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We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero

temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral

models that allow us to treat self-consistently the spontaneous breaking of chiral symmetry: the linear

�-model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also

perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the

regimes of weak and strong fields. Our numerical results are in agreement with the recent literature;

moreover, we confirm previous attice findings, related to the saturation of the polarization at large fields.
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I. INTRODUCTION

One of the most attractive aspects of the vacuum of
quantum chromodynamics (QCD), the theory of strong
interactions, is its nonperturbative nature. Mainly by
means of lattice QCD simulations at zero quark chemical
potential [1–5] it is established that two crossovers take
place in a narrow range of temperature; one for quark
deconfinement, and another one for the (approximate)
restoration of chiral symmetry. Besides, powerful analytic
and semianalytic techniques have been developed to under-
stand the coupling between chiral symmetry restoration
and deconfinement, see [6,7] and references therein.
Moreover, lattice QCD and Operator Product Expansion
(OPE in the following) of the correlators of hadronic
currents show that the QCD vacuum can be characterized
by several quark, gluon and mixed condensates [8].

A fruitful theoretical approach to the physics of
strong interactions, which is capable to capture some of
the nonperturbative properties of the QCD vacuum, is the
use of effective chiral models. One of them is the Nambu-
Jona-Lasinio (NJL) model [9] (see Refs. [10] for reviews),
in which the QCD gluon-mediated interactions are re-
placed by effective interactions among quarks, which are
built in order to respect the global symmetries of QCD.
Under some approximations, it is possible to derive the
NJL model effective interaction kernel from first prin-
ciples QCD, see [11,12]. Besides, a linear �-model aug-
mented with a Yukawa-type coupling to quarks, named
Quark-Meson model (QM model in the following), has
been developed as an effective model of QCD [13,14]. In
this model, quartic meson self-couplings allow to absorb
the cutoff dependence of the coupling constants; more-
over, following an idea by Weinberg [15], tree-level prop-
agating mesons are sufficient to avoid triviality of the NJL
model in 3þ 1 dimensions in the one-loop approximation

[16] (see [14] for an excellent discussion about these
points).
The chiral models are widely used to map qualitatively,

and to some extent also quantitatively, the phase diagram
of strongly interacting matter along several directions like
temperature, chemical potential, isospin chemical potential
and external fields [17–31]. It is thus interesting to use
these models to compute other quantities, which are related
to the QCD vacuum condensates. As a matter of fact, the
chiral models allow for a self-consistent treatment of the
spontaneous chiral symmetry breaking in the vacuum.
Therefore, after the ground state properties (i.e., the chiral
condensate in the NJL model, or the expectation value of
the �-field in the quark-meson model) under external
factors are computed, it is straightforward to estimate
numerical values of other condensates, using the one-
loop propagators of the theory. Interesting studies within
a different theoretical approach can be found in [32]
It has been realized that external fields can induce QCD

condensates that are absent otherwise [33]. Of particular
interest for this article is magnetic moment, h �f���fi
where f denotes the fermion field of the flavor f-th, and
��� ¼ �ið���� � ����Þ=2. At small fields one can
write, according to [33],

h �f���fi ¼ �h �ffiQfjeBj; (1)

and � is a constant independent on flavor, which is dubbed
magnetic susceptibility of the quark condensate. In [33] it
is proved that the role of the condensate (1) to QCD sum
rules in external fields is significant, and it cannot be
ignored. The quantity � has been computed by means of
special sum rules [33–37], OPE combined with Pion
Dominance [38], holography [39,40], instanton vacuum
model [41], analytically from the zero mode of the Dirac
operator in the background of a SUð2Þ instanton [42], and
on the lattice in two-color quenched simulations at zero
and finite temperature [43] and for the case of three colors
see [44].It has also been suggested that in the photopro-
duction of lepton pairs, the interference of the Drell-Yan
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amplitude with the amplitude of a process where the pho-
ton couples to quarks through its chiral-odd distribution
amplitude, which is normalized to the magnetic suscepti-
bility of the QCD vacuum, is possible [45]. This interfer-
ence allows in principle to access the chiral-odd
transversity parton distribution in the proton. Therefore,
this quantity is interesting both theoretically and phenom-
enologically. The several estimates, that we briefly review
in Sec. III, lead to the numerical value of � as follows:

�h �ffi ¼ 40–70 MeV: (2)

A second quantity, which embeds nonlinear effects at
large fields, is the polarization, �f, defined as

�f ¼
��������

�f

h �ffi
��������; �f ¼ h �f�12fi; (3)

which has been computed on the lattice in [43] for a wide
range of magnetic fields, in the framework of two-color
QCD with quenched fermions. At small fields �f ¼
j�QfeBj naturally; at large fields, nonlinear effects domi-

nate and an interesting saturation of �f to the asymptotic

value�1 ¼ 1 is measured. According to [43] the behavior
of the polarization as a function of eB in the whole range
examined, can be described by a simple inverse tangent
function. Besides, magnetization of the QCD vacuum has
been computed in the strong field limit in [46] using
perturbative QCD, where it is found it grows as B logB.

In this article, we compute the magnetic susceptibility of
the quark condensate by means of the NJL and the QM
models. This study is interesting because in the chiral
models, it is possible to compute self-consistently the
numerical values of the condensates as a function of eB,
once the parameters are fixed to reproduce some character-
istic of the QCD vacuum. We firstly perform a numerical
study of the problem, which is then complemented by
some analytic estimate of the same quantity within the
renormalized QM model. Moreover, we compute the po-
larization of quarks at small as well as large fields, both
numerically and analytically. In agreement with the lattice
results [43], we also measure a saturation of �f to one at

large fields, in the case of the effective models. Our results
push towards the interpretation of the saturation as a non-
artifact of the lattice. On the contrary, we can offer a simple
physical understanding of this behavior, in terms of lowest
Landau level dominance of the chiral condensate. As a
matter of fact, using the simple equations of the models for
the chiral condensate and for the magnetic moment, we can
show that at large magnetic field �f has to saturate to one,

because in this limit the higher Landau levels are expelled
from the chiral condensate; as a consequence, the ratio of
the two approaches one asymptotically.

We also obtain a saturation of the polarization within the
renormalized QM model. There are some differences,
however, in comparison with the results of the nonrenor-
malized models. In the former case, the asymptotic value

of �f is charge-dependent; moreover, the interpretation of

the saturation as a lowest Landau level (LLL) dominance is
not straightforward, because the renormalized contribution
of the higher Landau levels is important in the chiral
condensate, even in the limit of very strong fields. It is
possible that the results obtained within the renormalized
model are a little bit far from true QCD. As a matter of fact,
in the renormalized model we assume that the quark self-
energy is independent on momentum; thus, when we take
the limit of infinite quark momentum in the gap equation,
and absorb the ultraviolet divergences by means of coun-
terterms and renormalization conditions, we implicitly
assume that the quark mass at large momenta is equal to
its value at zero momentum. We know that this is not true,
see for example [47,48]: even in the renormalized theory,
the quark self-energy naturally cuts off the large momenta,
leading to LLL dominance in the traces of quark propa-
gator which are relevant for our study. Nevertheless, it is
worth studying this problem within the renormalized QM
model in its simplest version, because it helps to under-
stand the structure of this theory under the influence of a
strong magnetic field.
In our calculations we neglect, for simplicity, the pos-

sible condensation of �-mesons at strong fields [49,50].
Vector meson dominance [49] and Sakai-Sugimoto model
[51] suggest for the condensation a critical value of eBc �
m2

� � 0:57 GeV2, where m� is the �-meson mass in the

vacuum. Beside these, a NJL-based calculation within the
LLL approximation [50] predicts �-meson condensation at
strong fields as well, even if in the latter case it is hard to
estimate exactly eBc, mainly because of the uncertainty of
the parameters of the model. It would certainly be interest-
ing to address this problem within our calculations, in
which not only the LLL but also the higher Landau levels
are considered, and in which the spontaneous breaking of
chiral symmetry is kept into account self-consistently.
However, this would complicate significantly the calcula-
tional setup. Therefore, for simplicity we leave this issue to
a future project.
The plan of the article is as follows. In Sec. II we

describe the QM and NJL models and fix our notation. In
Sec. III we discuss our numerical results for the polariza-
tion of quarks, and compute the magnetic susceptibility of
the quark condensate. In Sec. IV we compute the renor-
malized quantum effective potential (QEP) of the QM
model in a magnetic background, in the one-loop approxi-
mation, and compute analytically the solution of the gap
equation in the weak-field case, and semianalytically in the
strong field limit. We then use the results to estimate �f

and �. Finally, in Sec. V we draw our conclusions.

II. CHIRAL MODELS COUPLED
TO A MAGNETIC FIELD

In the first part of this article, we derive numerical
results for the spin polarization of quarks in a magnetic
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field, and for the magnetic susceptibility of the quark
condensate, using two effective chiral models: the NJL
model, and the QM model. We describe the two models
in some detail in this section. Wework in the Landau gauge
and take the magnetic field along the z-axis, B ¼ ð0; 0; BÞ.

A. Quark-Meson model

In the QM model, a meson sector described by the
linear sigma model lagrangian is coupled to quarks via a
Yukawa-type interaction. The model is renormalizable in
D ¼ 3þ 1 dimensions. However, since we adopt the point
of view of it as an effective description of QCD, it is not
necessary to use the renormalized version of the model
itself. On the contrary, it is enough to fix an ultraviolet
scale to cutoff the divergent expectation values; the UV
scale is then chosen phenomenologically, by requiring that
the numerical value of the chiral condensate in the vacuum
obtained within the model is consistent with the results
obtained from the sum rules [52]. This is a rough approxi-
mation of the QCD effective quark mass, which smoothly
decays at large momenta [47,48]. In Sec. IV we will use a
renormalized version of the model, to derive semianalyti-
cally some results in the two regimes of weak and strong
fields.

The lagrangian density of the model is given by

L ¼ �q½iD��
� � gð�þ i�5� � �Þ�qþ 1

2
ð@��Þ2

þ 1

2
ð@��Þ2 �Uð�;�Þ: (4)

In the above equation, q corresponds to a quark field in
the fundamental representation of color group SUð3Þ
and flavor group SUð2Þ; the covariant derivative, D� ¼
@� �QfeA�, describes the coupling to the background

magnetic field, where Qf denotes the charge of the flavor

f. Besides, �, � correspond to the scalar singlet and the
pseudoscalar isotriplet fields, respectively. The potential U
describes tree-level interactions among the meson fields. In
this article, we take its analytic form as

Uð�;�Þ ¼ �

4
ð�2 þ �2 � v2Þ2 � h�; (5)

where the first addendum is chiral invariant; the second one
describes a soft explicit breaking of chiral symmetry, and it
is thus responsible for the nonzero value of the pion mass.
For h ¼ 0, the interaction terms of the model are invariant
under SUð2ÞV � SUð2ÞA �Uð1ÞV . This group is broken
explicitly to Uð1Þ3V �Uð1Þ3A �Uð1ÞV if the magnetic field

is coupled to the quarks, because of the different electric
charge of u and d quarks. Here, the superscript 3 in the V
and A groups denotes the transformations generated by �3,
�3�5 respectively. Therefore, the chiral group in presence
of a magnetic field is Uð1Þ3V �Uð1Þ3A. This group is then
explicitly broken by h-term to Uð1Þ3V .

In this article, we restrict ourselves to the large-Nc (that
is, one-loop) approximation, which amounts to considering
mesons as classical fields, and integrate only over fermions
in the generating functional of the theory to obtain the QEP.
As a matter of fact, quantum corrections arising from
meson bubbles are suppressed by a factor 1=Nc with
respect to the case of the fermion bubble. In the integration
process, the meson fields are fixed to their classical expec-
tation value, h�i ¼ 0 and h�i � 0 (in particular, � has the
quantum numbers of the chiral condensate, h �qqi). The
physical value of h�i will be then determined by minimi-
zation of the QEP.
To compute QEP in presence of a magnetic background,

we use the Leung-Ritus-Wang method [53] which allows
us to write down the quark propagator for the flavor f in
terms of Landau levels,

Sfðx; yÞ ¼
X1
k¼0

Z dp0dp2dp3

ð2	Þ4 EPðxÞ�k

i

P � ��M
�EPðyÞ;

(6)

where EPðxÞ corresponds to the eigenfunction of a charged
fermion in magnetic field, and �EPðxÞ � �0ðEPðxÞÞy�0. In
the above equation,

P ¼ ðp0; 0;Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjQfeBj

q
; p3Þ; (7)

where k ¼ 0; 1; 2; . . . labels the kth Landau level, and
Q � signðQfÞ, with Qf denoting the charge of the flavor

f; �k is a projector in Dirac space which keeps into
account the degeneracy of the Landau levels; it is given by

�k ¼ 
k0½Pþ
Q;þ1 þ P�
Q;�1� þ ð1� 
k0ÞI; (8)

where P� are spin projectors and I is the identity matrix in
Dirac spinor indices. At the one-loop level, the QEP then
reads

V ¼ �

4
ð�2 � v2Þ2 � h�

� Nc

X
f

jQfeBj
2	

X
k

�k

Z dp3

2	
!kðp3Þ: (9)

In the above equation we have defined

!kðp3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2kjQfeBj þm2

q

q
; (10)

withmq ¼ g�;�k ¼ 2� 
k0 counts the degeneracy of the

Landau levels.
The one-loop fermion contribution, which corresponds

to the last addendum in the right-hand side(rhs) of Eq. (9),
is divergent in the ultraviolet. In order to regularize it, we
adopt a smooth regulator U� as in [26], which is more
suitable, from the numerical point of view, in our model
calculation with respect to the hard-cutoff which is used in
analogous calculations without magnetic field. In this ar-
ticle we chose
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U� ¼ �2N

�2N þ ðp2
z þ 2jQfeBjkÞN

; N ¼ 5: (11)

The (more usual) 3-momentum cutoff regularization
scheme is recovered in the limit N ! 1; we notice that,
even if the choice N ¼ 5 may seem arbitrary to some
extent, it is not more arbitrary than the choice of the hard
cutoff scheme, that is, of a regularization scheme. In
effective models, the choice of a regularization scheme is
a part of the definition of the model itself. Momentum
integrals are understood as follows:

X
n

�n

Z dp

2	
! X

n

�n

Z dp

2	
U�: (12)

Once the expectation value of � is computed as a
function of eB by a procedure of minimization of V, we
compute the expectation values that are relevant to the
context. To begin with, we consider the chiral condensate
for the flavor f, h �ffi ¼ �Tr½Sfðx; xÞ�, with Sf given by

Eq. (6). It is straightforward to derive the relation

h �ffi ¼ �Nc

jQfeBj
2	

X1
k¼0

�k

Z dp3

2	

mq

!kðp3Þ ; (13)

where the divergent integral on the rhs of the above equa-
tion has to be understood regularized as in (12). From
Eq. (13) we notice that the prescription (12) is almost
equivalent to the introduction of a running effective quark
mass

mq ¼ g��ð�2 � p2
3 � 2kjQfeBjÞ (14)

that can be considered as a rough approximation to the
effective running quark mass in QCD [48] which decays at
large quark momenta, see also the discussion in [47]. Once
the scale � is fixed, the Landau levels with n � 1 are
removed from the chiral condensate if eB 	 �2.

Next we turn to the magnetic moment for the flavor f

h �f���fi ¼ �Tr½���Sfðx; xÞ�; (15)

where

��� ¼ 1

2i
ð���� � ����Þ (16)

is the relativistic spin operator. We take B ¼ ð0; 0; BÞ; in
this case, only �12 � �f is nonvanishing. Using the prop-

erties of �-matrices it is easy to show that only the LLL
gives a nonvanishing contribution to the trace:

�f ¼ Nc

QfjeBj
2	

Z dp3

2	

mq

!0ðp3Þ ; (17)

where !0 ¼ !k¼0. Once again, the divergent integral on
the rhs of the above equation has to be understood regu-
larized following the prescription in Eq. (12).

For the QM model, the parameters are tuned as follows.
We fix the constituent quark mass in the vacuum to a

phenomenological value, mq ¼ 335 MeV; furthermore,

we require that in the vacuum the following condition
holds:

@Vð�;B ¼ 0Þ
@�

���������¼f	

¼ 0; (18)

which implies that h�i ¼ f	 in the vacuum, thus
mq ¼ gf	. As a consequence we find g ¼ 3:62. The pa-

rameter h is fixed by the condition h ¼ f	m
2
	, where m	

is the average value of the pion mass in the vacuum and
f	 ¼ 92:4 MeV. We have then h ¼ 0:047m3

q. To deter-

mine v and � we solve simultaneously Eq. (18) and

m2
� ¼ @2V

@�2

���������¼f	

; (19)

with m� ¼ 700 MeV. The divergences in these two
equations are cured with the prescription (12). In the UV
regulator we chose � ¼ 560 MeV which implies h �uui ¼
ð�231 MeVÞ3. This results in the values � ¼ 4:67 and
v2 ¼ �1:8m2

q. Before going ahead, we notice that in the

nonrenormalized model, the 1-loop fermion contribution
regularized at the scale � is included into the conditions
(18) and (19).

B. Nambu-Jona-Lasinio model

The quark Lagrangian density of the NJL model is
given by

L ¼ �qði��D� �m0ÞqþG½ð �qqÞ2 þ ði �q�5�qÞ2�; (20)

here q is the quark Dirac spinor in the fundamental repre-
sentation of the flavor SUð2Þ and the color group; � corre-
spond to the Pauli matrices in flavor space. A sum over
color and flavor is understood. Once again, the covariant
derivative embeds the QED coupling of the quarks with the
external magnetic field. The explicit soft breaking of chiral
symmetry in this model is achieved by introducing a
current quark mass, m0, whose numerical value is fixed
by fitting the vacuum pion mass. The NJL model is not
renormalizable in the usual sense for D> 2 space-time
dimensions; it is renormalizable in D< 4 in the one-loop
approximation. AtD ¼ 4 it might represent a trivial theory
of noninteracting bosons if the ultraviolet cutoff is allowed
to be infinite [14,16]. However, adopting the point of view
of the NJL model as an effective (and rough) description of
low-energy QCD, it is not necessary to require the cutoff to
be infinite: the cutoff can be interpreted as a physical
quantity which makes the effective quark mass to be
constant at small quark momenta, and vanishing at large
momenta, thus mimicking roughly the running effective
mass of real QCD [48]. It is worth noticing that a nonlocal
interaction among quarks with the same quantum numbers
of the four-fermion local term in Eq. (20) can be derived
by the QCD action under some approximation, taking the
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low-energy limit of the latter [7,11]. For simplicity, we
treat here only the case of local interaction.

Once again, the one-loop fermion contribution can be
obtained within the Leung-Ritus-Wang method:

V ¼ G�2 � Nc

X
f¼u;d

jQfeBj
2	

X
n

�n

Z þ1

�1
dp

2	
!nðpÞ; (21)

with !nðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2njQfeBj þM2

q

q
, and Mq ¼

m0 � 2G� with � ¼ h �uuþ �ddi. Eqs. (13) and (15)
are still valid in the NJL model, with the replacement
mq ! Mq. A comparison of the QEPs of the QM model

and of the NJL model shows that at the one-loop level, the
two models differ only for the classic part of the effective
meson potential, and for the definition of the constituent
quark mass.

The parameters in the NJL model are fixed as follows.
The bare quark mass is computed by virtue of the
Gell-Mann-Oakes-Renner relation, m2

	f
2
	 ¼ �2m0h �uui,

which is satisfied in the NJL model [10]. Then, two
equations are solved simultaneously: one for f	 and one
for the chiral condensate in the vacuum at zero magnetic
field strength. Requiring that f	 ¼ 92:4 MeV and h �uui ¼
ð�253 MeVÞ3, this procedure gives the numerical values
ofG and�. Thus we find� ¼ 626:76 MeV,G ¼ 2:02=�2

and m0 ¼ 5 MeV.

III. NUMERICAL RESULTS

In this section, we collect our numerical results which
are relevant for the computation of the magnetic suscepti-
bility of the chiral condensate, and of the spin polarization.
From the numerical point of view, it is more convenient to
compute first the latter; then, a fit of the polarization data at
small fields will enable to extract the value of the magnetic
susceptibility of the quark condensate. For what concerns
data about chiral condensate, magnetic moment and polar-
ization, we plot results only for the QM model, since the
results obtained within the NJL model are qualitatively
very similar to those obtained within the former model.
Then, we will give the final result for the chiral magneti-
zation for the two models considered here.

A. Polarization

The physical value of the (total) chiral condensate � for
the NJL model, and of � for the QM model, are obtained
numerically by a minimization procedure of the QEP (21)
for any value of eB. Then, we make use of Eqs. (13) and
(15), with the replacement (12), to compute the chiral
condensate and the magnetic moment for each flavor.

In the upper panel of Fig. 1, we plot the chiral conden-
sates for u and d quarks, as a function of eB, for the QM
model. The magnetic field splits the two quantities because
of the different charge for the two quarks. The small
oscillations, which are more evident for the case of the

u-quark, are an artifact of the regularization scheme, and
disappear if smoother regulators are used, see the discus-
sion in [29]. In the regime of weak fields, our data are
consistent with the scaling h �ffi / jeBj2=M where M de-
notes some mass scale; in the strong field limit we find

instead h �ffi / jeBj3=2. The behavior of the quark conden-
sate as a function of magnetic field is in agreement with the
magnetic catalysis scenario [27,54].
In the lower panel of Fig. 1 we plot our data for the

expectation value of the magnetic moment. Data corre-
spond to the QM model (for the NJL model we obtain
similar results). At weak fields, �f / jeBj as expected

from Eq. (15). In the strong field limit, nonlinearity arise
because of the scaling of quark mass (or chiral conden-

sate); we find �f / jeBj3=2 in this limit.

In Fig. 2 we plot our results for the polarization. Data are
obtained by the previous ones, using the definition (3). At
small fields, the polarization clearly grows linearly with the
magnetic field. This is a natural consequence of the linear
behavior of the magnetic moment as a function of eB for
small fields, see Fig. 1. On the other hand, within the chiral
models we measure a saturation of �f at large values of

eB, to an asymptotic value �1 ¼ 1. This conclusion re-
mains unchanged if we consider the NJL model, and it is in
agreement with the recent lattice findings [43]. It should be
noticed that, at least for the u-quark, saturation is achieved
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FIG. 1 (color online). Upper panel. Chiral condensates of
u-quarks (red) and d-quarks (blue), in units of the same quan-
tities at zero magnetic field, as a function of the magnetic field.
Lower panel. Expectation value of the magnetic moment opera-
tor, in units of f3	, as a function of eB. Data correspond to the
QM model.
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before the expected threshold for �-meson condensation
[49–51]. Therefore, our expectation is that our result is
stable also if vector meson condensation is considered.

The saturation to the asymptotic value �1 ¼ 1 of po-
larization is naturally understood within the models we
investigate, as a LLL dominance in the chiral condensate
(i.e., full polarization). As a matter of fact,�f and h �ffi turn
to be proportional in the strong-field limit, since only the
LLL gives a contribution to the the latter, compare Eq. (13)
and (17) which imply

�f ¼ 1� h �ffiHLL
h �ffi ; (22)

where h �ffiHLL corresponds to the higher Landau levels
contribution to the chiral condensate. In the strong-field
limit h �ffiHLL ! 0 because of Eq. (12) which is a rough
approximation to the QCD effective quark mass, as de-
picted in Eq. (14); hence, �f has to approach the asymp-

totic value �1 ¼ 1. On the other hand, in the weak-field
limit h �ffiHLL ! h �ffi and the proportionality among �f

and h �ffi is lost.
In Ref. [43], data of polarization are fit by means of three

different functions, namely

�clas
f ¼ �1

��������coth
3�QfeB

�1
� �1

3�QfeB

��������; (23)

�
quan
f ¼ �1

��������2 coth
2�QfeB

�1
� coth

�QfeB

�1

��������; (24)

�
trig
f ¼ 2�1

	
arctan

��������
	�QfeB

2�1

��������: (25)

The three functions above share the behavior at the origin,
�f � j�QfeBj, and the asymptotic one,�f � �1. In [43]
a two-parameter fit on � and �1 is performed; the model
with the lowest chi-squared per degrees of freedom is
represented by the trigonometric one, Eq. (25). Inspired
by these results we have tried to fit our data using the same

functions (23)–(25). In our model calculation, the asymp-
totic value�1 ¼ 1 is achieved straightforwardly, therefore
it is enough to perform a one-parameter fit leaving � as a
free parameter. The results of this procedure are collected
in Fig. 3, where we plot our data of quark’s polarization as
a function of eB (gray dots) and the three fitting functions
with �1 ¼ 1. From Fig. 3 we read that both the trigono-
metric and the classic functions do not adapt well to our
data (for the NJL model we obtain similar results). In
particular, both of the aforementioned functions overesti-
mate �, and reach slowly the asymptotic value. On the
other hand, the quantum function in Eq. (24) offers a better
description of our data in the whole range of eB examined
here. We have checked that the value of � obtained within
this fit overestimates the value obtained by a weak-field
linear fit only of the 10%, see below. Moreover, the fit
functions smoothly follow the large eB data to the asymp-
totic value�f ¼ 1. We conclude that within our model, the

quantum fitting function is a more faithful representation
of data. The difference with lattice data is probably due to
the fact that the latter ones are obtained with quenched
(hence, nondynamical) fermions, while in our case dy-
namical fermions are considered. It will be interesting,
therefore, to compare the model predictions with lattice
data obtained with other kinds of fermions in the near
future.
Before going ahead, it is interesting that our data on

polarization, and our interpretation of the saturation of the
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FIG. 3 (color online). Upper panel. Polarization data for
u-quark (grey dots) and fitting curves. See the text for details.
Lower panel. Polarization data and fitting functions for d-quark.
Results correspond to the QM model.
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FIG. 2 (color online). Polarization of u-quarks (red) and
d-quarks (blue) as a function the magnetic field strength, for
the QM model.
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latter at large fields, gives a quantitative estimate of the
goodness of the LLL approximation for the models at
hand. In particular, at eBc � 0:6 GeV2, which in turn is
the estimated critical value for vector meson condensation
[49,51], the LLL almost dominates the chiral condensate of
the u-quark; on the other hand, at this value of eB the LLL
dominance has not yet been achieved for the d-quark
condensate; but the higher Landau levels at this value of
eB give a contribution almost to the 20% of the chiral
condensate. This is an indirect check of the consistence of
the LLL approximation used in [50], which in turn should
be good within a 20% accuracy.

B. Magnetic susceptibility of the quark condensate

At small fields �f ¼ j�QfeBj from Eq. (1). Hence, we

use the data on polarization at small fields, to obtain the
numerical value of the magnetic susceptibility of the chiral
condensate. Our results are as follows:

� � �4:3 GeV�2; NJL (26)

� � �5:25 GeV�2; QM (27)

respectively for the NJL model and the QM model. To
obtain the numerical values above we have used data for
eB up to 5m2

	 � 0:1 GeV2, which are then fit using a linear
law. Using the numerical values of the chiral condensate in
the two models, we obtain

�h �ffi � 69 MeV; NJL (28)

�h �ffi � 65 MeV; QM: (29)

The numerical values of � that we obtain within the
effective models are in fair agreement with recent results,
see Table I. In our model calculations, the role of the
renormalization scale is played approximately by the ul-
traviolet cutoff, that is � in Eq. (11), which is equal to

0.560 GeV in the QM model, and 0.627 GeV in the NJL
model.
To facilitate the comparison with previous estimates, we

review briefly the frameworks in which the results in
Table I are obtained. In [38] the following result is found,
within OPE combined with pion dominance (we follow
when possible the notation used in [43]):

�PD ¼ �c�
Nc

8	2F2
	

; Pion Dominance (30)

with F	 ¼ ffiffiffi
2

p
f	 ¼ 130:7 MeV and c� ¼ 2; the estimate

of [38] is done at a renormalization pointM ¼ 0:5 GeV. It
is remarkable that Eq. (30) has been reproduced recently
within holographic QCD approach in [40]. Probably, this is
the result more comparable to our estimate, because the
reference scales in [38] and in this article are very close.
Within our model calculations we find cNJL� ¼ 1:93 and

cQM� ¼ 2:36. Using the numerical value of F	 and c� we

get �PD ¼ �4:45 GeV�2, which agrees within 3% with
our NJL model result, and within 18% with our QM model
result.
In [39] the authors find c� ¼ 2:15 within hard-wall

holographic approach, at the scale M 
 1 GeV. The re-
sults of [39] are thus in very good parametric agreement
with [38]; on the other hand, the numerical value of F	 in
the holographic model is smaller than the one used in [38],
pushing the holographic prediction for � to slightly higher
values than in [38]. However, the scale at which the result
of [39] is valid should be much smaller than M ¼ 1 GeV,
thus some quantitative disagreement with [38] is expected.
As the authors have explained, it might be possible to tune
the parameters of the holographic model, mainly the chiral
condensate, to reproduce the correct value of F	; their
numerical tests suggest that by changing the ratio
h �ffi=m� of a factor of 8, then the numerical value of c�
is influenced only by a 5%. It is therefore plausible that a

TABLE I. Magnetic susceptibility of the quark condensate obtained within several theoretical
approaches. In the table, F	 ¼ 130:7 MeV. See the text for more details.

Method � (GeV�2) Ren. Point (GeV) Ref.

Sum rules �8:6� 0:24 1 [33]

Sum rules �5:7 0.5 [34]

Sum rules �4:4� 0:4 1 [35]

Sum rules �3:15� 0:3 1 [36]

Sum rules �2:85� 0:5 1 [37]

OPEþ Pion Dominance �Nc=ð4	2F2
	Þ 0.5 [38]

Holography �1:075Nc=ð4	2F2
	Þ 
 1 [39]

Holography �Nc=ð4	2F2
	Þ 
 1 [40]

Instanton vacuum �2:5� 0:15 1 [41]

Zero-mode of Dirac Operator �3:52 1 [42]

Lattice �1:547ð3Þ 2 [43]

NJL model �4:3 0.63 This work

QM model �5:25 0.56 This work
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best tuning makes the quantitative prediction of [39] much
closer to the estimate of [38].

In [41] an estimate of � within the instanton vacuum
model has been performed beyond the chiral limit, both
for light and for strange quarks (the result quoted in
Table I corresponds to the light quarks; for the strange
quark, �s=�u;d � 0:15 is found). Taking into account the

numerical value of the chiral condensate in the instanton
vacuum, the numerical estimate of [41] leads to � ¼
�2:5� 0:15 GeV�2 at the scale M ¼ 1 GeV. An analytic
estimate within a similar framework has been obtained
in [42], in which the zero-mode of the Dirac operator in
the background of a SUð2Þ instanton is used to compute
the relevant expectation values. The result of [33] gives
� ¼ �3:52 GeV�2 at M � 1 GeV.

In [43] the result � ¼ �1:547 GeV�2 is achieved within
a two-color simulation with quenched fermions. It is inter-
esting that in [43] the same quantity has been computed
also at finite temperature in the confinement phase, at
T ¼ 0:82Tc, and the result seems to be independent of
temperature. The reference scale of [43], determined by
the inverse lattice spacing, is M � 2 GeV. Therefore the
lattice results are not quantitatively comparable with our
model calculation. However, they share an important fea-
ture with the results presented here, namely, the saturation
of the polarization at large values of the magnetic field.
Finally, estimates of the magnetic susceptibility of the
chiral condensate by means of several QCD sum rules
there exist [33–37]. The results are collected in Table I.

IV. RENORMALIZED QM MODEL

In this section, we make semianalytic estimates of the
polarization and the magnetic susceptibility of the quark
condensate, as well as for the chiral condensate in mag-
netic background, within the renormalized QM model.
This is done with the scope to compare the predictions of
the renormalized model with those of the effective models,
in which an ultraviolet cutoff is introduced to mimic the
QCD effective quark mass.

In the renormalized model, we allow the effective quark
mass to be a constant in the whole range of momenta,
which is different from what happens in QCD [48]. Thus,
the higher Landau levels give a finite contribution to the
vacuum chiral condensate even at very strong fields. This is
easy to understand: the ultraviolet cutoff, �, in the renor-
malized model can be taken larger than any other mass

scale, in particular � 	 jeBj1=2; as a consequence, the
condition p2

3 þ 2njeBj<�2 is satisfied taking into ac-

count many Landau levels even at very large eB. The
contribution of the higher Landau levels, once renormal-
ized, appears in the physical quantities in which we are
interested here, in particular, in the chiral condensate.

Since the computation is a little bit lengthy, it is useful to
anticipate its several steps: first we perform regularization,
and then renormalization, of the QEP at zero magnetic field

(the corrections due to the magnetic field turn out to be free
of ultraviolet divergences). Second, we solve analytically
the gap equation for the � condensate in the limit of weak
fields, and semianalytically in the opposite limit. The field-
induced corrections to the QEP and to the solution of the
gap equation are divergence-free in agreement with [27],
and are therefore independent of the renormalization
scheme adopted. Then, we compute the renormalized and
self-consistent values of the chiral condensate and of the
magnetic moment, as a function of eB, using the results for
the gap equation. Within this theoretical framework, it is
much more convenient to compute h �ffi and �f by taking

derivatives of the renormalized potential; in fact, the com-
putation of the traces of the propagator in the renormalized
model is much more involved if compared to the situation
of the nonrenormalized models, since in the former a
nonperturbative (and nontrivial) renormalization proce-
dure of composite local operators is required [55].
Finally, we estimate �, as well as the behavior of the
polarization as a function of eB.

A. Renormalization of the QEP

To begin with, we need to regularize the one-loop fer-
mion contribution in Eq. (9) namely

Vfermion
1-loop ¼ �Nc

X
f

jQfeBj
2	

X1
n¼0

�n

Z þ1

�1
dk

2	
ðk2

þ 2njQfeBj þm2
qÞ1=2: (31)

To this end, we define the function, V ðsÞ, of a complex
variable, s, as

V ðsÞ ¼ �Nc

X
f

jQfeBj
2	

X1
n¼0

�n

�
Z þ1

�1
dk

2	
ðk2 þ 2njQfeBj þm2

qÞð1�sÞ=2: (32)

The function V ðsÞ can be analytically continued to
s ¼ 0. We define then Vfermion

1-loop ¼ lims!0þV ðsÞ. After ele-
mentary integration over k, summation over n and taking
the limit s ! 0þ, we obtain the result

Vfermion
1-loop ¼ Nc

X
f

ðQfeBÞ2
4	2

�
2

s
� logð2jQfeBjÞ þ a

�
B2ðqÞ

� Nc

X
f

ðQfeBÞ2
2	2

� 0ð�1; qÞ

� Nc

X
f

jQfeBjm2
q

8	2
�

�
2

s
� logðm2

qÞ þ a

�
; (33)

where we have subtracted terms which do not depend
explicitly on the condensate. In the above equation,
�ðt; qÞ is the Hurwitz zeta function; for ReðtÞ> 1
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and ReðqÞ> 0, it is defined by the series �ðt; qÞ ¼P1
n¼0ðnþ qÞ�t; the series can be analytically continued

to a meromorphic function defined in the complex
plane t � 1. Moreover we have defined q¼ðm2

qþ
2jQfeBjÞ=2jQfeBj; furthermore, a¼1��E�c ð�1=2Þ,
where �E is the Eulero-Mascheroni number and c is the
digamma function. The derivative � 0ð�1; qÞ ¼ d�ðt; qÞ=dt
is understood to be computed at t ¼ �1.

The first two addenda in Eq. (33) arise from the higher
Landau levels; on the other hand, the last addendum is the
contribution of the LLL. The function B2 is the second
Bernoulli polynomial; using its explicit form, it is easy to
show that the divergence in the LLL term in Eq. (33) is
canceled by the analogous divergence in the first adden-
dum of the same equation. It is interesting that the LLL
contribution, which is in principle divergent, combines
with a part of the contribution of the higher Landau levels,
leading to a finite result. This can be interpreted as a
renormalization of the LLL contribution. On the other
hand, the remaining part arising from the higher Landau
levels is still divergent; this divergence survives in the
B ! 0 limit, and is due to the usual divergence of the
vacuum contribution. We then have

Vfermion
1-loop ¼ Nc

X
f

m4
q

16	2

�
2

s
� logð2jQfeBjÞ þ a

�

þ Nc

X
f

jQfeBjm2
q

8	2
log

m2
q

2jQfeBj

� Nc

X
f

ðQfeBÞ2
2	2

� 0ð�1; qÞ: (34)

The divergence of the vacuum energy is made explicit in
the expression in the square brackets in Eq. (34). The
mathematical structure of the divergence, namely, a pole
in s ¼ 0 and a logarithm with a dimensional argument, is
similar to that obtained within the dimensional regulariza-
tion scheme. The scale of the logarithm is hidden in the 1=s
term, and appears explicitly when the divergence is sub-
tracted. Such a divergence affects only the B ¼ 0 effective
potential; the corrections due to the magnetic field are
either finite or independent on the condensate. As a matter
of fact, in the zero magnetic field limit q ! 1, the fermion
bubble becomes

NcNf

m4
q

16	2

�
2

s
� logm2

q þ aþ 1

2

�
� V0; (35)

where we have used the relation

� 0ð�1; qÞ �
�
1

12
� q2

4

�
þ logðqÞB2ðqÞ

2
; (36)

with B2 corresponding to the second Bernoulli polynomial.
Using Eqs. (35) and (34) we notice that the pole 2=s is
cancelled in the difference V1 � Vfermion

1-loop � V0,

V1 ¼ �Nc

X
f

�
m4

q

16	2
þ jQfeBjm2

q

8	2

�
log

2jQfeBj
m2

q

� Nc

X
f

jQfeBj2
2	2

� 0ð�1; qÞ � NcNf

m4
q

32	2
: (37)

To remove the divergence of the vacuum term, we follow
Ref. [27] and adopt the renormalization conditions that at
zero magnetic field, the quantum corrections do not shift
the classical expectation value of the � field in the vacuum,
h�i ¼ f	, as well as the classical valuem

2
�. To fulfill these

conditions, two counterterms have to be added to the
effective potential, Vc:t: ¼ 
�� �4=4þ 
v� �2=2.
This amounts to requiring

@ðV0 þ Vc:t:Þ
@�

���������¼f	

¼ @2ðV0 þ Vc:t:Þ
@�2

���������¼f	

¼ 0: (38)

Taking into account the one-loop divergent contribution
and the condition (38), we can write the renormalized
potential at zero field as

V ¼
~�

4
ð�2 � ~v2Þ2 � h�� NcNfm

4
q

16	2
log

m2
q

g2f2	
; (39)

where ~� and ~v are the renormalized parameters, whose
expression is not needed here. Equation (39) is in agree-
ment with the textbook result for the one-loop effective
potential of a linear sigma model coupled to fermions by
means of a Yuwaka-type interaction [56]. This is a con-
sistency check of our regularization and renormalization
procedures.

B. Approximate solutions of the gap equation

Weak fields. We now restore the magnetic field, and
firstly take the weak-field limit. In this context, small field
means eB 
 m2

q. Using again Eq. (36) we notice that the

derivative of the �-function cancels the other addenda in
Eq. (37), and the remaining contribution is

V1 � �Nc

X
f

ðQfeBÞ2
24	2

log
m2

q

2jQfeBj

¼ �Nc

X
f

ðQfeBÞ2
24	2

log
m2

q

�2
; (40)

which is in agreement with the result of [27]. In the above
equation we have followed the notation of [46] introducing
an infrared scale �, isolating and then subtracting the term
which does not depend on the condensate. The scale � is
arbitrary, and we cannot determine it from first principles;
on the other hand, it is irrelevant for the determination of
the �-condensate. We expect � � f	 since this is the
typical scale of chiral symmetry breaking in the model
for the � field. The correction (40) lowers the effective
potential of the broken phase, thus favoring the spontane-
ous breaking of chiral symmetry. The result in Eq. (40) is
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UV divergence-free as anticipated; thus, it is independent
on the particular procedure used to regularize the QEP.

In this limit, it is easy to obtain analytically the be-
havior of the constituent quark mass as a function of eB.
As a matter of fact, we can expand the derivative of the
QEP with respect to �, around the solution at B ¼ 0,
writing h�i ¼ f	 þ 
�. Then, a straightforward evalu-
ation leads to

mq ¼ gf	

�
1þ 5

9

Nc

12	2f2	m
2
�

ðeBÞ2
�
: (41)

As anticipated, the scale � is absent in the solution of the
gap equation.

Strong fields. In the limit eB 	 m2
q, we can find an

asymptotic representation of V1 by using the expansion
� 0ð�1; qÞ ¼ c0 þ c1ðq� 1Þ valid for q � 1, with c0 ¼
�0:17 and c1 ¼ �0:42. Then we find

V1 � �Nc

X
f

m2
q

8	2

�
m2

q

2
þ jQfeBj

�
log

2jQfeBj
m2

q

� Nc

X
f

jQfeBjm2
q

2	2
c1; (42)

where we have subtracted condensate-independent terms.
In the strong-field limit it is not easy to find analytically

an asymptotic representation for the sigma condensate as a
function of eB; therefore we solve the gap equation nu-
merically, and then fit data with a convenient analytic form
as follows:

mq ¼ bjeBj1=2 þ cf3	
jeBj ; (43)

where b ¼ 0:32 and c ¼ 32:78. At large fields the quark

mass grows as jeBj1=2 as expected by dimensional analysis;
this is a check of the equations that we use.

C. Evaluation of chiral condensate
and magnetic moment

Chiral condensate. To compute the chiral condensate
we follow a standard procedure: we introduce source term
for �ff, namely, a bare quark mass mf, then take derivative

of the effective potential with respect to mf evaluated at

mf ¼ 0. This amounts to derive only Vfermion
1-loop , since both

the classic potential and counterterms do not have a de-
pendence on mf. According to Eq. (37) we find

h �ffi ¼ @V0

@mf

��������mf¼0
þ @V1

@mf

��������mf¼0
: (44)

The first and second addenda on the rhs of Eq. (44)
represent the vacuum and the field-induced contributions
to the chiral condensate, respectively. The vacuum contri-
bution is divergent, and can be renormalized according to
the procedure of renormalization of composite local

operators [55]. It is not necessary to perform this procedure
here, because the numerical value of the vacuum conden-
sate is not necessary in our discussion.1 Therefore, it is
enough to compute only the contribution at B � 0 arising
from V1, which is finite.
In particular, for the weak-field case we obtain

h �ffi ¼ h �ffi0 � Nc

12	2

jQfeBj2
mq

: (45)

On the other hand, in the strong-field limit we have

h �ffi ¼ �Ncmq

4	2
ðjQfeBj þm2

qÞ log
2jQfeBj

m2
q

: (46)

Using Eqs. (41) and (43), we show that the chiral conden-

sate scales as aþ bðeBÞ2 for small fields, and as jeBj3=2 for
large fields.
Magnetic moment. Next we turn to the computation of

the expectation value of the magnetic moment. The ex-
pression in terms of Landau levels is given by Eq. (17),
which clearly shows that this quantity has a log-type
divergence. In order to avoid a complicated renormaliza-
tion procedure of a local composite operator, we notice that
it is enough to take the minus derivative of V1 with respect
to B to get magnetization, M [46], then multiply by
2m=Qf to get the magnetic moment. This procedure is

very cheap, since the B-dependent contributions to the
effective potential are finite, and the resulting expectation
value will turn out to be finite as well (that is, already
renormalized).
In the case of weak fields, from Eq. (40) we find

�f ¼ Nc

QfjeBjmq

6	2
log

m2
q

�2
: (47)

On the other hand, in the strong-field limit we get from
Eq. (42)

�f ¼ Nc

m3
q

4	2
log

2jQfeBj
m2

q

: (48)

The above result is in parametric agreement with the
estimate of magnetization in [46]. In fact, m2

q � jeBj
in the strong-field limit, which leads to a magnetization
M � B logB.
Using the expansions for the sigma condensate at small

and large values of the magnetic field strength, we argue

that �f � jeBj in a weak field, and �f � jeBj3=2 in a

strong field.

1In principle, in the renormalization program of the composite
operator h �qqi one can impose, as a renormalization condition,
that the chiral condensate in the vacuum is consistent with the
results of [52] at the renormalization point M ¼ 1 GeV.
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D. Computation of chiral magnetization
and polarization

We can now estimate the magnetic susceptibility of the
quark condensate and the polarization as a function of eB.
For the former, we need to know the behavior of the
magnetic moment for weak fields. From Eq. (47) and
from the definition (1) we read

�h �ffi ¼ Ncmq

6	2
log

m2
q

�2
� fð�Þ: (49)

The presence of the infrared scale � makes the numerical
estimate of � uncertain; however, taking for it a value
� � f	, which is the typical scale of chiral symmetry
breaking, we have �h �ffi � 44 MeV, which is in agree-
ment with the expected value, see Eq. (2). In Fig. 4 we plot
fð�Þ as a function of �. The interval on the �-axis
delimited by the green and the blue vertical lines is the
range in which we obtain a value of � which is consistent
with phenomenology.

Next we turn to the polarization. For weak fields
we find trivially a linear dependence of �f on jQfeBj,
with slope given by the absolute value of � in Eq. (49). On
the other hand, in the strong-field limit we find, according
to Eq. (48),

�f � m2
q

m2
q þ jQfeBj

� 1� jQfj
bþ jQfj ; (50)

where we have used Eq. (43). This result shows that the
polarization saturates at large values of eB, but the asymp-
totic value depends on the flavor charge.

It is interesting to compare the result of the renormalized
model with that of the effective models considered in the
previous section. In the former, the asymptotic value of�f

is flavor-dependent; in the latter,�f ! 1 independently on

the value of the electric charge. Our interpretation of this
difference is as follows: comparing Eq. (50) with the

general model expectation, Eq. (22), we recognize in the
factor jQfj=ðbþ jQfjÞ the contribution of the higher

Landau levels at zero temperature, which turns out to be
finite and nonzero after the renormalization procedure.
This contribution is then transmitted to the physical quan-
tities that we have computed. The trace of the higher
Landau levels is implicit in the solution of the gap equation
in the strong-field limit, namely, the factor b in Eq. (43),
and explicit in the additional jQfj dependence in Eq. (50).

A posteriori, this conclusion seems quite natural, because
in the renormalization procedure we assume that the effec-
tive quark mass is independent on quark momentum, thus
there is no cut of the large momenta in the gap equation
(and in the equation for polarization as well). In the effec-
tive models considered in the first part of this article, on
the other hand, the cutoff procedure is equivalent to havng
a momentum-dependent effective quark mass, mq ¼
g��ð�2 � p2

3 � 2njQfeBjÞ, which naturally cuts off

higher Landau levels when eB 	 �2. At the end of the
day, the expulsion of the higher Landau levels from the
chiral condensate makes �f ! 1 in the strong-field limit.

Our expectation is that if we allow the quark mass to run
with momentum and decay rapidly at large momenta,
mimicking the effective quark mass of QCD, higher
Landau levels would be suppressed in the strong-field
limit, and the result (50) would tend to the result in Fig. 2.

V. CONCLUSIONS

In this article, we have computed the magnetic suscep-
tibility of the quark condensate, �, and the polarization,
�f, in a background of a magnetic field, B, by means of

two chiral models of QCD: the quark-meson model and the
Nambu-Jona-Lasinio model. The knowledge of these
quantities is relevant both theoretically and phenomeno-
logically. Indeed, the magnetic susceptibility of the quark
condensate might lead, in the photoproduction of lepton
pairs, to an interference between the Drell-Yan process and
the photon-quark coupling, the latter induced by the chiral-
odd distrubution amplitude of the quark [45]. The two
models are widely used to study the phase diagram of
QCD in several regimes; it has been proved in different
contexts that they offer a good theoretical tool to compute
low-energy QCD properties. It is thus interesting to com-
pute, within these models, quantities which characterize
the QCD vacuum in a magnetic background, and compare
the results with those obtained within different theoretical
frameworks, both analytically and numerically.
In the first part of this article, we have reported our

results about � and �f obtained within a numerical self-

consistent solution of the model, in the one-loop approxi-
mation. Our results on � are summarized in Table I, and are
in fair agreement with previous estimates. Besides, our
data on polarization are collected in Fig. 3. For the latter,
we obtain a saturation to the asymptotic value �1 ¼ 1 at

0.4 0.6 0.8 1 1.2 1.4
f

20

40
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80

100
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M

eV

FIG. 4 (color online). Magnetic susceptibility of the quark
condensate multiplied by the chiral condensate, in MeV, as a
function of the infrared scale �, as given by Eq. (49). The
interval on the �-axis delimited by the green and the blue
vertical lines is the range in which we obtain a value of � which
is consistent with phenomenology.
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large values of eB, which is understood as a lowest Landau
level dominance in the quark condensate. This is in agree-
ment with recent results obtained within lattice QCD
simulations with two colors and quenched fermions [43].

In the second part of the article, we have estimated � and
�f within a renormalized version of the QM model. The

numerical value of � in this case is quite uncertain because
of the presence, in the final result, of an unknown infrared
scale �. However, as shown in Fig. 4, taking for � a
numerical value around f	, which is the typical scale of
chiral symmetry breaking in this model, we obtain a value
of � which is consistent with phenomenology.

Within the renormalized model we find a saturation of
�f at large B, in qualitative agreement with our findings

within the effective models in Sec. III and quenched QCD
[43]. In the renormalized model, the asymptotic value of
�f is flavor-dependent; in the effective models and

quenched QCD, �f ! 1 independently on the value of

the electric charge. We attribute this difference to the
presence, in the theory, of the renormalized contribution
of the higher Landau levels: in the renormalized model, the
higher Landau levels give a finite contribution to the chiral
condensate at zero temperature, even in the case of very
strong fields. After renormalization of the QEP, this con-
tribution is finite and nonzero, and is transmitted to the
physical quantities that we have computed.

The results we obtained are quite encouraging, and
suggest that a systematic study of external field-induced
condensates at zero, as well as finite, temperature within

chiral models is worth being done. As a natural continu-
ation of this study, it would be interesting to add the strange
quark, following the work [41]. Moreover, lattice simula-
tions have shown that � is almost insensitive to the tem-
perature, at least in the confinement phase [43]. This result
is achieved with quenched fermions. On the other hand, the
chiral model handle with dynamical fermions; it would be
therefore of interest to address the question of the behavior
of � as a function of temperature using chiral models.
Furthermore, it has been shown [57] that local fluctuations
of topological charge induce a quark electric dipole mo-
ment along the direction of a strong magnetic field. This
problem can be studied easily within the chiral models,
introducing a pseudochemical potential �5 conjugated to
chirality imbalance as already done in [24,30].
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