
Decay of vector-vector resonances into � and a pseudoscalar meson

R. Molina,1 H. Nagahiro,2 A. Hosaka,3 and E. Oset1
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We study the decay of dynamically generated resonances from the interaction of two vectors into a �

and a pseudoscalar meson. The dynamics requires anomalous terms involving vertices with two vectors

and a pseudoscalar, which renders it special. We compare our result with data on K�þ
2 ð1430Þ ! Kþ� and

K�0
2 ð1430Þ ! K0� and find a good agreement with the data for the K�þ

2 ð1430Þ case and a width

considerably smaller than the upper bound measured for the K�0
2 ð1430Þ meson. We also investigate the

decay into �þ� of one a2 state, tentatively associated to the a2ð1320Þ, obtaining qualitative agreement

with data.
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I. INTRODUCTION

The radiative decay of a mesonic state has long been
argued to be crucial in the determination of the nature of
the state [1]. For instance, the nonobservation of the
f0ð1500Þ decaying into two photons has been used to
support its dominant glue nature [2]. In this sense the
radiative decay has also been advocated as a tool to deter-
mine the molecular nature of many mesonic and baryonic
states [3–9].

The dynamical generation of many mesonic states using
chiral unitary dynamics [10,11] has stimulated further
studies of these decay modes of mesonic states. Though
scalar mesons have been for long in the list of dynamically
generated mesons from the interaction of two pseudoscalar
mesons [12–16], it has been only very recently that
the systems of two vector mesons have been investigated
[17–21], and many dynamically generated states have
appeared which have been associated with known reso-
nances of the PDG [22]. In this sense the f0ð1370Þ,
f2ð1270Þ, f02ð1525Þ, f0ð1710Þ and K�

2ð1430Þ were gener-
ated in [17,18] from the interaction of the nonet of vector
mesons with itself. Similarly, some D� mesons are gener-
ated in [19], the D�

s2ð2573Þ among other states is generated

in [21] and some hidden charm states, some of which could
be identified with the new X, Y, Z resonances recently
reported, were also found in [20]. The task of studying
several radiative decay modes is important for these states
in view of the fact that many of them have traditionally
been accommodated within quark models without much
difficulty [23–29]. Support for the new nature of these
states comes gradually from studies of different decay
modes. In this sense in [30] the radiative decay of the
f0ð1370Þ and f2ð1270Þ resonances into ��, was studied
and good results compared with experiment were found.
These studies were extended to the SU(3) states, and also
good agreement with experiment was found in the cases
where there was available data for comparison [31]. The

study of the J=c !�ð!Þf2ð1270Þ, J=c ! �ð!Þf02ð1525Þ
and J=c ! K�0ð892Þ �K�0

2 ð1430Þ decay in [32], and
J=c decay into �f2ð1270Þ, �f02ð1525Þ, �f0ð1370Þ and
�f0ð1710Þ in [33] has given extra support to the claimed
nature of these resonances as vector-vector bound states or
resonances.
In this paper we pose a new challenge to this idea by

investigating the decay of the dynamically generated states
of [18] into a pseudoscalar meson and one photon. As we
shall see, the decay proceeds via anomalous interaction
terms which involve two vectors and a pseudoscalar me-
son, and thus one is exploring dynamics quite different
from the one needed in other alternative studies, like in
quark models.
Although there are not many data to compare, we shall

see that the agreement with them is satisfactory, within
theoretical and experimental uncertainties, and the results
obtained should encourage further theoretical and experi-
mental studies in other sectors, like charm or hidden charm
mesons.

II. FORMALISM

In this work we study the radiative decay of the VV
dynamically generated resonances found in [18] into P�.
In Table I, we display the masses and widths obtained in
that work and the experimental counterpart of each reso-
nance in the assignment made in [18]. We see in this table
that 11 resonances were found, five of them were associ-
ated with resonances that appear in the PDG [22]. First of
all, we consider all the possible cases of spin-parity of the
initial meson in Table I: In case we had an initial meson
with JP ¼ 0þ, the angular momentum between the pseu-
doscalar meson and photon should be L ¼ 1, which im-
plies negative parity in the final state, and is not allowed. In
the language of photon multipoles this corresponds to an
M0 transition, which does not exist. The rest of the reso-
nances in Table I are either with or without strangeness.
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The ones without strangeness except for those of J ¼ 1
have positive C-parity which does not allow the decay into
P�. This leaves nonvanishing decay rates only for the h1,
b1,K1 andK

�
2ð1430Þ, with only the latter one having a clear

experimental counterpart, the K�
2ð1430Þ. In the present

work we concentrate on this case, where there are also
experimental data in the PDG for its decay into P�:

�ðK�þ
2 ð1430Þ ! Kþ�Þ=� ¼ ð2:4� 0:5Þ � 10�3

�ðK�0
2 ð1430Þ ! K0�Þ=�< 9� 10�4: (1)

In [18] there was also one a2 resonance found at around
1560 MeV, which was compared with the a2ð1700Þ for
the proximity of the masses, but serious problems with the
widths were observed. Here we shall assume that the
a2ð1560Þ found in [18] corresponds to the experimental
a2ð1320Þ and we will also evaluate the radiative width into
�þ�. Experimentally we have

�ða2ð1320Þ ! �þ�Þ=� ¼ ð2:68� 0:31Þ � 10�3: (2)

The difference of the masses between the a2ð1560Þ found
and the experimental a2ð1320Þ could be reduced in [18]
with some fine-tuning of the subtraction constants, but we
shall not do it here.

From [18] we take the channels and coupling constants,
gi, of the K�

2ð1430Þ and a2ð1320Þ (a2ð1569Þ in [18]), that
are shown in Table II. As we see in this table, the K�

2ð1430Þ
couples to three channels: �K�, K�! and K��, the cou-
pling to �K� being considerably larger than for the other
two channels. The a2ð1320Þ couples to K� �K�, �! and ��,
the largest coupling corresponding to K� �K�.

In Fig. 1 we show the two kinds of Feynman diagrams
that lead to the decay of a resonance into P� in the VV

molecular picture that combines HGS (hidden local
gauge symmetry) [34–38] and unitarity [17,18]. The two
different diagrams contain an anomalous VVP coupling,
whereas they can be distinguished from the exchange of
one pseudoscalar meson, Pl, containing a PPV vertex, see
Fig. 1(a), or a vector meson, Vl, with a 3V vertex, as shown
in Fig. 1(b). These two kinds of diagrams lead to four
possible configurations, as shown in Fig. 2 for the �K�
channel, depending on whether PlðVlÞ is a nonstrange
meson, Fig. 2(a) and 2(b), or a strange meson, Fig. 2(c)
and 2(d). At the end, all possible VV channels are taken
into account. In this case, only a few diagrams contribute
so we show all the possibilities.
For the case of the a2ð1320Þ the corresponding diagrams

are shown in Fig. 3.
The V�, PPV and 3V vertices are provided by the

hidden gauge formalism, where a photon always comes
out from a vector meson. In the HGS formalism, the vector
meson fields are gauge bosons of a hidden local symmetry
transforming inhomogeneously and chiral symmetry is
preserved [34–38]. The HGS Lagrangian involving pseu-
doscalar, vector mesons and photons is

TABLE II. Pole positions and residues in the strangeness ¼ 0
and isospin ¼ 0 channel. All the quantities are in units of MeV.ffiffiffi
s

p
pole gi [spin ¼ 2]

K�� K�! K��
ð1431;�i1Þ ð10901;�i71Þ ð2267;�i13Þ ð�2898; i17Þ

K� �K� �! ��
ð1569;�i16Þ ð10208;�i337Þ ð�4598; i451Þ ð6052;�i604Þ

TABLE I. The properties, (mass, width) [in units of MeV], of the 11 dynamically generated states and, if existing, of those of their
PDG counterparts. Theoretical masses and widths are obtained from two different ways: ‘‘pole position’’ denotes the numbers obtained
from the pole position on the complex plane, where the mass corresponds to the real part of the pole position and the width corresponds
to twice the imaginary part of the pole position (the box diagrams corresponding to decays into two pseudoscalars are not included);
‘‘real axis’’ denotes the results obtained from the real axis amplitudes squared, where the mass corresponds to the energy at which the
amplitude squared has a maximum and the width corresponds to the difference between the two energies, where the amplitude squared
is half of the maximum value.

IGðJPCÞ Theory PDG data

Pole position Real axis Name Mass Width

�b ¼ 1:4 GeV �b ¼ 1:5 GeV

0þð0þþÞ (1512,51) (1523 257) (1517 396) f0ð1370Þ 1200–1500 200–500

0þð0þþÞ (1726,28) (1721 133) (1717 151) f0ð1710Þ 1724� 7 137� 8
0�ð1þ�Þ (1802,78) (1802,49) h1
0þð2þþÞ (1275,2) (1276,97) (1275 111) f2ð1270Þ 1275:1� 1:2 185:0þ2:9

�2:4

0þð2þþÞ (1525,6) (1525,45) (1525,51) f02ð1525Þ 1525� 5 73þ6
�5

1�ð0þþÞ (1780 133) (1777 148) (1777 172) a0
1þð1þ�Þ (1679 235) (1703 188) b1
1�ð2þþÞ (1569,32) (1567,47) (1566,51) a2ð1320Þ?
1=2ð0þÞ (1643,47) (1639 139) (1637 162) K�

0

1=2ð1þÞ (1737 165) (1743 126) K1ð1650Þ?
1=2ð2þÞ (1431,1) (1431,56) (1431,63) K�

2ð1430Þ 1429� 1:4 104� 4
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L ¼ Lð2Þ þLIII (3)

with

L ð2Þ ¼ 1

4
f2hD�UD�Uy þ �Uy þ �yUi (4)

L III ¼ � 1

4
hV��V

��i þ 1

2
M2

V

��
V� � i

g
��

�
2
�
; (5)

where h. . .i represents a trace over SU(3) matrices. The
covariant derivative is defined by

FIG. 1. The two different diagrams that contribute to the K�
2ð1430Þ ! K� decay.

FIG. 2. Possible Feynman diagrams contributing to the K�
2ð1430Þ ! K� decay in the �K� channel.

FIG. 3. Possible Feynman diagrams contributing to the a�þ2 ð1320Þ ! �þ� decay.
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D�U ¼ @�U� ieQA�Uþ ieUQA�; (6)

with Q ¼ diagð2;�1;�1Þ=3, e ¼ �jej the electron
charge, and A� the photon field. The chiral matrix U is

given by

U ¼ ei
ffiffi
2

p
P=f; (7)

where the Pmatrix contains the nonet of the pseudoscalars
in the physical basis considering �, �0 mixing [39]:

P ¼
�ffiffi
3

p þ �0ffiffi
6

p þ �0ffiffi
2

p �þ Kþ

�� �ffiffi
3

p þ �0ffiffi
6

p � �0ffiffi
2

p K0

K� �K0 � �ffiffi
3

p þ
ffiffi
2
3

q
�0

0
BBB@

1
CCCA;
(8)

and V� represents the vector nonet:

V� ¼
!þ�0ffiffi

2
p �þ K�þ

�� !��0ffiffi
2

p K�0

K�� �K�0 �

0
BB@

1
CCA

�

: (9)

In LIII, V�� is defined as

V�� ¼ @�V� � @�V� � ig½V�; V�� (10)

and

�� ¼ 1

2
½uyð@� � ieQA�Þuþ uð@� � ieQA�Þuy� (11)

with u2 ¼ U. The value of the coupling constant g of the
Lagrangian Eq. (5) satisfies

g ¼ MV

2f
; (12)

withMV the vector meson mass and f ¼ 93 MeV the pion
decay constant. Other properties of g are [38,40]:

FV

MV

¼ 1ffiffiffi
2

p
g
;

GV

MV

¼ 1

2
ffiffiffi
2

p
g
;

FV ¼ ffiffiffi
2

p
f; GV ¼ fffiffiffi

2
p : (13)

Equation (5) provides the following terms:

L V� ¼ �M2
V

e

g
A�hV�Qi

LPPV ¼ �ighV�½P; @�P�i
(14)

and

L 3V ¼¼ ighðV�@�V� � @�V�V
�ÞV�Þi: (15)

Both diagrams in Fig. 1 contain an anomalous VVP
vertex, which in principle one could expect to be small
due to the higher order nature of the anomalous term in the
chiral expansion. This anomalous VVP interaction ac-
counts for a process that does not preserve intrinsic parity,

and can be obtained from the gauged Wess-Zumino term
(see e.g. [41,42]). However, as the relevant energy becomes
larger, the role of the anomalous contribution becomes
more important as it contains momentum factors (see
Eq. (16)). This has also been seen in works on the radiative
decays of scalar mesons [43,44]. The VVP Lagrangian is
[42,45,46]:

L VVP ¼ G0ffiffiffi
2

p 	��
�h@�V�@
V�Pi (16)

with G0 ¼ 3g02=ð4�2fÞ and g0 ¼ �GVM�=ð
ffiffiffi
2

p
f2Þ. In the

following subsections we evaluate the two different kinds
of diagrams shown in Fig. 1.

A. Diagram of the K�ð1430Þ ! K� decay
containing the PPV vertex

In Fig. 4 we show the first diagram to compute in charge
basis with explicit momentum. In what follows, we shall
consider the K�þ

2 ð1430Þ at rest. First of all, we need
the coupling of the resonance K�þ

2 ð1430Þ to K�0�þ. This
coupling is given by the approach of [18], where the
coupling is calculated as the residue of the VV ! VV
amplitude in the pole position of the resonance (see
Fig. 5), which close to a pole can be expressed as:

tðJ¼2Þij
rs ¼ grgs

s�spole

�
1

2
ð	ð1Þi	ð2Þjþ	ð1Þj	ð2ÞiÞ�1

3
	ð1Þl	ð2Þl�ij

�

�
�
1

2
ð	ð1Þi	ð2Þjþ	ð1Þj	ð2ÞiÞ�1

3
	ð1Þm	ð2Þm�ij

�
;

(17)

with spole ¼ ðM� i�=2Þ2. We can see in this amplitude,

by looking at the diagram in Fig. 5, that the coupling

FIG. 5. Dynamically generated resonance from the VV
interaction

FIG. 4. Feynman diagram of the K�þ
2 ð1430Þ ! Kþ� decay in

the �þK�0 channel with a PPV vertex.
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of the resonance to a VV channel is given by ~gr ¼
grf12 ð	ð1Þi	ð2Þj þ 	ð1Þj	ð2ÞiÞ � 1

3 	
ð1Þl	ð2Þl�ijg, r or s corre-

sponding to one of the channels �K�, !K� or �K�.
These couplings are given in Table II in the isospin basis
and we have to multiply them for the correspondent
Clebsch Gordan coefficient:

j�K�; 1=2; 1=2i ¼ �
ffiffiffi
2

3

s
�þK�0 � 1ffiffiffi

3
p �0K�þ

j�K�; 1=2;�1=2i ¼ �
ffiffiffi
2

3

s
��K�þ þ 1ffiffiffi

3
p �0K�0:

(18)

The isospin coefficient is denoted as gI. Thus, from
Eqs. (14)–(17) we can write the vertices involved in the
diagram of Fig. 4 as

tijRV1V2
¼ gIgr

�
1

2
ð	ð1Þi	ð2Þjþ	ð1Þj	ð2ÞiÞ� 1

3
	ð1Þl	ð2Þl�ij

�

tVf� ¼ 

e

g
M2

Vf
	ð�Þ� 	ðfÞ�

tPlPfV1
¼ AgðpinþpfinÞ�	ð1Þ� ¼�Agð2ðP� kÞ�qÞ�	ð1Þ�

tV2VfPl
¼�B

G0ffiffiffi
2

p 	
���ðP�qÞ
	ð2Þ� k�	
ðfÞ
� ; (19)

with V1 ¼ K�0, V2 ¼ �þ, Vf ¼ !, Pl ¼ ��, Pf ¼ Kþ,

and the coefficients gI, gr, A, B and 
 are �
ffiffi
2
3

q
,

ð10901;�i71Þ MeV, �1,
ffiffiffi
2

p
and 1

3
ffiffi
2

p respectively. The

Vf ! � conversion essentially replaces, up to a constant,

	ðfÞ� by 	ð�Þ� . Therefore, we can write the amplitude of the

diagram depicted in Fig. 4 as

�itij
K�þ

2
ð1430Þ!Kþ� ¼

Z d4q

ð2�Þ4
�
1

2
ð	ð1Þi	ð2Þj þ 	ð1Þj	ð2ÞiÞ � 1

3
	ð1Þl 	ð2Þl �ij

�
	ð1Þ�ð2ðP� kÞ � qÞ�	
���ðP� qÞ
	ð2Þ� k�	

ð�Þ
�

� 1

q2 �M2
1 þ i	

1

ðkþ q� PÞ2 �m2
l þ i	

1

ðP� qÞ2 �M2
2 þ i	

� FI � egrG
0; (20)

with M1¼mK� , M2 ¼ m�, ml ¼ m� and FI ¼
1ffiffi
2

p AB
gI ¼ 1
3
ffiffi
3

p . We should be consistent with the ap-
proximation done in [17,18], where j ~qj=M1 ’ 0, which
implies that 	ð1Þ0 ’ 0. This means that the � and � indices
should be spatial and also that the qiqj=M2

V terms in the
sum over vector polarizations should be neglected. For
convenience, we will keep them as covariant indices and

will consider them as spatial indices at the end. Thus, after
summing over polarizations

X



	ð1Þi	ð1Þ� ¼ �gi�
X



	ð2Þj	ð2Þ� ¼ �gj�; (21)

we get

� itij
K�þ

2
ð1430Þ!Kþ� ¼

Z d4q

ð2�Þ4
�
1

2
	
j��ð2ðP� kÞ � qÞiðP� qÞ
k�	ð�Þ� þ 1

2
	
i��ð2ðP� kÞ � qÞjðP� qÞ
k�	ð�Þ�

� 1

3
	
m��ð2ðP� kÞ � qÞmðP� qÞ
k�	ð�Þ� �ijg 1

q2 �M2
1 þ i	

1

ðkþ q� PÞ2 �m2
l þ i	

� 1

ðP� qÞ2 �M2
2 þ i	

� FI � egrG
0: (22)

All the terms of Eq. (22) are proportional to an integral like

Z d4q

ð2�Þ4 ð2ðP� kÞ � qÞiðP� qÞ
 1

q2 �M2
1 þ i	

1

ðkþ q� PÞ2 �m2
l þ i	

1

ðP� qÞ2 �M2
2 þ i	

; (23)

which from Lorentz covariance must be a tensor built from
P and k,

agi
 þ bPiP
 þ ckiP
 þ dPik
 þ ekik
: (24)

The second and fourth terms in Eq. (24) vanish directly
because Pi ¼ 0. After substituting the integrals of Eq. (22)
by Eq. (24) with the correspondent indices, we see that the
first term in Eq. (24) leads to a term proportional to

1

2
k�	

ð�Þ
� að	ij�� þ 	ji��Þ � 1

3
	
m��k�	

ð�Þ
� �ijagm
: (25)

This term vanishes when one contracts the antisymmetric
operator 	
m�� with the symmetric gm
 . This is a welcome
feature because this term of the integral in Eq. (23) was the
only one that is divergent. The fifth term, ekik
, leads to
terms proportional to k�k
	


l��, and therefore it also
vanishes. The third term, ckiP
, is the only one that
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remains, but we can still simplify it a little bit. The integral
in Eq. (22) is proportional to

1

2
cP
k�	

ð�Þ
� ðki	
j��þkj	
i��Þ�1

3
c	
m��k��

ij	ð�Þ� kmP
:

(26)

The last term in the above equation vanishes for Pi ¼ 0. To
see it, let us split the factor 	
m��k�k

mP
 in two termsX
m¼1;3

	
m0�k0k
mP
 þ X

m¼1;3

X
l¼1;3

	
ml�klk
mP
; (27)

the last term is zero since it is a product of an antisym-
metric operator with a symmetric one. In addition, the
presence of P
 forces 
 ¼ 0, which makes the first term
also disappear.

Now we must evaluate the c coefficient. Let us use the
formula of the Feynman parametrization for n ¼ 3

1


��
¼ 2

Z 1

0
dx

Z x

0
dy

1

½
þ ð�� 
Þxþ ð�� �Þy�3 :
(28)

For the integral of Eq. (23), we can use the above parame-
trization with


 ¼ q2 �M2
1

� ¼ ðP� qÞ2 �M2
2

� ¼ ðP� q� kÞ2 �m2
l :

(29)

Besides this, we define a new variable q0 ¼ q� Pxþ ky,
such that the integral of Eq. (23) can be expressed as

2
Z d4q0

ð2�Þ4
Z 1

0
dx

Z x

0
dyð2ðP�kÞ�qÞiðP�qÞ
 1

ðq02þsÞ3 ;
(30)

with

s ¼ �ðP0Þ2x2 þ 2P0k0xyþ ððP0Þ2 �M2
2 þM2

1Þx
þ ð�2P0k0 þM2

2 �m2
l Þy�M2

1: (31)

From Eq. (30), we must take the kiP
 term. Therefore,

c ¼ 2
Z d4q0

ð2�Þ4
Z 1

0
dx

Z x

0
dy

ð1� xÞðy� 2Þ
ðq02 þ sÞ3 : (32)

Now we still can perform the integral in the q0 variable
analytically:

Z
d4q0

1

ðq02 þ sÞ3 ¼
i�2

2s
; (33)

and finally, we get

c ¼ i

16�2

Z 1

0
dx

Z x

0
dy

ð1� xÞðy� 2Þ
s

; (34)

and the amplitude of the diagram of Fig. 4 as

� itij
K�þ

2
ð1430Þ!Kþ�

¼ 1

2
cP
k�	

ð�Þ
� ðki	
j�� þ kj	
i��ÞFIegrG0: (35)

B. Diagram of the K�ð1430Þ ! K� decay containing
the 3V vertex

Now, we want to compute the second diagram for the
K�ð1430Þ ! K� decay depicted in Fig. 2. In Fig. 6 we
show this diagram with the explicit momenta in the case of
the K�0�þ intermediate state. The difference with the
diagram calculated in the previous section is the presence
of the 3V vertex, which we can obtain from the Lagrangian
of Eq. (15). This vertex and the anomalous VVP vertex are

tV2VlVf
¼ gDfð2kþ q� PÞ�	ðlÞ� 	ð2Þ�	ðfÞ�

� ðkþ P� qÞ�	ð2Þ� 	ðlÞ�	ðfÞ�

þ ð2ðP� qÞ � kÞ�	ðlÞ� 	ðfÞ�	ð2Þ�g

tV1VlPf
¼ �B

G0ffiffiffi
2

p 	
���q
	
ð1Þ
� ðkþ q� PÞ�	ðlÞ� ; (36)

with D ¼ ffiffiffi
2

p
, B ¼ 1, and gI, gr, 
 in Eqs. (19) are �

ffiffi
2
3

q
,

ð10901;�i71Þ MeV, 1ffiffi
2

p respectively. With this, we can

write the amplitude of the diagram in Fig. 6 as

�itij
K�þ

2 ð1430Þ!Kþ� ¼
Z d4q

ð2�Þ4
�
1

2
ð	ð1Þi	ð2Þj þ 	ð1Þj	ð2ÞiÞ � 1

3
	ð1Þl 	ð2Þl �ij

�
	
���q
	

ð1Þ
� ðkþ q� PÞ�

� 	ðlÞ� fð2kþ q� PÞ�	ðlÞ� 	ð2Þ�	ð�Þ� � ðkþ P� qÞ�	ð2Þ� 	ðlÞ�	ð�Þ� þ ð2ðP� qÞ � kÞ�	ðlÞ� 	ð�Þ�	ð2Þ�g
� 1

q2 �M2
1 þ i	

1

ðkþ q� PÞ2 �M2
l þ i	

1

ðP� qÞ2 �M2
2 þ i	

� F0I � egrG
0 (37)

with F0I ¼ � 1ffiffi
2

p gIBD
. Theway to proceed is very similar to that of the previous subsection, with the only difference in the
use of the Lorentz condition, k�	

ð�Þ� ¼ 0. Now, we get two kinds of integrals. The first one is

Z d4q

ð2�Þ4 q

1

q2 �M2
1 þ i	

1

ðkþ q� PÞ2 �M2
l þ i	

1

ðP� qÞ2 �M2
2 þ i	

; (38)
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which from Lorentz covariance takes the form

a1P
 þ b1k
: (39)

After contracting with the term k�P�	

i��, this integral

becomes zero. The second integral is

Z d4q

ð2�Þ4 q
ð2kþ q� PÞj 1

q2 �M2
1 þ i	

� 1

ðkþ q� PÞ2 �M2
l þ i	

1

ðP� qÞ2 �M2
2 þ i	

(40)

which takes the form

a2g
j

 þ b2k
k

j þ c2k
jP
 þ d2P

jk
 þ e2P
jP
: (41)

The last two terms are zero since Pj ¼ 0, and the first one
disappears because it gives rise to the factor gj
	
i�� þ
gi
	


j�� ¼ 0. The final amplitude is a function of the b2
and c2 coefficients, and it can be expressed as

� itij
K�þ

2
ð1430Þ!Kþ� ¼ � 1

2
ðkj	
i�� þ ki	
j��Þ	ð�Þ� ð�b2k
P� þ c2P
k�ÞF0IegrG0; (42)

with

b2 ¼ i

16�2

Z 1

0
dx

Z x

0
dy

yðy� 2Þ
s0

c2 ¼ i

16�2

Z 1

0
dx

Z x

0
dy

xð2� yÞ
s0

(43)

and

s0 ¼ �ðP0Þ2x2 þ 2P0k0xyþ ððP0Þ2 �M2
2 þM2

1Þx
þ ð�2P0k0 þM2

2 �M2
l Þy�M2

1: (44)

The sum of the diagrams in Figs. 4 and 6, from Eqs. (35),
(34), (42), and (43), gives rise to the following amplitude:

�itij
K�þ

2
ð1430Þ!Kþ� ¼ 1

2
ðb02k
P� þ ðc0 � c02ÞP
k�Þ

� ðkj	
i�� þ ki	
j��Þ	ð�Þ� eG0; (45)

with

b02 ¼ grF
0
I b2c

0 ¼ grFIc c02 ¼ grF
0
Ic2: (46)

In order to compute the decay width of the pro-
cess K�þ

2 ð1430Þ ! Kþ�, we need to evaluate the
squared amplitude summing over polarizations, i.e.,
1

2Jþ1

P

f

P

i
tijðtijÞ�. The sum over the polarizations of

the photon
P


f
	ð�Þ� 	ð�Þ

�0 leads to a factor�g��0 . In addition,

products of the antisymmetric 	
��� operators appear, for
what we make use of the rule

	
���	

0�0

�0� ¼ �
�������������
g



0
g
�0 g
�

0

g�

0

g�
�0 g��

0

g�

0

g�
�0 g��

0

�������������; (47)

with �, �0 spatial indices. Finally, we find

1

2J þ 1

X

f

X

i

jtj2 ¼ 1

2J þ 1
j ~kj4P2

0jb02 þ c02 � c0j2ðeG0Þ2:

(48)

The K�þ
2 ð1430Þ ! Kþ� decay width is

�ðK�þ
2 ð1430Þ ! Kþ�Þ
¼ 1

8�

1

2J þ 1
j ~kj5jb02 þ c02 � c0j2ðeG0Þ2: (49)

We must include not only the K�� channel, but all the
possible channels listed in Table II: the K�! and K��
channels. The different FI, F

0
I for each channel r are listed

in Tables III, IV, V, VI, VII, VIII, IX, and X in the
Appendix. Therefore,

c0 ¼ 1

16�2

Z 1

0
dx

Z x

0
dyð1� xÞðy� 2ÞX

r

FIðrÞgr
sðrÞ

b02 ¼
1

16�2

Z 1

0
dx

Z x

0
dyyðy� 2ÞX

r

F0IðrÞgr
s0ðrÞ

c02 ¼
1

16�2

Z 1

0
dx

Z x

0
dyxð2� yÞX

r

F0IðrÞgr
s0ðrÞ :

(50)

For completeness, we show s, s0, FI and F0I again,

s ¼ �ðP0Þ2x2 þ 2P0k0xyþ ððP0Þ2 �M2
2 þM2

1Þx
þ ð�2P0k0 þM2

2 �m2
l Þy�M2

1

s0 ¼ �ðP0Þ2x2 þ 2P0k0xyþ ððP0Þ2 �M2
2 þM2

1Þx
þ ð�2P0k0 þM2

2 �M2
l Þy�M2

1

FI ¼ 1ffiffiffi
2

p AB
gI

F0I ¼ � 1ffiffiffi
2

p gIBD
:

(51)

FIG. 6. Feynman diagram of the K�þ
2 ð1430Þ ! Kþ� decay in

the �þK�0 channel with a 3V vertex.
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C. The decay of the aþ
2 ð1320Þ ! �þ�

This case is identical to the former ones, only the cou-
plings change in this case. Hence we use the same formula
as in the former sections and the values of the coefficients
for the different diagrams of Fig. 3 are shown in Tables IX
and X in the Appendix. For the momentum value in the

final state j ~kj, we use the one calculated from the physical
mass of ma2 ¼ 1320 MeV rather than the calculated one,

ma2 ¼ 1567 MeV. In this way we discuss essentially the

coupling of the dynamically generated a2 to ��.

III. RESULTS

We evaluate the results for the two reactions where there
are data, the K�þ

2 ! Kþ� and the K�0
2 ! K0� decays. We

include the four types of diagrams of Fig. 2, where there is
exchange of pseudoscalar or vector mesons, with or with-
out strangeness, taking into account the three channels to
which the resonance couples, �K�, !K� and �K�. For the
case of the a2ð1320Þ ! �þ� we include the diagrams of
Fig. 3. All the possibilities from Fig. 1 and partial widths
for each different loop are given in Tables III, IV, V, VI,

TABLE III. K�þ decay diagrams involving the �K� channel and the PPV vertex.

V1 V2 Pl Vf Pf A B 
 gI FI �i ðKeVÞ
K�0 �þ �� ! Kþ �1

ffiffiffi
2

p
1

3
ffiffi
2

p �
ffiffi
2
3

q
1

3
ffiffi
3

p 6.05

K�þ �0 �0 ! Kþ � 1ffiffi
2

p
ffiffiffi
2

p
1

3
ffiffi
2

p � 1ffiffi
3

p 1
6
ffiffi
3

p

�0 K�þ K� �0 Kþ 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p � 1ffiffi
3

p � 1
4
ffiffi
3

p 5.05

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
12

ffiffi
3

p

� 1 � 1
3

1
6
ffiffi
3

p

�þ K�0 �K0 �0 Kþ 1 � 1ffiffi
2

p 1ffiffi
2

p �
ffiffi
2
3

q
1

2
ffiffi
3

p

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
3

p

� 1 � 1
3

1
3
ffiffi
3

p

K�þ �0 � �0 Kþ � 2ffiffi
3

p 2ffiffi
3

p 1ffiffi
2

p � 1ffiffi
3

p 2
3
ffiffi
3

p 6.78

�0 1ffiffi
6

p
ffiffi
2
3

q
1ffiffi
2

p � 1ffiffi
3

p � 1
6
ffiffi
3

p 0.24

TABLE IV. K�þ decay diagrams involving the !K� and �K� channels and the PPV vertex.

V1 V2 Pl Vf Pf A B 
 gI FI �iðKeVÞ
K�þ ! �0 �0 Kþ � 1ffiffi

2
p

ffiffiffi
2

p
1ffiffi
2

p 1 � 1
2 0.77

! K�þ K� �0 Kþ 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p 1 1
4 0.07

! 1ffiffi
2

p 1
3
ffiffi
2

p 1
12

� 1 � 1
3 � 1

6

K�þ ! � ! Kþ � 2ffiffi
3

p 2ffiffi
3

p 1
3
ffiffi
2

p 1 � 2
9 9:5� 10�2

� 0

�0 ! 1ffiffi
6

p
ffiffi
2
3

q
1

3
ffiffi
2

p 1 1
18 3:2� 10�3

� 0

� K�þ K� �0 Kþ �1 1ffiffi
2

p 1ffiffi
2

p 1 � 1
2
ffiffi
2

p 8:4� 10�2

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
2

p

� 1 � 1
3

1
3
ffiffi
2

p

K�þ � � ! Kþ 0 0.17

� � 2ffiffi
3

p � 2ffiffi
3

p � 1
3 1 � 2

ffiffi
2

p
9

�0 ! 0 2:6� 10�2

� 1ffiffi
6

p 2
ffiffi
2
3

q
� 1

3 1 �
ffiffi
2

p
9
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VII, VIII, IX, and X in the Appendix. The total sum of all
the contributions of these diagrams is mostly constructive
for the K�þ

2 ð1430Þ. In contrast, the interference between

these diagrams is very destructive in the case of the
K�0

2 ð1430Þ. We have evaluated the uncertainties in the

theoretical decay widths by assuming errors in the cou-
pling constants�gwhich were found to be of order 15% in
Ref. [18]. The errors in � are obtained generating random
numbers of the couplings gi weighted by the normal
(Gaussian) distribution:

fðxÞ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p eððx�gÞ2=2�2Þ; (52)

for which the von Newmann rejection method is used. The
average value of a sample of 30 results and its standard
deviation are taken for � and its uncertainty. The results
that we get are discussed below.
In the first place we evaluate separately the contribution

of the diagram with two vectors [Fig. 1(a)] and three

TABLE V. K�0 decay diagrams involving the �K� channel and the PPV vertex.

V1 V2 Pl Vf Pf A B 
 gI FI �iðKeVÞ
K�0 �0 �0 ! K0 1ffiffi

2
p

ffiffiffi
2

p
1

3
ffiffi
2

p 1ffiffi
3

p 1
6
ffiffi
3

p 6.05

K�þ �� �þ ! K0 �1
ffiffiffi
2

p
1

3
ffiffi
2

p �
ffiffi
2
3

q
1

3
ffiffi
3

p

�� K�þ K� �0 K0 1 1ffiffi
2

p 1ffiffi
2

p �
ffiffi
2
3

q
� 1

2
ffiffi
3

p 0

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
3

p

� 1 � 1
3

1
3
ffiffi
3

p

�0 K�0 �K0 �0 K0 � 1ffiffi
2

p � 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
3

p 1
4
ffiffi
3

p

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
12

ffiffi
3

p

� 1 � 1
3

1
6
ffiffi
3

p

K�0 �0 � �0 K0 � 2ffiffi
3

p 2ffiffi
3

p 1ffiffi
2

p 1ffiffi
3

p � 2
3
ffiffi
3

p 6.78

�0 1ffiffi
6

p
ffiffi
2
3

q
1ffiffi
2

p 1ffiffi
3

p 1
6
ffiffi
3

p 0.24

TABLE VI. K�0 decay diagrams involving the !K� and �K� channels and the PPV vertex.

V1 V2 Pl Vf Pf A B 
 gI FI �iðKeVÞ
K�0 ! �0 �0 K0 1ffiffi

2
p

ffiffiffi
2

p
1ffiffi
2

p 1 1
2 0.77

! K�0 �K0 �0 K0 1ffiffi
2

p � 1ffiffi
2

p 1ffiffi
2

p 1 � 1
4 0.28

! 1ffiffi
2

p 1
3
ffiffi
2

p 1
12

� 1 � 1
3 � 1

6

K�0 ! � ! K0 � 2ffiffi
3

p 2ffiffi
3

p 1
3
ffiffi
2

p 1 � 2
9 9:5� 10�2

� 0

�0 ! 1ffiffi
6

p
ffiffi
2
3

q
1

3
ffiffi
2

p 1 1
18 3:4� 10�3

� 0

� K�0 �K0 �0 K0 �1 � 1ffiffi
2

p 1ffiffi
2

p 1 1
2
ffiffi
2

p 0.34

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
2

p

� 1 � 1
3

1
3
ffiffi
2

p

K�0 � � ! K0 0 0.17

� � 2ffiffi
3

p � 2ffiffi
3

p � 1
3 1 � 2

ffiffi
2

p
9

�0 ! 0 2:6� 10�2

� 1ffiffi
6

p 2
ffiffi
2
3

q
� 1

3 1 �
ffiffi
2

p
9
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TABLE VIII. K�0 decay diagrams involving the 3V vertex. Terms which involve a �K�K�
coupling with a neutral K� are zero and are omitted from the table.

V1 V2 Vf Vl Pf D B 
 gI F0I �iðKeVÞ
K�þ �� �0 �þ K0 � ffiffiffi

2
p

1 1ffiffi
2

p �
ffiffi
2
3

q
� 1ffiffi

3
p 12.8

�� K�þ �0 K�� K0 1ffiffi
2

p 1 1ffiffi
2

p �
ffiffi
2
3

q
1

2
ffiffi
3

p 9.27

! 1ffiffi
2

p 1
3
ffiffi
2

p 1
6
ffiffi
3

p

� �1 � 1
3

1
3
ffiffi
3

p

TABLE IX. aþ decay diagrams involving the PPV vertex.

V1 V2 Pl Vf Pf A B 
 gI FI �iðKeVÞ
�K�0 K�þ Kþ �0 �þ �1 1ffiffi

2
p 1ffiffi

2
p 1 � 1

2
ffiffi
2

p 1.55

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
2

p

� 1 � 1
3

1
3
ffiffi
2

p

K�þ �K�0 K0 �0 �þ 1 � 1ffiffi
2

p 1ffiffi
2

p 1 � 1
2
ffiffi
2

p 6.2

! 1ffiffi
2

p 1
3
ffiffi
2

p 1
6
ffiffi
2

p

� 1 � 1
3 � 1

3
ffiffi
2

p

�þ ! �0 �0 �þ � ffiffiffi
2

p ffiffiffi
2

p
1ffiffi
2

p �1 1 18.8

TABLE VII. K�þ decay diagrams involving the 3V vertex. Terms which involve a �K�K�
coupling with a neutral K� are zero and are omitted from the table.

V1 V2 Vf Vl Pf D B 
 gI F0I �i ðKeVÞ
K�0 �þ �0 �� Kþ ffiffiffi

2
p

1 1ffiffi
2

p �
ffiffi
2
3

q
1ffiffi
3

p 12.8

�0 K�þ �0 K�� Kþ 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p � 1ffiffi
3

p 1
4
ffiffi
3

p 2.31

! 1ffiffi
2

p 1
3
ffiffi
2

p 1
12

ffiffi
3

p

� �1 � 1
3

1
6
ffiffi
3

p

! K�þ �0 K�� Kþ 1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p 1 � 1
4 0.29

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
12

� �1 � 1
3 � 1

6

� K�þ �0 K�� Kþ 1ffiffi
2

p 1 1ffiffi
2

p 1 � 1
2
ffiffi
2

p 0.56

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
2

p

� �1 � 1
3 � 1

3
ffiffi
2

p

TABLE X. aþ decay diagrams involving the 3V vertex. Terms which involve a �K�K�
coupling with a neutral K� are zero and are omitted from the table.

V1 V2 Vf Vl Pf D B 
 gI F0I �iðKeVÞ
�K�0 K�þ �0 K�þ �þ 1ffiffi

2
p 1 1ffiffi

2
p 1 � 1

2
ffiffi
2

p 8.9

! 1ffiffi
2

p 1
3
ffiffi
2

p � 1
6
ffiffi
2

p

� �1 � 1
3 � 1

3
ffiffi
2

p

! �þ �0 �þ �þ ffiffiffi
2

p ffiffiffi
2

p
1ffiffi
2

p �1 1 8.6
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vectors [Fig. 1(b)]. The results (without error estimated)
obtained are

�ðK�þ
2

ð1430Þ!Kþ�Þ;PPV ¼ 46:6 KeV;

�ðK�þ
2 ð1430Þ!Kþ�Þ;3V ¼ 28:2 KeV;

�ðK�0
2
ð1430Þ!K0�Þ;PPV ¼ 0:19 KeV;

�ðK�0
2
ð1430Þ!K0�Þ;3V ¼ 0:29 KeV;

�ðaþð1320Þ!�þ�Þ;PPV ¼ 65:7 KeV;

�ðaþð1320Þ!�þ�Þ;3V ¼ 34:8 KeV:

(53)

This is done only for the purpose of showing that the
contributions of the two mechanisms are of the same order
of magnitude, which means that both are important and
must be taken into account.

In order to obtain the decay width one must sum the
amplitudes of the two mechanisms, which are constructive
in the cases of the K�þ

2 and aþ2 , and destructive in the case
of the K�0

2 . We have seen that in the case of the K�0
2

we obtain a complete cancellation of the amplitudes
when the masses of the pseudoscalar mesons are made
equal and also those of the nonet of vectors. Thus, the
result seems to be tied to the neutral charge of the K�0

2 ,
providing the same result as quark models for the same
reason. The small finite results that we obtain are due to the
use of the physical masses within the SU(3) multiplets.

The final results obtained from the sum of the ampli-
tudes of both types, including uncertainties evaluated ac-
cording to the discussion around Eq. (52), are the following

�ðK�þ
2 ! Kþ�Þ ¼ 150� 50 KeV

�ðK�0
2 ! K0�Þ ¼ ð1:0� 0:8Þ � 10�2 KeV

(54)

�ða2ð1320Þ ! �þ�Þ ¼ ð196� 30Þ KeV: (55)

These results should be compared with the experimental
widths

�ðK�þ
2 ! Kþ�Þ ¼ 236� 50 KeV

�ðK�0
2 ! K0�Þ ¼ <98 KeV

�ðaþ2 ð1320Þ ! �þ�Þ ¼ 281� 34 KeV (56)

where we have summed in quadrature the error in the
branching ratio of Eq. (1) and the one of the total width
of the PDG. As we can see, the result for the charged K�þ

2

is compatible with the data within errors and for the one of
the neutral K�0

2 we can see that the width for K�0
2 ! K0� is

very small compared to the K�þ
2 ! Kþ� and the upper

bound is fulfilled. It would be interesting to have this upper
bound improved experimentally, since we predict such a
small number for the width.

For the case of the a2ð1320Þ the agreement with data
can be considered qualitatively. Considering errors the
maximum theoretical value would be 226 KeV and the
minimum experimental one 247 KeV. Let us mention that
we have not changed the values of the coupling constants
of [18]. Should one redo the evaluation of these couplings
with an improved mass for this resonance we should expect
small variations, adding to our present error estimates.
Yet, the large mass difference between the state obtained
in [18] and the experimental one should be taken as an
indication that further components to VV should be
present in the physical state a2ð1320Þ, so there is
no point in demanding a more accurate agreement with
data. In any case it is more indicative to see the ratio of
�ðK�þ

2 ! Kþ�Þ=�ðaþ2 ! �þ�Þ which in our case is
0:77� 0:30 compared to the experiment 0:84� 0:20,
which show a good overlap.

IV. CONCLUSIONS

We have studied the decay of the K�þ
2 ð1430Þ, K�0

2 ð1430Þ
and a2ð1320Þ into a photon and a pseudoscalar meson. The
states considered are those generated dynamically from the
vector-vector interaction in [18] that can be assigned to
known resonances and that decay in this mode. The evalu-
ation of the width required the consideration of loop dia-
grams involving the coupling of the resonances to the
constituent vector-vector channels, plus some anomalous
couplings. We find that the loops become convergent and
we can evaluate finite values for the decay rates by making
an approximation consistent with the VV molecular pic-
ture. The results obtained for the width of the K�þ

2 ð1430Þ
are well within the experimental values considering errors.
For the case of the K�0

2 ð1430Þwe found a very small width,

well below the experimental upper bound of the PDG.
It would be worth trying to improve on this boundary since
our results are so much smaller than the present bound.
The case of the a2ð1320Þ is a bit more problematic,
since the mass obtained theoretically is 1560 MeV with
standard values of the subtraction constants. Yet, we
found qualitative agreement between the results of the
aþ2 ! �þ� with the experiment for aþ2 ð1320Þ ! �þ�.
The agreement with experiment is better for the ratio of
�ðK�þ

2 ! Kþ�Þ=�ðaþ2 ! �þ�Þ.
In any case it is worth stating that our picture for

these states as molecular states of vector-vector is passing
repeatedly the different test demanded by experiment,
as the one presented here and those commented in the
Introduction. The results obtained are adding progressive
support to the idea of the K�

2ð1430Þ and other related
resonances found in [18] as dynamically generated from
the vector-vector interaction.
Nevertheless, in spite of all the arguments given in

favor of the dynamically generated vector-vector states,
the fact remains that the tensor states f2ð1270Þ, f02ð1525Þ,
a2ð1320Þ, K�

2ð1430Þ are well reproduced in the quark
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model, including many of their decay modes (see, e.g.,
[23–29]). This success in both models may reflect the fact
that the constituent quarks in quark models are objects
effectively dressed with meson clouds and the overlap
between the molecular picture and the quark model picture
could be bigger than expected in some cases [47]. It
remains to see if future measurements of new magnitudes
could prove that one picture is more adequate than the
other to represent an, admittedly, more complex nature. For
the moment we have shown that the molecular picture has
passed this nontrivial test, often suggested as crucial to
learn about the nature of hadronic states.
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