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We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible

with the entropy principle of the second law of thermodynamics and the charge/energy-momentum

conservation equations. In general an anomalous source term is necessary to ensure that the equations for

the charge and energy-momentum conservation are satisfied and that the correction terms of distribution

functions are compatible to these equations. The constraining equations from the entropy principle are

derived for the anomaly-induced leading order corrections to the particle distribution functions. The

correction terms can be determined for the minimum number of unknown coefficients in one charge and

two charge cases by solving the constraining equations.
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I. INTRODUCTION

The experiments at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) pro-
vide several pieces of evidence that the quark gluon plasma
(QGP) may have been generated and is strongly coupled or
nearly a perfect fluid (called sQGP), contrary to the con-
ventional picture of the QGP as a weakly interacting gas of
quarks and gluons (for reviews, see e.g. [1–3]). Relativistic
hydrodynamics [4–7] is a useful tool to describe the
space-time evolution of the fireball formed in heavy ion
collisions. The RHIC data for collective flows have been
well described by the ideal and dissipative hydrodynamics
[8–15].

The correspondence of relativistic hydrodynamics to
charged black branes was investigated by AdS/CFT duality
[16,17]. A new term associated with the axial anomalies
was found in the first order dissipative hydrodynamics (see,
e.g., Ref. [18] about holographic hydrodynamics with
multiple/non-Abelian symmetries, or Ref. [19] in Sakai-
Sugimoto model). Recently the new term has been derived
in hydrodynamics with a triangle anomaly [20]. A similar
result was also obtained in the microscopic theory of the
superfluid [21]. This problem is closely related to the so-
called Chiral Magnetic Effect (CME) in heavy ion colli-
sions [22–25]. When two energetic nuclei pass each other a
strong magnetic field up to 1018 G is formed, which breaks
local parity via axial anomaly. This effect may be observed
through charge separation. Hydrodynamics in an external
background field can be used to pin down the CME in real
time simulation. However the anomalous term in the
charge current breaks the second law of thermodynamics
unless new terms of vorticity and magnetic field are intro-
duced in the charge and entropy currents [20].

In this paper, we try to provide a consistent description
of the kinetic equation with a triangle anomaly. We will
derive the kinetic equation to the next to leading order
as well as the leading order correction to the particle

distribution function arising from anomaly. These results
are compatible with the entropy principle of the second
law of thermodynamics and the charge/energy-momentum
conservation equations.
This paper is organized as follows. In Sec. II, we will

derive constraining equations from the entropy principle
for the correction terms in distribution functions in the
most simple case with one charge and one particle species
(without antiparticles). In Sec. III, we will show that an
anomaly source term is necessary in general to ensure that
the equations for the charge and energy-momentum con-
servation are satisfied and that the correction terms of
distribution functions are compatible to these equations.
In Sec. IV and V, we will solve the constraining equations
to obtain the correction terms of distribution functions in
the one-charge (with antiparticles) and two-charges
cases. Finally, we summarize and make conclusions in
Sec. VI. We adopt the convention for the metric tensor
g�� ¼ diagðþ;�;�;�Þ.

II. CONSTRAINING DISTRIBUTION FUNCTION
WITH ANOMALY COMPATIBLE TO SECOND

LAW OF THERMODYNAMICS

In this and the next sections we will consider the most
simple case with one charge and one particle species
(without antiparticles). The relativistic Boltzmann equa-
tion for the on shell phase space distribution fðx; pÞ in a
background electromagnetic field F�� ¼ @�A� � @�A� is

given by

p�

�
@

@x�
�QF��

@

@p�

�
fðx; pÞ ¼ C½f�; (1)

where the charge of the particle isQ ¼ �1. Here p denotes
the on shell 4-momentum satisfying p2 ¼ m2 where m is
the particle mass. We note that C½f� contains a normal
collision term C0½f� and a source term from anomaly
CA½f�, C½f� ¼ C0½f� þ CA½f�. We assume that CA½f� is at
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most of the first order, a small quantity. The necessity for
the source term is to make the charge conservation equa-
tion hold:

@�j
� ¼ �CE�B� � �CE � B: (2)

Here j� is the charge current and E� ¼ u�F
�� and

B� ¼ 1
2 �����u

�F�� are electric and magnetic field vec-

tors, respectively, where u� is the fluid velocity and

����� ¼ ������ ¼ �1; 1 for the order of Lorentz indices

ð����Þ is an even/odd permutation of (0123). However,
the presence of the source term should not influence the
energy-momentum conservation:

@�T
�� ¼ F��j�: (3)

One can verify that the equilibrium solution of the
distribution function,

f0 ¼ 1

exp½�u�ðp� �QF��x�Þ � �Q�0� � e
; (4)

satisfies the collisionless Boltzmann equation (1) in an
external field for constant � ¼ 1=T (T is the local tem-
perature), u� and �0 (local chemical potential without

electromagnetic field). Here e ¼ 0, �1 for Boltzmann,
Bose and Fermi distributions, respectively. When �, u�
and �0 are not constants but functions of space-time, the
Boltzmann equation (1) is not satisfied automatically. Note
that we can absorb �Qx�u�F

�� ¼ Qx � E into �0 so that

f0 has the form of an equilibrium distribution function:

f0ðx; pÞ ¼ 1

eðu�p�Q�Þ=T � e
; (5)

where � � �0 � x � E.
We assume that the distribution function f in presence of

an anomaly is a solution of the Boltzmann equation with
collision terms in Eq. (1), where �, u� and� are functions

of space-time. Generally fðx; pÞ can be written in the
following form:

fðx; pÞ ¼ 1

eðu�p�Q�Þ=Tþ�ðx;pÞ � e
¼ f0ðx; pÞ þ f1ðx; pÞ;

(6)

where f0ðx; pÞ is given in Eq. (5) and f1ðx; pÞ is the first
order deviation from it:

f1ðx; pÞ ¼ �f0ðx; pÞ½1þ ef0ðx; pÞ��ðx; pÞ: (7)

It is known that a magnetic field is closely related to a
charge rotation characterized by vorticity. So we introduce
into the distribution function terms associated with the
vorticity-induced current !� ¼ 1

2 �����u
�@�u� and the

magnetic field 4-vector B� which are assumed to be of

the first order, which provide a leading order correction to
the particle distribution function. For simplicity we will
neglect viscous and diffusive effects throughout the
paper, then the ordinary form in the current scheme for
�ðx; pÞ reads

�ðx; pÞ ¼ �ðpÞp �!þ �BðpÞp � B; (8)

where �ðpÞ and �BðpÞ are functions of �, T, and u � p and
have mass dimension �2 and �3, respectively. We will
show that �ðpÞ and �BðpÞ must depend on momentum
otherwise they will contradict the entropy principle from
the second law of thermodynamics.
Using Eq. (6) we can decompose the charge and entropy

currents and the stress tensor into equilibrium values and
the leading order (first order) corrections as j� ¼ j

�
0 þ j

�
1 ,

S� ¼ S
�
0 þ S

�
1 and T�� ¼ T

��
0 þ T

��
1 with

j
�
0;1ðxÞ ¼ Q

Z
½dp�p�f0;1ðx; pÞ;

S
�
0 ðxÞ ¼ �

Z
½dp�p�c ðf0Þ;

S�1 ðxÞ ¼ �
Z
½dp�p�c 0ðf0Þf1;

T��
0;1 ðxÞ ¼

Z
½dp�p�p�f0;1ðx; pÞ;

(9)

where we have defined ½dp� � dg
d3p

ð2�Þ3ðu�pÞ (dg is the

degeneracy factor), c ðf0Þ ¼ f0 lnðf0Þ � eð1þ ef0Þ�
lnð1þ ef0Þ and c 0ðf0Þ ¼ ln½f0=ð1þ ef0Þ� ¼ �ðu � p�
Q�Þ=T. Inserting f0 into the above formula, we obtain the
charge and entropy currents and the stress tensor in equi-
librium, j

�
0 ¼ nu�, S

�
0 ¼ su� and T

��
0 ¼ ð�þ PÞu�u� �

Pg��, with the energy density ", the pressure P, the
particle number density n and the entropy density s ¼
ð�þ P� n�Þ=T. Using Eqs. (7)–(9), we obtain

j�1 ¼ 	!�þ	BB
�;

T��
1 ¼DTðu�!�þu�!�ÞþDBTðu�B�þu�B�Þ;
S
�
1 ¼��

T
ð	!�þ	BB

�Þþ ðD!�þDBB
�Þ;

(10)

where

	¼�QJ�21�
1

3
Q
Z
½dp�½ðp �uÞ2�m2�f0ð1þef0Þ�ðpÞ;

	B¼�QJ�B

21 �
1

3
Q
Z
½dp�½ðp �uÞ2�m2�f0ð1þef0Þ�BðpÞ;

D¼�J�31
T

� 1

3T

Z
½dp�½ðp �uÞ2�m2�ðp �uÞf0ð1þef0Þ�ðpÞ;

DB¼�J�B

31

T

� 1

3T

Z
½dp�½ðp �uÞ2�m2�ðp �uÞf0ð1þef0Þ�BðpÞ:

(11)

On the other hand, 	, 	B, D and DB as functions
of � and T can be determined by the second law of
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thermodynamics or the entropy principle together with
Eqs. (2) and (3). We find that @�ðsu� þ S

�
1 Þ cannot be

positive definite unless we make a shift to introduce a new

entropy current ~S� as follows:

~S � ¼ su�þS
�
1 �ðD!�þDBB

�Þ
¼ su���

T
ð	!�þ	BB

�Þ

¼ 1

T
ðPu���j�þu�T

��Þ� ðD!�þDBB
�Þ: (12)

We will use the thermodynamic relation

@�ðPu�Þ ¼ j
�
0 @� ��� T

��
0 @�u� (13)

and the identities

u�u�@�!� ¼ 1

2
@�!

�;

u�u�@�B� ¼ @�B
� � 2!
E
;

@�!
� ¼ � 2

�þ P
ðn!�E� þ!�@�PÞ;

@�B
� ¼ 2!
E
 � 1

�þ P
ðnB�E

� þ B�@�PÞ;

(14)

to evaluate @� ~S
�. We have used the shorthand notation

�� � �=T in Eq. (13). Following the same procedure as in
Ref. [20], we obtain

@� ~S
� ¼ !�

�
	SS@� ��� @�Dþ 2D

�þ P
@�P

�

þ B�

�
	SS
B @� ��� @�DB þ DB

�þ P
@�P

�

þ E �!
�
1

T
	SS þ 2nD

�þ P
� 2DB

�

þ E � B
�
1

T
	SS
B þ C

�A

T
þ nDB

�þ P

�
; (15)

where we have defined

	SS ¼ DTn

�þ P
� 	; 	SS

B ¼ DBTn

�þ P
� 	B: (16)

For the constraint @� ~S
� � 0 to hold, we impose that all

quantities inside the square brackets should vanish. We
finally obtain

D ¼ 1

3
C
�3

T
; DB ¼ 1

2
C
�2

T
;

	 ¼ �C
sT�2

�þ P
; 	B ¼ �C

sT�

�þ P
:

(17)

Using Eqs. (16) and (17), one can verify that the values of
	SS and 	SS

B are identical to Ref. [20]. The difference
between our values in Eq. (17) and those in Ref. [20] arises
from the fact that we do not use the Landau frame, while
the authors of Ref. [20] do. By equating Eq. (11) and (17),
we obtain equations for � and �B

QJ�21 ¼ �	; J�31 ¼ �DT;

QJ�B

21 ¼ �	B; J�B

31 ¼ �DBT:
(18)

Equation (18) forms a complete set of constraints for � and
�B. We note that � and �B must depend on momentum in
general. If � and �B are constants, we would obtain

	

DT
¼ 	B

DBT
¼ Q

J21
J31

; (19)

which contradicts Eq. (17) from the entropy principle.
We can expand �ðpÞ and �BðpÞ in powers of u � p:
�ðpÞ ¼ X

i¼0

�iðu � pÞi; �BðpÞ ¼
X
i¼0

�B
i ðu � pÞi: (20)

So we obtain the following expressions:

J�n1 ¼
X
i¼0

�iJiþn;1; J�B

n1 ¼ X
i¼0

�B
i Jiþn;1; (21)

for n ¼ 2, 3. Here the functions Jnq are integrals defined in

Ref. [7,11]:

Jnq ¼ ð�1Þq 1

ð2qþ 1Þ!!
Z d3p

ð2�Þ3ðu � pÞ ½ðu � pÞ2 �m2�q

� ðu � pÞn�2qf0ð1þ ef0Þ: (22)

Using Eqs. (20) and (21) in Eq. (18), we can constrain the
coefficients �i and �B

i . If we expand both �ðpÞ and �BðpÞ
to the first power of u � p, we can completely fix the
coefficients �0;1 and �B

0;1 from Eq. (18) since we have

two equations for �0;1 and two for �B
0;1:

QJ21 QJ31
J31 J41

� �
�0

�1

� �
¼ �	

�DT

� �
; (23)

whose solutions to �0;1 are

�0

�1

� �
¼ 1

QðJ21J41 � J231Þ
�	J41 þDTQJ31
	J31 �DTQJ21

� �
: (24)

The equations and solutions for �B
0;1 are in the same form

as Eqs. (23) and (24) with replacements �0;1 ! �B
0;1,

	 ! 	B and D ! DB.
For massless fermions and small ��, the results are

�0 ��CG1

�2

T4
; �1 �CG2

�2

T5
; �B

0 �
�0

�
; �B

1 �
�1

�
;

(25)

where G1 and G2 are two constants, G1 �
607500�2�ð5Þ=ðdgG0Þ and G2 � 1260�6=ðdgG0Þ with

G0 � 455625�ð3Þ�ð5Þ � 49�8. We notice that theD terms
in Eq. (24) are negligible, so the solutions are proportional
to 	.
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III. COLLISION AND ANOMALOUS
SOURCE TERMS

In this section we will show that a general form of
�ðpÞ and �BðpÞ are compatible to the charge and energy-
momentum conservation in Eqs. (2) and (3). We will also
derive equations for the collision and anomalous source
terms. For simplicity we consider the single charge case
without antiparticles.

The charge conservation in Eq. (2) can be derived from
the Boltzmann equation (1) as

@�j
�ðxÞ ¼

Z d3p

ð2�Þ3Ep

p�@�fðx; pÞ

¼
Z d3p

ð2�Þ3Ep

p�F��

@f

@p�

þ
Z d3p

ð2�Þ3Ep

C½f�

¼
Z d3p

ð2�Þ3Ep

C½f�; (26)

where have used the identity

Z d3p

2Ep

p�F��

@f

@p�

¼
Z

d4p�ðp0Þðp2 �m2Þp�F��

@f

@p�

¼ �
Z

d4p
@

@p�

� ½�ðp0Þðp2 �m2Þp�F���f ¼ 0:

(27)

Then the momentum integral of the collision term
must obey

Z d3p

ð2�Þ3Ep

C½f� ¼ �CE � B; (28)

so that Eq. (2) can hold. The energy and momentum
conservation in Eq. (3) can be derived from the
Boltzmann equation (1) as

@�T
�� ¼

Z d3p

ð2�Þ3Ep

p�p�@�f

¼
Z d3p

ð2�Þ3Ep

p�p�F��

@f

@p�

þ
Z d3p

ð2�Þ3Ep

p�C½f�

¼ F��j� þ
Z d3p

ð2�Þ3Ep

p�C½f�; (29)

where we have used

Z d3p

2Ep

p�p�F��

@f

@p�

¼
Z

d4p�ðp0Þðp2 �m2Þp�p�F��

@f

@p�

¼ �
Z

d4p
@

@p�

½�ðp0Þðp2 �m2Þp�p�F���f ¼ F��j�:

(30)

Then we require that the collision term must satisfy

Z d3p

ð2�Þ3Ep

p�C½f� ¼ 0; (31)

so that Eq. (3) can hold.
We can expand C½f� to the second order as

C ½f� ¼ C0½f0 þ f1 þ f2� þ CA½f� � C1 þ C2 (32)

where we have used the property C0½f0� ¼ 0, and defined

C 1 ¼ dC0
df

��������f¼f0

f1 þ CA1;

C2 ¼ dC0
df

��������f¼f0

f2 þ 1

2

d2C0
df2

��������f¼f0

f21 þ CA2:

(33)

Note that the general form for the normal part of C1 is

dC0
df

��������f¼f0

f1 ¼ H�ðu � pÞp �!þH�B
ðu � pÞp � B. When

inserting the distribution function (6) into Boltzmann
equation (1) and using Eq. (32), we obtain the Boltzmann
equations to the first and second order:

p�

�
@

@x�
� F��

@

@p�

�
f0 ¼ C1; (34)

p�

�
@

@x�
� F��

@

@p�

�
f1 ¼ C2: (35)

From Eqs. (33) and (34) we can determine the anomalous
source term of the first order:

CA1 ¼ �H�ðu � pÞp �!�H�B
ðu � pÞp � B

� f0ð1þ ef0Þp�@�½ðu � p��0Þ=T�: (36)

By evaluating the left-hand sides of Eq. (35), we can fix C2
as follows:

C2 ¼ f0ð1þ ef0Þf�½ð1þ 2ef0Þ�@�c 0ðf0Þ þ ð@��Þ�p�p�!� � ½ð1þ 2ef0Þ�B@�c
0ðf0Þ þ ð@��BÞ�p�p�B�

þ
�
��ð1þ 2ef0Þ�þ d�

dðu � pÞ
�
p�p�E�!� þ �p�F��!

� þ
�
��ð1þ 2ef0Þ�B þ d�B

dðu � pÞ
�
p�p�E�B�

þ �Bp
�F��B

� � �p�p�@�!� � �Bp
�p�@�B�g: (37)
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Taking momentum integrals for Eqs. (34) and (35), we
obtain the divergences of charge currents to the first and
second order:

@�j
�
0 ðxÞ ¼

Z
½dp�C1 ¼

Z
½dp�CA1; (38)

@�j
�
1 ðxÞ ¼

Z
½dp�C2; (39)

where we have used the property

Z
½dp�dC0

df

��������f¼f0

f1 ¼
Z
½dp�½H�ðu � pÞp �!

þH�B
ðu � pÞp � B� ¼ 0: (40)

With Eq. (9) and identities in Eq. (14), the left-hand side of
Eq. (39) can be evaluated as

@�j
�
1 ðxÞ ¼ ! � E

�
2	B � 2n	

�þ P

�
� B � E n	B

�þ P

þ!�

�
@�	� 2	

�þ P
@�P

�

þ B�

�
@�	B � 	B

�þ P
@�P

�
: (41)

In order for Eq. (2) to be satisfied, it is required that
@�j

�
0 ðxÞ must have the form

@�j
�
0 ðxÞ ¼ �CB � E� @�j

�
1 ðxÞ

¼ �! � E
�
2	B � 2n	

�þ P

�
� B � E

�
C� n	B

�þ P

�

�!�

�
@�	� 2	

�þ P
@�P

�

� B�

�
@�	B � 	B

�þ P
@�P

�
: (42)

We see that @�j
�
0 ðxÞ is not vanishing but of the second

order though it is superficially a first order quantity. This
is very important otherwise it would lead to @�j

�
1 ðxÞ ¼�CE � B and give rise to incompatible results for 	, 	B,D,

DB with Ref. [20]. Therefore we should keep in mind that it
is the full charge current that satisfies charge conservation
equation (2). We note that the expression of @�j

�
0 ðxÞ in

Eq. (42) also gives the momentum integral of the anoma-
lous source term of the first order:

Z
½dp�CA1 ¼ �! � E

�
2	B � 2n	

�þ P

�
� B � E

�
C� n	B

�þ P

�

�!�

�
@�	� 2	

�þ P
@�P

�

� B�

�
@�	B � 	B

�þ P
@�P

�
: (43)

For the energy and momentum conservation we obtain

@�T
��
0 � F��j0� ¼

Z
½dp�p�C1; (44)

@�T
��
1 � F��j1� ¼

Z
½dp�p�C2: (45)

With Eqs. (9) and (14), we can evaluate the left-hand side
of Eq. (45) as

@�T
��
1 � F��j1� ¼ !�½DT@ � uþ u � @ðDTÞ� þ B�½DBT@ � uþ u � @ðDBTÞ� þ u�f! � Eð2DBT � 2DTn

�þ P
Þ

� E � BDBTn

�þ P
þ! � ½@ðDTÞ � 2DT

�þ P
@P� þ B � ½@ðDBTÞ � DBT

�þ P
@P�g þDTðu � @!� þ! � @u�Þ

þDBTðu � @B� þ B � @u�Þ � F��ð	!� þ 	BB�Þ; (46)

where one can verify that each term in the right-hand side
is of second order. The left-hand side of Eq. (44) is then
given by

@�T
��
0 � F��j0� ¼ �ð@�T��

1 � F��j1�Þ; (47)

which is also a second order quantity though
p�C1 ¼ p�p�ð @

@x� � F��
@

@p�
Þf0 is superficially of first

order. One might question the validity of Eq. (14)
which follows @�T

��
0 � F��j0� ¼ 0, but it is not a

problem here since this equation really holds at the first

order or the leading order and is not true at the
second order. It is essential that the energy-momentum
equation (3) holds for the full quantities T�� and j�,
and not for T��

0;1 and j0;1� separately, otherwise the
results would be contradictory to those of Ref. [20]
following the entropy principle of the second law of
thermodynamics.
We now obtain the momentum integral of p�C1;2

from Eqs. (44) and (45) with @�T
��
0;1 � F��j0;1� given by

Eqs. (46) and (47).
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IV. ONE CHARGE WITH
PARTICLE/ANTIPARTICLE

We now consider a one-charge case but add antiparticles
to the system. We will calculate �ðpÞ and �BðpÞ. Since
there are particles and antiparticles, we recover the index
Q ¼ �1 in particle distribution function, f ! fQ and

f0;1 ! fQ0;1. In Eq. (9), summations over Q should be

added. In Eq. (11) we also have to add the index Q to J�n1
and J�B

n1 : J
�
n1 ! J�;Qn1 and J�B

n1 ! J�B;Q
n1 (n ¼ 2, 3), and add

summations over Q into the formula of 	, 	B, D, DB.

Inserting fQ0 into Eq. (9), we obtain the charge and entropy

currents and the stress tensor in the equilibrium, j�0 ¼ nu�,
S�0 ¼ su� and T��

0 ¼ ð�þ PÞu�u� � Pg��, with the

particle number density n � P
QQnQ, the energy density

� ¼ P
Q�Q, the pressure P ¼ P

QPQ, and the entropy den-

sity s ¼ P
QsQ ¼ ð�þ P� n�Þ=T. The solutions to 	,

	B, D, DB are the same as in Eq. (17). Then Eq. (18) is
modified to

J�;þ21 � J�;�21 ¼�	; J�;þ31 þ J�;þ31 ¼�DT;

J�B;þ
21 � J�B;�

21 ¼�	B; J�B;þ
31 þ J�B;�

31 ¼�DBT:
(48)

Equation (21) now becomes

J�;Qn1 ¼ X
i¼0

�iJ
Q
iþn;1; J�B;Q

n1 ¼ X
i¼0

�B
i J

Q
iþn;1: (49)

In the case of the minimal number of coefficients we can
completely fix the coefficients �0;1 by solving following

system of equations:

J21 J31
�J31 �J41

� �
�0

�1

� �
¼ �	

�DT

� �
; (50)

where we have used the shorthand notation, Jn1 �
Jþn1 � J�n1 and �Jn1 � Jþn1 þ J�n1. The solutions to �0;1 are

�0

�1

� �
¼ 1

�

�	ð�J41Þ þDTðJ31Þ
	ð�J31Þ �DTðJ21Þ

� �
; (51)

where � ¼ ðJ21Þð�J41Þ � ð�J31ÞðJ31Þ. The equations
and solutions for �B

0;1 are in the same form as

Eqs. (50) and (51) with replacements �0;1 ! �B
0;1,

	 ! 	B and D ! DB.
For massless fermions and small ��, we have

�J21 � 9�ð3ÞG; �J31 � 7�4

15
GT;

�J41 � 225�ð5ÞGT2; J21 � �2 ��G;

J31 � 36�ð3Þ ��GT; J41 � 7�4

3
��GT2;

� � �2

5
G2G0T

2 ��; (52)

where G � dgT
4

6�2 and G0 � �84�2�ð3Þ þ 1125�ð5Þ. The
solutions have very simple form:

�0 �CG1

�

T3
; �1 ��CG2

�

T4
; �B

0 ¼
�0

�
; �B

1 ¼
�1

�
;

(53)

where we have used two constants, G1 � 6750�2�ð5Þ
dgG0

,

G2 � 14
dgG0

. We notice that the D terms in Eq. (51) are

negligible, so the solutions are proportional to 	. Note that
the quantity n�

�þP 	 ��2 is also small and we have dropped it,

since n� � dg
6�2 T

4 ��2 and �þ P ¼ 4
3 � � dg

7�2

90 T4.

V. WITH TWO CHARGES AND
PARTICLE/ANTIPARTICLE

As an example for the case of two charges, we consider
adding to the system the chirality or an axialUð1Þ charge to
particles. Then there are two currents, one for each chi-
rality, or equivalently, for the Uð1Þ=UAð1Þ charge. For
simplicity we assume that there is an anomaly for the
axial-charge current but no anomaly for the charge one.
There are distribution functions for right-hand and left-

hand particles, fQa ðx; pÞ (a ¼ R; L), with chemical poten-
tials �R:L ¼ ���A. As an extension to Eq. (8), the

corrections �aðx; pÞ in fQa ðx; pÞ are now �aðx; pÞ ¼
�ap

�!� þ �aBp
�B�. Instead of right-hand and left-

hand quantities Xa, we can equivalently use X ¼
XR þ XL and XA ¼ XR � XL, where X ¼ �, �B, 	, 	B, n,

s, �, P, j�. The distribution functions fQa ðx; pÞ satisfy two

separate Boltzmann equations of the following form:

p�

�
@

@x�
�QF��

@

@p�

�
fQa ðx; pÞ ¼ CaQ½fQ

0
b �: (54)

TheUð1Þ=UAð1Þ charge and entropy currents and the stress
tensor in equilibrium are given by j�0 ¼ nu�, j�A0 ¼ nAu

�,

S�0 ¼ su� and T��
0 ¼ ð�þ PÞu�u� � Pg��, with the par-

ticle number density n � P
aQQnaQ (a ¼ R, L; Q ¼ �1),

the energy density � ¼ P
aQ�aQ, the pressure P ¼P

aQPaQ, and the entropy density s ¼ P
aQsaQ ¼

ð�þ P�P
ana�aÞ=T.

Similar to Eqs. (26) and (28), the Uð1Þ=UAð1Þ charge
conservation in Eq. (2) can be derived as

@�j
�ðxÞ ¼

Z
½dp�ðCR;þ � CR;þ þ CL;þ � CL;þÞ ¼ 0;

(55)

@�j
�
A ðxÞ ¼

Z
½dp�ðCR;þ � CR;� � CL;þ þ CL;þÞ

¼ �CE�B�; (56)

where we have used Eq. (27). The energy and momentum
conservation equation reads
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@�T
�� � F��j�

¼
Z
½dp�p�ðCR;þ þ CR;� þ CL;þ þ CL;�Þ ¼ 0; (57)

where we have used Eq. (30).
Similar to Eq. (11), we can express 	a, 	aB,D andDB in

terms of �a and �aB as

	a ¼ �ðJ�a;þ
21 � J�a;�

21 Þ;
�DT ¼ J�R;þ

31 þ J�R;�
31 þ J�L;þ

31 þ J�L;�
31 ;

	aB ¼ �ðJ�aB;þ
21 � J�aB;�

21 Þ;
�DBT ¼ J�RB;þ

31 þ J�RB;�
31 þ J�LB;þ

31 þ J�LB;�
31 ;

(58)

for a ¼ R, L. We have the following first order corrections:

j�1 ¼ j�R1þj�L1¼
X

a¼R;L

ð	a!
�þ	aBB

�Þ¼	!�þ	BB
�;

j�A1¼ j�R1�j�L1¼ð	R�	LÞ!�þð	RB�	LBÞB�

¼	A!
�þ	ABB

�;

T��
1 ¼DTðu�!�þu�!�ÞþDBTðu�B�þu�B�Þ;
S�1 ¼� X

a¼R;L

�a

T
ð	a!

�þ	aBB
�ÞþðD!�þDBB

�Þ

¼� X
i¼null;A

�i

T
ð	i!

�þ	iBB
�ÞþðD!�þDBB

�Þ: (59)

It can be verified that the entropy current in Eq. (59) cannot
satisfy @�S

� � 0 unless C ¼ 0. In order to ensure the

positivity of @�S
� in presence of an anomaly, one would

have to substract vector Q� ¼ D!� þDBB
� from S�.

With Uð1Þ and UAð1Þ charges, we have
~S� ¼ S� �Q� ¼ su� � X

a¼R;L

��að	a!
� þ 	aBB

�Þ

¼ 1

T
ðPu� � X

a¼R;L

�aj
�
a þ u�T

��Þ �Q�: (60)

In the same way as in Sec. II, the divergence of the entropy
current can be evaluated as

@� ~S
�¼!�

� X
a¼R;L

@� ��a

�
niTD

�þP
�	a

�
�@�Dþ 2D

�þP
@�P

�

þB�

� X
a¼R;L

@� ��a

�
niTDB

�þP
�	aB

�
�@�DB

þ DB

�þP
@�P

�
þE �!

� X
a¼R;L

�
naD

�þP
�	a

T

�

þ 2nD

�þP
�2DB

�
þE �B

� X
a¼R;L

�
naDB

�þP
�	aB

T

�

þC
�A

T
þ nDB

�þP

�
; (61)

following Eqs. (55)–(57). By imposing all quantities inside
the square brackets to vanish we can solve 	a, 	aB, D, DB

as follows:

	 ¼ 2C��A

�
1� 3

2

n�

�þ P

�
;

	A ¼ C�2

�
1� 3nA�A

�þ P

�
;

	B ¼ C�A

�
1� 2n�

�þ P

�
;

	AB ¼ C�

�
1� 2nA�A

�þ P

�
;

DT ¼ �C�A�
2;

DBT ¼ �C�A�:

(62)

It is interesting to observe that for small �, �A, we obtain
very simple and symmetric solutions:

	 � 2C��A; 	A � C�2; 	B � C�A;

	AB � C�; DT ¼ �C�A�
2; DBT ¼ �C�A�;

(63)

which is identical to the result of Ref. [23,25]. Here we
have assumed that all integral constants are vanishing.
Note that Eq. (63) is the result of the entropy principle in
the hydrodynamic approach, which was also obtained in
Ref. [26–28].
Equivalently we can use 	R ¼ ð	þ 	AÞ=2 and 	L ¼

ð	� 	AÞ=2 to determine �a, �aB (a ¼ R, L) via solving
a system of Eq. (58), where the first/second line (each has
three equations) is for �R;L=�RB;LB. For a minimal number

of coefficients we can determine the values of these coef-
ficients completely, �R;L and �RB;LB can be expanded to the

zeroth or first power of u � p. For example, if we expand �R

to the zeroth power, then we have to expand �L to the
first power, and vice versa. Suppose we take the former
case, �R ¼ �R0 and �L ¼ �L0 þ �L1ðu � pÞ, we can solve
�R;L as

�R0 ¼ �	R

1

JR21
;

�L0 ¼ � 1

�
	Lð�JL41Þ þ

1

�

�
DT � 	R

�JR31
JR21

�
ðJL31Þ;

�L1 ¼ 1

�
	Lð�JL31Þ �

1

�

�
DT � 	R

�JR31
JR21

�
ðJL21Þ;

(64)

where � ¼ ðJL21Þð�JL41Þ � ðJL31Þð�JL31Þ. The solutions to
�RB;LB take the same form as above with replacements

�a ! �aB, 	a ! 	aB and D ! DB if we assume the
same expansion as �R;L: �RB ¼ �RB;0 and �LB ¼ �LB;0 þ
�LB;1ðu � pÞ.
For massless fermions and small ��R;L (or equivalently

small �� and ��A) we obtain
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�JR;L21 � 9�ð3ÞG; �JR;L31 � 7�4

15
GT;

�JR;L41 � 225�ð5ÞGT2;

JR;L21 � �2 ��R;LG; JR;L31 � 36�ð3Þ ��R;LGT;

JR;L41 � 7�4

3
��R;LGT

2;

� � �2

5
G2G0T

2 ��L; (65)

whereG andG0 are the same as in the former section. Then
the solutions to �R;L are

�R0 ��3C

dg

�

T3

�þ 2�A

�þ�A

;

�L0 � 3C

dg

�

T3

�
G4

�þ 2�A

�þ�A

þG5

�� 2�A

���A

�
;

�L1 � 14�4C

dgG0

�

T4

��A

�2 ��2
A

; �RB;0 ��3C

dg

1

T3
;

�LB;0 � 3C

dg

1

T3
; �LB;1 � 30�2C

dgG0

��A

T6
;

(66)

where G4 � � 1
G0
84�2�ð3Þ and G5 � 1

G0
1125�ð5Þ. The

coefficient ratios of �ai=�aB;i (i ¼ 0; 1) are proportional

to � times dimensionless factors:

�R0

�RB;0
� �

�þ 2�A

�þ�A

;

�L0

�LB;0

� �

�
G4

�þ 2�A

�þ�A

þG5

�� 2�A

���A

�
;

�L1

�LB;1

� �
7

15
�2 T2

�2 ��2
A

:

(67)

Note that �LB;1 
 T�LB;0 	 T�RB;0, so both �BRðpÞ and
�BLðpÞ can be constants at small �� and ��A limit. This
property is quite different from the one-charge case in
which �BðpÞ must have momentum dependence in order
to comply with the entropy principle.

VI. DISCUSSIONS AND CONCLUSIONS

We have shown that induced terms related to the vor-
ticity and magnetic field in the charge and entropy
currents from a triangle anomaly can be derived in kinetic
theory by introducing correction terms to the phase space
distribution function at the first order. We demonstrated
that the anomalous source terms are necessary to
ensure that the equations for the charge and energy-
momentum conservation are satisfied and that the
correction terms of distribution functions are compatible
to these equations.

As examples for the correction terms of distribution
functions, we focus on the massless fermionic system in

three cases for small �=T, with one charge [Uð1Þ] and one
particle species (without antiparticles), with one charge
[Uð1Þ] and particles/antiparticles, and with two charges
[Uð1Þ �UAð1Þ]. In the latter two cases, the coefficients
for ! and B terms in distribution functions are found to be
proportional to C�=T3 and C=T3, respectively. In the
two-charges case the coefficients can be constants or inde-
pendent of momentum, such a property is impossible for
the one-charge case since it is not allowed by the entropy
principle.
In the two-charges case, we assumed that there is an

anomaly for the axial-charge current but no anomaly for
the charge one. The coefficients of correction terms for
the charge/axial-charge currents and energy-momentum
tensor have a very simple and symmetric form at
small �=T and �A=T limit: 	 � 2C��A, 	A � C�2,
	B � C�A, 	AB � C�, DT ¼ �C�A�

2, and DBT ¼
�C�A�. This means that similar to the CME an axial
anomaly can induce a residual charge current which is
proportional to the magnetic field and the axial chemical
potential [23].
We have a few comments about our results. In our

evaluation of the correction terms of distribution functions,
we have assumed that �ðpÞ and �BðpÞ are identical to
particles and antiparticles. Alternatively, we can assume
that they have an opposite sign for particles to antiparticles.
We cannot tell which case is correct due to lack of deeper
knowledge about these anomalous term at a microscopic
level. Similarly we have assumed that �ðpÞ and �BðpÞ have
different values for right-handed particles from left-handed
ones. One can also assume that they have the same or
opposite values for right-handed and left-handed particles.
In the current framework one cannot tell which is
correct. Such a situation is like what happens in an effec-
tive theory when many effective candidates point to a
unique microscopic theory. We also note that the solutions
to �ðpÞ and �BðpÞ given in this paper are for the cases
where the number of unknown coefficients in �ðpÞ and
�BðpÞ is equal to that of constraining equations. It is
possible that �ðpÞ and �BðpÞ can be expanded to higher
powers of ðp � uÞ and then have larger number of
unknown coefficients than that of constraining equations.
In this case the constraining equations just provide con-
straints for �ðpÞ and �BðpÞ from the second law of
thermodynamics.
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