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We employ the B ! � form factors obtained from QCD light-cone sum rules and calculate the

B ! �‘�‘ width (‘ ¼ e, �) in units of 1=jVubj2, integrated over the region of accessible momentum

transfers, 0 � q2 � 12:0 GeV2. Using the most recent BABAR Collaboration measurements we extract

jVubj ¼ ð3:50þ0:38
�0:33jth � 0:11jexpÞ � 10�3. The sum rule results for the form factors, taken as an input

for a z-series parametrization, yield the q2 shape in the whole semileptonic region of B ! �‘�‘. We also

present the charged lepton energy spectrum in this decay. Furthermore, the current situation with

B ! ��� is discussed from the QCD point of view. We suggest using the ratio of the B ! ���� and

B ! �‘�‘ð‘ ¼ �; eÞ widths as an additional test of the standard model. The sensitivity of this observable

to new physics is illustrated by including a charged Higgs-boson contribution in the semileptonic decay

amplitude.
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I. INTRODUCTION

Currently, there is tension between the two values of
jVubj extracted from inclusive and exclusive semileptonic
B decays involving the b ! u transition. While the inclu-
sive analyses typically yield a central value of jVubj larger
than 4� 10�3, the exclusive determinations produce cen-
tral values well below this. This tension is not significant;
it ranges at a level of 3�, but it has already created a
significant amount of speculations concerning possible
new-physics effects. This is in contrast to the situation
with jVcbj, where both the inclusive and the exclusive
determinations yield consistent values with an uncertainty
of roughly 2% (for a review on jVcbj and jVubj, see [1]).

The theoretical description of inclusive semileptonic B
decays relies on the heavy-quark expansion which has
reached a mature state. Still, the situation with b ! u
inclusive decays is more complicated than with the domi-
nant b ! c ones. In order to suppress the charm back-
ground in the inclusive b ! u decays, severe phase space
cuts are necessary, for which most theoretical methods
cannot rely on the heavy-quark expansion based on the
local operator-product expansion (OPE). The heavy-quark
expansion for this case uses nonlocal matrix elements
corresponding to the light-cone distribution functions of
the Bmeson, which also appear, e.g., in the radiative b ! s
decays. Because of this more complicated structure of the
expansion, it is quite hard to estimate subleading terms in
the heavy-quark expansion for b ! u decays. In particular,
the inclusive method has been scrutinized for a missing
systematic effect like, e.g., ‘‘weak annihilation’’; however,
no missing pieces can be identified yet. Still, it is believed
that this method allows a determination of jVubj at a
precision of a little better than 10%.

As far as exclusive decays are concerned, heavy-quark
symmetries restrict the form factors for the heavy-light

b ! u transitions much weaker than the ones for the
b ! c transitions. Hence, the determination of jVubj from
exclusive decays such as B ! �‘ �� and B ! �‘ �� requires
a QCD calculation of the relevant hadronic form factors.
State-of-the-art calculations do not rely on quark models
any more, since the latter cannot be directly related to
QCD. Already for many years, the form factors are ob-
tained, on one hand, from lattice simulations and, on the
other hand, from QCD sum rules. The two approaches
are complementary: While the lattice techniques can cal-
culate close to the maximal leptonic momentum transfer
q2, the QCD sum rule approach works best for small q2.
Extrapolating both predictions to the full phase space
yields consistent results, and hence there is some confi-
dence that the form factors, in particular, for B ! �‘ �� are
known with an uncertainty of 10%–15%.
Currently, B ! �l�‘ is the most reliable exclusive chan-

nel to extract jVubj. There is steady progress in measuring
the branching fraction and q2 distribution for l ¼ �, e (see
[2–4] for the latest results). The hadronic vector form
factor fþB�ðq2Þ and its scalar counterpart f0B�ðq2Þ relevant
for this decay are defined as1

h�þðpÞj ����bj �B0ðpþ qÞi

¼ fþB�ðq2Þ
�
2p� þ

�
1�m2

B �m2
�

q2

�
q�

�

þ f0B�ðq2Þ
m2

B �m2
�

q2
q�; (1)

where fþB�ð0Þ ¼ f0B�ð0Þ. The most recent lattice QCD
computations with three dynamical flavors [5,6] predict

1Throughout this paper, we assume isospin symmetry for B0

and B� semileptonic decays and consider the �B0 ! �þ‘� ��‘
mode for definiteness, denoting it as B ! �‘�‘ for brevity.
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these form factors at q2 � 16 GeV2, in the upper part of
the semileptonic region 0�q2�ðmB�m�Þ2’26:4GeV2,
with an accuracy reaching 10%. There are also recent
results available [7] in the quenched approximation on a
fine lattice. QCD light-cone sum rules (LCSR) with pion
distribution amplitudes (DA’s) allow one to calculate the
B ! � form factors [8–12] at small and intermediate
momentum transfers, 0 � q2 � q2max, where the choice of
q2max varies between 12 and 16 GeV2.

The main goal of this paper is to present an updated
LCSR prediction for the width of B ! �‘�‘ (‘ ¼ e, �)
which is then used to extract jVubj. This work complements
[12], where LCSR for fþB� and f0B� were rederived,

employing the MS scheme for the virtual b quark in the
correlation function. In [12], the shape of the form factor
fþB�ðq2Þ predicted from LCSR was fitted to the earlier
BABAR measurement [13] of the q2 distribution in
B ! �l�‘. In this way, some input parameters of
LCSR were constrained, allowing one to decrease the
theoretical uncertainty of the value fþB�ð0Þ, the main pre-
diction of [12].

In this paper, we follow a different strategy. The inter-
vals of the Gegenbauer moments of the pion twist-2 DA are
constrained using the LCSR for the pion electromagnetic
(e.m.) form factor at spacelike momentum transfers. The
calculated form factor is then fitted to the available experi-
mental data on this form factor. We also slightly update the
other input parameters, and recalculate the form factors
fþB�ðq2Þ and f0B�ðq2Þ at 0 � q2 < q2max from LCSR. Our
main prediction is the integral

��ð0; q2maxÞ � G2
F

24�3

Z q2max

0
dq2p3

�jfþB�ðq2Þj2

¼ 1

jVubj2�B0

Z q2max

0
dq2

dBðB ! �‘�‘Þ
dq2

; (2)

where p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B þm2
� � q2Þ2=4m2

B �m2
�

q
is the pion

three-momentum in the B-meson rest frame, and the
above equation is valid for ‘ ¼ e, � in the limit ml ¼ 0.
As in [12], the value q2max ¼ 12:0 GeV2 is adopted.
The predicted ��ð0; 12 GeV2Þ is used to extract jVubj
from the most recent BABAR Collaboration results [2,3]
for the measured partial branching fraction integrated over
the same q2 region. Furthermore, we predict the form
factors in the whole semileptonic region by fitting the
LCSR results at q2 � q2max to the z-series parametriza-
tion in the form suggested in [14]. In addition to the q2

distribution of the width, we present a ‘‘by-product’’
observable: the lepton energy spectrum in B ! �‘�‘.
Finally, we calculate the ratio of the B ! ���� and
B ! �‘�‘ (‘ ¼ e, �) widths, which is independent of
jVubj and in the standard model (SM) is fully determined
by the ratio f0B�ðq2Þ=fþB�ðq2Þ. We also discuss the current
tension between the SM prediction and measurements
of the leptonic B ! ��� width, and suggest using the

semileptonic decay B ! ����, originating from the
same flavor-changing interaction, as an additional indica-
tor of new physics. As an illustrative example, we consider
the influence of a charged Higgs-boson exchange on the
B ! ���� width.
In what follows, a brief outline of the LCSR method for

B ! � form factors is given in Sec. II. The choice of the
Gegenbauer moments of the pion DA is discussed in
Sec. III. In Sec. IV we present our numerical results for
the form factors and for the integrated width. In Sec. V we
discuss the z-series parametrization and present our pre-
dictions for the whole semileptonic region. In Sec. VI we
discuss the current situation with B ! ��� and the decay
B ! ����, concluding in Sec. VII.

II. OUTLINE OF THE METHOD AND INPUT

To obtain the LCSR for the form factors fþB� and f0B�,
one uses the correlation function

F�ðp; qÞ ¼ i
Z

d4xeiq�x

� h�þðpÞjTf �uðxÞ��bðxÞ; mb
�bð0Þi�5dð0Þgj0i

¼ Fðq2; ðpþ qÞ2Þp� þ ~Fðq2; ðpþ qÞ2Þq�; (3)

of the b ! u vector current and the B-meson interpolating
current. As explained, e.g., in [12], the product of the
quark operators above is expanded near the light cone,
provided both external momenta are highly virtual:
ðpþ qÞ2, q2 � m2

b. The OPE result for the invariant

amplitudes in (3) is obtained in a (schematic) form:

FOPEðq2;ðpþqÞ2Þ
¼X

t

Z
DuiT

ðtÞðq2;ðpþqÞ2;ui; �mb;	s;�fÞ’ðtÞ
� ðui;�fÞ;

(4)

with a similar expression for ~FðOPEÞ. In the above, the pion

light-cone DA’s ’ðtÞðuiÞ of growing twist t ¼ 2, 3, 4 are
defined as functions of the light-cone momentum fractions
ui; for the two-particle DA’s u1 ¼ u, u2 ¼ 1� u � �u,
with the integration over u. The DA’s are convoluted
with the coefficient functions (hard-scattering amplitudes)

TðtÞ and ~TðtÞ at the factorization scale �f. The currently

accessible approximation for the light-cone OPE includes
the contributions of all two- and three-particle DA’s up to
twist 4. For the leading twist-2 and twist-3 contributions
the coefficient functions are calculated in next-to-leading
order (NLO), taking into account theOð	sÞ gluon radiative
corrections. The input in the OPE (4) includes the b-quark

mass (in the MS scheme) and QCD coupling in the coef-
ficient functions, as well as the parameters of the universal
pion DA’s.
The dispersion relation for the correlation function (3)

in the channel of the B-meson interpolating current with
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momentum pþ q is then employed to access the form
factors:

FOPEðq2; ðpþ qÞ2Þ ¼ 2fBm
2
Bf

þ
B�ðq2Þ

m2
B � ðpþ qÞ2 þ . . . ; (5)

~FOPEðq2; ðpþ qÞ2Þ

¼ fBm
2
B

m2
B � ðpþ qÞ2

�
fþB�ðq2Þ

�
1�m2

B �m2
�

q2

�

þ f0B�ðq2Þ
m2

B �m2
�

q2

�
þ . . . ; (6)

where fB ¼ h �Bjmb
�bi�5dj0i=m2

B is the B-meson decay
constant. The ellipses in the above relations indicate the
integrals over the spectral densities of excited and contin-
uum B states, for which the quark-hadron duality ansatz is
used. More specifically, one approximates the higher-state
contributions in (5) and (6) by the integrals over the
spectral density of the calculated invariant amplitudes
ImðpþqÞ2FOPEðq2; sÞ and ImðpþqÞ2 ~FOPEðq2; sÞ, respectively.
This approximation brings the effective threshold sB0 into

play. The final form of LCSR is obtained after applying the
Borel transformation to (5) and (6), replacing the variable
ðpþ qÞ2 by the Borel parameter M2; e.g., for the form
factor fþB�, one obtains

fþB�ðq2Þ ¼
�
em

2
B=M

2

2m2
BfB

�
1

�

Z sB0

m2
b

ds ImðpþqÞ2FOPEðq2; sÞe�s=M2
:

(7)

The second LCSR obtained from (6) and combined with
(7) allows one to calculate the form factor f0B�ðq2Þ. Both
sum rules are reliable up to q2max 	m2

B � 2mb
, where 
 is
some large scale, independent of mb, so that at q2 � q2max

the truncated light-cone OPE can be trusted.
The interval of M2 in (7) is constrained by combining

the two usual criteria for a QCD sum rule: smallness of the
power corrections (here the contributions of three-particle
and twist-4 DA’s to FOPE) and, simultaneously, a moderate
magnitude of the hadronic continuum contribution. The
interval of sB0 is constrained by equating the B-meson mass

calculated from LCSR to its experimental value. Finally,
the decay constant fB is calculated from the two-point sum
rule with the same 	s accuracy. The explicit expressions
for the amplitudes FOPE, ~FOPE and their spectral functions
entering LCSR, as well as a detailed description of all pion
DA’s entering (4), can be found in [12].

The most important contributions to the LCSR (7)
originate from the twist-2 and twist-3 terms in the OPE

(4). The twist-2 pion DA ’ð2Þ
� ðu1; u2; �Þ ¼ f�’�ðu;�Þ

is normalized to the pion decay constant f�. The shape
of ’�ðu;�Þ is determined by the coefficients of
the Gegenbauer-polynomial expansion (Gegenbauer mo-
ments), to be discussed in the next section. In the twist-3
pion DA’s, the most important input parameter is the

normalization coefficient �� ¼ m2
�=ðmu þmdÞ related

to the quark-condensate density. The parameters determin-
ing the shapes of the twist-3,4 DA’s are known with a
sufficient accuracy from the two-point QCD sum rules
(see, e.g., [15]).

III. GEGENBAUER MOMENTS FROM
THE PION E.M. FORM FACTOR

For the twist-2 pion DAwe use the same approximation
as in [12],

’�ðu;�fÞ ¼ 6u �uð1þ a�2 ð�fÞC3=2
2 ðu� �uÞ

þ a�4 ð�fÞC3=2
4 ðu� �uÞÞ; (8)

retaining the two nonvanishing Gegenbauer moments
a�2 and a�4 and neglecting all higher moments, so that
a�>4 ¼ 0. This approximation is justified because the re-
normalization suppresses higher Gegenbauer moments at
relatively large scales �f, typical for the LCSR (7). The

uncertainties of the input values of a�2;4ð1 GeVÞ are larger
than very small effects of the NLO evolution, which we
also neglect.
In [12] these two parameters were constrained by

fitting the B ! � form factor calculated from LCSR at
different q2 to the measured shape of B ! �‘�‘, yielding
a�2 ð1 GeVÞ ¼ 0:16� 0:01 and a�4 ð1 GeVÞ ¼ 0:04� 0:01,
where the uncertainties only take into account the experi-
mental error in the shape.
Here we refrain from using the B ! �‘�‘ data and

obtain an independent constraint on the two Gegenbauer
moments employing the pion e.m. form factor F�ðQ2Þ in
the spacelike region, defined as

h�ðpþ qÞjjem� j�ðpÞi ¼ ð2pþ qÞ�F�ðQ2Þ; (9)

where jem� ¼ 2
3
�uðxÞ��uðxÞ � 1

3
�dðxÞ��dðxÞ andQ2 ¼ �q2.

The LCSR for F�ðQ2Þ derived in [16,17] and updated in
[18] is based on the correlation function, similar to (3),
with virtual u, d quarks instead of the b quark and with the
axial-vector current instead of the pseudoscalar current.
This sum rule has NLO accuracy in the leading twist-2
term, with the nonleading terms up to twist 6 taken into
account. The Oð	s=Q

2Þ term in LCSR correctly reprodu-
ces the large-Q2 QCD asymptotics of the pion form factor,
whereas the soft contributions dominate in the intermediate
Q2 region. Importantly, the twist-3 contribution to the
LCSR for F�ðQ2Þ vanishes in the chiral limit. Altogether,
the sum rule for the pion e.m. form factor is more sensitive
to the twist-2 pion DA than the sum rules for heavy-to-light
form factors. The LCSR for F�ðQ2Þ with the currently
achieved accuracy is applicable at intermediate Q2, from
Oð1 GeV2Þ to a few GeV2; in the same region this form
factor was accurately measured by the JLab experiment
[19]. Preliminary comparison of the LCSR with these data
was done in [20]. With the pion DA given by (8) and taking
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the remaining input from [18], we recalculated the pion
e.m. form factor at Q2 in the region up to a few GeV2 as a
function of a�2 ð1 GeV2Þ and a�4 ð1 GeV2Þ. As shown in
Fig. 1, the result was fitted to the seven data points at
0:6 GeV2 � Q2 � 2:45 GeV2, presented in [19], yielding

a�2 ð1 GeVÞ ¼ 0:17� 0:08;

a�4 ð1 GeVÞ ¼ 0:06� 0:10;
(10)

where the uncertainties include experimental errors and the
variation of other input parameters taken as in [18]. We
adopt these intervals for the numerical analysis of the sum
rule (7), neglecting the correlation of the two uncertainties
in (10). Note that the value of a�2 presented above is
consistent with the direct calculations of this parameter
in lattice QCD [21] and from QCD sum rules [15,22].

The �
� ! �0 transition form factor, where the virtual
photon has a spacelike virtuality Q2, is another important
hadronic matrix element that depends on the properties of
the pion DA ’�ðuÞ. The method [23] of combining LCSR
with the dispersion relation in the photon virtuality predicts
this form factor starting fromQ2 	 1 GeV2. It is important
that, according to the sum rule approach, the photon-pion
transition form factor contains a considerable nonpertur-
bative soft contribution. The calculation [23] was recon-
sidered in [20] with the same intervals of a�2 , a�4 as
in [12], revealing a reasonable agreement with the data at
Q2 � 15 GeV2. The most accurate LCSR analysis of the
�
� ! �0 form factor, including the new twist-6 correc-
tions, was carried out recently in [24]. It was shown
that also the rise of the form factor at high Q2 observed
by the BABAR Collaboration [25] (albeit with large errors)
can still be accommodated in the LCSR prediction at
the expense of a moderate ‘‘deformation’’ of the shape
of ’�ðuÞ. Most importantly, one has to increase the

coefficient a�4 ð1 GeVÞ up to 	0:2, leaving a�2 in the ball-
park of (10) and (optionally) adding small coefficients
a�6;8;10 to the model. We illustrate the numerical influence

of such variation of ’�ðuÞ on the B ! � LCSR (7) in the
next section, and confirm the observation made in [24] that
the heavy-light form factors are only slightly influenced by
this modification of Gegenbauer moments.
The LCSR method can also be used to calculate the

D ! � form factor. The recent analysis in [26], where
the same intervals as in [12] were used, revealed a very
good agreement with lattice QCD and experiment. We
checked that the use of broader intervals (10) does not
produce a noticeable effect, simply because the twist-2
contribution is numerically less important in the D ! �
LCSR.

IV. NUMERICAL RESULTS FOR THE FORM
FACTORS AND WIDTH

For the numerical analysis of the LCSR (7) and the
related sum rule for f0B�, we slightly updated the input
used in [12]. First of all, there is practically no change of
the b-quark mass. According to the last update [27], we
adopt �mbð �mbÞ ¼ 4:16� 0:03 GeV, conservatively inflat-
ing the quoted error by a factor of 2. As explained in detail

in [12], theMSmass of the b quark is themost suitablemass
definition for OPE of the correlation function, and the
Oð	sÞ contributions to the sum rules are comparably small.
For the u- and d-quarkmasses entering the parameter��¼
m2

�=ðmuþmdÞ, we follow [26] and use the s-quark mass
derived from QCD sum rules [28] and the chiral perturba-
tion theory light-quark mass ratios [29], yielding
½muþmd�ð2GeVÞ¼8:0�1:4MeV and, correspondingly,

��ð2 GeVÞ ¼ 2:43� 0:42 GeV; (11)

so that the quark-condensate density is h �qqið2 GeVÞ ¼
�ð274þ15

�17 MeVÞ3. This interval is slightly narrower, but

remains within the broader range used in [12]. As already
mentioned in the last section, our intervals for the parame-
ters a�2 and a�4 given in (10) are broader than the ones used
in [12]. The rest of the parameters determining the non-
perturbative objects in the sum rules (DA’s and condensate
densities), as well as the conventions for the renormaliza-
tion and choice of 	s, are taken as in [12]. As shown there,
all nonasymptotic and three-particle contributions of the
twist-3 DA’s as well as the whole twist-4 contribution to
LCSR are very small, and the uncertainties in their parame-
ters do not produce visible changes in the numerical
predictions.
The ‘‘internal’’ input parameters of our calculation in-

clude the renormalization scale �, the Borel parametersM
and �M, and the related duality thresholds sB0 and �sB0 in

LCSR and in the two-point sum rule for fB, respectively.
Here we follow the same strategy as in [12], balancing
between the smallness of the subdominant contributions
(twist-4 and twist-2,3 NLO terms) and a reasonable

F Q2

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q2 GeV2

FIG. 1 (color online). The pion e.m. form factor calculated
from LCSR [17,18] as a function of Gegenbauer moments
a�2 ð1 GeVÞ and a�4 ð1 GeVÞ and fitted (solid line) to the experi-

mental data points taken from [19].
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suppression of the integrals over the higher states estimated

in the quark-hadron duality approximation. The only minor

difference with respect to the analysis presented in [12] is

that here we stay on a more conservative side, allowing for

a slightly larger deviation (up to 3%) of the calculated

B-meson mass from its experimental value. This leads to

broader intervals for the Borel parameters and duality

thresholds. More specifically, we adopt the same default

renormalization scale � ¼ 3 GeV as in [12], allowing

its variation from 2.5 to 4.5 GeV, and use in LCSR the

Borel parameter range M2 ¼ ð12:0–20:0Þ GeV2, with the

threshold parameter gradually shrinking from the interval

sB0 ¼ 37:5� 2:5 GeV2 at M2 ¼ 12:0 GeV2 to the point

sB0 ¼40:0GeV2 at M2¼20:0GeV2. In the two-point sum

rule we vary �M2 from 4:0 GeV2ð �sB0 ¼ 36:5� 2:5 GeV2Þ to
6:0 GeV2ð �sB0 ¼ 39:0 GeV2Þ.
The results of our calculation for fþB�ðq2Þ at 0< q2 <

12:0 GeV2 are shown in Fig. 2, displaying the separate
uncertainties caused by the variation of (a) a�2 , a

�
4 , (b) ��,

(c) �, (d) fM2; sB0 g, and (e) f �M; �sB0 g within the limits speci-

fied above. In addition, in Fig. 2(f) the default central
values of the Gegenbauer moments in (10) are replaced
by a model with larger a�4 ð1 GeVÞ ¼ 0:22 (model III in

[24]). The small deviation of the form factor remains

f B q2

a

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

f B q2

b

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

f B q2

c

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

f B q2

d

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

f B q2

e

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

f B q2

f

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

q2 GeV2

FIG. 2. The form factor fþB�ðq2Þ calculated from LCSR with the central input (solid lines) and varying separate input parameters
(dashed lines): (a) a�2 , a

�
4 , (b)��, (c)�, (d)M2, sB0 , and (e) �M2, �sB0 . In (f) the result for model III of Gegenbauer moments from [24] is

displayed (dashed line).
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within our estimated uncertainty due to the a�2 , a
�
4 varia-

tion. Since we use a narrow interval of the b-quark mass
from [27], the uncertainties caused by the variation of �mb

are very small and not even visible on the plot, and hence
we do not show them; the remaining parameters of DA’s
and condensate densities generate negligibly small
changes of the calculated form factors. The sensitivity to
the renormalization scale is relatively large at q2, ap-
proaching q2max, and also the uncertainties due to the
Borel parameter and duality threshold are now more pro-
nounced than in [12] due to an enlargement of the adopted
intervals, whereas the uncertainty due to the twist-3 nor-
malization �� (related to the u, d-quark masses and quark
condensate) decreases. The numerical results for the form
factors fþB�ðq2Þ and f0B�ðq2Þ are consistent with what was
obtained in [12]; a few percent shift of the central value of

fþB�ð0Þ (presented in Table I below) can be traced to the
modification of the input.
Note that the variations of the form factors cal-

culated from LCSR at different q2 are strongly correlated;
in particular, the shape of the form factor fþB�ðq2Þ is
correlated with its value at q2 ¼ 0. Quoting separate
theoretical errors for each point of the accessible q2 region,
including all these correlations makes the numerical pre-
dictions too complex and in fact is not necessary, since
our main goal is the integrated semileptonic width over
this region. Instead, we calculate the deviations of this
width with respect to the variations of individual input
parameters, so that the correlations are automatically taken
into account after the integration over q2. Our main result
is the integral (2) calculated using the LCSR results for
fþB�ðq2Þ:

��ð0; 12 GeV2Þ ¼ 4:59
þ0:16

�0:16

��������a2;a4

þ0:03

�0:03

��������mb

þ0:68

�0:46

����������

þ0:31

�0:39

���������

þ0:29

�0:47

��������M;s0

þ0:59

�0:32

�������� �M;�s0

ps�1

¼ 4:59
þ1:00

�0:85
ps�1; (12)

where the negligibly small uncertainties related to the rest
of the input are not shown but are included in the total error
obtained by adding all separate uncertainties in quadra-
ture.2 Importantly, (12) has a slightly smaller overall un-
certainty than the values of the form factor fþB�ðq2Þ at
separate q2, due to the above-mentioned correlations.

Using (12), we employ the recent BABAR data for the
B ! �‘�‘ width. The branching fraction integrated from
q2 ¼ 0 to q2 ¼ 12 GeV2 was measured by the BABAR
Collaboration using two different techniques, and the re-
sults are

�Bð0;12 GeV2Þ ¼ ð0:84� 0:03� 0:04Þ� 10�4 ½3�;
�Bð0;12 GeV2Þ ¼ ð0:88� 0:06Þ� 10�4 ½2�: (13)

Taking their weighted average and the total lifetime �B0 ¼
1:525� 0:009 ps and substituting (12) in (2), we obtain

jVubj ¼ ð3:50þ0:38
�0:33jth � 0:11jexpÞ � 10�3; (14)

where the theoretical error corresponds to the estimated
total uncertainty in (12).

V. ACCESSING THE LARGE q2 REGION
WITH Z PARAMETRIZATION

To extrapolate the calculated form factor, we use the
z-series parametrization (see, e.g., [14,30]) based on the
analyticity of the form factors and using the transformation

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmB þm�Þ2 � q2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmB þm�Þ2 � t0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmB þm�Þ2 � q2
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmB þm�Þ2 � t0

p ;

(15)

where t0 ¼ ðmB þm�Þ2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBm�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmB þm�Þ2 � q2min

q
is the auxiliary parameter, chosen to maximally reduce
the interval of z obtained after the mapping (15) of the
region q2min < q2 < q2max, where the LCSR calculation is

valid. More specifically, we adopt the Bourrely-Caprini-
Lellouch (BCL) version [14] of this parametrization; that
is, for the vector form factor,

fþB�ðq2Þ ¼
1

1� q2=m2
B


XN
k¼0

~bk½zðq2; t0Þ�k: (16)

TABLE I. Fitted parameters for z-series parametrization of the form factors fþ;0
B� ðq2Þ and their

uncertainties due to the variations of the input parameters.

Parameter Central value fa2; a4g �� � fM2; s0g f �M2; �s0g
fþB�ð0Þ 0.281 þ0:002

�0:003
þ0:018
�0:014

�0:005
þ0:008

þ0:010
�0:022

�0:010
þ0:016

b1 �1:62 þ0:43
�0:44

�0:06
þ0:05

þ0:53
�0:07

þ0:30
�0:49 � � �

b01 �3:98 þ0:56
�0:57

�0:28
þ0:23

þ0:96
�0:08

þ0:28
�0:42 � � �

2This replaces our preliminary result ��ð0; 12 GeV2Þ ¼
4:00þ1:01

�0:95 quoted in [2,3] and obtained with exactly the same
input as in [12], except no data on B ! �‘�‘ were used and
broader intervals a�2 ð1 GeV2Þ ¼ 0:25� 0:15 and a�4 ð1 GeV2Þ ¼
ð0:1� 0:1Þ � a�2 ð1 GeV2Þ were adopted.
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As explained in [14], this parametrization has certain
advantages with respect to the Boyd-Grinstein-Lebed
version [30]. Furthermore, to obey the expected near-
threshold behavior, the relation

~b N ¼ �ð�1ÞN
N

XN�1

k¼0

ð�1Þkk~bk (17)

is implemented, reducing the number of independent
parameters by 1. In addition, we find it more convenient
to keep the form factor at zero momentum transfer fþB�ð0Þ
as one of the fit parameters, correspondingly rescaling
the coefficients in the z-series expansion. This leads to
the same parametrization of the vector form factor as the
one used in [26]:

fþB�ðq2Þ ¼
fþB�ð0Þ

1� q2=m2
B


�
1þ XN�1

k¼1

bk

�
zðq2; t0Þk � zð0; t0Þk

� ð�1ÞN�k k

N
½zðq2; t0ÞN � zð0; t0ÞN�

��
: (18)

The scalar form factor f0B�ðq2Þ is parametrized in a
similar way, except that there is no pole factor for an
obvious reason: the lowest B resonance in the JP ¼ 0þ
channel is located above the B� threshold. Thus, we use

f0B�ðq2Þ¼f0B�ð0Þ
�
1þXN

k¼1

b0kðzðq2; t0Þk�zð0;t0ÞkÞ
�
; (19)

where, by default, f0B�ð0Þ ¼ fþB�ð0Þ.
We fitted the numerical LCSR prediction for the

form factor fþB�ðq2Þ to (18) with N ¼ 2 and f0B�ðq2Þ to
(19) with N ¼ 1, respectively. To increase the ‘‘lever arm’’
we also employed the LCSR predictions at negative q2, up
to q2min ¼ �6:0 GeV2. After the mapping (15), q2min !
z ¼ 0:30 and q2max ¼ 12 GeV2 ! z ¼ 0:13, so that the
values of z are sufficiently small to justify truncating the
expansion (16). The number N of terms in this expansion
can be made larger, with no essential change in the fitted
form factor but with increasing individual uncertainties for
the coefficients bk and with large correlations between
them. We checked that the upper bounds on the expansion
coefficients bk following from the OPE of the two-point
correlation function of the vector �b��u currents (see [14]

for detailed expressions) are far from being saturated for
low N. We also used the analogous bounds for the scalar
form factor obtained recently in [31]. Altogether, the OPE
bounds play a role starting from N ¼ 5.

The fitted values of fþB�ð0Þ ¼ f0B�ð0Þ and of the slope
parameters b1, b

0
1 are presented in Table I, together with

the numerically important uncertainties, the latter reveal-
ing significant correlations. With these results we extrapo-
late the form factors at q2 > q2max and compare with the
lattice QCD results. This is shown in Fig. 3 for fþB�ðq2Þ and
in Fig. 4 for f0B�ðq2Þ.

The dashed curves in these figures are obtained by add-
ing separate variations of the form factors in quadrature at
each q2, so that the variations of the solid curves corre-
sponding to the central input are bounded within the area
between the upper and lower dashed curves. As expected,
the uncertainties of the form factors extrapolated to larger
q2 exceed the ones calculated at smaller q2. This circum-
stance, however, does not play a significant role for the
integrated widths, since the integration over the phase
space suppresses the semileptonic width in the large q2

region.
Our predictions for fþB� are, within errors, in reasonable

agreement with the lattice QCD results obtained by

f B q2

0 5 10 15 20 25
0

2

4

6

8

10

q2 GeV2

FIG. 3 (color online). The vector form factor fþB�ðq2Þ calcu-
lated from LCSR and fitted to the BCL parametrization (solid
line) with uncertainties (dashed lines), compared with the
HPQCD [5] (squares) and FNAL/MILC [6] (triangles) results.

f 0
B q2

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1.0

q2 GeV2

FIG. 4 (color online). The scalar form factor f0B�ðq2Þ calcu-
lated from LCSR and fitted to the BCL parametrization. The
notations are the same as in Fig. 3.
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HPQCD [5] and Fermilab/MILC [6] collaborations.
We also observe an agreement with the normalization
and shape of the form factors obtained by the QCDSF
Collaboration [7]; in particular, they predict fþB�ð0Þ ¼
0:27� 0:07� 0:05.

Furthermore, we estimate the total width of B ! �‘�‘

in units of 1=jVubj2 and the integral (2) for the large q2

region:

1

jVubj2
�ðB!�‘�‘Þ¼��ð0;26:4 GeV2Þ

¼ 7:71þ1:71
�1:61 ps

�1;

��ð16 GeV2;26:4 GeV2Þ¼ 1:88þ0:53
�0:59 ps

�1:

(20)

Our prediction for the latter integral has to be compared
with the lattice QCD results presented below, in Table II.

In Fig. 5 we plot the predicted q2 shape in B ! �‘�‘

obtained by calculating the normalized differential width
ð1=�Þd�=dq2 from LCSR at 0 � q2 � q2max and from the

z-series parametrization at q2max < q2 � ðmB �m�Þ2.
The estimated uncertainties are naturally smaller than in
Fig. 3, because the variations of the form factor normal-
ization cancel in the ratio of the differential and total
widths. Our result is compared with the measured q2

distributions. We use the partial �B spectrum obtained
by the BABAR Collaboration in six bins and 12 bins
from the two independent analyses [2,3], respectively.
For the normalization we employ the corresponding
central values of the measured total branching fractions:
BðB0!��‘þ�‘Þ¼ ð1:41�0:05�0:07Þ�10�4 [2] and
BðB0!��‘þ�‘Þ¼ ð1:42�0:05�0:07Þ�10�4 [3]. The
analogous 13-bin distribution measured by the Belle
Collaboration [4] and normalized by their total branching
fraction BðB0!��‘þ�‘Þ¼ ð1:49�0:04�0:07Þ�10�4

is also shown. Figure 5 reveals a general agreement
of our prediction for the q2 shape and experimental
results, however, only within still large uncertainties of
both experiment and theory. In particular, the shape of
the form factor fitted from the BABAR data in [2] to the
same BCL parametrization with two parameters yields

ð~b1=~b0ÞBABAR ¼ �0:67� 0:18, whereas our result for the

same ratio is ð~b1=~b0ÞLCSR ¼ �1:10þ0:40
�0:27.

TABLE II. The ratio Rs=l for the region 16 GeV2 < q2 < 26:4 GeV2, measured and calculated
from (22) using the lattice QCD results. The weighted average over the two BABAR measure-
ments is taken and all errors are added in quadrature.

Experiment �Bð10�4Þ [Ref.] BðB ! ���Þð10�4Þ [Ref.] Rs=l

BABAR 0:32� 0:03 [2] 0:33� 0:03� 0:03 [3] 1:76� 0:49 [32,33] 0:20þ0:08
�0:05

Belle 0:398� 0:03 [4] 1:54þ0:38þ0:29
�0:37�0:31 [34] 0:28þ0:13

�0:07

QCD �� ðps�1Þ [Ref.] fB (MeV) [Ref.] Rs=l

HPQCD 2:02� 0:55 [5] 190� 13 [35] 0:52� 0:16
FNAL/MILC 2:21þ0:47

�0:42 [6] 212� 9 [36] 0:46� 0:10

dBR B l dq2

BR B l
GeV 2

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

q2 GeV2

FIG. 5 (color online). The normalized q2 distribution in
B ! �l� obtained from LCSR and extrapolated with the
z-series parametrization (central input, solid line; uncertainties,
dashed lines). The experimental data points are from BABAR
[(red) squares [2], (blue) triangles [3]] and Belle [4] [(magenta)
full circles].

d B l l dEl

B l l

ps 1GeV 1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

El GeV

FIG. 6 (color online). Lepton energy spectra for B ! �‘�‘ at
m‘ � E‘ & ðm2

B þm2
‘Þ=ð2mBÞ for ‘ ¼ �, �. Solid (dashed)

lines correspond to the form factors calculated at the central
input (indicate the uncertainties).
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A by-product observable that has not yet been measured
in B ! �‘�‘ is the distribution of the lepton energy in the
B-meson rest frame shown in Fig. 6 in the normalized
form. In the electron or muon semileptonic B decay, at a
given lepton energy, the distribution d�ðB ! �‘�‘Þ=dEl

contains the integral of jfþB�ðq2Þj2 over the region 0<
q2 & 2mBEl (the expression for this distribution, also at
m‘ � 0, can be found, e.g., in [37]). Hence the correlations
between the normalization and shape of the form factor
somewhat reduce the uncertainties in this distribution. This
distribution also has a more pronounced slope than the q2

distribution.

VI. B ! ��� AND B ! ����

Currently, the leptonic widthB ! ��� measured by both
BABAR and Belle collaborations (see Table II) is larger
than the SM prediction,

B ðB� ! � ���Þ ¼ G2
F

8�
jVubj2m2

�mB

�
1� m2

�

m2
B

�
2
f2B�B� ;

(21)
if one employs fB predicted from lattice QCD or QCD sum
rules, together with jVubj extracted from B ! �‘�‘. The
recent discussions on this situation are mostly concentrated
on the value of jVubj. Indeed, the tension decreases, if one
uses in (21) the somewhat larger value of jVubj extracted
from the inclusive b ! u decays. On the other hand,
the Cabibbo-Kobayashi-Maskawa (CKM) fits [38,39] yield
a smaller jVubj, consistent with the determinations from
B ! �‘�‘.
Let us emphasize that, independent of the actual jVubj

value, there exists a tension between the ratio of semi-
leptonic and leptonic Bwidths and the QCD predictions for
the two relevant hadronic matrix elements fþB�ðq2Þ and fB.
To demonstrate that, we define the following observable:

Rs=lðq21; q22Þ �
�BB!�‘�‘ðq21; q22Þ

BðB ! ���Þ
�
�B�

�B0

�
¼ ��ðq21; q22Þ

ðG2
F=8�Þm2

�mBð1�m2
�=m

2
BÞ2f2B

; (22)

where the partial branching fraction �B and the integral
�� defined as in (2) are taken over the same region
q21 � q2 � q22 of the momentum transfer.

The above equation for the ratio Rs=l follows solely from

the V � A structure of the weak currents in the SM, and
Vub cancels out in the ratio. The form factor fþB� and decay
constant fB entering the right-hand side are obtained by
one and the same QCD method: lattice QCD or the combi-
nation of LCSR and QCD sum rules. In Tables II and III we
collect the inputs for this equation, obtained from different
measurements and QCD calculations. The disagreement
between the calculated and measured ratios Rs=l goes

beyond the theoretical and experimental errors, especially
in the case of the lattice calculations which have smaller
uncertainties.

Decreasing further the theoretical and experimental er-
rors in (22), especially in the B ! ��� width, becomes
therefore a very important task. Possible effects beyond the
SM in B ! ��� are already being discussed in the litera-
ture, and, in particular, B ! D��� is proposed as a channel
which has common new-physics contributions with the
leptonic B decay (see, e.g., [41] and references therein).
Here we would like to attract attention to another semi-

leptonic channel: B ! ����, although it is experimentally
very demanding. Earlier this channel was discussed, e.g.,
in [37,42]. Note that this channel has the same combination
of quark and lepton flavors as B ! ���. In the SM, the
B ! ���� decay differs only kinematically from the semi-
leptonic modes with the muon or electron. A convenient,
Vub-independent observable [43] is the ratio

d�ðB ! ����Þ=dq2
d�ðB ! �‘�‘Þ=dq2

¼ ðq2 �m2
�Þ2

ðq2Þ2
�
1þ m2

�

2q2

��
1þ 3m2

�ðm2
B �m2

�Þ2
4ðm2

� þ 2q2Þm2
Bp

2
�

jf0B�ðq2Þj2
jfþB�ðq2Þj2

�
; (23)

TABLE III. The same as in Table II for the region 0 � q2 � 12:0 GeV2, where the QCD sum
rule results are used.

Experiment �Bð10�4Þ [Ref.] BðB ! ���Þð10�4Þ [Ref.] Rs=l

BABAR 0:88� 0:06 [2] 0:84� 0:03� 0:04 [3] 1:76� 0:49 [32,33] 0:52þ0:20
�0:12

QCD �� [Ref.] fB (MeV) [Ref.] Rs=l

LCSR/QCDSR 4:59þ1:00
�0:85 [this work] 210� 19 [40] 0:97þ0:28

�0:24
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where ‘ ¼ e or �, and m‘ is neglected. It is determined by
the ratio of the scalar and vector B ! � form factors;
hence, it has a somewhat smaller uncertainty than the
individual form factors. The ratio (23) is plotted in
Fig. 7 in the kinematically allowed region m2

� < q2 <
ðmB �m�Þ2, using our predictions for the form factors. It
grows at large q2, due to the kinematical suppression of the
vector channel contribution at small p�. The strong corre-
lations between the vector and scalar form factors calcu-
lated from LCSR with one and the same input result in a
small uncertainty in their ratio. The tau-lepton energy
spectrum for B ! ��� shown in Fig. 6 is another observ-
able which depends on both vector and scalar form factors.

To investigate the influence of new physics on both
leptonic and semileptonic B decays with a � lepton, we
include in the effective Hamiltonian of the b ! u���

transition an intermediate charged Higgs-boson contribu-
tion adopted in the same generic form as in [41]:

Heff ¼ GFffiffiffi
2

p Vub

�
�u��ð1� �5Þb ����ð1� �5Þ��

� �mbm�

m2
B

�uðgS þ gP�5Þb ��ð1� �5Þ��

�
þ H:c:

(24)

The admixture of new physics in B ! ��� and B ! ����

is then determined, respectively, by the pseudoscalar and
scalar parts of the new interaction. In particular, the lep-
tonic width (21) gets multiplied by ð1� gPÞ2; therefore,
with this choice, the B ! ��� width vanishes at gP ¼ 1.
Accordingly, the right-hand side of (22) acquires a factor
1=ð1� gPÞ2. Also, the ratio (23) is modified by multiply-
ing the scalar form factor with an additional factor:

f0B�ðq2Þ !
�
1� gSq

2

m2
B

�
f0B�ðq2Þ: (25)

The addition of the new interaction can fill the gap
between the calculated and experimentally measured ratio
Rs=l in (22) if one allows for gP � 0. Taking, e.g., the sum
rule prediction for this ratio from Table III, and adding the
new-physics contribution, Rs=l ! Rs=l=ð1� gPÞ2, we

equate it to the experimental value and find that gP � 0
is allowed within one of the following two intervals: gP ¼
�ð0:4� 0:2jth � 0:2jexpÞ or gP ¼ 2:4� 0:2jth � 0:2jexp.
Assuming the parameter gS in the same ballpark as gP
(in fact, gS ¼ gP in the minimal supersymmetric standard
model, however, only with positive values), we display in
Fig. 7 the modified ratio (23), adding the new-physics
contribution with gS ¼ �0:4 and gS ¼ 2:4. In fact, the
second option may already be excluded by the B!D���

analysis (see, e.g., [44]). In addition, in Fig. 8, the ratio of
total semileptonic widths is plotted as a function of gS.
Note that the deviation due to new physics can be larger
than the uncertainty due to the hadronic form factors.

VII. DISCUSSION

The precise determination of the CKM matrix element
Vub is mandatory for stringent tests of the quark-flavor
content of the SM. Because of recent work in lattice
QCD and in QCD sum rules, combined with constraints
from analyticity and unitarity, the values for jVubj extracted
from B ! �‘ �� are becoming quite precise. The main
result of this paper is the prediction for the partial width
of this decay in the q2 region 0 � q2 � 12 GeV2 in terms
of 1=jVubj2, which is expressed as a weighted integral
��ð0; 12 GeV2Þ over the squared form factor fþB�ðq2Þ.
This integral has smaller uncertainties than the values
of the form factor at separate q2 and allows the jVubj

B
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FIG. 8 (color online). Ratio of total semileptonic decay widths
into � and � (or e) (solid lines), with the shaded (green) area
indicating the uncertainties shown as a function of the parameter
gS determining the charged Higgs-boson coupling in B ! ����.
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FIG. 7 (color online). Ratio of differential decay widths, de-
fined in (23) (solid lines), with the shaded (green) area indicating
the uncertainties. Also shown is the effect of adding a charged
Higgs-boson contribution with gS ¼ �0:4 (dashed, red line) and
gS ¼ 2:4 (dash-dotted, red line).
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extraction with an accuracy approaching 10%, somewhat
better than in the previous LCSR analysis [12] where only
the value of the form factor at q2 ¼ 0 was used. We extract
a value for jVubj using recent BABAR data [2,3]. We hope
that in the future the Belle Collaboration will also provide
the integrated width in this region.

We also employed the z-series parametrization with the
BCL ansatz and extrapolated the LCSR form factors to the
whole kinematic region. The B ! � form factors fþB�ðq2Þ
and f0B�ðq2Þ obtained from LCSR are, within comparable
uncertainties, in agreement with the recent lattice QCD
results and with the measured q2 shape of the B ! �‘�‘

width. A combined fit of the form factors calculated at
small q2 from LCSR and at large q2 from lattice QCD to a
common z-series parametrization is possible (see, e.g., the
previous analysis in [14]) but is beyond the scope of
this paper.

A further improvement would need more precise mea-
surements of the shape to control the input parameters used
in LCSR. On the theoretical side, the renormalization scale
dependence can be reduced by including next-to-next-to-
leading order corrections in the hard-scattering amplitudes,
and also by separating the renormalization and the factori-
zation scales. Improving the duality approximation is more
difficult and demands knowledge of radially excited states
in the B channel. Another perspective is a simultaneous
global fit of three different LCSR to the data on B ! �‘�‘

and on the pion electromagnetic and transition form factors,
with scanning over the allowed region of input.

The value for jVubj obtained from B ! �‘�‘ is
somewhat lower than what is extracted from inclusive B

decays, as well as the one extracted from B ! � ��, but the
significance is still too small to be conclusive. On the other
hand, our result is completely compatible with the results
from the CKM fits [38,39].
The impact of the recent measurements of B ! � �� on

Vub has not improved the situation concerning our knowl-
edge of this quantity. However, the ratio of leptonic and
semileptonic widths is independent of Vub and may either
be regarded as a test for a possible nonstandard contribution
(like, e.g., a charged Higgs-boson exchange) or as a test of
our understanding of QCD. In turn, a lack of understanding
of fB and the form factor fþB� will severely limit the sensi-
tivity to a new-physics contribution. It is interesting to note
that both QCD sum rules and lattice calculations tend to
yield larger values of a suitably defined ratio of semilep-
tonic versus leptonic widths. This either means that we have
a problem in our understanding of QCDmatrix elements or
that there is really a substantial new-physics contribution in
B ! � ��, which also makes the channel B ! ���� very
interesting. A significant test of these statements has to
await more data, in particular, on B ! � ��.
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