improvement.
As noted above, in present numerical calculations

the mixing with these operators is not being incorporated
in the lattice operators, but rather is a source of systematic
error that must be estimated by fitting. An alternative
approach would be to include the dominant operators
from the Tables in the one-loop matched operator. As
one can see, there are relatively few operators having
Oð1Þ coefficients:

(1) ½S� V��½S� V��,
(2) ½P� V��½P� V�� and ½P� V��½P� V��,
(3) ½T�� � V��½T�� � V��, ½T�� � V��½T�� � V��

½T�� � V��½T�� � V�� and ½T�� � V��½T�� � V��.

The remainder of the coefficients are an order of magnitude
or more smaller (i.e. jdLati j< 0:2). Since these coefficients
are multiplied by g2=ð4�Þ2 � 0:017–0:025 for a �
0:045–0:12 fm, we expect the contributions to BK from
the remaining operators to be very small.

B. Matching factors for other four-fermion operators

Models of new physics can lead, after integrating out
heavy particles, to �S ¼ 2 operators with different Dirac
structure from that inOCont

BK
. To constrain these models one

needs to know the matrix elements of these new operators.
A standard basis is [32]

OCont
2 ¼ ½�sað1� 
5Þda�½�sbð1� 
5Þdb�; (37)

OCont
3 ¼ ½�sað1� 
5Þdb�½�sbð1� 
5Þda�; (38)

OCont
4 ¼ ½�sað1� 
5Þda�½�sbð1þ 
5Þdb�; (39)

OCont
5 ¼ ½�sað1� 
5Þdb�½�sbð1þ 
5Þda�: (40)

TABLE I. Results for dLati for various choices of gauge and fermion action and of the four-fermion operators.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ ðfÞ
Gluon action Wilson Sym Wilson Sym Wilson Sym

Quark action Naive Naive HYP HYP HYP HYP

Mean-field imp. Y Y N N Y Y

dLatV1 �2:349ð1Þ �2:487ð1Þ �4:984ð1Þ �3:649ð1Þ �2:174ð1Þ �1:722ð1Þ
dLatV2 �12:915ð2Þ �11:537ð2Þ �11:108ð2Þ �8:584ð2Þ �5:487ð2Þ �4:729ð2Þ
dLatA1 �2:951ð1Þ �3:077ð1Þ �5:496ð1Þ �4:119ð1Þ �2:686ð1Þ �2:192ð1Þ
dLatA2 �3:725ð1Þ �2:895ð1Þ 1.012(1) 1.087(1) 1.012(1) 1.087(1)

Range 10.57 9.04 12.18 9.67 6.50 5.82

TABLE II. Values of zi for the MILC ultrafine ensembles. The
notation for actions is as in Table I.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ ðfÞ
zV1 0.978 0.980 1.022 1.000 0.975 0.968

zV2 1.154 1.131 1.124 1.082 1.030 1.018

zA1 0.988 0.990 1.031 1.008 0.984 0.975

zA2 1.001 0.987 0.922 0.921 0.922 0.921
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In this section, we present one-loop matching coefficients
for these operators.8

As for OCont
BK

, the first step is to match the operators into

the augmented continuum theory. The result is

OCont0
2 ¼ OCont0

S2 þOCont0
P2 þ� 1

2
ðOCont0

S1 þOCont0
P1 �OCont0

T1 Þ;
(41)

OCont0
3 ¼ OCont0

S1 þOCont0
P1 þ� 1

2
ðOCont0

S2 þOCont0
P2 �OCont0

T2 Þ;
(42)

OCont0
4 ¼ OCont0

S2 �OCont0
P2 þ� 1

2
ðOCont0

V1 �OCont0
A1 Þ; (43)

OCont0
5 ¼ OCont0

S1 �OCont0
P1 þ� 1

2
ðOCont0

V2 �OCont0
A2 Þ; (44)

TABLE III. Matching coefficients dLatj [defined in Eq. (35)] for
the operator required for calculating BK, and for operators j which
have different taste than the continuum operator (25). Lattice
operators and fermion action are HYP-smeared and the gauge
action is either Wilson—column (c)—or Symanzik—column (d).
Results in column (c) are obtained from Tables I–IV of Ref. [7].
The coefficients Tj give the impact of mean-field improvement:

dLatj ! dLatj þ CFIMFTj, with IMF ¼ 1:053786 for the Wilson

gauge action and IMF ¼ 0:722795 for the Symanzik gauge action.
Greek indices are implicitly summed, with the condition that
they are unequal, and the further constraint that for the
operator ½V� � T���½V� � T���, � < �, while for the operators

½T�� � V��½T�� � V�� and ½T�� � V��½T�� � V��, �< �.

Results are accurate to at least �2 in the last digit quoted.

OLat
j color trace (c) (d) Tj

½S� V��½S� V�� I �3:450 �2:805 1

½S� V��½S� V�� II �0:263 �0:249 0

½S� V��½S� V�� I 0.118 0.108 0

½S� V��½S� V�� II �0:104 �0:097 0

½S� A��½S� A�� I 0.043 0.028 0

½S� A��½S� A�� II �0:052 �0:035 0

½S� A��½S� A�� I �0:015 �0:010 0

½S� A��½S� A�� II 0.002 0.002 0

½V� � S�½V� � S� I �0:044 �0:029 0

½V� � S�½V� � S� II �0:008 �0:005 0

½V� � T���½V� � T��� I �0:124 �0:086 0

½V� � T���½V� � T��� II �0:114 �0:084 0

½V� � T���½V� � T��� I 0.029 0.023 0

½V� � T���½V� � T��� II �0:023 �0:019 0

½V� � T���½V� � T��� I 0.016 0.014 0

½V� � T���½V� � T��� II 0.002 0.002 0

½V� � T���½V� � T��� I 0.016 0.014 0

½V� � T���½V� � T��� II 0.002 0.002 0

½V� � T���½V� � T��� I �0:118 �0:091 0

½V� � T���½V� � T��� II �0:037 �0:030 0

½V� � T���½V� � T��� I 0.027 0.022 0

½V� � T���½V� � T��� II �0:020 �0:016 0

½T�� � V��½T�� � V�� I 2.071 1.547 �1

½T�� � V��½T�� � V�� II �0:538 �0:485 0

½T�� � V��½T�� � V�� I �0:410 �0:383 0

½T�� � V��½T�� � V�� II 0.452 0.417 0

½T�� � V��½T�� � V�� I 0.129 0.120 0

½T�� � V��½T�� � V�� II 0.126 0.118 0

½T�� � V��½T�� � V�� I 0.129 0.120 0

½T�� � V��½T�� � V�� II 0.126 0.118 0

½T�� � V��½T�� � V�� I �2:930 �2:331 1

½T�� � V��½T�� � V�� II �0:346 �0:316 0

½T�� � V��½T�� � V�� I 0.652 0.610 0

½T�� � V��½T�� � V�� II �0:153 �0:143 0

TABLE IV. Matching coefficients dLatj (continued from
Table III). Again, Greek indices are implicitly summed, with
the condition that they are unequal, with the further constraint
that for the operator ½A� � T���½A� � T���, � < �, and for the

operators ½T�� � A��½T�� � A�� and ½T�� � A��½T�� � A��,
�< �.

OLat
j color-trace (c) (d) Tj

½T�� � A��½T�� � A�� I �0:026 �0:017 0

½T�� � A��½T�� � A�� II �0:045 �0:030 0

½T�� � A��½T�� � A�� I �0:010 �0:007 0

½T�� � A��½T�� � A�� II �0:003 �0:002 0

½T�� � A��½T�� � A�� I 0.001 0.000 0

½T�� � A��½T�� � A�� II �0:002 �0:001 0

½T�� � A��½T�� � A�� I 0.001 0.000 0

½T�� � A��½T�� � A�� II �0:002 �0:001 0

½T�� � A��½T�� � A�� I �0:068 �0:046 0

½T�� � A��½T�� � A�� II �0:024 �0:016 0

½T�� � A��½T�� � A�� I 0.000 �0:000 0

½T�� � A��½T�� � A�� II 0.003 0.002 0

½A� � S�½A� � S� I �0:003 �0:002 0

½A� � S�½A� � S� II �0:022 �0:014 0

½A� � T���½A� � T��� I �0:124 �0:086 0

½A� � T���½A� � T��� II �0:114 �0:084 0

½A� � T���½A� � T��� I 0.022 0.017 0

½A� � T���½A� � T��� II �0:002 �0:002 0

½A� � T���½A� � T��� I �0:004 �0:003 0

½A� � T���½A� � T��� II 0.011 0.009 0

½A� � T���½A� � T��� I �0:004 �0:003 0

½A� � T���½A� � T��� II 0.011 0.009 0

½A� � T���½A� � T��� I �0:106 �0:083 0

½A� � T���½A� � T��� II �0:074 �0:055 0

½A� � T���½A� � T��� I �0:017 �0:015 0

½A� � T���½A� � T��� II 0.011 0.009 0

½P� V��½P� V�� I 2.566 2.004 �1

½P� V��½P� V�� II �0:547 �0:503 0

½P� V��½P� V�� I 0.151 0.141 0

½P� V��½P� V�� II 0.326 0.307 0

½P� A��½P� A�� I �0:063 �0:041 0

½P� A��½P� A�� II �0:042 �0:028 0

½P� A��½P� A�� I 0.012 0.008 0

½P� A��½P� A�� II �0:005 �0:003 0

8Linear combinations of these operators are also needed for
calculating the K ! � matrix elements of the I ¼ 3=2 part of
the electromagnetic penguin contribution to �0=�. In the context
of staggered fermions this is explained in Ref. [24].
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where some of the operators are defined in Eqs. (26)–(29),
and the others are

OCont0
S1 � ½ �Sað1 � �5ÞDb�½ �S0bð1 � �5ÞD0

a�; (45)

OCont0
S2 � ½ �Sað1 � �5ÞDa�½ �S0bð1 � �5ÞD0

b�; (46)

OCont0
P1 � ½ �Sað
5 � �5ÞDb�½ �S0bð
5 � �5ÞD0

a�; (47)

OCont0
P2 � ½ �Sað
5 � �5ÞDa�½ �S0bð
5 � �5ÞD0

b�; (48)

OCont0
T1 � X

�<�

½ �Sað
�
� � �5ÞDb�½ �S0bð
�
� � �5ÞD0
a�; (49)

OCont0
T2 � X

�<�

½ �Sað
�
� � �5ÞDa�½ �S0bð
�
� � �5ÞD0
b�: (50)

At tree-level, the new operators in the augmented contin-
uum theory match onto lattice operators in the obvious
way:

OCont0
S1 ¼treeOLat

S1 ¼ ½S� P�½S� P�I; (51)

OCont0
S2 ¼treeOLat

S2 ¼ ½S� P�½S� P�II; (52)

OCont0
P1 ¼treeOLat

P1 ¼ ½P� P�½P� P�I; (53)

OCont0
P2 ¼treeOLat

P2 ¼ ½P� P�½P� P�II; (54)

OCont0
T1 ¼treeOLat

T1 ¼ X
�<�

½T�� � P�½T�� � P�I; (55)

OCont0
T2 ¼treeOLat

T2 ¼ X
�<�

½T�� � P�½T�� � P�II: (56)

As for OCont0
BK

, each of the operators OCont0
2�5 matches at

one-loop order onto class (A) lattice operators composed of
bilinears with taste �5, and class (B) operators having other
tastes. Continuum mixing involves only class (A) opera-
tors—mixing with operators of class (B) is a lattice effect.
We display here only results for mixing with class
(A) operators, for several reasons. First, these are likely
to be the subset of operators used in numerical simulations.
Second, the contribution of class (B) operators is of next-
to-next-to-leading order in staggered chiral perturbation
theory, using the power counting of Ref. [30]. This is
because the contribution is suppressed both by �s, and
by the need to have a chiral loop due to the mismatch
between the taste of the operator and external states.

Unlike for OCont0
BK

, there is no chiral enhancement to raise

the contribution to next-to-leading order. Finally, we do not
show results for class (B) mixing for the sake of brevity.

We write the one-loop matching formula as

O Cont0
i ¼ X

j2ðAÞ
zijOLat

j � g2

ð4�Þ2
X

k2ðBÞ
dLatik OLat

k ; (57)

with i ¼ 2–4 and

zij ¼ bijþ g2

ð4�Þ2 ð�
ij logð�aÞþdContij �dLatij �CFIMFTijÞ:
(58)

We stress that we are using a different basis for the con-
tinuum and lattice operators, so that the tree-level contri-
bution is no longer �ij. Because of this, we denote the finite

parts as dij rather than Cij. The dContij matrix comes from

Ref. [7]. The elements of dLatij , which are calculated nu-

merically, are new results. The Tij term is present only if

the operator is mean-field improved. Numerical values for
IMF are given in the caption of Table III.
Results for the four operators are presented in Tables V,

VI, VII, and VIII. We show results for HYP-smeared

TABLE V. Matching coefficients entering Eq. (58) for i ¼ 2,
i.e. for OCont0

2 . The finite lattice coefficients are for the HYP-

smeared fermion action and operators, and either (c) the Wilson
gauge action or (d) the Symanzik gauge action (following the
labeling used in Table I. The dContij matrix comes from Ref. [7].

Results are accurate to the number of digits quoted.

Operator j b2j 
2j dCont2j dLat2j ðcÞ dLat2j ðdÞ T2j

OLat
S1 �1=2 6 �59=12 2.70 2.34 �1

OLat
S2 1 �10 þ73=12 �17:80 �14:53 6

OLat
P1 �1=2 6 �59=12 3.64 3.17 �1

OLat
P2 1 �10 þ73=12 5.42 4.06 �2

OLat
T1 1=2 �14=3 þ29=12 �2:94 �2:52 1

OLat
T2 0 2=3 �5=4 0.03 0.01 0

TABLE VI. Matching coefficients entering Eq. (58) for i ¼ 3.
Notation as in Table V.

Operator j b3j 
3j dCont3j dLat3j ðcÞ dLat3j ðdÞ T3j

OLat
S1 1 8 1=3 �4:35 �2:88 2

OLat
S2 �1=2 0 �5=3 7.13 5.38 �3

OLat
P1 1 8 1=3 �6:23 �4:56 2

OLat
P2 �1=2 0 �5=3 �0:25 �0:14 1

OLat
T1 0 8=3 �1 0.14 0.24 0

OLat
T2 1=2 16=3 �1=3 �2:31 �1:55 1

TABLE VII. Matching coefficients entering Eq. (58) for i ¼ 4.
Notation as in Table V.

Operator j b4j 
4j dCont4j dLat4j ðcÞ dLat4j ðdÞ T4j

OLat
S1 0 0 �3 0 0 0

OLat
S2 1 �16 þ23=3 �19:12 �16:02 6

OLat
P1 0 0 þ3 0 0 0

OLat
P2 �1 16 �23=3 �6:93 �5:09 2

OLat
V1 �1=2 8 �23=6 3.02 2.72 �1

OLat
V2 0 0 þ3=2 0.37 0.34 0

OLat
A1 1=2 �8 þ23=6 �3:27 �2:95 1

OLat
A2 0 0 �3=2 0.40 0.37 0
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operators without mean-field improvement, but include the
values of Tij so that mean-field improvement can be easily

implemented.
The tables show that, for coefficients with magnitudes

larger than about 5, improvement of the gauge action leads
to a small reduction in the size of the finite lattice coef-
ficients.9 Even with this improvement, we see that the
largest lattice coefficients have a magnitude as large as
16, although most have a magnitude smaller than 10. These
numbers are larger than those we found for the BK operator
(Table I). On a coarse lattice with a � 0:12 fm, and
g2=ð4�Þ2 � 0:025, the largest one-loop term could give a
40% correction. This is not a precise statement because we
have not included the contribution from finite continuum
terms and from the anomalous dimensions. Nevertheless, it
is a warning to expect perturbation theory to be less con-
vergent for the operators O2–5 than for OBK

.

The situation is better if one implements mean-field
improvement. As can be seen from the Tables, this reduces

all the larger coefficients, so that the largest magnitude is
now � 10. Since mean-field improvement is relatively
straightforward to implement, our results suggest that this
would be worth the required investment.
Finally, we note that, unlike for OBK

, one finds very

large finite coefficients if one uses mean-field improved
naive fermions (with either gauge action). The largest
magnitudes are � 50, indicating a complete breakdown
in the convergence of perturbation theory. Because of this,
we do not include the results in the tables.

V. CONCLUSION

We have calculated the matching factors for four-
fermion operators using various fermion and gauge ac-
tions. Most useful are our results for the fermion action
and operators constructed using HYP-smeared links with
the Symanzik-improved gluon action. These are needed for
our ongoing calculation of BK and related matrix elements
[4,31]. For these operators, the one-loop corrections are of
moderate size for the BK operator, with the range of
corrections being �10� �s=ð4�Þ ��s, which is the
naively expected size. The same holds true for the opera-
tors induced by new physics, as long as one implements
mean-field improvement. For all operators, we find that
improving the gauge action generically leads to a reduction
in the size of one-loop matching coefficients, but that the
effect is relatively small.
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