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Recently the radiative B decay to the strange axial-vector mesons, B ! K1ð1270Þ�, has been observed

with a rather large branching ratio. This process is particularly interesting as the subsequent K1 decay into

its three-body final state allows us to determine the polarization of the photon, which is mostly left- (right-

)handed for �BðBÞ in the SM while various new physics models predict additional right- (left-)handed

components. A new method is proposed to determine the polarization, exploiting the full Dalitz plot

distribution, which seems to reduce significantly the statistical errors. This polarization measurement

requires, however, detailed knowledge of the K1 ! K�� strong interaction decays, namely, the various

partial wave amplitudes into the several possible quasi-two-body channels, as well as their relative phases.

The pattern of partial waves is especially complex for the K1ð1270Þ. We attempt to obtain the information

through the combination of an experimental input and a theoretical one, provided by the 3P0 quark-pair-

creation model.

DOI: 10.1103/PhysRevD.83.094007 PACS numbers: 13.25.Hw, 13.40.Hq, 13.88.+e

I. INTRODUCTION

The b ! s� process has played an important role in our
understanding of the electroweak interaction of the stan-
dard model (SM). The Glashow-Iliopoulos-Maiani mecha-
nism shows that, in the SM, a flavor changing neutral
current such as b ! s� is forbidden at the tree level and
only occurs through a loop level diagram. Inside of the
loop, heavy particles, much heavier than the b quark, can
propagate. Therefore, the b ! s� process can be used to
probe indirectly such heavy particles, namely, top quarks in
the case of the SM or for as-yet-unknown particles intro-
duced by given models beyond the SM.

By now, the branching ratio of the inclusive B ! Xs�
process is measured with quite high precision
[BrðB! Xs�Þexp ¼ ð3:55� 0:24� 0:09Þ� 10�4 [1]]. The

SM theoretical predictions for this observable are
obtained at the next-to-next-to-leading order in QCD
[BrðB!Xs�Þth¼ð3:15�0:23Þ�10�4 [2]] and they are
in relatively good agreement with the experimental value.
However, these predictions have theoretical uncertainties
coming from the Cabibbo-Kobayashi-Maskawa matrix ele-
ment as well as various kinds of QCD corrections. As a
result, even if we add some new physics contributions to the
theoretical predictions, the total branching ratio often
agrees with the experimental value within those theoretical
uncertainties. While tremendous efforts in order to improve
the precision of the theoretical prediction have been made
so as to match the experimental precision, which could
become even higher at the future machines, it is necessary
to investigate the characteristics of the particles inside the
loop of the b ! s� process using another kind of observ-
able. In this article, we discuss a measurement of the
circular polarization of the photon of the b ! s� process,
which has the left- and right-handedness of the couplings of

the interactions among the particles inside of the loop. In
the SM, the fact that the W boson couples to left-handed
quarks induces the photon polarization to be mostly left-
handed. On the other hand, many new physics models
contain new particles which couple differently from the
SM. Therefore, the measurement of the photon polarization
can be a useful tool to distinguish the interactions of the
particles inside the b ! s� loop from the SM-like one.
Although there have been several proposals for how

to measure this photon polarization, a precise measure-
ment has not been achieved yet. In this paper, we revisit
the method proposed by Gronau et al. [3] (the GGPR
method in the following) using the exclusive B !
Kresonance� followed by the three-body decay of the
Kresonance. Most interestingly, the Belle Collaboration
recently observed one of these decay channels,
B!K1ð1270Þ�!ðK��Þ�, and found a relatively large
branching ratio: BrðBþ!Kþ

1 ð1270Þ�Þ¼ ð4:3�0:9ðstatÞ�
0:9ðsystÞÞ�10�5 [4], which dominates over the decay to
K1ð1400Þ, previously studied in detail by GGPR [3]. Thus,
it is interesting to reconsider the feasibility of this method.
In this article, we introduce a new variable, !, which was
originally proposed by Davier et al. [5] for the � polariza-
tion measurement at the CERN LEP (the DDLR method in
the following). As we show later on, the fact that the decay
width of the B ! K1� ! ðK��Þ� process depends only
linearly on the polarization parameter �� allows us to use

the variable ! in our study. The simplification in the fit by
using ! makes it easier to include in the fit not only the
angular dependence of the polarization parameter but also
the three-body Dalitz variable dependence, which im-
proves the sensitivity to the polarization parameter, as
also pointed out in [5]. On the other hand, the new radiative
decay, to K1ð1270Þ� instead of K1ð1400Þ�, implies a more
complex pattern of hadronic decay channels, not only
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through K��, but also through K� and a possible ��. In
this work, we discuss, in detail, the hadronic parameters
required in this analysis. In particular, having various
difficulties to extract them fully from the currently avail-
able experimental data, we attempt to evaluate them with
the help of the so-called 3P0 decay model.

In Sec. II, we show a demonstration of the photon of the
b ! s� being predominantly left-handed in the SM. We
also discuss briefly the contamination from the right-
handed polarization. In Sec. III, we derive the master
formula for the decay width of the B ! K1� ! ðK��Þ�,
and the hadronic parameters needed in this formula are
evaluated in Sec. IV. In Sec. V, we introduce the new
variable !. We show our numerical results in Sec. VI,
including the comparison of the sensitivity of the DDLR
method with the other proposed methods. Section VII
outlines our conclusions.

II. PHOTON POLARIZATION OF THE b ! s�
IN THE SM

In the SM, the quark level b ! s� vertex without any
QCD correction is given as

�s�ðb ! s�Þ�b ¼ e

ð4�Þ2
g2

2M2
W

V�
tsVtbF2 �si��	q

	

�
�
mb

1þ �5

2
þms

1� �5

2

�
b; (1)

where q ¼ pb � ps, with pb and ps being four-momenta
of the b and s quarks, respectively; F2 is the loop function,
whose expression can found in [6]. When we fix the three-
momentum direction, namely, the q direction as þz in the
b quark rest frame, one can compute explicitly the helicity
amplitude, and we readily find that the first (second) term is
nonzero only when we multiply the left (right)-handed
circular-polarization vector, which is defined as



�
L ¼ 1ffiffiffi

2
p ð0; 1;�i; 0Þ; 


�
R ¼ 1ffiffiffi

2
p ð0; 1; i; 0Þ: (2)

Sincems=mb ’ 0:02 � 1, the photon in b ! s� in the SM
is known to be predominantly left-handed.

Once we include the QCD corrections, the other types of
Dirac structure contribute and the above conclusion can be
slightly modified. The result can typically be described in
terms of the following effective Hamiltonian:

H eff ¼ � 4GFffiffiffi
2

p V�
tsVtb

�X6
i¼1

Cið�ÞOið�Þ

þ C7�ð�ÞO7�ð�Þ þ C8gð�ÞO8gð�Þ
�
; (3)

whereCi are the short-distanceWilson coefficients that can
be calculated in perturbation theory, Oi are the local
four-quark operators (i ¼ 1 . . . 6), and O7� and O8g are

the electromagnetic and chromomagnetic penguin

operators, respectively. The � is the renormalization scale
which is chosen to be of the order of mb. Note that O7� ¼
e

16�2 mb �sL���	F
�	bR� is equivalent to the first term in

Eq. (1).1 In addition to the smallms=mb contribution, there
is potentially non-negligible right-handed pollution due to
the perturbative and nonperturbative contributions. A nu-
merical estimate for them is extremely important, though it
is currently not available for B ! K1�. On the other hand,
many efforts have been made in the case of B ! K�� using
various QCD-based approaches [7–12]. Note that the time-
dependent CP asymmetry of B ! K�� can also be used to
determine the photon polarization (see Sec. VI for some
discussions). To have an idea, it is found that the most
recent estimate for B ! K�� [12] shows that the right-
handed correction is of the order of a few percent, while
another estimate [9,10] shows that it can be up to 10%.
On the other hand, when we consider the new physics

contributions, the right-handed contribution can be signifi-
cantly enlarged by different types of Dirac structure that
those new physics models can induce. It should be empha-
sized that there are many new physics models which can
accommodate e.g. a large coefficient to the right-handed
electromagnetic operator (O7� with the subscripts L and R

interchanged) without contradicting the precise measure-
ment of the inclusive B ! Xs� branching ratio as well as
the time-dependent CP asymmetry of B ! KS�

0� [13,14]
(see [15–20] for some examples of the constraints on the
right-handed contribution obtained for specific new phys-
ics models).

III. THE B ! K1� ! ðK��Þ� DECAYS

A. Master formula for B ! K1� ! ðP1P2P3Þ� decays

Because of angular momentum conservation and the fact
that the B meson is a pseudoscalar meson, helicity is
conserved. Thus in order to determine the photon polar-
ization, it is sufficient to measure the polarization of the
axial-vector meson K1ð1þÞ through its three-body decay.
As the physical final stateK1 must have either left- or right-
handed polarization, the decay width can be written as

�ð �B ! �K1�Þ ¼ �ð �B ! �K1L�LÞ þ �ð �B ! �K1R�RÞ: (4)

If we assume the narrow width of K1, one can write the
total quasi-four-body decay width by these two terms,
respectively, followed by the three-body decay widths:

�ð �K1L ! P1P2P3Þ; �ð �K1R ! P1P2P3Þ:
However, the width of the K1’s is not really negligible

[�ðK1ð1270ÞÞ ¼ 90 MeV, �ðK1ð1400ÞÞ ¼ 174 MeV ac-
cording to PDG]. Therefore, for completeness, in the
following we present a prescription that includes the initial
state width of the K1 decay into the three-body final state

1The term proportional to ms [the second term in Eq. (1)] is
neglected in this expression due to its smallness.

E. KOU, A. LE YAOUANC, AND A. TAYDUGANOV PHYSICAL REVIEW D 83, 094007 (2011)

094007-2



assuming the Breit-Wigner form, but which will not be
used in practice. The Breit-Wigner factor is common to
both polarizations and appears in modulus squared (there-
fore, its phase does not affect the crucial interference
between the J and J � terms below). Thus, our decay
widths can be written as

d�ð �B! �K1�!ðP1P2P3Þ�Þ
dsds13ds23dcos�

/ X
pol¼L;R

�ð �B! �K1pol�polÞ
d�ð �K1pol!P1P2P3Þ
dsds13ds23dcos�

� 1

ðs�m2
K1
Þ2þm2

K1
�2
K1

; (5)

where s ¼ ðp1 þ p2 þ p3Þ2 is the off-shell ‘‘p2’’ of theK1,
and sij ¼ ðpi þ pjÞ2 with pi being the four-momentum of

the final state Pi. Defining the �z direction as the photon
direction in the K1 rest frame (see Fig. 1), the � is given as

cos� � ð ~p1� ~p2

j ~p1� ~p2jÞz.
The kinematic distribution of this three-body decay

carries the information of the �K1 polarization. It is impor-
tant to notice that the polarization information we would
like to obtain is the difference between �ð �B ! �K1L�LÞ and
�ð �B ! �K1R�RÞ in Eq. (5), while experimentally, only the
left-hand side of this formula, i.e. the total decay width, can
be measured. Thus, the high sensitivity to the polarization
information can be achieved only if there is a significant
difference in the decay distributions between �K1L and �K1R.

The differential decay width of �K1L;R decay can be

described by the helicity amplitudeJ �, which we define as

M ð �K1L;R ! P1P2P3Þ ¼ 

�
K1L;R

J �: (6)

Considering that J � represents the decay amplitude

of the K1 decaying into three pseudoscalar mesons, we
can parametrize it in terms of two functions C1;2:

J � ¼ C1ðs; s13; s23Þp1� � C2ðs; s13; s23Þp2�; (7)

where we omitted writing explicitly the Dalitz and angular
variable dependences of J �. Note the s dependence of

the coefficients, which means that, in principle, there could
be some dependence on the off-shell p2 of the K1.
Nevertheless, this dependence is not important as soon as
the integration is limited to the K1 bump, especially for the
ratio ! which is the relevant quantity in our method
(see the next section). The detailed expressions of
C1;2ðs; s13; s23Þ for given channels are derived in the next

section, but here we note that C1;2ðs; s13; s23Þ can contain

complex numbers. Using the definition of helicity in
Eq. (2), one can easily find in the K1 reference frame

d�ð �K1L;R!P1P2P3Þ
dsds13ds23dcos�

/jMð �K1L;R!P1P2P3Þj2

/1

4
j ~J j2ð1þcos2�Þ�1

2
Im½ ~n � ð ~J � ~J �Þ	cos�; (8)

where ~n � ~p1� ~p2

j ~p1� ~p2j so that

j ~J j2¼jC1j2j ~p1j2þjC2j2j ~p2j2�ðC1C�2þC�1C2Þð ~p1 � ~p2Þ;
(9)

~n � ð ~J � ~J �Þ ¼ �ðC1C�2 � C�1C2Þj ~p1 � ~p2j; (10)

where ~pi � ~pj¼EiEj�ðsij�m2
i �m2

j Þ=2 and j ~pi� ~pjj¼
~pi � ~pjtan

�1 with Ei ¼ ðs� sjk þm2
i Þ=ð2

ffiffiffi
s

p Þ and

 ¼ cos�1½ð ~pi � ~pjÞ=ðj ~pijj ~pjjÞ	.
It is worth mentioning that the difference between the

left- and right-handed polarization amplitudes comes from
the second term of Eq. (8) which, to be nonvanishing,
requires the amplitude J to contain more than one ampli-
tude with a nonvanishing relative phase. Such a condition
can be nicely realized in this decay channel since when K1

decays into three-body final states through more than one
intermediate two-body channel, such asK�� andK�, there
is a nonvanishing relative phase originating from their
Breit-Wigner forms (based on the isobar model).2

Finally, the master formula is obtained in terms of the
polarization parameter �� (the B ! K1 form factor is

ignored since it is a common factor),

d�ð �B ! �K1� ! ðP1P2P3Þ�Þ
dsds13ds23d cos�

/ 1

ðs�m2
K1
Þ2 þm2

K1
�2
K1

�
1

4
j ~J j2ð1þ cos2�Þ

þ ��

1

2
Im½ ~n � ð ~J � ~J �Þ	 cos�

�
(11)

FIG. 1 (color online). The K1 ! K�� decay plane in the rest
frame of K1. Defining the �z direction as the photon direction,

the � is given as cos� � ð ~p1� ~p2

j ~p1� ~p2jÞz.

2The case of the B ! K� decay, first considered in [21] and
revisited in [22], is different since there is no observed prominent
K resonance state and the  meson is very narrow.
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with

�� � �ð �B ! �K1R�RÞ � �ð �B ! �K1L�LÞ
�ð �B ! �K1�Þ

; (12)

which agrees with the expression in [3].
Since the two K1 resonances, K1ð1270Þ and K1ð1400Þ,

are rather close to each other and also relatively wide, the
overlap between these two resonances may play a signifi-
cant role in the polarization determination. On the other
hand, the Belle Collaboration [4] found no significant
signal for B ! K1ð1400Þ� and set only the upper limit at
90% C.L. Indeed, in [23,24] it has been shown that such a
suppression can be explained by taking into account the
fact that these two states are a mixture of 13P1 and 11P1

states and a reasonable choice of the mixing angle: our
fitted value for the mixing angle gives a suppression of a
factor of 40 in the B ! K1ð1400Þ� mode with respect to
the observed B ! K1ð1270Þ�. Nevertheless, this issue
must be kept in mind.

B. The C1;2 functions for the K1 ! K�� decays

In this section, we derive the C1;2 function, which is

defined in Eqs. (6) and (7) for the K1ð1270=1400Þ decay.
The three-body decay channels of the K1ð1270=1400Þ are
the K�� final states. We first assume that this three pseu-
doscalar meson final state comes from the quasi-two-body
decay through a vector meson, namely, � or K�. The differ-
ent decay channels and the possible vector resonances for
Kþ

1 ð1270=1400Þ and K0
1ð1270=1400Þ are listed below.

The decay amplitudes for these decay channels can be written as the sum of the amplitude with a different intermediate
vector meson channel:

M ðK1 ! P1P2P3Þ ¼
X
V

cijkMV
ðPiPjÞPk

; (17)

where P1;2;3 represent the final state mesons carrying the momentum p1;2;3 as assigned in Eqs. (13)–(16) and V represents
the vector meson resonance. The Clebsch-Gordan coefficients cijk for each intermediate channel are given as

MIðKþ
1 ! �0ðp1Þ�þðp2ÞK0ðp3ÞÞ ¼

ffiffiffi
2

p
3

MK�0
ðP1P3ÞP2

�
ffiffiffi
2

p
3

MK�þ
ðP2P3ÞP1

þ 1ffiffiffi
3

p M�þ
ðP1P2ÞP3

;

MIIðKþ
1 ! ��ðp1Þ�þðp2ÞKþðp3ÞÞ ¼ � 2

3
MK�0

ðP1P3ÞP2
� 1ffiffiffi

6
p M�0

ðP1P2ÞP3
;

MIIIðKþ
1 ! �0ðp1Þ��ðp2ÞKþðp3ÞÞ ¼

ffiffiffi
2

p
3

MK�þ
ðP1P3ÞP2

�
ffiffiffi
2

p
3

MK�0
ðP2P3ÞP1

þ 1ffiffiffi
3

p M��
ðP1P2ÞP3

;

MIVðKþ
1 ! �þðp1Þ��ðp2ÞK0ðp3ÞÞ ¼ � 2

3
MK�þ

ðP1P3ÞP2
� 1ffiffiffi

6
p M�0

ðP1P2ÞP3
:
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Using the detailed expression for the quasi-two-body
decay amplitude MV

ðPiPjÞPk
given in Appendix A, we find

M ðK1L;R ! ��KÞA¼I–IV ¼ 
�K1L;R
J A

�; (18)

J A
� ¼ CA1 ðs; s13; s23Þp1� � CA2 ðs; s13; s23Þp2� (19)

with

CI;III1 ¼
ffiffiffi
2

p
3

ðaK�
13 � bK

�
13 Þ þ

ffiffiffi
2

p
3

bK
�

23 þ 1ffiffiffi
3

p a�12;

CII;IV1 ¼ � 2

3
ðaK�

13 � bK
�

13 Þ �
1ffiffiffi
6

p a�12;

CI;III2 ¼
ffiffiffi
2

p
3

bK
�

13 þ
ffiffiffi
2

p
3

ðaK�
23 � bK

�
23 Þ �

1ffiffiffi
3

p b
�
12;

CII;IV2 ¼ � 2

3
bK

�
13 þ 1ffiffiffi

6
p b

�
12;

(20)

where

aVij¼gVPiPj
BWVðsijÞ½fVþhV

ffiffiffi
s

p ðEi�EjÞ��ij	;
bVij¼gVPiPj

BWVðsijÞ½�fVþhV
ffiffiffi
s

p ðEi�EjÞ��ij	
(21)

with �ij � ðm2
i�m2

j Þ
M2

ij

½fþ h
ffiffiffi
s

p ðEi þ EjÞ	.

IV. HADRONIC PARAMETERS AND THEIR
ESTIMATION IN THE 3P0 MODEL

The next step is to obtain the coupling constants and the
form factors determining the above functions C1;2, i.e. the
following hadronic parameters:

g���; gK�K�; fV; hV:

Noting that there are a total of four fV and hV (V ¼ �, K�)
for each K1ð1270Þ and K1ð1400Þ, we have ten free
parameters in this decay mode. One may consider the
relative phases between the form factors fV and hV , which
increases the number of free parameters. However, this
phase could actually be determined theoretically or
experimentally.

Ideally, these parameters should be extracted from the
same experimental data of the B ! K1� decay. However,
in practice, it is not realistic as it requires a huge amount of
data, which will not be achieved by this rare process.
Therefore, it would be necessary to use other experimental
data which provide information on the K1 ! K�� decay.
In this section, we first present how to relate this experi-
mental information to our hadronic parameters. In fact, it
turns out that the currently available data are not sufficient
to obtain all necessary information. Thus, in this article, we
will use a theoretical model to complement them. It should
also be noted that, strictly speaking, to obtain these listed
parameters from other experiments is not enough for
the full model-independent analysis, since the formulas

derived in the previous section are based on certain
assumptions such as the quasi-two-body decay, isobar
model, etc. We will discuss a possible full model-
independent analysis in a future publication.

A. Hadronic parameters

The VPiPj coupling constant: gVPiPj
.—The gVPiPj

cou-

pling constant can be extracted from the partial decay
widths of the vector mesons. These are well measured for
V ¼ �, K� so that we can obtain this coupling rather
precisely. The partial decay width can be written as

�ðV ! PiPjÞ ¼
g2VPiPj

2�m2
V

j ~pj3 1
3
; (22)

where j ~pj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

V�ðmiþmjÞ2Þðm2
V�ðmi�mjÞ2Þ

q
=2mV .

Then, using the experimental values of the � and K�
widths, we find3

g���¼�ð5:98�0:02Þ; gK�K�¼ð5:68�0:05Þ: (23)

The K1 ! VPk form factors fV and hV .—To describe
the K1 ! VPk decay, we used two independent form fac-
tors, fV and hV ,

hVðpV; "
ðVÞÞPðpkÞÞj�HK1

jK1ðpK1
; "ðK1 ÞÞi

¼ "ðK1Þ
� T�	"ðVÞ�	 ;

T�	 ¼ fVg
�	 þ hVp

�
Vp

	
K1
: (24)

On the other hand, the K1 ! VPk can also be written in
terms of the helicity amplitudes for the two possible þz
spin projections of K1 and the vector meson, ð�K1

; �VÞ ¼
ð0; 0Þ and (1, 1). These two amplitudes actually can be
written in terms of common partial wave amplitudes. Thus,
when we expand them up to L ¼ 2, we can equivalently
write these helicity amplitudes in terms of two partial wave
amplitudes [26]:

hVð ~pV; �VÞPð� ~pVÞj�HK1
jK1ð~0; �K1

Þi
¼ ðAS

V þ ffiffiffi
5

p h2; 0; 1; �V j1; �ViAD
V ÞD1�

�K1
;�V

ð�VÞ; (25)

where AS;D
V are the partial wave amplitudes. Then, these

amplitudes can be experimentally extracted through the
partial wave analysis of the K1 ! VPk processes using

3The relative sign of the couplings g��� and gK�K� is fixed by
the 3P0 quark-pair-creation model, so that the relative sign of the
total amplitudes of K1 ! K�� ! K�� and K1 ! �K ! K��
is as predicted by the model. This sign can, in principle, be
verified by analyzing the Dalitz plot of the recent data of the
B ! cK1 decay [25].
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�ðK1 ! VPkÞS-wave ¼ j ~pV j
8�sK1

jAS
V j2;

�ðK1 ! VPkÞD-wave ¼ j ~pV j
8�sK1

jAD
V j2:

(26)

Comparing to Eqs. (24) and (25), we can immediately
find the relation between the two form factors and the
partial wave amplitudes (fV and hV depend, in general,
on sK1

and sV):

fV ¼�AS
V�

1ffiffiffi
2

p AD
V ;

hV ¼ EVffiffiffiffiffiffiffi
sK1

p j ~pVj2
��

1� EVffiffiffiffiffi
sV

p
�
AS
Vþ

�
1þ2EVffiffiffiffiffi

sV
p

�
1ffiffiffi
2

p AD
V

�
:

(27)

Partial wave analysis of the K1 ! VPk process
has indeed been performed by the ACCMOR
Collaboration [27] and very precious information related
to the K1 meson has been extracted, which constitutes the
basis of the PDG entries. It is currently the most extensive
available study of the K�� channels, with full angular
distribution analysis, determination of relative phases
between all amplitudes. On the other hand, the interpre-
tation of the ACCMOR data contains various problems
from the theoretical point of view, or even empirically.4

We will come back to some of these issues later
in this section. In any case, we found that it is currently
impossible to extract all the parameters from experimen-
tal data. Thus, we need the help of theoretical model
inputs for this reason. In the following, we try to use

the so-called 3P0 model, which is an intuitive model

describing the decay by the creation of a quark-antiquark
pair.

B. Estimating the hadronic parameters in the 3P0 model

The 3P0 model5 has the advantage that it provides rather

complete predictions—in particular, the model fixes the
coupling signs, ratios of K�� to K� couplings,D=S ratios,
and the full set of couplings once the quark-pair-creation
constant � is fixed. The model fixes the ratio of two
independent couplings (C ¼ �1), which is left free by
the SUð3Þ symmetry. Another illustrative example of its
specific usefulness is the prediction of a very small decay
of K1ð1270Þ into K�

0ð1430Þ. On the other hand, we must

stress that it is a very approximate model, not claiming to
be always quantitative. Its main drawback is that it is
essentially nonrelativistic.
There are two independent K1 states in the quark model,

the 13P1 and 11P1 states, which are called K1A and K1B,
respectively. With the 3P0 model, we can predict the decay

rates of these two states. However, these are not the physi-
cal mass eigenstates K1ð1270; 1400Þ: it has been known
that the observed hierarchy of decays intoK�� andK� can
be nicely explained by considering that the physical states
are a mixture of K1A and K1B with a mixing angle �K1

:

jK1ð1270Þi ¼ jK1Ai sin�K1
þ jK1Bi cos�K1

jK1ð1400Þi ¼ jK1Ai cos�K1
� jK1Bi sin�K1

:
(28)

Then, the eight independent amplitudes ðAS
K�=�; A

D
K�=�Þ

each for K1ð1270Þ and K1ð1400Þ can be reduced to four

amplitudes AS=D
K�=� and one mixing angle �K1

:

AS
K1ð1270Þ!K��=K� ¼ SK�=�ð

ffiffiffi
2

p
sin�K1

� cos�K1
Þ;

AD
K1ð1270Þ!K��=K� ¼ DK�=�ð� sin�K1

� ffiffiffi
2

p
cos�K1

Þ;
AS
K1ð1400Þ!K��=K� ¼ SK�=�ð

ffiffiffi
2

p
cos�K1

� sin�K1
Þ;

AD
K1ð1400Þ!K��=K� ¼ DK�=�ð� cos�K1

� ffiffiffi
2

p
sin�K1

Þ:

(29)

The SK�=�, DK�=� amplitudes are expressed in terms of the

hadron wave functions and the quark-pair-creation con-
stant � in this model. Having these model parameters fixed,
we can obtain the mixing angle by fitting to the experi-
mental data of K1 decays. The available experimental
information is listed below:

4We give some examples of those problems:
(i) The resonance study is done using the K-matrix method.

Therefore, to match the information obtained from their
analysis to our Breit-Wigner parametrization is not a
simple task. Masses and widths must be recalculated. In
addition, the authors use a complex phase space.

(ii) ACCMOR results are obtained using particular models
for strong interaction production through Kp scattering,
like the Deck effect. Moreover, and more worrisome, the
D wave in K1ð1270Þ ! K�� depends strongly on the
production transfer t. This fact may escape the attention
of PDG readers, because it averages between the two sets
of data (high t, low t).

(iii) There is only a limited amount of data on the D waves,
which can be important for the determination of ��. They
are poorly measured in the K�� channel. For the D-wave
amplitude K1ð1270Þ ! K�, there is no information. Two
other items are found to be important issues for the
determination of the polarization, the question of relative
phases between the various partial waves, and the ��
channel; we devote to them two separate paragraphs
below. It is to be noted that the BABAR Collaboration
[28] has performed a reanalysis of the ACCMOR data; it
contains useful complementary information, with some-
what different results for the parameters. On the other
hand, Ref. [25] is a new, completely independent, analy-
sis, which comes to certain conclusions differing from
ACCMOR, especially for the �� channel.

5This model was first developed in [29] and then extensively
discussed by the group of N. Isgur [30–32] in Canada. It has
already been used by Blundell et al. in the present context [33].
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Br ðK1ð1270Þ!K��Þ:BrðK1ð1270Þ!K�Þ
¼ ð16�5Þ%: ð42�6Þ%;

BrðK1ð1400Þ!K��Þ:BrðK1ð1400Þ!K�Þ
¼ð94�6Þ%: ð3:0�3:0Þ%;

BrðK1ð1400Þ!K��ÞD-wave
BrðK1ð1400Þ!K��ÞS-wave ¼0:04�0:01;

BrðK1ð1270Þ!K��ÞD-wave
BrðK1ð1270Þ!K��ÞS-wave ¼0:54�0:15 ðlowtÞ;
BrðK1ð1270Þ!K��ÞD-wave
BrðK1ð1270Þ!K��ÞS-wave ¼2:67�0:95 ðhightÞ;

(30)

where t is the resonance production momentum transfer.
We will present the details of the fitting procedure and the
estimate of the theoretical uncertainties in the forthcoming
paper [34]. Here, we give, for an indication, the result with
the following conditions: (i) we adopt a set of harmonic
oscillator wave functions with a common harmonic
oscillator radius R ¼ 1=ð0:4 GeVÞ ¼ 2:5 GeV�1 [c ðrÞ /
expð�r2=2R2Þ], which, we would say, is a widespread and
empirically satisfactory recipe, (ii) we consider only low t
data for the K1ð1270Þ decay, and (iii) we use the damping
factor �0 ¼ 3 GeV�2 (see the discussion on the damping
factor in Appendix B). As a result, we find that the mixing
angle of 50
–60
 and �� 4 are very compatible with the
data.

To give an order of magnitude, we present the numerical
values of the partial wave amplitudes, assuming all the
particles to be on shell, except for theK1ð1270Þ ! K�. For
example, with �K1

¼ 60
 we obtain

AS
K1ð1270Þ!K�� � 1:6; AD

K1ð1270Þ!K�� ��0:2;

AS
K1ð1400Þ!K�� � 3:1; AD

K1ð1400Þ!K�� � 0:2;

AS
K1ð1270Þ!K� � 4:6; AD

K1ð1270Þ!K� ��0:03;

AS
K1ð1400Þ!K� ��0:5; AD

K1ð1400Þ!K� ��0:4:

(31)

However, we must emphasize that in the full calculation of
the B ! ðK��Þ� decay, used for the determination of ��,

we take into account the momentum dependence of the
partial amplitudes (and of the corresponding form factors
fV and hV) instead of using the fixed values in Eq. (31).

C. Discussions on the phases and the scalar resonances

1. The relative phases between different
K1 ! VP couplings

The issue of the phases of the resonance couplings is
very important in the present approach, since the depen-
dence on �� relies entirely on the phase of J . And, indeed,

one finds that changing the relative sign of the decays of
K1ð1270Þ to K� over the K�� channel would entirely

change the prediction for ��. Then, we formulate the

following observations:
(i) Phases between all the various resonances and decay

channels intoK�� are, in principle, measurable, and
indeed are measured by the ACCMOR
Collaboration. They can also be determined from
our 3P0 model. From a theoretical point of view,

one must not forget that, to obtain the full coupling
sign of a quasi-two-body channel, one must take the
product of the amplitude for the decay into the quasi-
two-body channel with that of the isobar decay
(e.g. K� ! K�), in order to have the sign into the
common final state K��.
However, the question remains far from trivial for
the following reasons:

(ii) There were some misunderstandings in interpreting
the ACCMOR data (e.g. the large D=S phase read
by Gronau et al. does not, in fact, correspond to
the D=S relative phase for the couplings of the
K1ð1400Þ; the strong bump around 1.4 GeV in the
D wave phase diagram, Fig. 13 in Ref. [27], does
not correspond to the D wave of the K1ð1400Þ,
which is very small; it is a reflection of what hap-
pens in the S wave, since the D wave phase is
defined by reference to the S wave).

(iii) Our model predicts real phases for all the couplings,
which is also almost the case for the true K-matrix
predictions of the ACCMOR Collaboration. On the
other hand, the data of ACCMOR show something
different; so-called offset phases, which are imagi-
nary and not predicted by the trueKmatrix, are to be
added to describe the data. The origin of these addi-
tional phases is unknown. It is very important to
realize that the solid lines of the histograms in [27]
do not represent the true K-matrix predictions, but
include the ad hoc offset phases.

(iv) One can test the soundness of our model by check-
ing whether the predicted relative signs of the cou-
plings to K�� and K� agree with those shown by
Daum et al. In our study, we tried to establish the
connection between the conventions of our model
and those of the ACCMOR Collaboration. For the
AD=AS ratios in the common channel K��, the
relation is trivial, and we find that there is agree-
ment: AD=AS < 0 for theK1ð1270Þ, and AD=AS > 0
for the K1ð1400Þ.6 On the other hand, for the rela-
tive sign between the amplitudes of K1ð1270Þ !
ðK��ÞS and K1ð1270Þ ! ðK�ÞS, the conventions
used by ACCMOR are not obvious, while this
sign is crucial. In our study, we use the signs of
3P0, but we also test different combinations of these

relative signs, by allowing for additional phases �.

6In the latter case, the ACCMOR sign is deduced from the
reanalysis by BABAR [28].
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2. The controversial K1ð1270Þ ! K�� decay through a
scalar meson: K1 ! scalarþ �

The PDG assigns a large branching ratio to this decay
channel: BrðK1ð1270Þ ! K�

0ð1430Þ�Þ ¼ ð28� 4Þ%. It is

extracted like all the branching ratios, from the
ACCMOR data and analysis. However, this interpretation
has been questioned. The original ACCMORmeasurement
shows indeed a clear, strongly coupled peak in the
(scalarþ �) channel around the mass 1270. However, it
is not claimed that the scalar isK�

0ð1430Þ; it is either treated
as a lower and much broader scalar meson (� ’ 600 MeV),
or it could be a continuum ðK�ÞS-wave according to [35].
Indeed, our model predicts the decay to the K�

0ð1430Þ�
channel to be of the order of 1%. Recently, the Belle
Collaboration has made a new branching measurement
using the B ! J=c ðc 0ÞK1 decay followed by K1 !
K��. What is most striking is that, indeed, Belle finds
BrðK1ð1270Þ ! K�

0ð1430Þ�Þ ’ 2% [25], as we predict,

while not finding any new component in the K1 decay:
the Br missing with respect to ACCMOR seems to be filled
by an enlargement ofK�. Therefore, in our analysis, we do
not include the K1ð1270Þ ! K�

0ð1430Þ� channel. Nor do

we include any other possible scalar in the presented
results. However, to take into account the contradictory
conclusions of ACCMOR, we have kept in mind the pos-
sibility that there is some significant portion of the branch-
ing ratio carried by a very wide scalar meson, different
from the K�

0ð1430Þ, such as the low lying state �ð800Þ.

V. DETERMINATION OF �� IN THE
DDLR METHOD

In this section, we demonstrate how to determine the
polarization parameter �� from the experimental data us-

ing the maximum likelihood method. In particular, we
introduce the DDLR method which was first applied in
the � polarization measurement at the ALEPH experiment
[5]. In the maximum likelihood method, knowing the ��

dependence on the probability density function (PDF), the
�� closest to its true value can be obtained, where the

likelihood function (or equivalently, log-likelihood) given
by the N sample of data takes its maximum value. In our
case, the PDFW can be given as the decay width integrand
normalized to unity (after the multiplication by the modu-
lus squared of the Breit-Wigner). Let us reiterate our
statement that, when one remains within the bump of the
K1 resonance, the decay amplitude weakly depends on
s ¼ p2ðK1Þ, and one can set s ¼ m2

K1
in their expression,

i.e. in the J ’s, which we assume therefrom.
Thus, using Eq. (11), we find

Wðs13; s23; cos�Þ ¼ fðs13; s23; cos�Þ þ ��gðs13; s23; cos�Þ;
(32)

where

fðs13; s23; cos�Þ ¼ 1

4I
j ~J j2ð1þ cos2�Þ;

gðs13; s23; cos�Þ ¼ 1

2I
Im½ ~n � ð ~J � ~J �Þ	 cos�;

I ¼ 2

3

Z
ds13ds23j ~J j2;

(33)

where f, g are normalized relative to the measure
ds13ds23d cos�.
Then, the likelihood function for the N events of data

can be given as

L ¼ YN
i¼1

½fðsi13; si23; cos�iÞ þ ��gðsi13; si23; cos�iÞ	; (34)

where i indicates the kinematic variable of each event. The
true value of �� should maximize this function; namely, it

should be the solution of the following equation:

@L
@��

¼ 0: (35)

Now, we explain the DDLR method [5]. The next pro-
cedure to look for the value of �� in our problem is usually

to use the known distribution of f and g functions and fit
the value of �� so as to maximize the likelihood function. It

should be noted that this is not a very simple task, espe-
cially since the f and g are complicated functions, as
shown in Eq. (33) and Appendix A. In [5], it is pointed
out that when the PDF depends only linearly on the
parameter which we are interested in, one can reduce
such a multidimensional fit to a one-dimensional one using
a single variable ! which is defined as follows:

!ðs13; s23; cos�Þ ¼ gðs13; s23; cos�Þ
fðs13; s23; cos�Þ : (36)

This can be proved simply by writing down the log-
likelihood of our problem:

lnL ¼ XN
i¼1

ln½1þ ��!ðsi13; si23; cos�iÞ	

þ terms independent of ��; (37)

where �� does not depend on f and g separately but only

on their ratio !. This demonstrates that only the ! distri-
bution is needed to extract ��.

Another thing that is pointed out in [5] is that the polar-
ization parameter is often determined only by using the
angular distribution; however, the sensitivity to it can be
further improved by considering all the kinematic informa-
tion, such as the Dalitz variable distribution. Therefore, we
use the dependence of �� not only on cos� but also on s13
and s23 in this work. Considering the fact that f, g, and !
have very complicated dependences on these kinematic
variables, the reduction to the one-dimensional fit achieved
by using the variable ! is very efficient for the data analy-
sis, as shown in the following.
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It must be underlined that, in the present case, in contrast
with the initial DDLR problem, � ! �	, ! is not a purely
kinematic variable, it depends on the theoretical model, as
is the case for � ! a1	. Then the method to obtain the
distribution in! is as follows. First, following the standard
Monte Carlo (MC) method, we generate the faked events
according to the PDF. Then, we compute the ! value for
each event. In this way, we obtain the omega distribution
NMCð!Þ according to the PDF.

We show examples of the ! distribution generated by
the MC simulation in Fig. 2.

Now we explain how to extract the value of �� as well as

its statistical error from a given ! distribution. We will
present our sensitivity study result in Sec. VI. Since the use
of the ! variable reduces our fit to a one-dimensional one,
�� is obtained simply as a solution to the following

equation:

@ lnL
@��

¼ N

�
!

1þ ��!

	
¼ 0: (38)

Of course, one could solve Eq. (38) by successive
searches. However, we can provide explicit expressions
for ��. One sees easily that the normalized distribution

in !, W 0ð!Þ, can be written as

W 0ð!Þ ¼ ð!Þð1þ ��!Þ; (39)

where ð!Þ is an even function of !, since as can be seen
from Eq. (33), fðs13; s23; cos�Þ is an even function of cos�
while !ðs13; s23; cos�Þ is an odd one.

Then, one can easily demonstrate by integration over the
interval �1<!< 1 that �� can be expressed as ratios of

odd over even momenta:

�� ¼ h!2n�1i
h!2ni ðn � 1Þ: (40)

Therefore, the expression obtained by DDLR for small ��

seems exact.
Similarly to Eq. (38), one can also obtain the statistical

error of the given value of �� as

�2
��

¼ 1

Nhð !
1þ��!

Þ2i : (41)

Thus, once the ! distribution is obtained experimentally,
Eq. (38) or Eqs. (40) and (41) immediately provide the
values of �� and ���

.7

VI. FUTURE PROSPECTS FOR THE
POLARIZATION MEASUREMENT

In this section, we discuss the sensitivity of the future
experiments, namely, the SuperB factories and LHCb, to
��, using the B ! K1ð1270Þ� ! ðK��Þ�. We also dis-

cuss the advantages and disadvantages of our method
compared to the other methods of the polarization mea-
surement using the other processes, such as B ! K�eþe�,
Bd ! K��, and Bs ! �.

A. The sensitivity study of the polarization
measurement with B ! K1ð1270Þ� in the

DDLR method

In this section, we perform a Monte Carlo simulation in
order to estimate the sensitivity of the future experiments
to the polarization parameter �� using the DDLR method.

Following the procedure described in Sec. V, we first
generate the events (103 and 104 events as examples) for
a given value of �� and then estimate the expected statis-

tical error ���
. Here, we use the ‘‘ideal’’ Monte Carlo

simulation; i.e. detector and background effects are not
taken into account. In order to generate the events as
well as to compute the ! distribution, we use the input
hadronic parameters as given in Sec. IV, taking into ac-
count the form factor momentum transfer dependence
(discussed in Appendix B). These parameters include
the experimentally measured isobar widths, the 3P0

model parameters (the meson wave function radii, the
quark-pair-creation constant, the damping factor), and the
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FIG. 2 (color online). The simulated ! distribution for
�� ¼ þ1 (red line) and �� ¼ �1 (blue line). The polarization

parameter �� can be determined from the difference between

these two distributions.

7In the real data, one must consider the systematic errors
coming from the detector effect, etc., and perform a �2 fit instead
of using these simple formulas. There is one subtlety for that
case. For each event, the photon should have either left- or right-
handed polarization. Thus, in the MC simulation, we produce the
! distribution with purely left- and right-handed PDF. Then, the
total ! distribution of the experimental data is expected to be a
linear combination of these two distributions, with a ratio of 
:

Nexpð!Þ ¼ 
NMC
R ð!Þ þ ð1� 
ÞNMC

L ð!Þ
with 
 � 1þ��

2 . N is the number of events in the experimental
measurement. We show an example of the ! distribution of
�� ¼ �1 (red line) and �� ¼ þ1 (blue line) in Fig. 2. As seen in
this equation, the �� can be determined from the difference
between these two distributions.
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phenomenological K1 mixing angle. In Table I, we present
our result in the case of the SM, i.e. �� ¼ 1. One can see

from the table that for 104 events the error on �� is smaller

than 0.1. We found that the errors do not change much for
different values of ��, and that the ! distributions for the

Kþ�þ�� and K0�þ��, and K0�þ�0 and Kþ���0 are
the same. Then, we should point out an advantage of using
the ! variable: all the channels corresponding to the same
PDF can be merged altogether. That means that one can
compute the ! variable for each event and build a single
histogram, which can increase the statistical significance.

In the above, we use the full decay distribution, not only
on the information of the angular part but also on the
information of the invariant mass of the hadronic system.
In the original DDLR paper [5], it was pointed out that
using an average decay distribution in place of a full decay
distribution for each set of invariant masses results in a
decrease of the sensitivity. In order to test this, we also
produce the ! distribution, including only the cos� depen-
dence, i.e. integrated over the Dalitz plot, and compute
���

. We found that the inclusion of the full Dalitz infor-

mation can indeed improve the sensitivity by typically a
factor of 2, comparing to the angular fit.

Up to now, we have not considered the systematic errors
coming from thehadronic parameters.Wemust reiterate that
our hadronicmodel applied in the above analysis is approxi-
mate; it depends on basic assumptions like the nonrelativ-
istic approximations inherent to the quark models. It
depends also on parameters, some of them being internal
to the full quark model, like the meson radii, and one being
purely phenomenological, the mixing angle �K1

(we must

note that there exists a correlation between themixing angle,
extracted from the data, and the chosen set of meson radii).
In addition, it depends on the set of experimental data which
we claimcanbe described bymodels such as those discussed
in Sec. IV. It is then a difficult question to evaluate the
uncertainties of our results; we do not claim to discuss this
point precisely in this paper but we intend to do this in
another publication.

Finally, we would like to give a rough estimate for the
event numbers expected by the future experiments, namely,
the SuperB factories and LHCb. Taking the exclusive
branching fraction BrðBþ ! Kþ

1 ð1270Þ�Þ ¼ 4:3� 10�5

and assuming that the decays K1 ! K�� are by K��
(16%) and K� (42%) channels, we obtain the observable
branching fractions of BrðBþ!ðKþ���þÞK1ð1270Þ�Þ¼
4:3�10�5�ð0:16�4=9þ0:42�1=6Þ’0:6�10�5 and
BrðBþ ! ðK0�þ�0ÞK1ð1270Þ�Þ ¼ 4:3� 10�5 � ð2 � 0:16 �
2=9þ 0:42 � 1=3Þ � 1=3 ’ 0:3� 10�5 (here the last factor
1=3 comes from the fact thatK0 is observed as�þ�� from
the KS decay). In order to get a more realistic estimation of
the required number of signal events at the future experi-
ments, we take the total efficiency of the reconstruction
and selection to be of the order of 0.1%, as in the case of
B ! K�� and Bs ! � at the LHCb experiment [36], and
of the order of 1% at the B factories [4]. Then, we obtain
the yield of the nominal data taking to be of the order of
5� 103 Bþ ! ðKþ���þÞK1ð1270Þ� and 2:5� 103 Bþ !
ðK0�þ�0ÞK1ð1270Þ� signal events for an accumulated

luminosity of 2 fb�1 at LHCb. The estimated annual
yield at SuperB factories with 2 ab�1 of integrated lumi-
nosity is of the order of 1� 103 and 0:5� 103 Bþ !
ðKþ���þÞK1ð1270Þ� and Bþ ! ðK0�þ�0ÞK1ð1270Þ� events,

respectively. Thus, the event samples 103 and 104, studied
in Table I, roughly correspond to the annual expected
events of SuperB and LHCb, respectively. It should be
noted that the decay modes including a neutral particle
are difficult to study at LHCb; i.e. LHCbmay study the first
decay channel in Table I well, whereas SuperB can study
all of them reasonably well.

B. Comparison to the other methods

In this subsection we compare the precision of the
photon polarization measurement, using various direct
and indirect methods.

1. Comparison with the up-down asymmetry of GGPR

One of the direct methods of the photon polarization
determination methods, proposed by Gronau et al. [3], is to
study the angular distribution in the �B ! P1P2P3� decay
and extract the polarization parameter �� from the angular

correlations among the final hadronic decay products
P1P2P3. An observable called ‘‘up-down’’ asymmetry is
introduced:

A up-down �
R
1
0 d cos�

d�
d cos� �

R
0
�1 d cos�

d�
d cos�R

1
�1 d cos�

d�
d cos�

¼ 3

4
��

R
dsds13ds23 Im½ ~n � ð ~J � ~J �Þ	R

dsds13ds23j ~J j2 ; (42)

representing the asymmetry between the measured number
of signal events with the photons emitted above and below

TABLE I. Sensitivity study of the polarization measurement
with B ! K1ð1270Þ� in the DDLR method. Our estimates of the
statistical errors to �� in the case of the SM (i.e. �� ¼ þ1) are

shown in this table. The event sample, 103 and 104, roughly
corresponds to the annual expected events of SuperB and LHCb,
respectively. The hadronic parameters used to obtain this result
are given in Sec. IV. The systematic error due to the uncertainties
from these hadronic parameters is not included and has to be
carefully studied.

���
(statistical error) Nevents ¼ 103 Nevents ¼ 104

Bþ ! ðKþ���þÞK1ð1270Þ� �0:18 �0:06
Bþ ! ðK0�þ�0ÞK1ð1270Þ� �0:12 �0:04
B0 ! ðK0�þ��ÞK1ð1270Þ� �0:18 �0:06
B0 ! ðKþ���0ÞK1ð1270Þ� �0:12 �0:04
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the P1P2P3 decay plane in the �K1 reference frame. Having
the theoretical prediction of J , one can determine ��.

Our conclusion, identical to the one for the angular fit, is
that the statistical error on �� is about twice the one in our

method.

2. Comparison with B ! K�‘þ‘�

From the analysis of the angular distributions of the
four-body final state in the B0 ! K�0ð! K��þÞ‘þ‘�
decay in the low ‘þ‘� invariant mass region, one can
study various observables that involve different combina-
tions of K� spin amplitudes [37].

Working in the transversity basis M? ¼ MR�MLffiffi
2

p and

Mk ¼ MRþMLffiffi
2

p , one of the most promising observables,

which has a small impact from the theoretical uncertain-
ties, is the transverse asymmetry defined as

Að2Þ
T � jM?j2 � jMkj2

jM?j2 þ jMkj2
¼ �MRM�

L þM�
RML

jMRj2 þ jMLj2








SM

 �2
MR

ML

: (43)

Note that we assume that ML=R at the low ‘þ‘� invariant

mass regions can be identified with the decay amplitudes of
b ! s�L=R and are related to our polarization parameter as

�� ’ jMRj2�jMLj2
jMRj2þjMLj2 .

8

The new analysis of the B ! K�eþe� decay mode by
the LHCb Collaboration [38] shows that one can expect an
annual signal yield of 200 to 250 events for 2 fb�1 in this
energy region. With this number, it is found that the LHCb

can reach a precision of �ðAð2Þ
T Þ around 0.2, corresponding

to the statistical error on �ðMR=MLÞ to be of the order of
0.1 [38].

It should be noticed that this method allows the direct
measurement of the ratio x � jMR=MLj, while our po-
larization parameter �� is sensitive only to the amplitude

ratio squared, x2. Therefore, the errors of these two meth-
ods are to be compared using the following equation:

�x ¼ ð1þ x2Þ2
4x

���
; (44)

which shows that the sensitivity depends on the value of x.
We should immediately notice that for verifying the SM
value, x ’ 0, the method accessible to x is much more
advantageous than the one to x2: our �� is in fact insensi-

tive to the SM point (requiring an infinitesimal error).
We plot Eq. (44) in Fig. 3. Let us look at the horizontal
line of �x ¼ 0:1, the expected error of the x with the
B ! K�eþe� measurement. One can see that our method,

which has an estimated statistical error of the �� determi-

nation ���
& 0:1 (see Table I), becomes more advanta-

geous for the measured value of x above x� 0:3.
Moreover, the same sensitivity to x can be achieved even
with a larger error ���

* 0:1.

3. Comparison with the methods invoking
CP asymmetries

An indirect method to measure the photon polarization
is to study the time-dependent CP asymmetry in the neu-
tral Bq (q ¼ d, s) mesons. For the generic radiative decay

of the neutral Bq meson into any hadronic self-conjugate

state MCP, BqðtÞ ! MCP�, neglecting direct CP violation

and the small width difference between two B mesons, the
CP asymmetry is given by [39]

A CPðtÞ¼�sinð2c ÞsinðM�L�RÞsinð�mtÞ; (45)

where �ð¼ �1Þ is the CP eigenvalue of MCP, sinð2c Þ �
2jMLMRj

jMLj2þjMRj2 parametrizes the relative amount of left- and

right-polarized photons, L;R ¼ sin�1ðImML;R

jML;Rj Þ are the rela-
tive CP-odd weak phases in the b ! s� process, and M

is the one in the Bq � �Bq mixing. These phases are

L=R ¼ 0, d ¼ 2�, s ’ 0 in the SM. The smallness of

the right-handed amplitude in the SM, MR=ML ’
ms=mb, predicts ACPðtÞ ’ 0. We should emphasize that
ACPðtÞ measures the combination of x � jMR=MLj and
the CP violating phases M;L;R, but not separately. Thus,

the value of x can be obtained from this measurement, only
by having the value of the CP violating phases in the
b ! s� as well as the Bq mixing.

The current world average for the asymmetry in the
Bd ! KS�

0� process is SCPðB ! KS�
0�Þ ¼ �0:15�

0:20 [1], which is expected to be improved by the

FIG. 3 (color online). Comparison of the sensitivity of the two
methods: one directly determining x � jMR=MLj and the other
one determining x2, such as our �� [see Eq. (44)]. One can see

that when we assume the same errors for both methods, a better
significance can be obtained with the latter method for x * 0:3.

8ML=R is the amplitude for the emission of left/right polarized
photons in b (i.e. �Bmeson) decay, andM�

L=R is the amplitude for
the emission of right/left polarized photons in �b (i.e. B meson)
decay.
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SuperB factory (the error will be reduced down to 2%
[40]). The LHCb experiment is going to measure the
Bs ! � process. Based on the MC simulation for
2 fb�1, it is claimed in [36] that the LHCb will be able
to measure x with an accuracy of �x ’ 0:1. Therefore,
similar to the case of B ! K�eþe�, our method using ��

can be more sensitive to x above x� 0:3 (see Fig. 3).
Again, it should be emphasized that although an observa-
tion ACPðtÞ � 0 in this method immediately indicates the
existence of new physics, a quantitative determination
of x is not possible unless we fix the new physics model,
namely, the CP violating phases in b ! s� as well as Bq

mixing.

VII. CONCLUSIONS

We investigated the method to determine the photon
polarization of the b ! s� process using the decay channel
B ! K1� ! K���, which was originally proposed by
Gronau et al. [3]. In this paper, we propose a new variable,
!, to determine the polarization parameter ��. This vari-

able was first applied in the � polarization measurement in
the ALEPH experiment [5]. The use of ! significantly
simplifies the experimental analysis, and as a result, it
allows us to include not only the angular dependence of
the polarization parameter, represented as the up-down
asymmetry in [3], but also the three-body Dalitz variable
dependence to the fit. We found that when the data are
analyzed by using!, the statistical error in the polarization
parameter �� can be reduced by a factor of 2, compared to

the case of the up-down asymmetry.
In order to evaluate the systematic error, a sufficiently

accurate modeling of the hadronic decays ofK1 ! K�� is
required. Having the recent observation of the Belle
Collaboration [4], implying the dominance of the B !
K1ð1270Þ� channel over B ! K1ð1400Þ�, we investigated
the hadronic decay of K1ð1270Þ ! K�� in some detail.
We first derived the basic hadronic parameters required in
our analysis. These parameters can, in principle, be deter-
mined by experimental measurements of the K1ð1270Þ !
K�� decay. On the other hand, although the outstanding
ACCMOR experiment provided an extensive study of this
decay, we found that the information one can extract from
it is not accurate enough. We described some of the prob-
lems encountered in our analysis, which include the strong
phase between different intermediate resonance states and
the controversial K1ð1270Þ ! K�� through scalar me-
sons. Interestingly, the latter problem has been studied by
the Belle Collaboration recently [25], with a small result
contradicting the PDG number and in agreement with our
prediction by the 3P0 model. Their results will provide a

great help for our future study of the K1 decay modes.
Being unable to obtain the hadronic parameters from the

fundamental theory, we resorted to combining experimen-
tal data and phenomenological models. Practically, com-
bining the experimental results of the partial wave analysis

of the K1 decays and the predictions of the
3P0 quark-pair-

creation model, we found that the K1 mixing angle
between 50
 and 60
 is very compatible with the experi-
mental data. Nevertheless, an evaluation of the theoretical
uncertainties requires much more detailed discussions,
which we will present in the forthcoming paper.
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APPENDIX A: THE K1 ! K�� FORM FACTORS

In this appendix, we derive the quasi-two-body decay
amplitude MV

ðPiPjÞPk
given in Sec. III B. For the computa-

tion of this amplitude, we take into account the vector
meson resonance width effect assuming the Breit-Wigner
form; thus

MV
ðPiPjÞPk

�MðK1!VPkÞMðV!PiPjÞBWVðsijÞ: (A1)

The decay amplitude of the axial-vector K1 to a vector (V)
and a pseudoscalar (Pk) meson can be expressed in the
following Lorentz invariant form:

hVðpV; "
ðVÞÞPkðpkÞÞj�HAjK1ðpK1

; "ðK1 ÞÞi ¼ "ðK1Þ
� T�	"ðVÞ�	 ;

T�	 ¼ fVg
�	 þ hVp

�
Vp

	
K1
; (A2)

where fV and gV are the form factors. The amplitude of the
subsequent decay V to two pseudoscalar mesons Pi and Pj

can be parametrized in terms of one vector-pseudoscalar
coupling gVPiPj

:

hPiðpiÞPjðpjÞj�HV jVðpV; "
ðVÞÞi ¼ gVPiPj

"ðVÞ� ðpi � pjÞ�:
(A3)

Using these form factors, we can obtain

M V
ðPiPjÞPk

¼ ð ~pi � ~
K1
ÞaVij þ ð ~pj � ~
K1

ÞbVij; (A4)

where

aVij¼gVPiPj
BWVðsijÞ½fVþhV

ffiffiffi
s

p ðEi�EjÞ��ij	;
bVij¼gVPiPj

BWVðsijÞ½�fVþhV
ffiffiffi
s

p ðEi�EjÞ��ij	
(A5)

with �ij � ðm2
i�m2

j Þ
M2

ij

½fV þ hV
ffiffiffi
s

p ðEi þ EjÞ	. Note Ei ¼
ðs� sjk þm2

i Þ=ð2
ffiffiffi
s

p Þ.
Finally, using these aVij and bVij functions, we obtain the

K1 ! P1P2P3 amplitude as
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MðK1 ! P1P2P3Þ ¼ c132MV
ðP1P3ÞP2

þ c231MV
ðP2P3ÞP1

þ c123MV
ðP1P2ÞP3

� ð ~p1 � ~
K1
ÞC1 � ð ~p2 � ~
K1

ÞC2; (A6)

where

C1 ¼ c132ðaV13 � bV13Þ � c231b
V
23 þ c123a

V
12;

C2 ¼ c132b
V
13 � c231ðaV23 � bV23Þ � c123b

V
12:

(A7)

APPENDIX B: DAMPING FACTOR

In this appendix, we discuss the necessity of introducing
the cutoff in the coupling vertices. When we compute the
strong decay rates, we must take into account, in principle,
the widths of the initial or final resonances; this is espe-
cially crucial for the transition rate of K1ð1270Þ ! K�,
which is large, although it would be kinematically almost
forbidden at the nominal values of the masses. A well-
known and simple way to take the widths into account is by
integrating over the off-shell ‘‘masses,’’ p2, with the
weight of the Breit-Wigner’s. However, it is then found
that the integrals will diverge for P or D waves, due to the
k2l factors, where k is the decay momentum, if the coef-
ficients are taken to remain constant. Of course, the reac-
tions will, in general, provide natural limits of integration;
for instance, the spectrum studied by ACCMOR stops
at MK�� ¼ 1:6 GeV, but even that cut would give

exceedingly large P or D wave contributions. In fact, it
seems that various indications hint at the necessity of a
strong dynamical cutoff, or ‘‘damping factor,’’ affecting,
for instance, the Breit-Wigner shape [e.g. accurate studies
of �ð1236Þ [41] or K�ð890Þ; see Ref. [42]), the prototypes
of which are the Blatt-Weisskopf factors. The need for the
cutoff is also shown by calculations of hadronic loops in
the 3P0 model [43]. One obtains a natural damping factor

through the Gaussian factors e��k2 ,

AS / ð3� �k2Þe��k2 ; AD / �k2e��k2 ; (B1)

but one finds �� 0:3 GeV�2 which is much too small.
Following Ref. [43], we introduce the empirical Gaussian
cutoff expð��0k2Þ with �0  3 GeV�2, renormalizing
� ! �þ �0.
Then, in order to determine the parameters � and �K1

from the phenomenological data of the strong K1 decays,
we integrate the squared amplitudes over the K1 and vector
meson resonance state (K�=�) invariant masses within
the whole kinematic allowed region in ACCMOR,
[1.0, 1.6] GeV; the integration on the K1 invariant mass
does not depend too much on these limits for S waves. It is
not the case for theDwaves, but once the damping factor is
introduced, the D=S ratio becomes stable. The isobar
(K�=�) decay does not depend much on the damping
factor.
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