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We explore the possibility to construct higher-twist parton distributions in a nucleon at some low

reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we

introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon

with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum

rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and

unpolarized parton densities at large values of the Bjorken variable x � 0:5. Twist-three parton distribu-

tions are then constructed as convolution integrals of qqqg and the usual three-quark WFs. The cases of

the polarized structure function g2ðx;Q2Þ and single transverse spin asymmetries are considered in detail.

We find that the so-called gluon pole contribution to twist-three distributions relevant for single spin

asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the

spirit of Glück-Reya-Vogt parton distributions.
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I. INTRODUCTION

Higher-twist parton distributions are conceptually very
interesting as they go beyond the simple parton model
description and allow one to quantify correlations between
the partons. Unfortunately, they prove to be very elusive.
Despite considerable efforts, very little is known even
about the simplest, twist-three distributions which contrib-
ute, e.g., structure function g2ðx;Q2Þ in the polarized deep-
inelastic scattering [1–11] and transverse single spin
asymmetries (SSAs) in the collinear factorization approach
[12–22].

One general reason for this is that the structure of higher-
twist parton distributions is much more complicated com-
pared to the leading twist: they are functions of two and
more parton momentum fractions. The usual strategy to
extract parton distributions from experimental data has
been to assume a certain functional form with a few
adjustable parameters at a reference scale, and find the
parameters by making global fits to the available data.
This is a standard approach which works quite well for
the leading twist. Unfortunately, it does not work for higher
twist (or, at least, has not been applied systematically)
because there is no physical intuition about what such
distributions may look like. Also, the asymptotic behavior
of higher-twist distributions both at small and large x is
poorly understood. Hence it is very hard to guess an
adequate parametrization.

In this work we make a step in this direction. Recall that
the case of higher-twist parton distributions is not unique in
that they are functions of several kinematic variables: in
studies of generalized parton distributions (GPDs) or
‘‘unintegrated’’ transverse-momentum dependent distribu-
tions (TMDs) the same complication arises. In both cases,
representations in terms of overlap integrals of light-cone

wave functions (LCWFs) have been extremely useful for
developing the underlying physics picture and provide one
with a good basis for theoretical modeling. In what follows
we try to follow the same path for the construction of
higher-twist distributions as overlap integrals between
Fock states with the minimum (valence) and next-to-
minimum (one extra gluon) parton content.
In order to keep the model as simple as possible, in this

work we restrict ourselves to contributions of the states
with total zero angular momentum. We overtake the ex-
pressions for three-quark wave functions from Ref. [23],
which have been shown [23,24] to provide one with a good
description for quark parton densities at large x and the
nucleon magnetic form factor. The new contribution of this
paper is to include into consideration the Fock states with
one additional gluon which were considered in [23] on a
qualitative level. We find that there exist three independent
qqqg wave functions with zero orbital momentum. Our
analysis of their symmetry properties does not agree with
earlier results [25]. We calculate the normalization of these
new wave functions using the QCD sum rule approach and
construct explicit models with the requirement that their
light-cone limit (zero transverse separation) reproduces the
nucleon twist-four distribution amplitudes introduced in
Ref. [26].
Having specified the wave functions, we calculate the

quark and gluon polarized and unpolarized parton distri-
butions and find agreement with the existing parametriza-
tions at large x without any fine-tuning of the parameters.
Encouraged by this, we construct the twist-three correla-
tion function involving a quark, an antiquark, and gluon
fields which is relevant for the structure function g2ðx;Q2Þ
and single spin asymmetries. In our model this correlation
function vanishes at the boundaries of parton regions where
one of the momentum fractions goes to zero, but nonzero
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values are obtained at higher scales perturbatively through
the QCD evolution. This phenomenon is in full analogy to
the generation of a large gluon parton distribution at small
x starting from the ‘‘valencelike’’ ansatz in the Glück-
Reya-Vogt (GRV) approach [27,28]. Such radiatively gen-
erated, soft gluon pole (SGP) and soft fermion pole (SFP)
contributions to the spin asymmetries are calculated and
compared to the existing parametrizations. The sign of
radiatively generated soft pole terms as well as the sign
of the twist-three contribution to the structure function
g2ðx;Q2Þ at large x are largely model-independent predic-
tions of our approach; these signs turn out to be in agree-
ment with the data in all cases. Finally, we discuss possible
generalizations of our simple model that may provide one
with usable parametrizations for the phenomenological
analysis.

II. LIGHT-CONE COORDINATES

For an arbitrary four-vector a� we define the light-cone
coordinates as

aþ ¼ 1ffiffiffi
2

p ða0 þ a3Þ; a� ¼ 1ffiffiffi
2

p ða0 � a3Þ;

a ¼ a1 þ ia2; �a ¼ a1 � ia2;
(1)

so that the matrix a ¼ a��
�, where �� ¼ ðI; ~�Þ takes the

form

a� _� ¼ a��
�
� _� ¼

ffiffiffi
2

p
a� � �a

�a
ffiffiffi
2

p
aþ

 !
: (2)

In what follows we use the Weyl representation for the
�-matrices

�0 ¼ 0 I
I 0

� �
; �i ¼ 0 �i

��i 0

� �
;

�5 � i�0�1�2�3 ¼ �I 0
0 I

� � (3)

and the two-component notation for Dirac spinors

q ¼ c �

�� _�

� �
� q#

q"

� �
;

�q ¼ qy�0 ¼ ð��; �c _�Þ � ð �q#; �q"Þ:
(4)

The two independent lightlike vectors

n� ¼ 1ffiffiffi
2

p ð1; 0; 0;�1Þ; ~n� ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ; (5)

n2 ¼ ~n2 ¼ 0, n~n ¼ 1 can be parametrized in terms of the
two auxiliary Weyl spinors:

n� _� ¼ ��
�� _�; ~n� _� ¼ �� �� _�; (6)

where

�� ¼ 21=4
�1
0

� �
; �� ¼ 21=4

0
1

� �
;

�� _� ¼ 21=4
�1
0

� �
; �� _� ¼ 21=4

0
1

� �
:

(7)

We accept the following rules for raising and lowering the
spinor indices (cf. Ref. [26]):

�� ¼ �����; �� ¼ �����;

�� _� ¼ �� _��
_� _�; �� _� ¼ � _� _�

��
_�;

(8)

where the antisymmetric Levi-Civita tensor is defined as

�12 ¼ �12 ¼ �� _1 _2 ¼ ��
_1 _2 ¼ 1:

The auxiliary spinors � and � are normalized as

ð��Þ ¼ ���� ¼ �ð��Þ ¼ � ffiffiffi
2

p
;

ð �� ��Þ ¼ �� _�
�� _� ¼ �ð �� ��Þ ¼ þ ffiffiffi

2
p (9)

and serve to specify ‘‘plus’’ and ‘‘minus’’ components of
the fields. We define

cþ ¼ ��c �; c� ¼ ��c �;

��þ ¼ �� _�
�� _�; ��� ¼ �� _� �� _�;

(10)

so that each two-component spinor can be decomposed as

ð��Þc � ¼ ��c� ���cþ;

ð �� ��Þ �� _� ¼ �� _� ��� � �� _� ��þ:
(11)

In the same notation the light-cone decomposition of a
vector (e.g. gluon) field takes the form

A� _� ¼ A���
�� _� þ Aþ�� �� _� þ

�Affiffiffi
2

p �� �� _� þ Affiffiffi
2

p ��
�� _�:

(12)

The plus spinor fields cþ, ��þ and transverse gluon fields
A, �A are assumed to be the dynamical fields in the light-
cone quantization framework. The minus fields c�, ���,
A� can be expressed in terms of the dynamical ones with
the help of equations of motion, whereas Aþ ¼ 0 due to the
gauge fixing condition.
The plus quark fields have the following canonical ex-

pansion:

q#þðxÞ ¼
Z dpþffiffiffiffiffiffiffiffiffi

2pþ
p d2p?

ð2	Þ3 
ðpþÞ½e�ipxb#ðpÞþ eþipxdy" ðpÞ�;

q"þðxÞ ¼
Z dpþffiffiffiffiffiffiffiffiffi

2pþ
p d2p?

ð2	Þ3 
ðpþÞ½e�ipxb"ðpÞþ eþipxdy# ðpÞ�;
(13)

where b"ð#Þ, d"ð#Þ are the annihilation operators of the quark

and antiquark of positive (negative) helicity, respectively.
They obey the standard anticommutation relations
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fb�ðpÞ;by�0 ðp0Þg ¼ fd�ðpÞ;dy�0 ðp0Þg
¼ 2pþð2	Þ3��;�0�ðpþ�p0þÞ�2ðp?�p0

?Þ:
(14)

A similar expansion for the dynamical transversely polar-
ized gluon fields A and �A reads

�AðxÞ ¼ ffiffiffi
2

p Z dkþ
2kþ

d2k?
ð2	Þ3 
ðkþÞ½e

�ikxa"ðkÞ þ eþikxay# ðkÞ�;

AðxÞ ¼ ffiffiffi
2

p Z dkþ
2kþ

d2k?
ð2	Þ3 
ðkþÞ½e

�ikxa#ðkÞ þ eþikxay" ðkÞ�:
(15)

Here and below A ¼ P
at

aAa, etc., where ta are the usual
SUð3Þ generators in the fundamental representation, nor-
malized as trðtatbÞ ¼ 1

2�
ab. The creation and annihilation

operators obey the commutation relation

½ab�ðpÞ; ðab0�0 ðp0ÞÞy�
¼ 2pþð2	Þ3��;�0�bb0�ðpþ � p0þÞ�2ðp? � p0

?Þ: (16)

Finally, the gluon strength tensor F�� and its dual ~F�� can

be decomposed as

F��; _� _� ¼ �
�
� _��

�
� _�

F�� ¼ 2ð� _� _�f�� � ��� �f _� _�Þ;
i ~F��; _� _� ¼ 2ð� _� _�f�� þ ��� �f _� _�Þ:

(17)

Here f�� and �f _� _� are chiral and antichiral symmetric

tensors, f�� ¼ f��, �f ¼ f�, which belong to (1, 0) and

(0, 1) representations of the Lorenz group, respectively.
Their ‘‘good components’’ are defined as

fþþ ¼ ����f��; �fþþ ¼ �� _� ��
_� �f _� _�: (18)

In the light-cone gauge

fþþ ¼ �@þA; �fþþ ¼ �@þ �A; (19)

where @þ ¼ n�@� ¼ @=@x�, so that they can readily be

expanded in contributions of annihilation and creation
operators using Eq. (15).

As mentioned above, minus field components can be
expressed in terms of the dynamical fields using QCD
equations of motion.

III. NUCLEON LIGHT-CONE WAVE FUNCTIONS

A. Definitions and symmetry properties

The LCWFs are defined as probability amplitudes of the
corresponding parton states which build up the proton with
a given helicity. They depend on parton longitudinal mo-
mentum fractions xi, transverse momenta k?i, and parton
helicities. LCWFs are usually thought of as solutions of the
eigenvalue problem for the light-cone quantized QCD
Hamiltonian [29,30], although this construction is far
from being complete.

Throughout this work we adopt some definitions and
partially also the notation from Ref. [23]. In particular, we
use a shorthand notation for theN-parton differential phase
space

½dx�N ¼ YN
i¼1

dxi�

�
1�X

xi

�
;

½dk?�N ¼ 1

ð16	3ÞN�1

YN
i¼1

d2k?;i�
2

�X
k?i

� (20)

and

½DX�N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 . . . xN

p ½dx�N½dk?�N: (21)

The valence three-quark state with zero angular momen-
tum is the simplest one. It can be described in terms of the
single LCWF [23,31]

jp;þiuud ¼ � �ijkffiffiffi
6

p
Z
½DX�3�ð0Þ

123ðXÞðuyi"ð1Þuyj#ð2Þdyk"ð3Þ

� uyi"ð1Þdyj#ð2Þuyk"ð3ÞÞj0i: (22)

Here and below the argument of the field uyi"ð1Þ, etc., refers
to the collection of its arguments that are not shown

explicitly, i.e. uy"ið1Þ ¼ uy"iðx1; k?;1Þ. The (real) function

�ð0Þ
123ðXÞ depends on momentum fractions xi and transverse

momenta k?;i of all partons.

Models for�ð0Þ
123ðXÞ of various degrees of sophistication

have been considered in different contexts in a large num-
ber of papers; see e.g. Refs. [23–25,31–33]. In this work we
adopt the simplest ansatz [23]

�ð0Þ
123 ¼

1

4
ffiffiffi
6

p 
ðx1; x2; x3Þ�3ða3; xi; k?iÞ: (23)

The transverse momentum dependence is contained in the
function �N

�NðaN;xi; k?iÞ ¼ ð16	2a2NÞN�1

x1x2 . . .xN
exp

�
�a2N

X
i

k2?i=xi

�
(24)

which is normalized such that

Z
½d2k?�N�NðaN; xi; k?iÞ ¼ 1;

Z
½d2k?�N�2

NðaN; xi; k?iÞ ¼ �N

x1 . . . xN
;

(25)

where

�N ¼ ð8	2a2NÞN�1;

and 
ðxiÞ is related to the leading twist-three nucleon
distribution amplitude (see the next section). The parame-
ter a3 determines the spread of the wave function in the
transverse plane and e.g. the average quark transverse
momentum.
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The general classification of Fock states involving an
additional gluon was given in Ref. [25]. Unfortunately, we
do not agree with the analysis in [25] of the symmetry
properties of the corresponding LCWFs.

As in the three-quark case, we restrict ourselves to the
states with zero total orbital angular momentum, Lz ¼ 0.
There are two possibilities [25]: either the quark helicities
sum up to �uud ¼ 3=2 and the gluon has opposite helicity
to that of the proton, �g ¼ �1, or, alternatively, �uud ¼
�1=2 and �g ¼ þ1. We begin with the first case.

The starting observation is that the SUð3Þ generators
obey the following identity:

�ijltalk þ �ilktalj þ �ljktali ¼ 0: (26)

Thus the tmatrix can always be moved from the d quark to
the u quarks. As a consequence, there exists only one
possibility to form a colorless state,

jp;þiuudg# ¼ �ijk
Z
½DX�4�#

1234ðXÞga;y# ð4Þ

� ½tau"ð1Þ�yi uyj"ð2Þdyk"ð3Þj0i: (27)

Note that ½tau"ð1Þ�yi ¼ uy
i0"ð1Þtai0i. Symmetry properties of

the LCWF �#
1234 are determined by the requirement that

the nucleon has isospin 1=2. Since I3 ¼ 1=2 is fixed by the
quark flavor content, the I ¼ 1=2 requirement is equivalent
to the simpler condition that the state is annihilated by the
isospin step-up operator

Iþjp;þiuudg# ¼ 0:

The action of Iþ amounts to the replacement of quark
flavors d ! u in (27), Iþ � uy�=�dy. Projecting the re-

sulting state onto h0jga0# ð40Þuk0"ð30Þuj0"ð20Þuk0"ð10Þ and col-

lecting the terms in the two independent color structures
[cf. Eq. (26)], one finds two constraints:

�#
1234 þ�#

1324 ��#
3124 ��#

3214 ¼ 0;

�#
2134 þ�#

2314 ��#
3124 ��#

3214 ¼ 0:
(28)

Since the second equation can be obtained from the first
one by renaming 1 $ 2, only one of them is independent.
In order to solve this constraint it is convenient to represent
the function �# as a sum of contributions with definite
parity under cyclic permutations of the first three (quark)
arguments 123 ! 231:

�#
1234 ¼ �#;0

1234 þ�#;þ
1234 þ�#;�

1324; (29)

such that

�#;0
1234 ¼ �#;0

2314; �#;�
1234 ¼ e�2	i=3�#;�

2314:

One easily finds that an arbitrary function �#;0
1234 is a

solution of Eq. (28), whereas one has to require that

�#;�
1234 ¼ ��#;þ

1324. Thus the most general solution to the

isospin constraint can be written as

�#
1234 ¼ �#;0

1234 þ�#;þ
1234 ��#;þ

1324; (30)

where�#;0 and�#;þ are arbitrary functions with the speci-
fied symmetry under cyclic permutations.
Our result does not agree with the conclusion of [25] that

the function �#
1234 (c

ð1Þ
uudg in the notations of Ref. [25]) is

antisymmetric with respect to permutation of the second
and third arguments, which is a much stronger condition.
In fact, any function which is antisymmetric in 2 $ 3 can
indeed be written in the form (30). However, e.g. a totally
symmetric function in the quark arguments is also allowed.
The reason why this does not contradict isospin counting is
that the corresponding state is annihilated by Iþ thanks to
the color identity (26). We note in passing that the
SUð3Þ-color generators in the definitions given in [25]
must be transposed, taii0 ! tai0i.

The second case, a gluon with positive helicity, can be
treated similarly. There exist two independent LCWFs
which can be defined as

jp;þiuudg" ¼ �ijk
Z
½DX�4f�"ð1Þ

1234ðXÞ½tau#ð1Þ�yi
�ðuyj"ð2Þdyk#ð3Þ � dyj"ð2Þuyk#ð3ÞÞga;y" ð4Þ
þ�"ð2Þ

1234ðXÞuyi#ð1Þð½tau#ð2Þ�yj dyk"ð3Þ
� ½tad#ð2Þ�yj uyk"ð3ÞÞga;y" ð4Þgj0i: (31)

The functions �"ð1Þ
1234 and �"ð2Þ

1234 have no symmetry con-

straints. This result does not agree with [25] either.
In what follows we accept the following ansatz for the

quark-gluon LCWFs:

�#
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p 
gðx1; x2; x3; x4Þ�4ða#g; xi; k?iÞ;

�"ð1Þ
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p c ð1Þ
g ðx1; x2; x3; x4Þ�4ða"g; xi; k?iÞ;

�"ð2Þ
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p c ð2Þ
g ðx1; x2; x3; x4Þ�4ða"g; xi; k?iÞ:

(32)

The function �4 is defined in Eq. (24) and the momentum

fraction distributions 
gðxiÞ, c ð1;2Þ
g ðxiÞ are related to the

next-to-leading twist-four nucleon distribution amplitudes
as discussed in the next section. For simplicity, we choose

the same parameter a"g determining the spread of both

wave functions �"ð1Þ and �"ð2Þ in the transverse plane.
This restriction can be relaxed.

B. Relation to nucleon distribution amplitudes

Nucleon distribution amplitudes (DAs) are defined as
LCWFs with all constituents at small transverse separa-
tions, schematically [31]


ðxi; �Þ �
Z jk?j<�½dk?�N�Nðxi; k?;iÞ: (33)
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As always in a field theory, taking an asymptotic limit (here
vanishing transverse distance) produces divergences that
have to be regularized. Hence DAs are scale-dependent
objects which only include contributions of small trans-
verse momenta, less than the cutoff.

The exponential ansatz for the transverse momentum
dependence of the LCWFs (23) and (32) implicitly as-
sumes that contributions of hard gluon exchanges �1=k2?
are subtracted as well, so that it is natural to identify
integrals of the LCWFs over transverse momenta with
the corresponding DAs at a certain low normalization
scale. The advantage of imposing this condition is that
nucleon DAs allow for a different and more rigorous
definition in terms of matrix elements of nonlocal light-
ray operators. Their moments can be studied using Wilson
operator product expansion (OPE) and estimated using
QCD sum rules and/or lattice calculations. The identifica-
tion of the integrals of the LCWFs with (dimensionally
regularized) DAs can be viewed as the choice of a specific
renormalization (factorization) scheme.

To begin with, consider the leading twist-three nucleon
DA which is defined by the matrix element [34]

h0j�ijkðu";Ti ðz1nÞCnu#jðz2nÞÞnd"kðz3nÞjpi

¼ � 1

2
pþnN"ðpÞ

Z
½dx�3e�ipþ

P
xizi�3ðxiÞ; (34)

where NðpÞ is the nucleon Dirac spinor, p2 ¼ m2
N ,

N"ðpÞ ¼ 1
2 ð1þ �5ÞNðpÞ, and C is the charge conjugation

matrix. Going over to the two-dimensional spinor notation
(7) and using the explicit expression for the Cmatrix in the
Weyl representation [35],

C ¼ i�2�0 ¼ ��� 0

0 � _� _�

 !
; (35)

this definition can be rewritten equivalently as

h0j�ijkui"þðz1Þuj#þðz2Þdk"þðz3Þjp;þi

¼ 1ffiffiffi
2

p p3=2
þ

Z
½dx�3e�ipþ

P
xizi�3ðxÞ; (36)

where we suppressed, for brevity, the lightlike vector in the

arguments of the fields, i.e. ui"þðz1Þ � ui"þðnz1Þ, etc.
Making use of (13) and the explicit expression for the

proton state in (22), one finds after a short calculation


ðx1; x2; x3Þ ¼ �3ðx1; x2; x3;�0Þ; (37)

i.e. the function 
ðxiÞ which enters the definition (23) of
the three-quark LCWF is nothing but the leading-twist
nucleon DA.

The DA �3ðx;�Þ can be expanded in eigenfunctions of
the one-loop evolution kernel PkðxÞ such that the coeffi-
cients ckð�Þ have autonomous scale dependence:

�3ðx;�Þ ¼ 120x1x2x3
X1
k¼0

�
�sð�Þ
�sð�0Þ

�
�k=�0

ckð�0ÞPkðxÞ:

(38)

The eigenfunctions PkðxÞ form a specific set of homoge-
neous polynomials of three variables which are orthogonal
with respect to the conformal scalar product [36]:

120
Z
½dx�3x1x2x3PkðxÞPjðxÞ ¼ �k�kj; (39)

where the coefficients �k depend on the normalization
convention for the eigenfunctions PkðxÞ. One can show
that all eigenfunctions have definite parity under the inter-
change of the first and the third argument: Pkðx3; x2; x1Þ ¼
�Pkðx1; x2; x3Þ. The first few terms in this expansion are
[26]

�3ðx1; x2; x3Þ ¼ 120fNx1x2x3½1þ a34ðx1 � x3Þ
þ b14ðx1 þ x3 � 2x2Þ þ . . .�; (40)

where we have changed the notation to fN ¼ c0,
a ¼ c1=c0, b ¼ c2=c0. The corresponding anomalous
dimensions are �0 ¼ 2=3, �a ¼ 20=9, and �b ¼ 8=3.
The normalization constant fN is determined by the

matrix element of the corresponding local three-quark
operator. It was calculated several times in the past using
QCD sum rules [37–41]. At the 1 GeV scale one obtains

fN ¼
Z
½dx�3�3ðxÞ ¼ ð5:0� 0:5Þ � 10�3 GeV2: (41)

The latest estimates for the ‘‘shape’’ parameters a, b from
lattice calculations [42,43] are in the ranges

3
4a ¼ 0:85–0:95; 1

4b ¼ 0:23–0:33: (42)

These values are consistent with the light-cone sum rules
for nucleon electromagnetic form factors [40] and
somewhat smaller than the earlier QCD sum rule estimates
[37–39].
The model used in Refs. [23,24] corresponds to a ¼

b ¼ 1 at the scale �0 ¼ 1 GeV, which does not contradict
(42). The overall normalization constant was determined in
Ref. [23] from the fit to parton distributions at large values
of Bjorken x: fN ¼ 4:7� 10�3 GeV2, in remarkably good
agreement with Eq. (41). This agreement is very encour-
aging as a strong indication for the self-consistence of the
whole approach. Note that the coupling fN is related to the

normalization constant f3 used in [23,24] as f3 ¼
ffiffiffi
2

p
fN.

The quark-gluon twist-four nucleon DAs were intro-
duced in [26],
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h0jig�ijku#iþðz1Þu"jþðz2Þ½ �fþþðz4Þd#þðz3Þ�kjp; �i

¼ � 1

4
mNp

2þN
"
þðpÞ

Z
½dx�4e�ipþ

P
xizi�g

4ðxÞ;

h0jig�ijku"iþðz1Þ½ �fþþðz4Þu#þðz2Þ�jd#kþðz3Þjp; �i

¼ � 1

4
mNp

2þN
"
þðpÞ

Z
½dx�4e�ipþ

P
xizi�g

4ðxÞ;

h0jig�ijk½ �fþþðz4Þu#þðz1Þ�iu#jþðz2Þd#kþðz3Þjp; �i

¼ � 1

4
mNp

2þN
#
þðpÞ

Z
½dx�4e�ipþ

P
xizi�g

4ðxÞ;

(43)

where we changed an overall sign because of the different
definition of the charge conjugation matrix, cf. [35].

The asymptotic DAs are

�g
4ðx;�Þ ¼ �1

48!x1x2x3x
2
4½�g

2ð�Þ � 1
3�

g
3ð�Þ�;

�g
4ðx;�Þ ¼ 1

48!x1x2x3x
2
4½�g

2ð�Þ þ 1
3�

g
3ð�Þ�;

�g
4ðx;�Þ ¼ 1

68!x1x2x3x
2
4�

g
1ð�Þ;

(44)

where �g
k are multiplicatively renormalizable couplings

�g
1ð�Þ ¼ �g

1ð�0ÞL19=ð3�0Þ;

�g
2ð�Þ ¼ �g

2ð�0ÞL7=�0 ;

�g
3ð�Þ ¼ �g

3ð�0ÞL79=ð9�0Þ;
(45)

with L ¼ �sð�Þ=�sð�0Þ and �0 ¼ 11� 2
3nf. In the nota-

tion of Ref. [26], �g
1 ¼ �g

2 , �
g
2 ¼ �g

2;0, and �g
3 ¼ �g

2;1.

Numerical values of these parameters can be estimated
using QCD sum rules; see the Appendix . We obtain at the
scale �1 GeV,

�g
1 ¼ ð2:6� 1:2Þ � 10�3 GeV2;

�g
2 ¼ ð2:3� 0:7Þ � 10�3 GeV2;

�g
3 ¼ ð0:54� 0:2Þ � 10�3 GeV2;

(46)

where the sign convention is that the three-quark coupling
fN is positive.

Evaluating the matrix elements in the definitions of DAs
(43) using (13) and (15) and explicit expressions for the
uudg Fock states in terms of the corresponding LCWFs,
one obtains the required relations:

g
gðx1; x3; x2; x4Þ
¼ �mN

96
½2�g

4ðx1; x2; x3; x4Þ þ�g
4ðx2; x1; x3; x4Þ�;

gc ð1Þ
g ðx1; x2; x3; x4Þ
¼ �mN

48

�
�g

4ðx2; x1; x3; x4Þ þ
1

2
�g

4ðx1; x2; x3; x4Þ
�
;

gc ð2Þ
g ðx1; x3; x2; x4Þ
¼ mN

48

�
�g

4ðx1; x2; x3; x4Þ þ
1

2
�g

4ðx2; x1; x3; x4Þ
�
: (47)

Note that the DA �g
4 satisfies the symmetry relation [26]

�g
4ðx1; x2; x3; x4Þ þ�g

4ðx1; x3; x2; x4Þ
¼ �g

4ðx2; x3; x1; x4Þ þ�g
4ðx3; x2; x1; x4Þ (48)

which is consistent with Eq. (28).

C. Fock state probabilities

Our conventions correspond to the usual relativistic
normalization of the proton state,

hp;þjp0;þi ¼ ð2	Þ32pþ�ðpþ � p0þÞ�2ð ~p? � ~p0
?Þ: (49)

The partial contribution of each Fock state is defined
similarly, e.g.

hp;þjp0;þiuud ¼ ð2	Þ32pþ�ðpþ �p0þÞ�2ð ~p?� ~p0
?ÞPuud;

(50)

where Puud is the probability of the three-quark state with
zero orbital angular momentum.
Using the definition in Eq. (22) and the ansatz in Eq. (23)

we get, after the integration over transverse momenta,

Puud ¼ 1

96
�3f

2
N

Z ½dx�3
x1x2x3

�
j
ðx1; x2; x3Þj2

þ 1

2
j
ðx3; x2; x1Þ þ
ðx1; x2; x3Þj2

�
; (51)

where �3 � �N¼3 is defined in Eq. (25).
For the model specified in Eq. (38) one obtains

Puud ¼ 15

4
f2N�3

�
1þ a2 þ b2

56

�
: (52)

For a given value of the wave function at the origin, fN, the
probability of the three-quark valence state is proportional
to the fourth power of the a3 parameter, Puud � a43. We fix

a3 to have the same probability of the three-quark state
as in [23,24]. Namely, for fN ¼ 5� 10�3 GeV2 and
a ¼ b ¼ 1 one gets

Puud ¼ 435

112
f2N�3 ’ 0:17 (53)

for

a3 ¼ 0:73 GeV�1: (54)

The dependence on the shape of the DA (for a, b� 1) is
very weak. This property is due to an attractive feature of
the Bolz-Kroll ansatz (23): Different terms in the expan-
sion of the DA in multiplicatively renormalizable operators
(38) contribute to the norm additively; there is no interfer-
ence. For the general case one obtains

Puud ¼ 5

4
�3

X
k

ð3�þ
k jcþk ð�Þj2 þ ��

k jc�k ð�Þj2Þ; (55)
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where c�k are the expansion coefficients corresponding to

the eigenfunctions P�
k with positive (negative) parity with

respect to the permutation x1 $ x3: Each state with posi-
tive parity contributes an extra factor 3.

The probabilities of the four-parton states with an extra
gluon with negative (positive) helicity are given by

Puudg# ¼ 2�4

Z ½dx�4
wðxÞ 
gðxÞð2�P 12Þ
gðxÞ;

Puudg" ¼ 4�4

Z ½dx�4
wðxÞ

�
ðc ð1Þ

g þP 23c
ð2Þ
g ðxÞÞ2

� c ð2Þ
g ðxÞP 23c

ð1Þ
g ðxÞþ c gðxÞ

�
1� 1

2
P 13

�
c gðxÞ

�
;

(56)

where we use a shorthand notation

wðxÞ ¼ x1x2x3x
2
4 (57)

and

c gðxÞ ¼ c ð1Þ
g ðx1; x2; x3; x4Þ � c ð2Þ

g ðx3; x1; x2; x4Þ: (58)

Here and below P 12, P 23, etc. are quark permutation
operators, e.g. P 12c gðx1; x2; x3; x4Þ ¼ c gðx2; x1; x3; x4Þ.
We also assumed that the functions 
g and c ð1;2Þ

g are real.

With the help of Eqs. (47) one can rewrite these ex-
pressions in terms of the nucleon DAs, �g

4 , �
g
4 , and �g

4 .
Using asymptotic DAs specified in (44) and the value
�s ¼ 0:5 (at the 1 GeV scale) one obtains for the central
values of the couplings in Eq. (46),

Puudg# ¼
35

8g2
m2

N�4ð�g
1Þ2 ’ 0:30

�
a#g
a3

�
6
;

Puudg" ¼
105

16g2
m2

N�4½ð�g
2Þ2 þ ð�g

3Þ2� ’ 0:37

�
a"g
a3

�
6
;

(59)

where a3 ¼ 0:73 GeV�1, Eq. (54). The choice a#g ¼ a"g ¼
a3 corresponds to the same spread in the transverse plane
as for the three-quark wave function. These numbers are of
the right order of magnitude, which is encouraging.

For the general case, the DAs �g
4 , �

g
4 , and �g

4 can be
expanded in contributions of multiplicatively renormaliz-
able operators as follows [26]:

�g
4ðx1; x2; x3; x4;�Þ ¼ 
0ðxÞ

X
k

c�k ð�ÞP�
k ðxÞ;

�g
4ðx1; x2; x3; x4;�Þ ��g

4ðx3; x1; x2; x4;�Þ
¼ 
0ðxÞ

X
k

c�k ð�ÞP�
k ðxÞ;

(60)

where 
0ðxÞ ¼ 1
2 8!x1x2x3x

2
4 and P�;�

k ðx1; x2; x3; x4Þ are

orthogonal polynomials which we assume to be normal-
ized as

��
k �kr ¼

Z
½dx�4
0ðxÞP�

k ðxÞð2þ P 12ÞP�
r ðxÞ;

��
k �kr ¼

Z
½dx�4
0ðxÞP�

k ðxÞð2� P 23ÞP�
r ðxÞ:

(61)

Inserting (47) and (60) into (56) one finds after some
algebra

Puudg# ¼
105m2

N�4

8g2
X
k

��
k jc�k j2;

Puudg" ¼
105m2

N�4

4g2

�X
k

3�þ
k jcþk j2 þ

X
k

��
r jc�k j2

�
:

(62)

Similar to the three-quark case, each multiplicatively
renormalizable contribution to the DA generates an addi-
tive contribution to the state probability; there is no
interference.

IV. PARTON DENSITIES

The definitions of quark and gluon parton densities can
be found e.g. in the review [44]. Translating them into the
two-component spinor notation we obtain for quark and
gluon distributions

qðxÞ ¼ 1

2

Z dz

2	
eixzðpnÞ

�
p

								 �q"þ
�
� 1

2
zn

�
q"þ
�
1

2
zn

�
þ �q#þ

�
� 1

2
zn

�
q#þ
�
1

2
zn

�								p


;

�qðxÞ ¼ 1

2

Z dz

2	
eixzðpnÞ

�
p;þ

								 �q"þ
�
� 1

2
zn

�
q"þ
�
1

2
zn

�
� �q#þ

�
� 1

2
zn

�
q#þ
�
1

2
zn

�								p;þ


;

�qðxÞ ¼ 1

2

Z dz

2	
eixzðpnÞ

�
p;þ

								 �q"þ
�
� 1

2
zn

�
q#þ
�
1

2
zn

�								p;�


;

(63)

xgðxÞ ¼ 1

2pn

Z dz

2	
eixzðpnÞ

�
p

								faþþ
�
� 1

2
zn

�
�faþþ

�
1

2
zn

�
þ �faþþ

�
� 1

2
zn

�
faþþ

�
1

2
zn

�								p


;

x�gðxÞ ¼ 1

2pn

Z dz

2	
eixzðpnÞ

�
p;þ

								faþþ
�
� 1

2
zn

�
�faþþ

�
1

2
zn

�
� �faþþ

�
� 1

2
zn

�
faþþ

�
1

2
zn

�								p;þ


;

(64)
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respectively. Here qðxÞ, gðxÞ are unpolarized and �qðxÞ, �gðxÞ polarized densities, and �qðxÞ is the quark transversity.
For the unpolarized distributions the average over the proton polarizations is assumed.

The quark parton distributions for each flavor q ¼ u; d receive contributions from the three-quark 3q � uud Fock state
and also from the 3qg � uudg states with both gluon helicities:

qðxÞ ¼ q3qðxÞ þ q3qg# ðxÞ þ q3qg" ðxÞ; (65)

and similarly for �qðxÞ and �qðxÞ. The three-quark contributions are

u3qðxÞ
�u3qðxÞ

� �
¼ �3f

2
N

96x

Z 1

0

dx2dx3
x2x3

�ð1� x� x2 � x3Þf
2ðx; x2; x3Þ �
2ðx2; x; x3Þ þ ½
ðx; x3; x2Þ þ
ðx2; x3; xÞ�2g;

d3qðxÞ
�d3qðxÞ

� �
¼ �3f

2
N

96x

Z 1

0

dx1dx2
x1x2

�ð1� x� x1 � x2Þ
�

2ðx1; x2; xÞ � 1

2
½
ðx1; x; x2Þ þ
ðx2; x; x1Þ�2

�
;

(66)

and

�u3qðxÞ ¼ �3f
2
N

96x

Z 1

0

dx2dx3
x2x3

�ð1� x� x2 � x3Þ½
ðx; x2; x3Þ þ
ðx3; x2; xÞ�½
ðx; x3; x2Þ þ
ðx2; x3; xÞ�;

�d3qðxÞ ¼ ��3f
2
N

96x

Z 1

0

dx1dx2
x1x2

�ð1� x� x1 � x2Þ
ðx1; x2; xÞ
ðx2; x1; xÞ:
(67)

For the three-quark-gluon contributions we obtain

u3qg# ð�Þ
�u3qg# ð�Þ

 !
¼ 2�4

Z ½dx�4
wðxÞ ½�ð�� x1Þ þ �ð�� x2Þ�
gðxÞð2� P 12Þ
gðxÞ;

d3qg# ð�Þ
�d3qg# ð�Þ

 !
¼ 2�4

Z ½dx�4
wðxÞ �ð�� x3Þ
gðxÞð2� P 12Þ
gðxÞ;

u3qg" ð�Þ
�u3qg" ð�Þ

 !
¼ 2�4

Z ½dx�4
wðxÞ f2½�ð�� x2Þ � �ð�� x1Þ�½ðc ð1Þ

g ðxÞ þ P 23c
ð2Þ
g ðxÞÞ2 � c ð1Þ

g ðxÞP 23c
ð2Þ
g ðxÞ�

� ½�ð�� x1Þ þ �ð�� x3Þ�c gðxÞð2� P 13Þc gðxÞg;
d3qg" ð�Þ
�d3qg" ð�Þ

 !
¼ 2�4

Z ½dx�4
wðxÞ f�ð�� x2Þc gðxÞð2� P 13Þc gðxÞ � 2�ð�� x3Þ½ðc ð1Þ

g ðxÞ þ P 23c
ð2Þ
g ðxÞÞ2

� c ð1Þ
g ðxÞP 23c

ð2Þ
g ðxÞ�g;

(68)

and

�d3qg" ð�Þ ¼ �d3qg# ð�Þ ¼ �2�4

Z ½dx�4
wðxÞ �ð�� x2ÞðP 23
gðxÞÞð2� P 13Þc gðxÞ;

�u3qg" ð�Þ ¼ �u3qg# ð�Þ ¼ 2�4

Z ½dx�4
wðxÞ �ð�� x2Þ½c ð1Þ

g ðxÞð2� P 12Þ
gðxÞ þ ðP 23c
ð2Þ
g ðxÞÞð1þ P 12Þ
gðxÞ�:

(69)

Finally, for the gluon parton distributions we get

gð�Þ
�gð�Þ

 !
¼ 4�4

Z ½dx�4�ð�� x4Þ
wðxÞ

�
ðc ð1Þ

g ðxÞ þ P 23c
ð2Þ
g ðxÞÞ2 � c ð2Þ

g ðxÞP 23c
ð1Þ
g ðxÞ þ 1

2
c gðxÞð2� P 13Þc gðxÞ

� 1

2
½
gðxÞð2� P 12Þ
gðxÞ�

�
: (70)

For simple models of the wave functions the integrations over parton momentum fractions can be carried out explicitly.
In particular, using the three-quark wave function from Refs. [23,24] which corresponds to the choice a ¼ b ¼ 1 in the
nucleon DA (40), one obtains
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u3qðxÞ ¼ P3q

1960

29
xð1� xÞ3

�
1� 6

7
ð1� xÞ þ 12

35
ð1� xÞ2

�
;

d3qðxÞ ¼ P3q

140

29
xð1� xÞ3

�
1þ 3ð1� xÞ þ 12

5
ð1� xÞ2

�
;

�u3qðxÞ ¼ P3q

5600

87
xð1� xÞ3

�
1� 21

20
ð1� xÞ þ 9

40
ð1� xÞ2

�
;

�d3qðxÞ ¼ �P3q

140

87
xð1� xÞ3

�
1þ 3ð1� xÞ þ 9

5
ð1� xÞ2

�
;

�u3qðxÞ ¼ P3q

3500

87
xð1� xÞ3

�
1� 3

5
ð1� xÞ þ 9

53
ð1� xÞ2

�
;

�d3qðxÞ ¼ �P3q

140

87
xð1� xÞ3

�
1þ 3ð1� xÞ þ 9

5
ð1� xÞ2

�
:

(71)

These expressions coincide with the corresponding ones in
Refs. [23,24]. For the three-quark-gluon contributions,
taking into account Eqs. (47) and using asymptotic DAs
(44), we arrive at

d3qg# ðxÞ ¼ 1
2u3qg# ðxÞ ¼ 56P3qg#xð1� xÞ6;

d3qg" ðxÞ ¼ 1
2u3qg" ðxÞ ¼ 56P3qg"xð1� xÞ6; (72)

�d3qg# ðxÞ ¼ 1
2�u3qg# ðxÞ ¼ d3qg# ðxÞ;

�d3qg" ðxÞ ¼ �ð1� 4
3�Þd3qg" ðxÞ;

�u3qg" ðxÞ ¼ 2
3�u3qg" ðxÞ;

(73)

�u3qg" ðxÞ ¼ �u3qg# ðxÞ
¼ 84

ffiffi
2
3

q
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p � 1=3
ffiffiffiffi
�

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3qg#P3qg"

q
xð1� xÞ6;

�d3qg" ðxÞ ¼ �d3qg# ðxÞ ¼�56
ffiffi
2
3

q ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3qg#P3qg"

q
xð1� xÞ6;

(74)

and

xgðxÞ ¼ 168ðP3qg" þ P3qg# Þx3ð1� xÞ5;
x�gðxÞ ¼ 168ðP3qg" � P3qg# Þx3ð1� xÞ5;

(75)

where we used the notation

� ¼ ð�g
3Þ2

ð�g
2Þ2 þ ð�g

3Þ2
¼ 0:052� 0:030: (76)

It is easy to check that the Soffer inequality [45,46]

qðxÞ þ �qðxÞ � 2j�qðxÞj (77)

is fulfilled for arbitrary values of the parameters.
Note that our result for the large x behavior of quark

parton distributions due to the contribution of the quark-
gluon Fock states differs from that in [23]: ð1� xÞ6 vs
ð1� xÞ7.

For the numerical analysis we accept the same three-
quark wave function as in Refs. [23,24], corresponding to
the probability of the valence state P3q ¼ 0:17 (53), and fix

the remaining parameters of the quark-gluon wave func-
tions from the requirement that the resulting parton distri-
butions are in reasonable agreement with the existing
parametrizations at large x; see Fig. 1.
The unpolarized distributions are only sensitive to the

total probability to find an extra gluon. We choose

P3qg ¼ P3qg" þ P3qg# ¼ 0:33: (78)

For the central values of the QCD sum rule estimates for
the wave functions at the origin, Eq. (46), this value can be
obtained, assuming that the quark-gluon state is slightly
more compact in transverse space as compared to the
valence three-quark configuration:

ag ¼ a"g ¼ a#g ¼ 0:9a3; (79)

which is reasonable.
The ratio �gðxÞ=gðxÞ is determined in our simple model

by the ratio of the probabilities to find a gluon with helicity
aligned and antialigned with that of the proton. In the rest
of this work we take

Puudg#

Puudg"
¼ 2

3

ð�g
1Þ2

ð�g
2Þ2 þ ð�g

3Þ2
¼ 0:6ð0:8� 0:2Þ; (80)

where the number in parentheses is the QCD sum rule
prediction, Eq. (46). The polarized quark distributions
�uðxÞ and �dðxÞ also involve another ratio of the cou-
plings, cf. Eq. (76), which is, however, small according to
our estimates. The corresponding contributions to �uðxÞ
and �dðxÞ are below 5%.
The results for the transversity distributions �uðxÞ,

�dðxÞ are shown in Fig. 2. These distributions are only
very weakly constrained by the experiment; see e.g. the
discussion in Refs. [47–49]. Our results are generally
similar to the other existing model predictions; see
Ref. [50] for a review and the corresponding references.
We remind the reader that in this work we try to keep the

model as simple as possible, restricting ourselves to con-
tributions of the states with total zero angular momentum
and the simplest, asymptotic shape of the four-particle
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FIG. 2 (color online). The quark transversity distribution �qðxÞ. The solid blue curve is our model prediction, taking into account the
contributions of the valence three-quark state and the state involving one additional gluon. The contribution of the valence state alone
is shown by dots for comparison. The Soffer bound (77) is indicated by the (magenta) dashed curve.

FIG. 1 (color online). Quark and gluon parton distributions. The black curves correspond to the existing parametrizations: GRV [28]
(short dashed), DSSV [73] (long dashed), and LSS’10 [74] (dash-dotted) at the scale �2 ¼ 1 GeV2 [75]. The solid blue curve is our
model prediction, taking into account the contributions of the valence three-quark state and the state involving one additional gluon.
The contribution of the valence state alone is shown by dots for comparison.
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quark-gluon proton distribution amplitude. It is seen that
this simple approximation captures the main features of
parton distributions at large x surprisingly well, although
more sophisticated models are certainly needed for a quan-
titative description.

V. TWIST-THREE OBSERVABLES

A. Quark-antiquark-gluon correlation functions

A description of twist-three observables in the frame-
work of collinear factorization involves quark-antiquark-
gluon correlation functions which are defined as matrix
elements of nonlocal (light-ray) three-particle operators. In
the literature there exists apparently no ‘‘standard’’ defini-
tion of such operators, and also no standard notation. One
of the usual choices [51] is to consider the operators

S�
�ðz1; z2; z3Þ ¼ 1

2
�qðz1Þ½i ~F�þðz2Þ � F�þðz2Þ�5��þqðz3Þ

(81)

and define the twist-three correlations functions D�
q as the

matrix elements

hp; sjS��ðz1; z2; z3Þjp; si ¼ 4mNiðpnÞ½s�ðpnÞ � p�ðsnÞ�
�
Z

Dxeipn
P

zixiD�
q ðxiÞ; (82)

where s� is the proton spin vector which we assume to be

normalized as s2 ¼ �1. This formulation is often used e.g.
in the studies of the nucleon structure function g2ðx;Q2Þ.

Here and below the integration measureDx is defined as

Z
Dx ¼

Z
dx1dx2dx3�

�X
xi

�
: (83)

The difference from ½dx�3 (20) is that the momentum
fractions sum up to zero.

A subtlety in using this definition is that the twist-three
and twist-four contributions in S�

� are not separated on the

operator level. It can be more convenient to forgo the
explicit Lorentz covariance and restrict oneself to trans-
verse spin polarizations ðsT 	 nÞ ¼ 0, introducing another
set of operators [52]:

S�ðzÞ ¼ 2is
�
T ½Sþ

�ðz1; z2; z3Þ � S�
�ðz3; z2; z1Þ�: (84)

The operators S�ðzÞ are even (odd) with respect to the
charge conjugation. One can show that [52]

ðS�ðzÞÞy ¼ �S�ðzÞ
so that the C-even (plus) and C-odd (minus) S operators
are Hermitian and anti-Hermitian, respectively.

The corresponding matrix elements define the C-even
and the C-odd twist-three correlation functions

hp; sTjS�ðzÞjp; sTi ¼ 2ðpnÞ2
Z

Dxe�iðpnÞP
k
xkzkS�ðxÞ;

(85)

which are related to the D� functions introduced above as

8mND
þðx1; x2; x3Þ ¼ Sþðx1; x2; x3Þ �S�ðx1; x2; x3Þ;

8mND
�ðx1; x2; x3Þ ¼ Sþðx3; x2; x1Þ þS�ðx3; x2; x1Þ:

(86)

Note that we use the same notation S� for the operators
and the matrix elements, which hopefully will not lead to
confusion.
The helicity structure of the twist-three correlation

functions can be made explicit going over to the two-
component spinor notation. One obtains

S�ðzÞ ¼ �ig½ �sQ�ðzÞ � s ~Q�ðzÞ�; (87)

where s ¼ s1 þ is2, �s ¼ s1 � is2, and

Q�ðzÞ ¼ �q#þðz1Þfþþðz2Þq#þðz3Þ � �q"þðz3Þfþþðz2Þq"þðz1Þ;
~Q�ðzÞ ¼ �q"þðz1Þ �fþþðz2Þq"þðz3Þ � �q#þðz3Þ �fþþðz2Þq#þðz1Þ:

(88)

The nucleon state with a transverse polarization can be
expressed in terms of the helicity states jp;�i as

jp; sTi ¼ 1ffiffiffi
2

p ½jp;þi þ sjp;�i�:

Taking into account that the operators Q�ðzÞ increase and
~Q�ðzÞ decrease helicity, it follows that
hp; sTjS�ðzÞjp; sTi

¼ ig½hp;þjQ�ðzÞjp;�i � hp;�j ~Q�ðzÞjp;þi�: (89)

It is easy to see that ~Q�ðzÞ ¼ �½Q�ðzÞ�y, so that the two
matrix elements on the right-hand side of Eq. (89) are
related and one does not need to consider the operators
with a ‘‘tilde’’ explicitly.
We define the distributions Q�ðxÞ as

hp;þjQ�ðzÞjp;�i ¼ �2iðpnÞ2
Z

Dxe�iðpnÞP xkzkQ�ðxÞ:
(90)

The P parity implies (cf. [52])

ðQ�ð�xÞÞ� ¼ �Q�ðxÞ (91)

and finally

S�ðxÞ ¼ �gQ�ðxÞ: (92)

In the light-cone formalism, twist-three correlation func-
tions are generated by the interference of Fock states with
different particle content, as illustrated in Fig. 3. The
contributions shown schematically in Figs. 3(a) and 3(b)
correspond to the interference of the three-quark and
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three-quark-gluon wave functions, whereas the one in
Fig. 3(c) stands for the interference of the three-quark-
gluon state with the one containing an extra quark-
antiquark pair. The latter term contributes to a different
kinematic region in momentum fractions compared to the
first two terms and is missing to our accuracy.

Explicit expressions for the three-quark and three-quark-
gluon Fock states for the nucleon with positive helicity are
given in Sec. III. The corresponding states for the nucleon
of negative helicity are given by the same expressions,
Eqs. (22), (27), and (31), where helicities of creation
operators have to be flipped. The wave functions of the
three-quark-gluon states of the nucleon with positive and

negative helicity are the same, ½�"#
1234�ð�Þ ¼ ½�"#

1234�ðþÞ,
whereas for the valence three-quark state there is an overall

sign difference: ½�ð0Þ
123�ð�Þ ¼ �½�ð0Þ

123�ðþÞ. All matrix ele-

ments in question can be expressed in terms of two corre-

lation functions Q"ð#Þ
q ðxÞ defined as

uudhp;þj �q"þðz3Þfþþðz2Þq"þðz1Þjp;�iuudg"
¼ �2ip2þ

Z
Dxe�ipþ

P
xiziQ"

qðxÞ;

uudhp;þj �q#þðz1Þfþþðz2Þq#þðz3Þjp;�iuudg"
¼ �2ip2þ

Z
Dxe�ipþ

P
xiziQ#

qðxÞ; (93)

where the subscript q ¼ u, d stands for quark flavor. In
particular,

Q�
q ðxÞ ¼ Q#

qðxÞ �Q#
qð�xÞ þQ"

qð�xÞ �Q"
qðxÞ: (94)

Using the ansatz for the LCWFs in Eqs. (23) and (32)

one can represent Q"ð#Þ
q ðxÞ as convolution integrals of the

distribution amplitudes. We obtain

Q#
dðxÞ¼

1

2
A
ð�x1;x2;x3Þ 1x1

Z d�1

�1

d�2

�2

�ð1þx1��1��2Þ½
ð�1;�x1;�2Þþ
ð�2;�x1;�1Þ�c gð�1;x3;�2;x2Þ;

Q#
uðxÞ¼ 1

2
A
ð�x1;x2;x3Þ 1x1

Z d�1

�1

d�2

�2

�ð1þx1��1��2Þ
ð�1;�x1;�2Þ½c ð1Þ
g ð�1;x3;�2;x2Þ�c ð2Þ

g ð�1;�2;x3;x2Þ�;

Q"
dðxÞ¼A
ðx1;x2;�x3Þ 1x3

Z d�1

�1

d�2

�2

�ð1þx3��1��2Þ
ð�1;�2;�x3Þ
�
1

2
c ð1Þ

g ð�1;�2;x1;x2Þþ c ð2Þ
g ð�1;x1;�2;x2Þ

�
;

Q"
uðxÞ¼�A
ðx1;x2;�x3Þ 1x3

Z d�1

�1

d�2

�2

�ð1þx3��1��2Þ
�

ð�x3;�1;�2Þ

�
c ð1Þ

g ðx1;�1;�2;x2Þþ1

2
c ð2Þ

g ðx1;�2;�1;x2Þ
�

þ½
ð�x3;�2;�1Þþ
ð�1;�2;�x3Þ�
�
c gðx1;�2;�1;x2Þ�1

2
c gð�1;�2;x1;x2Þ

��
; (95)

where it is implicitly assumed that x1 þ x2 þ x3 ¼ 0, the
Heaviside step function with several arguments is defined
as 
ða; b; cÞ � 
ðaÞ
ðbÞ
ðcÞ, and

A ¼ 1

3
ð4	Þ4

�
a23a

2
g

a23 þ a2g

�
2
: (96)

The distribution c g is defined in Eq. (58). The QCD sum
rule result �g

3 
 �g
1;2 (46) implies that c ð1Þ

g ’ c ð2Þ
g , and as a

consequence, both helicity-down functions Q#
u;dðxÞ are

suppressed in comparison with the helicity-up functions
Q"

u;dðxÞ. Note that we use a symmetric notation where

quark, antiquark, and gluon momentum fractions are
treated equally so that the momentum conservation condi-
tion is x1 þ x2 þ x3 ¼ 0. Support properties of the corre-
lation functions [53] can most easily be shown going over
to barycentric coordinates [52], as shown in Fig. 4:

~x ¼ x1 ~e1 þ x2 ~e2 þ x3 ~e3 ¼ x1 ~E1 þ x2 ~E2:

Three-parton correlation functions, in general, ‘‘live’’ in-
side a hexagon-shaped area which can be further decom-
posed into six different regions (triangles). The triangles

FIG. 3 (color online). Twist-three correlation functions from the overlap of light-cone wave functions.
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labeled ð12Þþ3�, 2þð13Þ�, etc., correspond to different
subprocesses at the parton level [53]. For each parton k ¼
1, 2, 3 plus stays for emission (xk > 0) and minus for
absorption (xk < 0). Alternatively, one may think of plus
and minus labels as indicating whether the corresponding
parton appears in the direct or the final amplitude in the
cut diagram, cf. Fig. 3. It is important that different regions
do not have autonomous scale dependence; they ‘‘talk’’ to
each other and get mixed under the evolution; see Ref. [52]
for a detailed discussion.
Our model predictions for the correlation functions

Qþ
d ðxÞ and �Qþ

u ðxÞ (note the opposite sign), Eq. (90),

are shown in Figs. 5 and 6, respectively. Both distributions
are symmetric with respect to the center of the hexagon:
Qþ

q ðx1; x2; x3Þ ¼ Qþ
q ð�x1;�x2;�x3Þ, which is a conse-

quence of P parity, cf. Eq. (91). Each of the four terms

FIG. 4 (color online). Support properties of twist-three corre-
lation functions in barycentric coordinates. For the explanation
of different regions, see the text.

FIG. 6 (color online). The quark-antiquark-gluon twist-three correlation function �Qþ
u ðxÞ at the reference scale 1 GeV.

FIG. 5 (color online). The quark-antiquark-gluon twist-three correlation function Qþ
d ðxÞ at the reference scale 1 GeV.
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Q"ð#Þ
q ð�xÞ in Eq. (94) is confined to a different ‘‘triangle’’

and, hence, has a different partonic interpretation:

Q"
qðxÞ: ð12Þþ3�; Q"

qð�xÞ: 3þð12Þ�;
Q#

qðxÞ: ð23Þþ1�; Q#
qð�xÞ: 1þð23Þ�:

(97)

The larger contributions, e.g. in the ð12Þþ3� region, cor-
respond to (valence) quark emission with momentum frac-
tion x1 > 0 and subsequent absorption with momentum
fraction �x3 > x1 > 0, accompanied by gluon emission
with momentum fraction x2 > 0. The smaller contribu-
tions, e.g. in the 1þð23Þ� region, differ from the above in
that the gluon with momentum fraction �x2 > 0 is ab-
sorbed and thus x1 >�x3 > 0. Note that there is no sym-
metry between gluon emission and absorption, which may
be somewhat counterintuitive.

The dominant gluon emission contribution to the �uGu

correlation function Q"
uðxÞ is roughly a factor 2 larger

compared to the �dGd distribution, Q"
dðxÞ, and has the

opposite sign. The contributions of gluon absorption,

Q#
uðxÞ and Q#

dðxÞ, have the same sign for u and d quarks,

and are much smaller compared to gluon emission.
Our model correlation functions vanish in the 2þð13Þ�

and ð13Þþ2� regions. This property is an artefact of ne-
glecting contributions of the type shown in Fig. 3(c) which
are formally higher order in the Fock expansion. These
contributions can be estimated using a model for the five-
parton qqqð �qqÞ state from Ref. [23] and turn out to be
considerably smaller than the ones considered here.

The minus correlation functions Q�
u ðxÞ and Q�

d ðxÞ are
obtained from the plus ones by changing the sign of the
contributions in the ð12Þþ3� and 1þð23Þ� regions, so we
do not show them separately.

B. The structure function g2ðx;Q2Þ
The structure function g2ðxB;Q2Þ is given by the sum of

the Wandzura-Wilczek (WW) and genuine twist-three con-
tributions

g2ðxB;Q2Þ ¼ gWW
2 ðxB;Q2Þ þ gtw�3

2 ðxB;Q2Þ: (98)

The WW contribution reads

gWW
2 ðxB;Q2Þ ¼ �g1ðxB;Q2Þ þ

Z 1

xB

dy

y
g1ðy;Q2Þ; (99)

where

g1ðxB;Q2Þ ¼ 1

2

X
q

e2q½�qðxB;Q2Þ þ �qð�xB;Q
2Þ�: (100)

The twist-three contribution gtw�3
2 ðxB;Q2Þ can bewritten as

gtw�3
2 ðxB;Q2Þ¼1

2

X
q

e2q
Z 1

xB

d�

�
½�qTð�;Q2Þþ�qTð��;Q2Þ�;

(101)

where �qTð�Þ is defined in terms of the Dþ function
introduced in Eq. (82):

�qTð�Þ ¼ 4
Z

DxDþ
q ðxÞ d

dx3

�
�ð�þ x3Þ � �ð�� x1Þ

x1 þ x3

�
:

(102)

As above, the subscript q refers to the contribution of a

given quark flavor. In terms of the Q"ð#Þ
q ðxÞ functions one

obtains

Dþ
q ðxÞ ¼ � g

4mN

½Q"
qðxÞ þQ#

qð�xÞ�: (103)

To avoid confusion, in this sectionwe use the notation xB for
the Bjorken variable, whereas x is reserved for the set of
parton momentum fractions x ¼ fx1; x2; x3g.
Under a plausible assumption that the spin-dependent

part of the forward Compton amplitude satisfies a disper-
sion relation without subtractions, the integral of
g2ðxB;Q2Þ and, hence, of gtw�3

2 ðxB;Q2Þ vanishes [54],
Z 1

0
dxBg

tw�3
2 ðxB;Q2Þ ¼ 0: (104)

This statement is known as the Burkhardt-Cottingham sum
rule.
Using Eqs. (95) one finds that in our model Dþ

q ðxÞ is
nonzero only when x1 � 0 and x3 � 0. This, in turn,
implies that �qTð�Þ vanishes for � < 0 (i.e. there is no
antiquark contribution). As a consequence, in our model
gtw�3
2 ðxB;Q2Þ satisfies, in addition to the Burkhardt-

Cottingham sum rule (104), also the Efremov-Leader-
Teryaev sum rule [55]:

Z 1

0
dxBxBg

tw�3
2 ðxB;Q2Þ ¼ 0: (105)

For the second moments one obtains

d2;p ¼ 3
Z 1

0
dxBx

2
Bg

tw�3
2;p ðxBÞ

¼ 5

32
AfN

�
�g
2

�
1þ 5aþ b

12

�
þ �g

3

�
1þ aþ 5b

12

��
;

d2;n ¼ 3
Z 1

0
dxBx

2
Bg

tw�3
2;n ðxBÞ

¼ � 5

32
AfN

�
�g
2

�
1þ b� 5a

12

�
þ �g

3

�
1þ a� 5b

12

��
:

(106)

The corresponding numerical values are, at the 1 GeV
scale,

d2;p ¼ 0:0016; d2;n ¼ �0:000 72: (107)

Both numbers compare very well to the lattice QCD [56],
QCD sum rules [6,57], and chiral quark soliton model [58]
calculations. The negative value of d2 for the neutron (in all
models) is in conflict, however, with the existing experi-
mental average:

BRAUN et al. PHYSICAL REVIEW D 83, 094023 (2011)

094023-14



d
exp
2;p ¼ 0:0032� 0:0017 ½59�;

dexp2;n ¼ 0:0062� 0:0028 ½61�:
(108)

Note that in this comparison the target mass corrections
have to be subtracted; see e.g. [62–65].

Further, a straightforward calculation gives

gtw�3
2;p ðxBÞ ¼ 0:0436772ðlnxB þ �xB þ 1

2
�x2BÞþ �x3Bð1:57357

� 5:94918�xB þ 6:74412�x2B � 2:19114�x3BÞ;
gtw�3
2;n ðxBÞ ¼ 0:0655158ðlnxB þ �xB þ 1

2
�x2BÞþ �x3Bð0:130996

� 1:12101�xB þ 2:31342�x2B � 1:20598�x3BÞ
(109)

(at the reference scale of 1 GeV) for the proton and
neutron, respectively. Here �xB ¼ 1� xB.

Our results for the full structure function g2ðxB;Q2Þ are
compared to the experimental data [59–61,76] in Fig. 7

(upper panels) and, separately, for the twist-three contri-
bution gtw�3

2 ðxBÞ to the analysis in Ref. [11] (lower panels).
The twist-three contributions are shown at the model scale
Q2 ¼ 1 GeV2 and after the evolution to a higher scale
Q2 ¼ 10 GeV2. The scale dependence was calculated in
two ways: using exact (one-loop) evolution equations for
the relevant quark-antiquark-gluon correlation functions
from Ref. [52] (dashed curves), and using the much sim-
pler evolution equation from Refs. [8,66] which is based on
the large-Nc and large-xB approximations and only in-
volves the gtw�3

2 ðxBÞ structure function itself (dotted

curves). Since we are interested primarily in the large-xB
region, we used flavor-nonsinglet evolution equations,
which are simpler. The results of both approaches almost
coincide within the line thickness. A good accuracy of this
approximation was expected but has never been checked in
a dynamical model calculation. Note that effects of the
evolution are generally significant because of large anoma-
lous dimensions of twist-three operators, and have to be
taken into account in the analysis of the experimental data.

FIG. 7 (color online). Upper panels: Experimental results on the proton (left) and neutron (right) structure function g2ðxB;Q2Þ
compared to our model calculation at the scale Q2 ¼ 1 GeV2. Lower panels: The twist-three contributions xgtwist-32 2ðxB;Q2Þ for the
proton (left) and neutron (right) compared to the analysis in Ref. [11] (shaded areas). Our model predictions at the scale Q2 ¼ 1 GeV2

and Q2 ¼ 10 GeV2 are shown by the black solid and dashed red curves, respectively. The predictions at 10 GeV2 obtained using an
approximate evolution equation from Refs. [8,66] are shown by the red dotted curves for comparison.
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As seen from Fig. 7, the twist-three contribution to the
structure function g2ðxB;Q2Þ at large xB proves to be
positive for the proton and negative for the neutron. This
prediction can be traced to the relative signs of the three-
quark-gluon couplings and is largely model independent. It
is in agreement with Ref. [11]. In the intermediate region
0:2< xB < 0:5 the twist-three contribution gtw�3

2;p ðxBÞ
changes sign and becomes negative in our calculation,
whereas it remains positive according to the data analysis
in Ref. [11]. This difference may well be due to contribu-
tions of higher Fock states, with two or more gluons, and
probably also partially remedied by using a more sophis-
ticated model for the three-quark-gluon wave function. A
detailed analysis would be interesting but goes beyond the
tasks of this paper. Another issue is that in [11] the
Efremov-Leader-Teryaev sum rule is strongly violated,

which suggests the existence of a large positive flavor-
singlet contribution at xB � 0:1 due to gluons or sea
quark-antiquark pairs. Such contributions are related to
the twist-three three-gluon correlation functions and are
missing in our present framework.

C. Single spin asymmetries

The quark-antiquark-gluon correlation functions consid-
ered in this work are precisely those responsible for trans-
verse SSAs observed in different hadronic reactions, if
described in the framework of collinear factorization
[12–22]. The distributions T �qFqðxÞ, �T �qFqðxÞ introduced

in this context in Ref. [52] are expressed in terms of Q"ð#Þ
q

functions as follows:

T �qFqðx1; x2; x3Þ ¼ 1

4
½ð1þ P 13ÞSþðxÞ þ ð1� P 13ÞS�ðxÞ�

¼ � g

2
½Q"

qðx3; x2; x1Þ þQ"
qð�x1;�x2;�x3Þ þQ#

qðx1; x2; x3Þ þQ#
qð�x3;�x2;�x1Þ�;

�T �qFqðx1; x2; x3Þ ¼ � 1

4
½ð1� P 13ÞSþðxÞ þ ð1þ P 13ÞS�ðxÞ�

¼ � g

2
½Q"

qðx3; x2; x1Þ �Q"
qð�x1;�x2;�x3Þ �Q#

qðx1; x2; x3Þ þQ#
qð�x3;�x2;�x1Þ�:

(110)

A common notation [67] is to show quark momenta only:

T q;Fðx; x0Þ � T �qFqð�x0; x0 � x; xÞ;
T �q;Fðx; x0Þ � �T �qFqð�x0; x0 � x; xÞ:

(111)

Written in this way, the distributions are symmetric (anti-
symmetric) functions of the arguments: T q;Fðx; x0Þ ¼
T q;Fðx0; xÞ and �T q;Fðx; x0Þ ¼ ��T q;Fðx0; xÞ. Yet an-
other notation for the same functions in a different normal-
ization is used in the recent analysis in Ref. [68]:

Gq
Fðx; x0Þ � � 2

mN

T �qFqð�x0; x0 � x; xÞ;

~Gq
Fðx; x0Þ �

2

mN

�T �qFqð�x0; x0 � x; xÞ:
(112)

In the framework of collinear factorization, SSAs origi-
nate from imaginary (pole) parts of propagators in the hard
coefficient functions. In the leading order, taking a pole
part enforces vanishing of one of the momentum fractions
in the twist-three parton distribution, which are classified
as SGP or SFP, respectively, depending on which momen-
tum is put to zero. Such ‘‘pole’’ contributions are therefore
considered to be the main source of the observed asymme-
tries and can be estimated from the available experimental
data [68,69].

Since our approximation for the nucleon wave function
does not contain antiquarks, the T �qFq, �T �qFq distributions

are nonzero in the ð23Þþ1� and ð12Þ�3þ regions only,
cf. Fig. 4. Moreover, both distributions vanish at the
boundaries of parton regions, where one of the momentum
fractions goes to zero, and, hence, both SGP and SFP terms
vanish as well. This property is an obvious artefact of the
truncation of the Fock expansion to a few lowest compo-
nents: The LCWF of each Fock state vanishes whenever
the momentum fraction of any parton goes to zero and the
same property holds true for the correlation functions. Our
model for the gluon distribution xgðxÞ in Fig. 1 vanishes at
x ! 0 for the very same reason.
For the leading-twist parton distributions, a possible way

out is to assume the valence-type input at a certain low
scale, and construct realistic dynamical models by apply-
ing QCD evolution equations that include multiple soft
gluon radiation. This approach was suggested by GRV
[27,28] and proved to be very successful phenomenologi-
cally. Exploiting the same idea for the twist-three distribu-
tions is suggested.
It is easy to see that both the SGP and SFP contributions

reappear once QCD evolution is taken into account.
The full one-loop evolution equation for the functions
T �qFq, �T �qFq is rather cumbersome and can be found in

[52]. For our present purposes the flavor-nonsinglet evolu-
tion equation is sufficient. Restricting ourselves to the
SGP kinematics x2 ! 0, one obtains, to one-loop
accuracy,
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T q;Fðx; x;�2Þ ¼ T q;Fðx; x;�2
0Þ þ

�s

2	
ln
�2

�2
0

�Z 1

x

d�

�
½PqqðzÞT q;Fð�; �Þ þ Nc

2

1þ z

1� z
T q;Fðx; �Þ � Nc

2

1þ z2

1� z
T q;Fð�; �Þ

� Nc

2
T �q;Fðx; �Þ þ 1

2Nc

ð1� 2zÞT q;Fðx; x� �Þ � 1

2Nc

T �q;Fðx; x� �Þ� � NcT q;Fðx; xÞ
�
�2

0
; (113)

where it is assumed that x > 0, PqqðzÞ is the usual Altarelli-
Parisi splitting function, and z ¼ x=�. Even if
T q;Fðx; x;�2

0Þ ¼ 0, a nonzero SGP contribution is gener-
ated at a higher scale �2. It is given by a certain integral of
T �qFq, �T �qFq away from the line x2 ¼ 0, and involves large
quark momentum fractions only, � > x. [For a detailed
discussion of integration regions in Eq. (113), see Ref. [52].]

One difficulty in following the GRVapproach is that the
initial condition for the evolution has to be taken at a very
low scale �2

GRV ’ 0:25 GeV2 [27,28], whereas our model

is formulated at �2
0 ¼ 1 GeV2. The advantage of using the

higher scale is that we have been able to use QCD pertur-
bation theory and operator product expansion to get some
insight into the structure of the lowest Fock states, but the
price to pay is that the nucleon at the 1 GeV scale already
contains significant admixture of yet higher states, with
several gluons and quark-antiquark pairs, which we do not
know much about. These additional contributions are not
taken into account in this work, and this is the reason that
we underestimate parton distributions at small x, cf. Fig. 1.

A consistent implementation of the GRV program would
require us to give up QCD motivated models for the qqq
and qqqg states and resort to purely phenomenological
parametrizations. We leave this study for future work.
Instead, in what follows we show the results corresponding
to the evolution of our model twist-three parton distribu-
tion from 1 GeV2 to an ad hoc scale �2 ¼ 10 GeV2. This
calculation should be considered as an illustration, since
effects of the QCD evolution from the GRV scale �2

GRV ’
0:25 GeV2 are, generally, much larger.

As an example, in Fig. 7 we show the quark-antiquark-
gluon twist-three correlation function T �dFdðxÞ (with oppo-
site sign) at the model scale�2 ¼ 1 GeV2 (left panels) and
after the evolution to �2 ¼ 10 GeV2 (right panels). As
already mentioned above, in our model (left panels) this
correlation function is only nonzero in the two leftmost
triangle regions corresponding to emission and subsequent
absorption of the (valence) quark. The upper and the lower
triangles correspond to gluon emission and absorption,
respectively. The longest diagonals of the hexagon, con-
necting diametrically opposite vertices, correspond to van-
ishing of one of the parton momentum fractions. In
particular, on the horizontal diagonal x2 ¼ 0 (i.e. it corre-
sponds to the SGP kinematics), and on the other two
diagonals either x1 ¼ 0 or x3 ¼ 0, so they stand for the
SFPs. The two triangles that come next to the right, and
include the upper (or the lower) edges of the hexagon,
correspond to the contributions of the type shown in
Fig. 3, where a gluon is emitted and a quark-antiquark
pair is absorbed (or vice versa). These contributions are
thus analogous to the so-called ERBL regions in off-
forward parton distributions and, formally, are of higher
order in the Fock expansion. Finally, the two rightmost
triangles correspond to the antiquark distributions.
Once the QCD evolution is taken into account, different

parton regions get mixed. In particular, the gap between the
x2 > 0 and x2 < 0 regions closes and the SGP term ap-
pears; see Fig. 7 (right panels). The SFP terms are also
generated, but remain very small because the correspond-
ing terms in the evolution equations are 1=NC suppressed.

FIG. 8 (color online). The quark-antiquark-gluon twist-three correlation function�T �dFdðxÞ at the reference scale �2 ¼ 1 GeV2 (left
diagram) and �2 ¼ 10 GeV2 (right diagram).
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The radiatively generated SGP distributions Gq
Fðx; xÞ at

Q2 ¼ 10 GeV2 are shown in Fig. 8 and compared there
with the results of phenomenological studies of spin asym-
metries in high transverse momentum meson production in
pp collisions [68,69]. Our distributions are of the same
sign and similar shape compared to these studies, but about
1 order of magnitude smaller. It is plausible that much
larger SGP contributions can be generated from the similar
valencelike ansatz if the QCD evolution is started at a low
scale of the order of �2

GRV ’ 0:25 GeV2 [27,28]. The SFP

contributions that we obtain in this exercise appear to be 2
orders of magnitude below the estimates in Ref. [68], albeit
with the correct sign. It is unlikely that such large contri-
butions can be obtained radiatively starting from the va-
lencelike ansatz, unless one assumes the existence of
antiquarks with a large momentum fraction at low scales
in the proton WF.

VI. CONCLUSIONS

In this work we explored the possibility to construct
higher-twist parton distributions in a nucleon at some low
reference scale from convolution integrals of the light-cone
wave functions.

To this end we have studied the general structure and
introduced simple models for the four-particle nucleon
LCWFs involving three valence quarks and a gluon with
total orbital momentum zero, and estimated their normaliza-
tion (WF at the origin) usingQCD sum rules.We have shown
that truncating the Fock expansion at this order, that is, taking
into account the valence three-quark configuration and those
with one additional gluon, provides one with a reasonable
description of both polarized and unpolarized parton den-
sities at large values of the Bjorken variable x � 0:5.

Using this set of LCWFs, twist-three quark-antiquark-
gluon parton distributions have been constructed as
convolution integrals of qqqg and valence three-quark

components, which enter the description of many hard
reactions in QCD in the framework of collinear factoriza-
tion. In particular, the twist-three contribution to the po-
larized structure function g2ðx;Q2Þ is given by a certain
integral of the three-particle distribution over the parton
momentum fractions, and thus is a measure of its ‘‘global’’
properties. Our calculation correctly reproduces the sign
and the order of magnitude of the twist-three term at large
x, without free parameters.
Transverse single spin asymmetries, on the other hand,

are sensitive to ‘‘local’’ properties of the three-particle
correlation functions in specific configurations where one
of the momentum fractions vanishes. Since our approxima-
tion for the nucleon wave function only includes a few
lowest Fock components, and since the LCWF of each
Fock state vanishes whenever the momentum fraction of
any parton goes to zero, both ‘‘soft gluon pole’’ and ‘‘soft
fermion pole’’ terms vanish at the scale where the model is
formulated. They are, however, generated by QCD evolu-
tion that brings in multiple soft gluon emission. Our results
suggest that realistic dynamical models of the twist-three
distributions (and the pole terms) can be obtained following
the GRV-like approach on the level of WFs, i.e. assuming
that the nucleon state at a very low scale can be described in
terms of a few Fock components, including the valence
quarks, one additional gluon and, probably, a quark-
antiquark pair, and applying QCD evolution equations.
An obvious problem with this strategy is that the starting

scale has to be very low, of the order of�2
GRV ’ 0:25 GeV2

[27,28], and thus the modeling of the wave functions
necessarily becomes purely phenomenological. In spite
of this, and the usual criticism of the application of per-
turbative QCD evolution equations at very low scales, we
believe that such an approach has a good chance to provide
us with some intuition on the structure of higher-twist
parton distributions in general, which is currently not
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FIG. 9 (color online). Radiatively generated SGP distributions Gq
Fðx; xÞ atQ2 ¼ 10 GeV2 rescaled by a factor 10, shown by the solid

curves, as compared to the phenomenological studies of spin asymmetries in high transverse momentum meson production in pp
collisions [68,69].
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available. This work is in progress and the results will be
published elsewhere.
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APPENDIX: QCD SUM RULES FOR THE
QUARK-GLUON WAVE FUNCTIONS

AT THE ORIGIN

The definitions of quark-gluon twist-four nucleon DAs
(43) [26] can be rewritten in conventional Dirac bispinor
notation as follows:

ig�ijkh0j½ui#ðz1ÞCnuj" ðz2Þ���ndl#ðz3ÞFkl
n�ðz4Þjpi ¼ 1

4
mNp

2þnN"ðpÞ
Z
½dx�3e�ipþ

P
xizi�g

4ðxÞ;

ig�ijkh0j½ui"ðz1ÞCnul#ðz2Þ���ndk# ðz3ÞFjl
n�ðz4Þjpi ¼ 1

4
mNp

2þnN"ðpÞ
Z
½dx�3e�ipþ

P
xizi�g

4ðxÞ;

ig�ijkh0j½ui#ðz1ÞC��nd
j
# ðz2Þ�nul#ðz3ÞFkl

n�ðz4Þjpi ¼ 1

4
mNp

2þnN"ðpÞ
Z
½dx�3e�ipþ

P
xizi�g

4ðxÞ;

(A1)

where Fkl
n� � n�Fa

��ðtaÞkl. The normalization of the DAs is determined by the matrix elements of the corresponding local
operators. In what follows we estimate these matrix elements using the classical Shifman-Vainshtein-Zakharov QCD sum
rule approach [70].

To this end we define isospin-1=2 twist-four quark-gluon operators:

�g
1ðxÞ ¼ 2

3ig�
ijk½ðuiðxÞCnujðxÞÞ��ndlðxÞ � ðuiðxÞCndjðxÞÞ��nulðxÞ�Fkl

n�ðxÞ;
�g
2ðxÞ ¼ 2

3ig�
ijk½ðuiðxÞC�5nu

lðxÞÞ��ndkðxÞ � ðuiðxÞC�5nd
lðxÞÞ��nukðxÞ�Fjl

n�ðxÞ;
�g
3ðxÞ ¼ 2

3ig�
ijk½ðuiðxÞC��nujðxÞÞndlðxÞ � ðuiðxÞC��ndjðxÞÞnulðxÞ�Fkl

n�ðxÞ:
(A2)

Matrix elements of these operators sandwiched between
the vacuum and the proton state are related to the couplings
introduced in Eq. (46):

h0j�g
1ð0Þjpi ¼ �1

4ð�g
2 � 1

3�
g
3ÞmNp

2þn�5NðpÞ;
h0j�g

2ð0Þjpi ¼ 1
6ð�g

2 þ �g
3ÞmNp

2þnNðpÞ;
h0j�g

3ð0Þjpi ¼ 1
6ð�g

1 þ �g
3ÞmNp

2þn�5NðpÞ:
(A3)

The sum rules are derived for the correlation functions of
�g
kðxÞ with the three-quark operators [71,72]

�1ðxÞ ¼ �ijk½uiðxÞC��u
jðxÞ��5�

�dkðxÞ;
�2ðxÞ ¼ �ijk½uiðxÞC���u

jðxÞ��5�
��dkðxÞ: (A4)

The corresponding couplings are well known from numer-
ous QCD sum rule calculations,

h0j�1ð0Þjpi ¼ �1mNNðpÞ; �1 ’ �2:7� 10�2 GeV2;

h0j�2ð0Þjpi ¼ �2mNNðpÞ; �2 ’ 5:4� 10�2 GeV2;

(A5)

where the numbers correspond to leading-order QCD sum
rule results at the 1 GeV scale; see e.g. [40].

In particular, we consider the following correlation
functions:

i

4
Tr

�
�5

Z
d4xeipxh0jTf�g

1ðxÞ ��1ð0Þgj0i
�
¼ p3þ�

g
1ðp2Þ;

i

4
Tr

�Z
d4xeipxh0jTf�g

2ðxÞ ��1ð0Þgj0i
�
¼ p3þ�

g
2ðp2Þ;

i

4
Tr

�
�5

Z
d4xeipxh0jTf�g

3ðxÞ ��2ð0Þgj0i
�
¼ p3þ�

g
3ðp2Þ:

(A6)

The sum rules are derived from the matching of the QCD
calculation of the invariant functions �g

kðp2Þ at Euclidean
p2 ��1 GeV2 with the dispersion integral representation,
where the nucleon contribution is written explicitly:

�g
1ðp2Þ ¼ 1

4
m2

N

ð�g
2 � �g

3=3Þ�1

m2
N � p2

þ . . . ;

�g
2ðp2Þ ¼ 1

6
m2

N

ð�g
2 þ �g

3Þ�1

m2
N � p2

þ . . . ;

�g
2ðp2Þ ¼ � 1

6
m2

N

ð�g
1 þ �g

3Þ�2

m2
N � p2

þ . . . ;

(A7)
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and the contributions of higher states and the continuum
are modeled in the usual way as the QCD spectral density
above a certain threshold,

ffiffiffiffiffi
s0

p � 1:5 GeV, dubbed the

interval of duality. On the QCD side, we take into account
contributions of perturbation theory and vacuum conden-
sates of dimensions 4 and 6, as shown in Fig. 10. The
leading-order contributions of dimension 8 vanish for all
cases.

Proceeding with the standard technique we derive the
following set of sum rules:

2ð2	Þ4ð�g
2 � �g

3=3Þ�1m
2
Ne

�ðm2
N=M

2Þ

¼ � �s

45	
M6E3 � b

12
M2E1 � 8�s

9	
a2;

2ð2	Þ4ð�g
2 þ �g

3Þ�1m
2
Ne

�ðm2
N=M

2Þ

¼ � �s

45	
M6E3 � b

12
M2E1 � 40�s

27	
a2;

2ð2	Þ4ð�g
1 þ �g

3Þ�2m
2
Ne

�ðm2
N=M

2Þ

¼ �s

15	
M6E3 þ b

4
M2E1 þ 8�s

3	
a2;

(A8)

where M2 is the Borel parameter,

En ¼ 1� e�ðs0=M2Þ Xn�1

k¼0

1

k!

�
s0
M2

�
k

(A9)

and

a ¼ �ð2	Þ2h �qqi ¼ ð0:55� 0:06Þ GeV3;

b ¼ 4	h�sF
2i ¼ ð0:47� 0:14Þ GeV4

(A10)

are the quark and gluon condensates, respectively, at the
1 GeV scale.

For the numerical analysis we substitute the coupling �1

in the first two equations in (A8) by the square root of the
‘‘Ioffe sum rule’’ [71],

2ð2	Þ4j�1j2m2
Ne

�ðm2
N=M

2Þ

¼ M6E3 þ b

4
M2E1 þ a2

3

�
4� 4

3

m2
0

M2

�
; (A11)

where m2
0 ¼ h �qg�Fqi=h �qqi ’ 0:65 GeV2, and we take

into account that �1 is negative (which is a convention).
Assuming the ‘‘working window’’ in the Borel parameter
M2 � 1–2 GeV2 and taking into account uncertainties in
the vacuum condensates and the continuum thresholdffiffiffiffiffi
s0

p ¼ 1:4–1:6 GeV, we obtain the numbers given in

Eq. (46); see Fig. 11. Taking into account that, to a good
accuracy, �2 ¼ �2�1, we get 2

3�
g
1 ¼ �g

2 � �g
3 . This rela-

tion holds to the approximation considered here (leading-
order QCD sum rules) independent of the values of the
vacuum condensates and other parameters. It can, however,
only be valid on a certain (low) normalization scale, as the
anomalous dimensions of the couplings are different,
cf. (50).

FIG. 11 (color online). The coupling �g
2 (in units of GeV2)

(upper panel) and the ratio �g
3=ð3�g

2Þ (lower panel) as a function
of the Borel parameter M2 for the central values of the con-
densates (A10), �sð1 GeVÞ ¼ 0:5. The solid line corresponds toffiffiffiffiffi
s0

p ¼ 1:4 GeV and the dashed line to
ffiffiffiffiffi
s0

p ¼ 1:6 GeV.

FIG. 10. Leading-order contributions to the OPE of the corre-
lation functions in Eq. (A6).
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