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We analyze nonleptonic Bs decays to a charmonium state and a light meson, induced by the b ! c �cs

transition, which are useful to access the Bs- �Bs mixing phase �s. We use generalized factorization and

SUð3ÞF symmetry to relate such modes to correspondent B decay channels. We discuss the feasibility of

the measurements in the various channels, stressing the importance of comparing different determinations

of �s in view of the hints of new physics effects recently emerged in the Bs sector. Finally, adopting a

general parametrization of new physics contributions to the decay amplitudes, we discuss how to

experimentally constrain new physics parameters.
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I. INTRODUCTION

The detailed analysis of CP violation in particle physics
is a powerful tool to test the standard model (SM) of
elementary interactions and unveil the effects of new in-
teractions. The fundamental role in the SM description of
CP violation is played by the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix, which is unitary and
implies CP violation if it is complex. The constraints
stemming from unitarity can be represented as triangles,
the lengths of whose sides are the moduli of products of
CKM elements, while the angles represent relative phases
between them. The most studied bd unitarity triangle is
defined by the relation VudV

�
ub þ VcdV

�
cb þ VtdV

�
tb ¼ 0,

and has been probed mainly through the extensive analysis
of Bd phenomenology. As a result, the CKM parameters in
the Wolfenstein parametrization have been fixed with
small errors through the measurement of the sides and
the angles of this triangle [1]. The next, already ongoing,
effort is to look at processes in which to test the SM
requires a greater experimental and theoretical precision.
The Bs sector is suitable for such a purpose. As in the
Bd case, one of the CKM unitarity constraints involves
matrix elements related to Bs decays: VusV

�
ub þ VcsV

�
cb þ

VtsV
�
tb ¼ 0, and one of the angles of the corresponding

bs triangle is the phase of the Bs- �Bs mixing: �s ¼
Arg½� VtsV

�
tb

VcsV
�
cb
�. In SM �s is expected to be tiny: �s ’

0:017 rad.
Bs is produced at the B factories running at the

peak of �ð5SÞ and in hadron collisions. In particular, the
experiments CDF and D0 at the Tevatron have obtained a
number of remarkable results, such as the measurement
of the mixing parameters: The mass difference of
the two Bs mass eigenstates has been fixed to

�ms ¼ 17:77� 0:10ðstatÞ � 0:07ðsystÞ ps�1 [2], while
the value of their width difference ��s depends on the
constraints on �s adopted in the experimental analysis [3];
noticeably,��s is not small as in the Bd case. Furthermore,
these Collaborations have provided us with results which
seem to signal new physics (NP) effects. The first one
concerns the phase �s, extracted from the angular analysis
of the time-dependent differential decay width in the pro-
cess Bs ! J=c�. The study is rather involved: an angular
analysis is needed to disentangle the CP-even and CP-odd
components, required since the final state of two vector
mesons is not a CP eigenstate. Moreover, the measurement
can be carried out either considering flavor tagged or
untagged decays. Another issue concerns the use or not
of assumptions on the strong phases among the different
helicity amplitudes in the considered process: this assump-
tion has been once adopted by the D0 Collaboration in one
study [4]. Different results have been obtained from the
different analyses [4,5], and, averaging them, the Heavy
Flavor Averaging Group has provided a value of �s con-

sistent with SM only at 2:2� level: �J=c�
s ¼ �2�s ¼

�0:77�0:29
0:37 or �J=c�

s ¼ �2�s ¼ �2:36�0:37
0:29 [6]. A new

measurement announced by CDF: �s 2 ½0:0; 0:5� [
½1:1; 1:5� (at 68% CL) [7], if confirmed, would reconcile
the SM prediction with experiment.
Another signal of a possible inadequacy of the SM is the

measurement of an anomalous like-sign dimuon charge
asymmetry of semileptonic b-hadron decay, reported by
the D0 Collaboration [8] (updating a previous measure-
ment [9]):

Ab
sl ¼

Nþþ
b � N��

b

Nþþ
b þ N��

b

¼ �ð9:57� 2:51� 1:46Þ � 10�3:

(1)

Hence, there is a large excess of negatively charged
muons over positively charged ones which would
have been generated by the oscillation of one neutral
b meson into the other, at odds with the SM expectation
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Ab
sl ¼ ð�0:310þ0:083

�0:098Þ � 10�3 [10], a result which might

imply an NP effect in the oscillation.
In this complex scenario it is worthwhile to further

analyze the Bs sector, trying to identify and reduce the
uncertainties affecting the theoretical predictions, with
the aim of improving the measurement of �s, overcoming
the difficulties in Bs ! J=c�. Notice that this channel
is considered a golden mode, since it is induced by the
b ! c �cs transition in which, in SM, the only weak phase
involved is that of the mixing, so that the indirect CP
asymmetry would be proportional to sinð2�sÞ, much in
the same way as Bd ! J=cKS has provided a determina-
tion of the angle �. The feasibility in the reconstruction of
the products of the subsequent decays J=c ! �þ��,
� ! KþK� makes this channel also experimentally
appealing.

There are other modes that can be used to access �s,
namely Bs ! Mc �c þ L, where Mc �c is a charmonium state
J=c , c ð2SÞ, �c, �cð2SÞ, �c0, �c1, �c2, hc and L is a light
scalar, pseudoscalar or vector meson, f0ð980Þ,�,�0 and�.
Each of these channels presents specific features and ad-
vantages/difficulties which we want to discuss here.
Standing the general theoretical difficulty in the calcula-
tion of nonleptonic decay amplitudes, in the next section
we discuss approaches to afford the problem, and exploit
the generalized factorization to determine the branching
fractions in the SM for all the channels listed above, except
for those involving �c0;2 or hc. Generalized factorization

gives a vanishing result in these last cases, and hence we
only exploit symmetry requirements to estimate their
branching ratios using information from the Bd sector. In
this way, suitable processes to determine �s can be iden-
tified. In Sec. III we also consider the possible impact of
new physics in these modes, and discuss how to exploit
experimental data to constrain NP parameters. Conclusions
are presented in the last section.

II. Bs ! Mc �cL DECAYS

In SM, assuming CKM unitarity and neglecting the tiny
product VubV

�
us, the relation holds: VtbV

�
ts ¼ �VcbV

�
cs, and

the effective Hamiltonian governing the nonleptonic de-
cays induced by the b ! c �cs transition reads as [11]:

H eff ¼ GFffiffiffi
2

p
�
VcbV

�
cs½C1ð�ÞO1ð�Þ þ C2ð�ÞO2ð�Þ�

� VtbV
�
ts

� X10;7�;8g

i¼3

Cið�ÞOið�Þ
��
: (2)

GF is the Fermi constant, the Ci are Wilson coefficients,
and Oi are

(i) current–current (tree) operators

O1 ¼ �c��ð1� �5Þb�s��ð1� �5Þc;
O2 ¼ �c��ð1� �5Þc �s��ð1� �5Þb;

(3)

(ii) QCD penguin operators

O3 ¼ ð �s�b�ÞV�A

X
q0
ð �q0�q0�ÞV�A;

O4 ¼ ð �s�b�ÞV�A

X
q0
ð �q0�q0�ÞV�A;

O5 ¼ ð �s�b�ÞV�A

X
q0
ð �q0�q0�ÞVþA;

O6 ¼ ð �s�b�ÞV�A

X
q0
ð �q0�q0�ÞVþA;

(4)

(iii) electroweak penguin operators

O7 ¼ 3

2
ð �s�b�ÞV�A

X
q0
eq0 ð �q0�q0�ÞVþA;

O8 ¼ 3

2
ð �s�b�ÞV�A

X
q0
eq0 ð �q0�q0�ÞVþA;

O9 ¼ 3

2
ð �s�b�ÞV�A

X
q0
eq0 ð �q0�q0�ÞV�A;

O10 ¼ 3

2
ð �s�b�ÞV�A

X
q0
eq0 ð �q0�q0�ÞV�A;

(5)

(iv) magnetic moment operators

O7� ¼ � e

4	2
�s��

�
ðmsPL þmbPRÞb�F�
;

O8g ¼ � g

4	2
�s��

�
ðmsPL þmbPRÞTa
��b�G

a
�
:

(6)

� and � are color indices, and q0 are the active q0 ¼
ðu; d; s; c; bÞ quark fields at the scale mb with charge eq0 .

The right (left) handed current is defined as ð �q0�q0�ÞV�A ¼
�q0��
ð1� �5Þq0�, with projection operators PR;L ¼ 1��5

2 .

The Hamiltonian (2) induces the decays of SUð3ÞF
related states, namely, the decays of Bd, B� and Bs;
we consider the general case of the decay of a Ba meson
(a ¼ u, d, s being the light flavor index). The simplest
approach to compute the matrix element of the
Hamiltonian (2) between given initial and final hadronic
states is the naive factorization approach. In such an ap-
proach, neglecting the magnetic moment operators in (6),
the Ba ! Mc �cL amplitude reads:

A ð �Ba ! Mc �cLÞ

¼ GFffiffiffi
2

p VcbV
�
csa

eff
2 ð�ÞhMc �cj �c��ð1� �5Þcj0i

� hLj�s��ð1� �5Þbj �Bai; (7)

where aeff2 ð�Þ¼a2ð�Þþa3ð�Þþa5ð�Þ and a2¼C2þC1

Nc
,

a3 ¼ C3 þ C4

Nc
þ 3

2 ecðC9 þ C10

Nc
Þ and a5 ¼ C5 þ C6

Nc
þ

3
2 ecðC7 þ C8

Nc
Þ. However, naive factorization predictions
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are not able to reproduce several branching ratios for which
experimental data are available. Among these there are Bd

decays induced by the transition b ! c �cs: some of these
modes, which are of interest for the present analysis, are
listed in Table I together with the experimental branching
fractions.

Several modifications of the naive factorization ansatz
have been proposed. One possibility is to consider the
Wilson coefficients as effective parameters to be deter-
mined from experiment [13]. In principle, this implies
that such coefficients are channel-dependent. However,
some channels could be related, namely, invoking flavor
symmetries, so that universal values for the coefficients
can be assumed within a certain class of modes. In our
case, this generalized factorization approach consists in
considering the quantity aeff2 in (7) as a process-

dependent parameter to be fixed from experiment. In
particular, on the basis of SUð3ÞF symmetry, Bq (Bu or

Bd) decays can be related to analogous Bs decays in-
duced by the same b ! c �cs transition, so that experi-
mental data concerning Bq modes provide predictions for

Bs related ones. Also this method presents some draw-
backs, for example, the issue of rescattering in the final
state and of the strong phases in the various amplitudes
cannot be faced [14]. Nevertheless, it is useful from a
phenomenological point of view, at least to understand
the size of nonleptonic branching ratios.

A different procedure to analyze nonleptonic decays is
the hard-scattering approach, based on the assumption of
the dominance of hard gluon exchange and of the suppres-
sion of soft mechanisms due to low energy gluon ex-
changes. A nonleptonic amplitude is expressed as a
convolution of a hard kernel, computed in perturbation
theory, with the light-cone wave functions of the hadrons
involved in the decay. In this so-called perturbative QCD
approach (pQCD) the suppression of the soft term is
achieved by suitable Sudakov suppression factors, but the
uncertainty in the wave functions limits the accuracy of the
predictions [15].

A systematic improvement of naive factorization is
QCD factorization (BBNS) [16]. In this approach, a facto-
rization formula is written for a nonleptonic Ba ! M1M2

decay amplitude (M1 denotes the meson picking up the Ba

spectator quark), valid in the heavy quark limit (i.e. up to
�QCD=mb corrections). This formula reproduces the naive

factorization result at leading order in �s and �QCD=mb;

however, it cannot be applied when the meson that does not
pick up the Ba spectator quark is heavy. The knowledge of
the meson wave functions is required and represents there-
fore a limiting factor.
A particular case is represented by the decays B !

Mc �cL considered here. Since the charmonium state is a
heavy meson, the BBNS factorization formula does not
hold. However, it has been pointed out that, due to the
feature of a charmonium meson of being a state with small
transverse extension, one can still adopt the factorization
formula. Still a problem arises going beyond the leading
twist for the wave functions, since the factorization for-
mula contains convolution integrals of such wave func-
tions, and higher twist wave functions do not vanish in the
end point, developing divergences. Getting rid of such
divergences requires the introduction of a cutoff, a parame-
ter to be fixed from experiment.
Two-body nonleptonic B decays have also been ana-

lyzed in a modified formulation of light-cone QCD sum
rules originally proposed in [17] to calculate the B ! 		
matrix element, finding results in agreement with QCD
factorization. Applying this method to B to charmonium
decays, one finds that nonfactorizable contributions are
important, but that their inclusion does not allow to repro-
duce experimental data for B ! J=cK [18].
Hence, no satisfactory treatment of nonleptonic B to

charmonium decays exists at present, each method having
its own advantages/drawbacks. Motivated by the phenome-
nological importance of these modes, we afford a study
based on generalized factorization, aiming at establishing
at least the sizes of the branching ratios of these modes and
their role for a measurement of �s.

TABLE I. Experimental results for the branching fractions BðB ! Mc �cK
ð�ÞÞ (� 104) [12];

results in parentheses are from [6].

B ! Mc �cK J=c �c c ð2SÞ �cð2SÞ
B� 10:07� 0:35 9:1� 1:3 6:48� 0:35 3:4� 1:8
B0 8:71� 0:32 8:9� 1:6 6:2� 0:6
B ! Mc �cK

� J=c �c c ð2SÞ �cð2SÞ
B� 14:3� 0:8 12:0� 7:0 6:7� 1:4
B0 13:3� 0:6 9:6� 3:3 7:2� 0:8 <3:9
B ! Mc �cK �c0 �c1 �c2 hc
B� 1:43� 0:21 5:1� 0:5 <0:29 <0:38
B0 <1:13 3:9� 0:4 <0:26
B ! Mc �cK

� �c0 �c1 �c2 hc
B� <2:1 3:6� 0:9 <0:12
B0 1:70� 0:40 2:0� 0:6 <0:36ð0:66� 0:19Þ (< 2:2)
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To apply Eq. (7) to the modes we are analyzing, we need
the following hadronic quantities:

(i) charmonium decay constants:

h�cðqÞj �c���5cj0i ¼ �if�c
q�;

hJ=c ðq; �Þj �c��cj0i ¼ fcmc �
�
�;

h�c1ðq; �Þj �c���5cj0i ¼ f�c1
m�c1

���;

(8)

(�ð�Þ polarization vector); for �c0;2 and hc one has

h�c0ðqÞj �c��cj0i ¼ h�c2ðq; �Þj �c��cj0i ¼
hhcðq; �Þj �c��ð1� �5Þcj0i ¼ 0;

(ii) �Ba ! L form factors, with L a pseudoscalar (P) or a
scalar (S) meson:

hPðSÞðp0Þj�s��ð�5Þbj �BaðpÞi

¼ F1ðq2Þ
�
ðpþ p0Þ� �m2

Ba
�m2

PðSÞ
q2

q�
�

þ F0ðq2Þ
m2

Ba
�m2

PðSÞ
q2

q�; (9)

(iii) �Ba ! L form factors, with L a vector (V) meson:

hLðp0; �Þj�s��ð1� �5Þbj �BaðpÞi ¼ 2Vðq2Þ
mBa

þmL

��
���
�
p�p0� � i

�
���ðmBa

þmLÞA1ðq2Þ � ð�� � qÞðpþ p0Þ� A2ðq2Þ
mBa

þmL

� ð�� � qÞ 2mL

q2
ðA3ðq2Þ � A0ðq2ÞÞq�

�
; (10)

with A3ðq2Þ ¼ mBaþmL

2mL
A1ðq2Þ � mBa�mL

2mL
A2ðq2Þ. The first two equations in (8) also hold for �cð2SÞ and c ð2SÞ, respectively,

while the vanishing of the matrix elements h�c0;2ðqÞj �c��cj0i and hhcðq; �Þj �c��ð1� �5Þcj0i implies that the Ba ! �c0;2L
and Ba ! hcL amplitudes vanish in the factorization approximation.
By the factorization ansatz one has expressions for the decay widths. Moreover, for decays in two J ¼ 1 mesons, also the
polarization fractions can be computed, namely fL, the fraction of the decay width when both the final mesons are
longitudinally polarized.1 The results are the following:

(iv) modes where Mc �c is either a J
PC ¼ 1�� charmonium state (J=c or c ð2SÞ), or a JPC ¼ 1þþ P-wave �c1 meson:

�ðBa ! Mc �cLÞ ¼
G2

FjVcbV
�
csj2ðaeff2 Þ2f2Mc �c

32	m3
Ba

½FBa!L
1 ðm2

Mc �c
Þ�2�3=2ðm2

Ba
; m2

Mc �c
; m2

LÞ; (11)

�ðBa ! Mc �cVÞ

¼ G2
FjVcbV

�
csj2ðaeff2 Þ2f2Mc �c

16	m3
Ba

�1=2ðm2
Ba
; m2

Mc �c
; m2

VÞ
8m2

V

�
ðmBa

þmVÞ2½ABa!V
1 ðm2

Mc �c
Þ�2½�ðm2

Ba
; m2

Mc �c
; m2

VÞ þ 12m2
Mc �c

m2
V�

þ ½ABa!V
2 ðm2

Mc �c
Þ�2

ðmBa
þmVÞ2

�2ðm2
Ba
; m2

Mc �c
; m2

VÞ � 2ABa!V
1 ðm2

Mc �c
ÞABa!V

2 ðm2
Mc �c

Þðm2
Ba

�m2
Mc �c

�m2
VÞ�ðm2

Ba
; m2

Mc �c
; m2

VÞ

þ 8m2
Mc �c

m2
V

½VBa!Vðm2
Mc �c

Þ�2
ðmBa

þmVÞ2
�ðm2

Ba
; m2

Mc �c
; m2

VÞ
�
; (12)

fLðBa ! Mc �cVÞ

¼ 1

�ðBa ! Mc �cVÞ
G2

FjVcbV
�
csj2ðaeff2 Þ2f2Mc �c

16	m3
Ba

�1=2ðm2
Ba
; m2

Mc �c
; m2

VÞ
8m2

V

�
ðmBa

þmVÞ½ABa!V
1 ðm2

Mc �c
Þ�ðm2

Ba
�m2

Mc �c
�m2

VÞ

� �ðm2
Ba
; m2

Mc �c
; m2

VÞ
½ABa!V

2 ðm2
Mc �c

Þ�
ðmBa

þmVÞ
�
2
; (13)

(v) modes with a JPC ¼ 0�þ Pc �c (�c or �cð2SÞ) charmonium state:

1The two J ¼ 1 mesons in the final state have the same helicity since the decaying Ba is spinless.
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�ðBa ! Pc �cLÞ ¼
G2

FjVcbV
�
csj2ðaeff2 Þ2f2Pc �c

32	m3
Ba

½FBa!L
0 ðm2

Pc �c
Þ�2ðm2

Ba
�m2

LÞ2�1=2ðm2
Ba
; m2

Pc �c
; m2

LÞ; (14)

�ðBa ! Pc �cVÞ ¼
G2

FjVcbV
�
csj2ðaeff2 Þ2f2Pc �c

32	m3
Ba

½ABa!P
0 ðm2

Pc �c
Þ�2�3=2ðm2

Ba
; m2

Pc �c
; m2

VÞ: (15)

� is the triangular function, �ða; b; cÞ ¼ ða� b� cÞ2 �
4bc. Equations (11) and (14) apply to both the cases in
which the light meson is pseudoscalar or scalar, L ¼ P, S.

Using in these expressions the coefficients aið�Þ
computed in renormalization group improved perturbation
theory, the experimental data are badly reproduced: theb !
c �cs inducedmodes under scrutiny are color suppressed, and
the predictions of naive factorization undershoot the data.
The most striking discrepancy is for the modes with �c0 in
the final state, which have sizable rates despite the fact that
their amplitudes vanish in the factorization approach. Our
strategy is to exploit the data in Table I to determine an
effective parameter aeff2 (generally channel-dependent) and,
assuming SUð3ÞF symmetry, to use these values to predict
the flavor related Bs decays. Since the results depend on the
form factors, to estimate this hadronic uncertainty we use
two sets of form factors computed by variants of the QCD
sum rule method [19], the set in [20] obtained using sum
rules based on the short-distance expansion, and the set
in [21] based on the light-cone expansion. In the case of
Bs ! � and Bs ! f0ð980Þwe use form factors determined
by light-cone sum rules [22,23]. It is noticeable that in the
future, when enough experimental data will be available for
both Bd and Bs modes, a comparison between the effective
Wilson coefficients aeff2 from the various SUð3ÞF related
modes will be possible.

The numerical inputs Vcb ¼ 0:0412 � 0:0011,
Vcs ¼ 1:04� 0:06, 
ðB�Þ ¼ ð1:638� 0:011Þ ps, 
ðB0Þ ¼
ð1:530� 0:009Þ ps, 
ðBsÞ ¼ ð1:470þ0:026

�0:027Þ ps, together

with the values of the meson masses, are taken from the
Particle Data Group [12]. Moreover, from J=c ðc ð2SÞÞ !
eþe� [12] we obtain: fJ=c ¼ ð416:3� 5:3Þ MeV and

fc ð2SÞ ¼ ð296:1� 2:5Þ MeV. The decay constant of �c

comes from �c ! 2�: f�c
¼ ð380:0� 87:1Þ MeV, while

only the upper bound f�cð2SÞ < 438:8 MeV is known. In

the heavy quark limit, the pseudoscalar and vector
charmonia are collected in a doublet of states with

degenerate masses and same decay constants. Therefore,
f�cð2SÞ can be obtained using the relation

f�cð2SÞ ¼
f�c

fJ=c
fc ð2SÞ ¼ ð270:3� 62:0Þ MeV; (16)

symmetry breaking terms, coming from removing the me-
son degeneracy, are expected to cancel in the ratio. Since
the constant f�c1

is not known, for the modes involving �c1

we determine the product aeff2 f�c1
from data. SUð3ÞF

symmetry allows to relate Bs decays to those listed
in Table I: data on B ! Mc �cK allow us to predict

Bs ! Mc �c�
ð0Þ, while information on B ! Mc �cK

� is used
to predict Bs ! Mc �c�. As for Bs ! Mc �cf0ð980Þ, they
are obtained using the effective ja2j determined from

B ! Mc �cK. The Bs ! �ð0Þ form factors are related to the
analogous B ! K form factors: for a generic form factor F

we have FBs!� ¼ � sin�FB!K and FBs!�0 ¼ cos�FB!K

where � is the mixing angle in the flavor basis [24]

�¼�qcos���s sin�; �0 ¼�q sin�þ�scos�; (17)

with �q ¼ ð �uuþ �ddÞ= ffiffiffi
2

p
and �s ¼ �ss. The mixing angle

between �q and �s can be fixed to the value measured by

the KLOE Collaboration: � ¼ ð41:5� 0:3stat � 0:7syst �
0:6thÞ� [25], which agrees with the outcome of a QCD

sum rule analysis of the radiative � ! �ð0Þ� modes [26].
The errors on the various aeff2 correspond to the uncertainty
of the form factors at zero momentum transfer and to the
experimental errors of the branching ratios of the related
modes reported in Table I. In the case of the transitions
involving � or �0, the uncertainty on the form factors is not
included since, on the basis of SUð3ÞF, the dependence on
the form factors cancels when Bs ! Mc �c�

ð0Þ branching
ratio is related to B ! Mc �cK, leaving only a dependence
on the �-�0 mixing angle. The obtained values of aeff2 are
collected in Table II, and the predictions for Bs branching

TABLE II. Effective Wilson coefficients aeff2 and combination aeff2 f�c1
(in GeV) appearing in the decay amplitudes of the various

Bs ! Mc �cL modes, obtained from the SUð3ÞF related B decay modes and using the form factors in Ref. [20] (CDSS) and Ref. [21]
(BZ).

mode jaCDSS2 j jaBZ2 j mode jaCDSS2 j jaBZ2 j
J=c�ð�0Þ 0:40� 0:007 0:26� 0:005 �c�ð�0Þ 0:36� 0:03 0:25� 0:02
c ð2SÞ�ð�0Þ 0:50� 0:02 0:31� 0:01 �cð2SÞ�ð�0Þ 0:31� 0:08 0:21� 0:06
mode jaCDSS2 f�c1

j jaBZ2 f�c1
j mode jaCDSS2 f�c1

j jaBZ2 f�c1
j

�c1�ð�0Þ 0:122� 0:006 0:076� 0:004 �c1f0 0:122� 0:016 0:076� 0:010
�c1� 0:0345� 0:006
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ratios in Tables III and IV. In Table III the available
experimental data are also included, with a general agree-
ment with the corresponding theoretical results.

Several remarks are in order. The values of aeff2 derived

from the form factors in Ref. [20] are larger than the ones
derived from Ref. [21]; they also turn out to be channel-
dependent. Their range (0.2–0.3) or (0.3–0.5) is larger than
the one obtained in the QCDF and pQCD approaches
which undershoot the data. As appears from Tables III
and IV, all the modes have sizeable branching fractions,
so that they are promising candidates for measurements of
�s. The modes involving �, �0, f0 present, with respect to
Bs ! J=c�, the advantage that the final state is a CP
eigenstate, not requiring any angular analysis. However,
the channels with � and �0 could be useful only after a
number of events will be accumulated, since at least two
photons are required for the reconstruction. On the other
hand, it should be observed that a possible future Super B
factory running at the �ð5SÞ peak could promisingly study

modes such as Bs ! J=c�ð0Þ [30] with a better perform-
ance with respect to an hadronic machine [31].

As discussed in [23,32,33], the mode Bs ! J=c f0ð980Þ
has appealing features since, compared with the � and �0,
the f0 can be easily reconstructed in the 	þ	� final state,

which occurs with a large rate: Bðf0ð980Þ ! 	þ	�Þ ¼
ð50þ7

�8Þ% [34], so that this channel can be accessed.2

Indeed, the decay Bs ! J=c f0 has been very recently
observed by the LHCb [28] and Belle [29]
Collaborations, and a preliminary result is also reported
by the CDF Collaboration [35].
The LHCb Collaboration has measured, in proton-

proton collisions at c.o.m. energy of 7 TeV and using a fit
to the 	þ	� spectrum with interfering resonances, the
ratio [28]:

Rf0=� ¼ �ðBs ! J=c f0; f0 ! 	þ	�Þ
�ðBs ! J=c�;� ! KþK�Þ

¼ 0:252þ0:046
�0:032ðstatÞþ0:027

�0:033ðsystÞ: (18)

TABLE III. Branching ratios (� 104) of the decays Bs ! Mc �cL using the form factors in [20] (CDSS) and in [21] (BZ). The
experimental results for Bs ! J=c ðc ð2SÞÞ� are taken from PDG [12]; the branching fractions of Bs ! J=c�ð�0Þ, measured by the
Belle Collaboration [27], are quoted combining the errors in quadrature. For Bs ! Mc �cf0, the effective coefficient a2 obtained from
the B ! K mode and the form factors CDSS and BZ are used; the two experimental results are due to the LHCb [28] and Belle [29]
Collaborations.

Mode B (CDSS) B (BZ) Exp. Mode B (CDSS) B (BZ)

J=c� 4:3� 0:2 4:2� 0:2 3:32� 1:02 [27] �c� 4:0� 0:7 3:9� 0:6
J=c�0 4:4� 0:2 4:3� 0:2 3:1� 1:39 [27] �c�

0 4:6� 0:8 4:5� 0:7
c ð2SÞ� 2:9� 0:2 3:0� 0:2 �cð2SÞ� 1:5� 0:8 1:4� 0:7
c ð2SÞ�0 2:4� 0:2 2:5� 0:2 �cð2SÞ�0 1:6� 0:9 1:5� 0:8
J=c� — 16:7� 5:7 13� 4 [12] �c� — 15:0� 7:8
c ð2SÞ� — 8:3� 2:7 6:8� 3:0 [12]

�c1� 2:0� 0:2 2:0� 0:2 �c1f0 1:88� 0:77 0:73� 0:30
�c1�

0 1:9� 0:2 1:8� 0:2 �c1� — 3:3� 1:3
J=c f0 4:7� 1:9 2:0� 0:8 3:2� 1:3 [28] �cf0 4:1� 1:7 2:0� 0:9

2:32� 0:96 [29]

c ð2SÞf0 2:3� 0:9 0:89� 0:36 �cð2SÞf0 0:58� 0:38 1:3� 0:8

TABLE IV. Branching ratios (� 104) of Bs decays into p-wave charmonia.

Mode B Mode B Mode B

�c0� 0:85� 0:13 �c2� <0:17 hc� <0:23
�c0�

0 0:87� 0:13 �c2�
0 <0:17 hc�

0 <0:23
�c0f0 1:15� 0:17 �c2f0 <0:29 hcf0 <0:30
�c0� 1:59� 0:38 �c2� <0:10ð0:62� 0:17Þ hc� (< 1:9)

2The quark content of f0ð980Þ is not completely known. Under
the �qq assignment, this meson might be a mixture of the
isosinglet �nn and �ss (n ¼ u, d) components. The mixing angle
can be fixed using experimental information on, for instance, the
decays J=c ! �f0 and J=c ! !f0: BðJ=c ! �f0Þ ¼ð3:2� 0:9Þ � 10�4, BðJ=c ! !f0Þ ¼ ð1:4� 0:5Þ � 10�4,
which might signal a nonstrange component of f0 and the
consequent reduction of BðBs ! J=c f0Þ by about 30%.
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This result, together with the experimental measure-
ment of BðBs ! J=c�Þ included in Table III and
Bð� ! KþK�Þ ¼ ð48:9� 0:5Þ � 10�2 [12], corresponds
to BðBs ! J=c f0Þ ¼ ð3:2� 1:3Þ � 10�4, combining all
the uncertainties in quadrature. The Belle Collaboration,
analyzing 121:4 fb�1 of data collected at the �ð5SÞ reso-
nance, has obtained [29]:

B ðBs ! J=c f0; f0 ! 	þ	�Þ
¼ ½1:16þ0:31

�0:19ðstatÞþ0:15
�0:17ðsystÞþ0:26

�0:18ðNBð�Þ
s

�Bð�Þ
s
Þ� � 10�4

(19)

which corresponds, combining the uncertainties in
quadrature, to BðBs ! J=c f0Þ ¼ ð2:32� 0:96Þ � 10�4.
The preliminary result reported by the CDF
Collaboration reads [35]:

Rf0=� ¼ BðBs ! J=c f0Þ
BðBs ! J=c�Þ

Bðf0 ! 	þ	�Þ
Bð� ! KþK�Þ

¼ 0:292� 0:020ðstatÞ � 0:017ðsystÞ; (20)

which corresponds toBðBs!J=c f0Þ¼ð3:7�1:3Þ�10�4.
The three measurements are all compatible with our
prediction.

The results for Bs ! �cL are also included in Table III.
Although these channels have sizable branching fractions,
they present the drawback of the difficult reconstruction
of the �c.

Let us now consider Bs decays to p-wave charmonia.
We have stressed that, among these decays, the only one
with nonvanishing amplitude in the factorization assump-
tion is that with �c1 in the final state. In the other cases, i.e.
for modes involving �c0;2 and hc collected in Table IV, the

results are obtained determining the decay amplitudes from
the B decay data by making use of the SUð3ÞF symmetry.
In this case, the differences between the B and Bs decays
arise from the phase space and lifetimes of the heavy
mesons. As for the mechanism inducing such processes,
one possibility, put forward in [36], is that rescattering can
be responsible for the observed branching fractions.
Among these channels, Bs ! �c0� is of prime interest
and very promising for both hadron colliders and B facto-
ries. Even though BðBs ! �c0�Þ is 1 order of magnitude
smaller than BðBs ! J=c�Þ it has appealing features, in
particular, as far as the potential of the LHCb experiment is
concerned. As a matter of fact, the �c0 dominant decay
modes are �c0 ! �þ	�	0, ��	þ	0, 	þ	�	þ	�, with
branching fractions of order 10�2. Therefore the final state
consists of six charged hadrons, and the particle identifi-
cation information from the RICH detectors could suppress
the background. Furthermore, the vertex detector might be
particularly efficient for these channels.

Considering finally the polarization fractions, the results
for the longitudinal polarization fractions fL for the
modes with two J ¼ 1 mesons in the final state can be

found in Table V. There is agreement with experiment for
Bs ! J=c�, the only mode for which data on fL are
available. This is at odds with the case of a few suppressed
B decays to two light vector mesons, in which the experi-
mental datum is not reproduced assuming factorization.
Before concluding this section, we would like to com-

ment about the accuracy of the results collected in
Tables III, IV, and V. As we have already stressed, the
uncertainties quoted in Tables III and IV are due to the
errors affecting the parameters of the form factors used in
the calculation and to the errors on the experimental branch-
ing ratios of the corresponding Bd decay modes exploited to
obtain aeff2 . In principle, other uncertainties affect such

predictions due to the limited accuracy of SUð3ÞF and to
the neglect of possible nonfactorizable terms.
SUð3ÞF is usually considered a reliable assumption, and

in the context of Bs decays such an issue has been dis-
cussed in several analyses. In [37] it was shown that this
symmetry allows to reliably relate Bd and Bs decay am-
plitudes not only in magnitude but also as far as their strong
phases are concerned. Another argument is provided by the
analysis in [38], where it has been shown that Bs ! KþK�
can be related to Bd ! 	þ	� using U-spin symmetry,
which amounts to replace all the d quarks in the decay
by s quarks, an assumption similar but weaker than the
SUð3ÞF adopted here.
Concerning the role of nonfactorizable terms, it is more

difficult to assess how large such terms are. However, as
pointed out in [36,39], it is likely and supported by avail-
able data that such terms are negligible in those cases in
which there is a sizeable factorizable term, while they
could be relevant whenever the leading factorizable term
is either absent (as in the case of the modes in Table IV) or
it is effectively suppressed (being, e.g., loop induced or
strongly CKM suppressed). In [39] it was shown that the
polarization fractions are sensible probes of such nonfac-
torizable contributions. Actually, naive and generalized
factorization provide the same result in the case of the
polarization fractions, since they differ only for the value
of aeff2 which cancels in the ratio defining a polarization

fraction. To modify the prediction for fL one should either
consider approaches in which the three polarization frac-
tions (the longitudinal and the two transverse ones) involve
different Wilson coefficients, or invoke again other mecha-
nisms such as rescattering. The first case occurs in QCD
factorization and in pQCD. Among the nonfactorizable
mechanisms, rescattering has been proposed as a solution

TABLE V. Longitudinal polarization fraction fL (� 102) for
Bs decays to two J ¼ 1 mesons.

Mode Prediction Experiment

J=c� 51:3� 5:8 54:1� 1:7
c ð2SÞ� 41:0� 3:7
�c1� 43:9� 4:4
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to the puzzle of the polarization fractions in some B decays
to two light vector mesons, when the considered process is
suppressed as in the penguin induced mode B ! �K� [39].
In the case of the modes in Table III the agreement of our
prediction for the longitudinal polarization fraction fL with
the experimental datum for Bs ! J=c�, the only Bs

decay mode for which fL has been measured, supports
this argument.

Finally, concerning the modes in Table IV, as we have
already stressed, the results do not rely on factorization, but
only on the use of SUð3ÞF to obtain the amplitude, hence
only the issue of the SUð3ÞF accuracy applies to these
modes.

III. NEW PHYSICS EFFECTS IN NONLEPTONIC
Bs DECAYS: GENERAL ANALYSIS

As mentioned in the Introduction, hints of deviations
from SM predictions have recently been found in Bs phe-
nomenology, hence it is worth considering the effects of
new physics in the Bs sector, which may show up in mixing
and/or in decay amplitudes.

New physics in Bs � �Bs mixing can modify the mixing
phase �s. We refer to this phase as to �eff

s , which contains
SM as well as NP contributions: �eff

s ¼ �SM
s þ �NP

s . This
effect is the same for all decay modes, and simply shifts the
value of �s. On the other hand, NP in the decay amplitudes
can affect various channels in different ways, even for
modes induced by the same quark transition, as we specify
in the following.

Let us discuss the possibility that experimental results
for nonleptonic Bs decays deviate from the predictions
given in the previous section. Such predictions rely on
SUð3Þ flavor symmetry and on experimental data on cor-
responding Bd decays, in which no NP effects have been
detected at the present level of accuracy. Deviations in Bs

decay rates with respect to the predictions could be due to a
violation of SUð3ÞF symmetry, which is generally expected
at a few percent level. However, there is the more exciting
possibility of deviations due to NP effects with small
contributions in Bd oscillations and decays and detectable
contributions in Bs, an eventuality which is interesting to
consider for the modes studied in this paper. Such modes
receive contribution both from tree-level and loop dia-
grams, so that one would expect NP to affect them negli-
gibly. However, there are scenarios in which the
contribution of new particles in loop diagrams can be
competitive with the SM tree level diagrams. This is the
case, for example, of supersymmetric scenarios in which
one loop gluino exchanges for b ! s transition could give
a sizeable contribution to the b ! c �cs induced modes. This
would affect the branching ratios of such modes, and the
CP asymmetries, since new phases could arise through the
soft supersymmetry breaking terms. To avoid constraints
on such phases from existing limits on dipole electric
moments, one should consider flavor dependent phases.

Here we do not focus on a specific NP model, rather
we parametrize the effects of new physics in a general way,
i.e. in terms of an amplitude, a weak and a strong phase,
and discuss how these quantities can be constrained by
experimental data on the modes considered above.
In a customary notation, Af is the amplitude for

Bs ! f decay to a generic final state f (CP eigenstate,
common to Bs and �Bs) which, in our case, is of the kind
Mc �cL.

3 The corresponding �Bs decay amplitude is denoted

as �Af. Being interested in CP asymmetries, we introduce

the quantity

�f ¼ e�2i�eff
s

� �Af

Af

�
; (21)

in terms of which one can write the mixing-induced CP
asymmetry Sf and the direct CP asymmetry Cf:

Sf ¼ 2=ð�fÞ
1þ j�fj2

; Cf ¼
1� j�fj2
1þ j�fj2

: (22)

Assuming that there is a single dominant NP amplitude (or
that all NP amplitudes have the same weak and strong
phases relative to the SM), we write:

A f ¼ ASM
f ð1þ Rei�NPei�NPÞ; (23)

where R ¼ jANP
f
j

jASM
f

j is the ratio of the modulus of the NP

amplitude and that of the SM one, while �NPð�NPÞ is the
strong (weak) NP phase with respect to the SM part. Our
working hypothesis is that no NP affects B decays: ac-
tually, the new weak phase �NP would be the same in B and
Bs decays, depending only on the underlying quark tran-
sition, however R and �NP depend on the matrix elements
of the operators between initial and final states, which can
be different.
Using the definition in Eq. (23) and considering

that: �Af ¼ �ASM
f ð1þ Rei�NPe�i�NPÞ, we get for the

CP-averaged branching fraction

B exp ¼ BSM½1þ 2R cosð�NPÞ cosð�NPÞ þ R2�; (24)

where from now on we shall omit the label f in the
quantities in Eq. (24) though they are channel-dependent
(except for �NP which is the same for all the modes induced
by the same underlying quark transition). From Eq. (21),
we obtain:

�f ¼ e�2i�eff
s
1þ Reið�NP��NPÞ

1þ Reið�NPþ�NPÞ
�ASM

f

ASM
f

: (25)

Neglecting double Cabibbo suppressed contributions to the
SM amplitudes we have:

3In the case of two vectors in the final state f denotes one of
the final state components being the CP eigenstate.
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Sf ¼ ��f

sinð2�eff
s Þ þ 2R cos�NP sinð2�eff

s þ �NPÞ þ R2 sinð2�eff
s þ 2�NPÞ

1þ 2R cos�NP cos�NP þ R2
; (26)

Cf ¼ � 2R sin�NP sin�NP

1þ 2R cos�NP cos�NP þ R2
; (27)

�f being the CP eigenvalue of the final state f. In absence
of NP we recover the SM results �f ¼ e�2i�s , Sf ¼
��f sinð2�sÞ, Cf ¼ 0. These results would also hold if
NP contributes only to Bs � �Bs mixing with �s ! �eff

s .
The three Eqs. (24), (26), and (27) allow to determine

the NP parameters R, �NP, �NP, once experimental data on
BðBs ! fÞ, Sf and Cf are available for a given final state

f. Assuming R � 1, we obtain:

�NP ¼ arctan

��Cf

~Sf

�
; (28)

�NP ¼ arctan

�ð1þ �Þ
�

~Sf

�
; (29)

R ¼ �

2 cosð�NPÞ cosð�NPÞ ; (30)

where � and ~Sf parametrize deviations from the SM:

� ¼ Bexp

BSM
� 1; (31)

~S f ¼
��fSf � sinð2�eff

s Þ
cosð2�eff

s Þ : (32)

In Fig. 1 we plot the direct CP asymmetry Cf versus the

mixing-induced CP asymmetry for several values of the
strong phase �NP, using the relation (28). Once for a given
channel f there will be data available for (Sf, Cf) one

could find a range for �NP. The two panels in Fig. 1 are
obtained assuming different values for the Bs � �Bs mixing
phase, which is fixed to 2�eff

s ¼ 0:77� 0:37 rad (one of
the values obtained by HFAG averaging the experimental

results provided by the Tevatron Collaborations CDF and
D0) in the left panel, while in the right panel it is fixed to
the SM value �s ¼ 0:017 rad (no errors are attached to the
SM value, hence the various regions shrink to lines). In
these figures only positive values of �NP have been con-
sidered, since Cfð��Þ ¼ Cfð	2 þ �Þ ¼ �Cfð�Þ.
Equation (29) allows to determine the weak phase �NP

using the measured BðBs ! fÞ and Sf. To appreciate how

this could be obtained, we consider the final state J=c�,
with �f ¼ 1, and plot in Fig. 2 �NP versus SJ=c� for �

corresponding to the values Bexp ¼ 3:32� 1:02 (see
Table III) and BSM ¼ 4:25� 0:28 (the average of the
(CDSS) and (BZ) predictions in Table III).
Last, we consider Eq. (30). In this case, all of the three

observables BðBs ! fÞ, Sf and Cf are required to con-

strainR. Moreover, once experimental information is avail-
able about the three observables BðBs ! fÞ, Sf and Cf in

at least two decay modes, also �s can be constrained, since
only the NP parameters R and �NP are channel-specific,
while �NP is the same for all the modes induced by the
weak transition b ! c �cs. Hence, measuring in two chan-
nels the six observables ðBðBs ! f1Þ; Sf1 ; Cf1Þ and

ðBðBs ! f2Þ; Sf2 ; Cf2Þ it would be possible to determine

R1, �NP;1, R2, �NP;2, �NP and �s.

A final remark concerns the role of double Cabibbo
suppressed SM contributions to the Bs processes of the
type discussed here. In SM, taking into account also such
contributions, the expression for the �Bs ! Mc �cL decay
amplitude can be written as [40]:

ASMð �Bs ! Mc �cLÞ ¼ ASM

�
1� �2

2

�
½1þ �aSMei�e�i��

(33)

NP 6NP 3

NP
2

3
NP

5

6
1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

S f

C f

NP
5

6

NP
2

3
NP 3

NP 6

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

S f

C f

FIG. 1 (color online). Direct CP asymmetry Cf versus the mixing-induced CP asymmetry Sf for several values of the strong
phase �NP.
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where ASM ¼ AT þ AðcÞ
P � AðtÞ

P and aSMei� ¼ AðuÞ
P �AðtÞ

P

ATþAðcÞ
P �AðtÞ

P

are combinations of the tree operator (3) and of the penguin
operators with internal quark (q) in (4). The amplitude
involves parameters of the CKM matrix, such as �, the
sine of the Cabibbo angle, and �, the argument of V�

ub,

together with the strong phase �. � represents the combi-

nation � ¼ �2

1��2

2

’ 0:053, and its small value, together

with the small ratio of the Wilson coefficients of penguin
and tree operators, is the argument to justify the neglect of
the term involving aSM. The reliability of this approxima-
tion has been tested several times, with the conclusion
that penguin corrections to both direct and indirect CP
induced asymmetries are, at most, of Oð10�3Þ in the case
of the Bd system [41]. The issue has been reconsidered
for Bs modes, such as Bs ! J=c� [40], as well as in
Bd ! J=cKS;L [42], and it has been suggested to use

experimental data to get information on such contributions
using modes in which they are not Cabibbo suppressed,
namely Bd ! J=cK�0ðKþ	�Þ for Bs ! J=c�, and
Bd ! J=c	0 for Bd ! J=cKS;L, employing U-spin or

SUð3ÞF symmetries.
Double Cabibbo suppression also characterizes the SM

penguin pollution in all the processes we have considered
in our study, and the idea of using control modes to bound
their sizes can be applied extensively. This is the case, first,
of processes involving c ð2SÞ, namely Bs ! c ð2SÞ�, the
control process of which can be Bd ! c ð2SÞK�0ðKþ	�Þ
accessible at the B factories. Analogously, under SUð3ÞF
symmetry the Bs ! J=c ðc ð2SÞÞ�ð�0Þ modes have Bd !
J=c ðc ð2SÞÞ	0 as control processes, from which some
information has already been gained. As for Bs ! �c0�,
a control mode could be Bd ! �c0K

�0. Detailed analyses
would be possible with the availability of experimental

measurements; the variety of possibilities makes the set
of decay modes discussed in this study of great experimen-
tal and theoretical interest.

IV. CONCLUSIONS

Recent results in the Bs sector require efforts to identify
promising ways to unveil new physics. We have considered
decay channels induced by the b ! c �cs transition, using
generalized factorization together with SUð3ÞF symmetry
to predict their branching fractions in the standard model.
Modes with a charmonium state plus �, �0, f0ð980Þ are
interesting, since they are CP eigenstates and do not re-
quire angular analyses. The case of f0 is particularly
suitable in view of its reconstruction in the 	þ	� mode.
If NP affects the Bs sector, it can either contribute to the

�B ¼ 2 induced mixing amplitude, in a channel indepen-
dent way, modifying the value of the mixing phase with
respect to its SM value, or modify the decay amplitudes, in
a way that can vary from one channel to the other. In this
case, the mixing-induced CP asymmetry Sf would no

more be equal to��f sin2�s and the direct CP asymmetry

Cf would differ from zero, conditions which instead hold

in the SM or in the case that NP affects only the oscillation
process. Both cases can also happen. We have considered a
general parametrization of new physics in which the sec-
ond condition holds, fixing �s either to the average of CDF
and D0 results or to its SM value. With data on the
branching ratio and the two CP asymmetries Sf and Cf

for a given final state f it will be possible to constrain NP
parameters.
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