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We determine the hadronic light-by-light scattering contribution to the anomalous magnetic moment of

the muon using the framework of Dyson-Schwinger and Bethe-Salpeter equations of QCD. Our result for

the pseudoscalar ð�0; �; �0Þ meson-exchange diagram is commensurate with previous calculations. In our

calculation of the quark-loop contribution we improve upon previous approaches by explicitly imple-

menting constraints due to gauge invariance. The impact of transverse contributions, presumably

dominated by vector-meson poles, are only estimated at this stage. As a consequence, our value

aLBL;quarkloop� ¼ ð136� 59Þ � 10�11 is significantly larger. Taken at face value, this then leads to a revised

estimate of the total a� ¼ 116 591 891:0ð105:0Þ � 10�11.
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I. INTRODUCTION

One of the most impressive successes of the standard
model (SM) of particle physics is the determination of the
anomalous magnetic moment of the electron. This quantity
is determined both experimentally and theoretically to such
a degree of precision that the underlying physical descrip-
tion is vindicated. However, when it comes to the question
of new physics, the anomalous magnetic moment of the
muon is an even more interesting quantity, see e.g. [1–3]
for reviews. This is due to the large mass of the muon as
compared to the electron, which leads to an enhanced
sensitivity to physics in and beyond the standard model.
Experimental efforts at Brookhaven and theoretical efforts
of the past ten years have pinned a� down to the 10�11

level, leading to significant deviations between theory [1]
and experiment [4]:

Experiment : 116 592 089:0ð63:0Þ � 10�11; (1)

Theory : 116 591 790:0ð64:6Þ � 10�11: (2)

While the theoretical and experimental values are deter-
mined to comparable errors, the central values give rise to a
discrepancy at the 3:3� confidence level. This difference
has been present for a number of years and can be inter-
preted as a signal for the existence of physics beyond the
standard model. However, to clearly distinguish between
new physics and possible shortcomings in the SM calcu-
lations the uncertainties present in both experimental and
theoretical values of a� need to be further reduced.

The greatest uncertainties in the theoretical determina-
tion of a� are encountered in the hadronic contributions,

i.e., those terms which involve QCD beyond perturbation
theory. The most prominent of these is given by the vac-
uum polarization tensor dressing of the QED vertex, see
Fig. 1(a). Fortunately it can be related to experimental data
of eþe� annihilation and � decay via dispersion relations

and the optical theorem, thus resulting in a precise deter-
mination with systematically improvable errors [1].
Considered individually, its (leading and subleading order)
contribution to the anomalous magnetic moment of the
muon is [2]

½6 903:0ð52:6Þ � 100:3ð1:1Þ� � 10�11: (3)

Although currently these uncertainties dominate the error
of the theoretical result in Eq. (2) it is foreseeable that
future experiments reduce this error below that of another,
more problematic source. This is the hadronic light-by-
light (LBL) scattering diagram, shown in Fig. 1(b). This
contribution cannot be directly related to experiment and
must hence be calculated entirely through theory. The
central object in such a calculation is the photon four-point
function. It receives important contributions from the small
momentum region below 2 GeV, where perturbative QCD
breaks down and nonperturbative methods are imperative.
Recent determinations of aLBL� are provided in Table I.

Although the magnitude of the LBL contribution is much

(a) (b)

FIG. 1. The two classifications of corrections to the photon-
muon vertex function are shown: (a) hadronic vacuum polariza-
tion contribution to a�. The vertex is dressed by the vacuum

polarization tensor ���; (b) the hadronic light-by-light scatter-

ing contribution to a�.
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smaller than the one from vacuum polarization it is signifi-
cant because its error is of a comparable size. Taken
together, with the errors added in quadrature, the hadronic
contributions constitute the largest uncertainty in the stan-
dard model determination of the anomalous magnetic
moment of the muon.

The theoretical approaches to determine the LBL con-
tribution are centered around two main ideas. One is chiral
symmetry, its breaking pattern and the associated low
energy effective descriptions of QCD [11]; the other is
the large-Nc expansion of the four-photon function and
the associated ordering of diagrams. These ideas have been
put together in [12] and led to various refined calculations
of LBL within the frameworks of large-Nc and vector-
meson dominance [5,13–15], the extended Nambu-Jona-
Lasinio model (ENJL) [7,16], the (very similar) hidden
local symmetry model [8–10], or a nonlocal chiral quark
model [17,18], see also [6] for a summary. Although in
terms of diagrams individual contribution are of varying
size in these approaches, their sum leads to consistent
results as can be inferred from Table I. In all these calcu-
lations the [pseudoscalar (PS)] meson exchange contrib-
utes the most and the meson loop has been found to be
small. A possible explanation of the latter is given in [14].
As a result, we quote the recent value for LBL aLBL� ¼
105ð26Þ � 10�11 proposed in Ref. [6], which also agrees
with the one in [5].

One of the most important goals for these and future
calculations is the reduction of the model dependence and
subsequently of the systematic error involved in these
calculations. Since LBL is nonperturbative in nature, all
estimates in Table I are plagued by systematic model
dependencies. It is therefore desirable to also explore other
calculational tools which have the potential to go beyond
these limitations. Certainly, lattice gauge theory is one
such method. However, due to the multiscale nature of
the problem no reliable estimates for LBL have been
extracted on the lattice so far. This multiscale nature also
makes EFT methods less desirable as it proves more diffi-
cult to impose suitable matching conditions.

Another nonperturbative method, well suited to accom-
modate for largely different scales, is the framework of
Dyson-Schwinger and Bethe-Salpeter equations [19–22].
In the past years this approach has been used to study
fundamental properties of QCD such as confinement and

dynamical chiral symmetry breaking. On the other hand
the approach served as a tool for hadron physics. In this
work we expand upon this and apply the formalism to a
calculation of the LBL contribution to the muon anoma-
lous magnetic moment. To this end we separate different
contributions to the light-by-light four-point function
according to their topology of gluon exchange and their
status with respect to the large-Nc expansion.
Diagrammatically this translates to considering resumma-
tions of planar diagrams involving gluon exchange. In this
scheme we then determine the dressed quark-loop diagram
and an approximation in terms of pseudoscalar meson
ð�0; �; �0Þ exchange contributions. In principle, the off-
shell meson amplitudes involved in these diagrams could
be calculated from inhomogeneous Bethe-Salpeter equa-
tions. Here, due to numerical complexity, in this work we
resort to a commonly used ansatz that extrapolates on-shell
wave functions. Our results are then compared with the
ones of previous approaches. First results of our analysis
have been published in Ref. [23]. Here we discuss our
method in much more detail and present new and more
elaborate results for the quark-loop diagram.
The paper is organized thus: in Sec. II we recall the

definition of the light-by-light scattering amplitude
and focus upon the pseudoscalar-pole contributions; in
Sec. III we introduce our Dyson-Schwinger approach and
discuss the necessary truncation schemes; in Sec. IV we
present and discuss our results. We conclude in Sec. V.

II. THE LBL SCATTERING AMPLITUDE

In the hadronic light-by-light scattering contribution,
Fig. 1(b), the muon is coupled to an external photon source
via the hadronic photon four-point function �����, de-

fined through

�����ðq1; q2; q3Þ
¼

Z
xyz

eiq1�xþiq2�yþiq3�zhj�ð0Þj�ðxÞj�ðyÞj�ðzÞi; (4)

where
R
xyz ¼

R
d4x

R
d4y

R
d4z represents integration

over four-dimensional space, q1;2;3 are the photon mo-

menta that are connected to the muon line, and j� is the

electromagnetic quark current

j� ¼ 2
3
�u	�u� 1

3
�d	�d� 1

3
�s	�sþ 2

3
�c	�c: (5)

A detailed discussion of this object can be found in the
literature, see, e.g., [14,16]. Instead ofworking directlywith
the light-by-light scattering diagram given in Fig. 1(b), it is
more convenient to follow the strategy employed in
Refs. [24,25]. Here gauge symmetry is exploited to con-
struct quantities that are finite. Through use of the
Ward-Takahashi-identity k������ ¼ 0 it follows via dif-

ferentiation that

TABLE I. Recent calculations of the hadronic light-by-light
scattering contribution to the anomalous magnetic moment of
the muon are shown.

Reference aLBL�

[5] 116ð40Þ � 10�11

[6] 105ð26Þ � 10�11

[7] 110ð40Þ � 10�11

[8–10] 89ð15Þ � 10�11
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�
��� ¼ �k�
@

@k

����� ¼: �k� ~�ð
Þ����; (6)

which serves as definition of the five-point-function
~�ð
Þ����. Here k ¼ q1 þ q2 þ q3 is the momentum of

the external photon. The virtue of the derivative is that it
lowers the dimensionality of the integral thus ensuring that

integrals employing ~�ð
Þ���� are manifestly convergent.

We define the quantity

ie~�
�¼
Z
q1

Z
q2

D��ðq1ÞD��ðq2ÞD	�ðq3Þ�ðie		ÞSðp1Þ

�ðie	�ÞSðp2Þðie	�Þ�½ðieÞ4 ~�ð
Þ����ðq1;q2;q3Þ�;
(7)

which is now related to the dressed muon vertex �� of

Fig. 1(b) via

ie�� ¼ iek
~�
�: (8)

Here D��ðqÞ are perturbative photon propagators (we use

Feynman gauge) with momenta qi. The perturbative
muon propagators are given by SðpÞ.

The anomalous magnetic moment can now be obtained
by applying the appropriate projection operator to Eq. (7)

a�¼ 1

48m�

tr½ðiPþm�Þ½	�;	
�ðiPþm�Þ~��
�jk�0; (9)

that we write here in Euclidean convention for later con-
venience. Using Eqs. (6)–(9) we are able to evaluate the
light-by-light scattering contributions for an arbitrary pho-
ton four-point function. What remains now is the specifi-
cation of this four-point function within our approach.

A. Expansion using EFT approaches

As already mentioned in the Introduction, chiral and
large-Nc arguments have been established to expand the
full LBL scattering amplitude into the diagrammatic parts
shown in Fig. 2 [1]. These diagrams belong to different
orders with respect to chiral and large-Nc counting.
Whereas the meson-exchange diagrams and the quark-
loop diagram are leading in large-Nc, it is the meson-
loop diagram that is leading in the chiral counting. Thus,
a priori, one does not know which expansion is to be
preferred. Therefore it is certainly interesting that all ex-
plicit calculations of these contributions seem to favor the
Nc-counting scheme; meson-loop contributions have been
found to be suppressed. Arguments as to why this is the
case have been presented in Ref. [14].

Strictly speaking, however, one does not actually per-
form a large-Nc expansion as this would necessitate the
inclusion of an infinite number of resonances. Instead, only
the lowest lying meson-exchange contributions in the pseu-
doscalar, scalar and axial-vector channel have been sub-
summed. Here, the pseudoscalar �0 exchange has been

identified as the leading contribution, followed by � and�0
exchange.
Concerning the PS exchange contribution a few remarks

are in place. The photons in the exchange diagrams are
coupled to the PS mesons via the PS-		 form factor,
FPS		. It is evident that there are two limiting features of

the pseudoscalar-pole approximation. The first is the actual
provision of the form factors themselves, which are in
general subject to systematic errors depending on how
they are modeled or calculated. The second is the proce-
dure under which the form factor is taken off-shell.
Previous approaches mainly used vector-meson dominance
ideas to determine this form factor and there has been an
extensive debate as to whether and how short distance
constraints have to be implemented [5,6,13,14,18].
Rather than employ the principles of vector-meson domi-
nance and construct an ansatz for the on-shell/off-shell
form factor, we wish to calculate it from first principles.
This is possible within the framework of Dyson-Schwinger
and Bethe-Salpeter equations using a well explored and
successful truncation scheme [20].
As for the quark-loop diagram, different interpretations

have been given in the literature. Whereas in [12] it has
been argued that the quark loop is a separate contribution
that has to be added to the other two, in many other
approaches it has been treated as a complementary one,
which is only added in the large spacelike momentum
region, say above a typical cutoff for an effective model.
In our functional approach, described below, it is clearly
the first point of view that is correct. Moreover, as we will
see, the quark loop is subject to large dressing effects not
only for the quark propagators in the loop but also for the
quark-photon vertices. This will be the main result of our
work.

B. Expansion using functional methods

From a functional integral approach to QCD, featuring
quarks and gluons as the fundamental degrees of freedom,
the analogous picture to what is normally considered in the
literature is shown in Fig. 3, where we give an expansion in
terms of nonperturbatively dressed one-particle irreducible
Green’s functions. The basic idea of this expansion is not a
separation of long distance and short distance scales, but
rather a separation of different classes of diagrams based
on their topology. Clearly, the expansion is such that no
double counting of diagrams is involved. By considering a
restricted subset of contributions in which only diagrams
with a planar topology are resummed, we effectively ad-
here to the Nc-counting scheme as favored in the EFT
approaches mentioned above. Though there are similarities
between the two pictures, since we work with a truncated
formulation of exact-QCD rather than an effective field
theory there are some differences that we will comment on
here to avoid confusion. First of all, our quarks are to be
interpreted in the same way as those extracted via Lattice
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QCD; they are characterized by momentum dependent
dressing functions that interpolate between the current
and constituent quark limits, cf. the discussion below
Fig. 11. Second, the quark-photon coupling is a nonpertur-
bative form factor and not merely a tree-level bare vertex;
it can be calculated self-consistently for a given truncation
scheme. Finally, the planar resummation of gluons is re-
lated to the T matrix of quark-antiquark scattering and
contains meson poles that can be associated with pseudo-
scalars, vectors, scalars etc. This will be exploited below,
where we return to the conventional meson-exchange
picture to approximate these contributions.

We wish to emphasize that the expansion displayed in
Fig. 3 has been used successfully in a different context
already in Ref. [26]. There �-� scattering has been con-
sidered using similar quark-box and ladder-exchange parts
as displayed in Fig. 3. In this setup, the authors of Ref. [26]
could reproduce the isospin 0 and 2 scattering lengths in
exact agreement with Weinberg’s low energy results.
Moreover, in Ref. [27] it has been checked, that the corre-
sponding resonant expansion similar to the one displayed
in Fig. 2 is a good approximation to the ladder-exchange
part of Fig. 3. Note that in both these calculations the

quark-box diagram had to be added to the ladder-exchange
or the resonant ‘‘meson-exchange’’ part, respectively. We
believe that these results add further support to our
approach.

1. Quark-loop contribution

Within our proposed truncation, the quark-loop is com-
posed of dressed quark propagators and dressed quark-
photon vertices. On expanding these one-particle irreduc-
ible Green’s functions, within the rainbow-ladder approxi-
mation, we find planar-like diagrams such as the ones
shown in Fig. 4 (all propagators are fully dressed), where
in fact infinite ladders of gluons are taken into account.
Should we consider corrections beyond rainbow ladder,
such as those considered in Refs. [28,29], one would
also include diagrams in which the gluons have self-
interactions as well as crossed-ladder components.
Taking into account such corrections is, however, beyond
the scope of the present work.

q +/−

FIG. 2. The hadronic LBL scattering contribution to a� and its expansion, using EFT approaches, as a quark-loop part (left), leading
pseudoscalar meson-exchange part (middle), and a leading meson-loop part (right), is shown. Note that the quarks here may be
interpreted differently to those in Fig. 3.

FIG. 3. The hadronic LBL scattering contribution to a� and its expansion, using functional methods, as a quark-loop part (left), a
ladder-exchange part (middle), and a ladder-ring part (right), is shown. All propagators and vertices are fully dressed, with the ellipsis
marks indicating that an infinite number of gluons are resummed.

FIG. 4. The expansion of quark-loop contribution to the pho-
ton four-point function in terms of planar quark and gluon
diagrams (all propagators are fully dressed) is shown.

FIG. 5. The hadronic light-by-light scattering contributions to
a� from the quark loop are shown. There are an additional three

diagrams (not shown) in which the quark-spin line is reversed.
Principally, these diagrams involve dressed quark propagators
and quark-photon vertices.
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Considering this contribution to the muon-photon ver-
tex, we obtain the diagrams as shown in Fig. 5, where we
have shown permutation of the external photon legs but
have omitted the topologies that merely involve reversal of
the quark-spin line (these give identical contributions and
hence constitute a factor of 2). As is well known, these
diagrams are individually logarithmically divergent with
only their sum finite and convergent; thus one employs the
aforementioned trick, Eq. (6), of taking the derivative of
the photon four-point function [24,25].

Since this is now to be applied to loop integrals over
nonperturbative quantities, namely, the quark propagator, it
is no longer possible to reduce the integration to be five-
dimensional as in the case of perturbative studies. More
generally, on considering the planar nature of the diagrams,
one must deal with 8-dimensional integrals which neces-
sitate Monte Carlo methods [30]. However, for reasons of
calculational simplicity we actually integrate in nine. We
did check, however, that we were able to reproduce the
well-known perturbative results for the electron loop con-
tribution to the anomalous magnetic of the electron and the
muon [31–33]. Additionally, due to the somewhat involved
Dirac algebra [34,35] we will content ourselves with taking
the quark-photon vertices inside the quark-loop contribu-
tion to be: (a) bare, (b) 1BC, (c) full BC. The precise
meaning of these abbreviations and the relation to
the full quark-photon vertices will become clear in
Secs. III B and IVB. The extension to employ the numeri-
cally calculated nonperturbative form of the vertex will be
explored in a later publication. The results of our calcu-
lation are presented in Sec. IV.

2. Ladder-exchange and ladder-ring contribution

Two contributions that are leading and subleading in
large Nc respectively are the so-called ladder-exchange
and ladder-ring diagrams of Fig. 3. These infinite ladder
resummations are in fact related to the T matrix of bound-
state theory in a certain approximation scheme (that

produces planar diagrams). Thus, another way to portray
these contributions is given in Fig. 6.
The T matrix in rainbow-ladder approximation is given

in Fig. 7. At this point, we make it clear that there is no
conflict nor double counting between the quark-loop and
ladder-exchange diagrams, as they clearly consider and
resum different topologies of diagrams.
As it stands, the full T matrix is a very complicated

object to solve in its entirety though its structure admits
several approximations and simplifications [36]. The one
which we employ here is similar to the viewpoint taken by
effective field theory approaches; that is, we consider pole
contributions to be dominant. Now, since it is well-known
that such an infinite gluon-ladder resummation dynami-
cally generates bound-state poles, one can expand the T
matrix in terms of meson pole contributions as shown in
Fig. 7 (bottom diagram). On mass shell we then have a
unique definition of the Bethe-Salpeter amplitude, de-
scribed below in Sec. III A, that gives the form factor
describing coupling of a meson to two quarks. From this
point the (on-shell) pseudoscalar-photon-photon form fac-
tor can be defined and calculated, giving rise to the ‘‘lead-
ing’’ pseudoscalar meson-exchange part, as shown in Fig. 8
and Fig. 9. In a similar fashion, the ring-ladder diagram
contains contributions akin to the pion loop on meson mass
shell. However, since these are generally considered to be
subleading we will not consider them further here and
instead concentrate on the quark-loop and ladder-exchange

FIG. 6. The ladder-exchange contribution (upper equation) and
ring-ladder contribution (lower equation) to the photon four-
point amplitude are shown.

FIG. 7 (color online). The T matrix in the rainbow-ladder
approximation is shown. The top diagram shows the series
expansion in terms of dressed quarks and gluon, while the
middle represents Dyson’s equation. The bottom diagram shows
the pole ansatz for the T matrix on-mass-shell.

FIG. 8. The pole representation of the ladder-exchange con-
tribution to the photon four-point function is shown.
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diagrams. After we present our approach and formalism in
the next section, results will be discussed in Sec. IV.

III. FRAMEWORK

The dressed quark propagator is one of the most impor-
tant quantities in the covariant description of mesons. It
encodes nonperturbative properties of QCD such as dy-
namical mass generation and the realization of a nonzero
condensate. Its equation of motion, the quark Dyson-
Schwinger equation (DSE) displayed in Fig. 10, also con-
tains the dressed gluon propagator and a dressed quark-
gluon vertex. Whereas the dressed gluon propagator in
Landau gauge is a well-known quantity by now, see
[37–40] and references therein,1 the study of the details
of the dressed quark-gluon vertex is still on an exploratory
level, although some progress has been made in the past
years [29,42,43]. Pending deeper insights into the non-
perturbative structure of the quark-gluon interaction it is
therefore reasonable to work with approximations that take
into account important features of the full theory. This
strategy, of course, introduces model dependencies into
our calculation that have to be carefully addressed later on.

From a phenomenological perspective a successful ap-
proximation in this respect is the rainbow-ladder truncation
of the quark DSE. The philosophy here is to combine the
dressing of the gluon propagator with the vector part of
the quark-gluon vertex into a single function depending on
the gluon momentum only. While this is certainly a severe
approximation in principle, in practice it turned out to be
very successful concerning the calculation of masses and
electromagnetic properties of mesonic observables [20].
While the parameters of the model are tuned such that it
reproduces the experimental values for the masses and
decay constants of the pion, it also reproduces the pion
charge radius and �		 transition form factors on the
percent level. In the vector channel the agreement with
experimental masses and decay constants is on the five and
10% level. Thus, while one has to keep in mind possible
systematic caveats, we nevertheless believe that such a
model is an excellent starting point for a systematic evalu-
ation of hadronic LBL.

In Euclidean momentum space, the renormalized
dressed gluon and quark propagators in the Landau gauge
are given by

D��ðpÞ ¼
�
��� �

p�p�

p2

�
Zðp2;�2Þ

p2
; (10)

SFðpÞ ¼
Zfðp2;�2Þ
ipþMðp2Þ ¼

1

ipAðp2;�2Þ þ Bðp2;�2Þ ; (11)

where Zðp2;�2Þ is the gluon dressing function, Zfðp2;�2Þ
is the quark wave function, and Mðp2Þ is the renormaliza-
tion point independent quark mass function. The depen-
dence of such functions on the renormalization point �2

will be implicitly assumed from here on. The quark dress-
ing functions Aðp2Þ and Bðp2Þ can be recombined into the
quark mass and wave function by Mðp2Þ ¼ Bðp2Þ=Aðp2Þ
and Zfðp2Þ ¼ 1=Aðp2Þ.
These propagators may be obtained by solving their

respective Dyson-Schwinger equations. The DSE for the
quark propagator, shown diagrammatically in Fig. 10, is
written

S�1ðpÞ¼Z2S
�1
0 ðpÞþ�ðpÞ;

�ðpÞ¼g2CFZ1F

Z d4q

ð2�Þ4��ðq;pÞD��ðkÞ	�SFðqÞ; (12)

where �ðpÞ is the quark self-energy, k ¼ p� q and the
Casimir CF ¼ 4=3 stems from the color trace. We intro-
duced the reduced quark-gluon vertex ��ðq; pÞ defined by
�a
�ðq; pÞ ¼ ig 
a

2 ��ðq; pÞ. The bare inverse quark propaga-
tor is S�1

0 ðpÞ ¼ ipþm. The renormalization factors are

Z1F ¼ Z2= ~Z3 for the quark-gluon vertex, Z2 for the quark-
propagator, and ~Z3 for the ghost dressing function.
The scalar dressing functions of the quark DSE are

solved for by appropriate projections of Eq. (12). This is
a coupled nonlinear integral equation that is solvable
provided we know the gluon dressing function and the
structure of the quark-gluon vertex. In the rainbow ap-
proximation both are specified by Ansätze, with, in par-
ticular, the choice ��ðq; pÞ :¼ �YMðk2Þ	�, with scalar

FIG. 9 (color online). The Dyson-Schwinger equation for the
quark-propagator is shown. Specification of the fully dressed
gluon propagator (wiggly line) and quark-gluon vertex (shaded
blob) defines the truncation scheme.

FIG. 10. The pion-pole part of the LBL contribution to a� is
shown. The three possible permutations of the photon legs are
not shown.

1There is an intense debate on the behavior of the gluon
propagator in the deep infrared, i.e., for momenta p �
50 MeV. It seems, however, that this momentum region is
irrelevant when it comes to the calculation of observables
[28,29,41].
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function �YM representing the nonperturbative dressing of
the quark-gluon vertex and k ¼ q� p the gluon
momenta. Here, the gluon dressing function Zðk2Þ from
Eq. (10) and the Yang-Mills part �YMðk2Þ of the quark-
gluon vertex are combined to form a phenomenological
effective interaction. For the Maris-Tandy (MT) model
[44] this function is given by

Zðk2Þ�YMðk2Þ ¼ 4�

g2

�
�

!6
Dk4 expð�k2=!2Þ

þ 2�	m

logð�þ ð1þ k2=�2
QCDÞ2Þ

� ½1� expð�k2=½4m2
t �Þ�

�
; (13)

with

mt ¼ 0:5 GeV; � ¼ e2 � 1

	m ¼ 12=ð33� 2NfÞ; �QCD ¼ 0:234 GeV:

This interaction corresponds to a Gaussian distribution in
the infrared that provides for sufficient interaction strength
to generate dynamical chiral symmetry breaking , together
with the one-loop behavior of the running coupling at
large, perturbative, momenta. The latter is mandatory to
provide for the correct short distance behavior of the quark
propagator. The remaining parameters ! and D essentially
constitute a single one-parameter family of solutions for
which pion observables remain comparable, via !D ¼
ð0:72 GeVÞ3.

For the convenience of the reader, in Fig. 11 we again
show the two dressing functions Zfðp2Þ and Mðp2Þ that
characterize the nonperturbative quark propagator,

obtained by solving Eq. (12) using the Maris-Tandy inter-
action [44]. Clearly, in the mass function there are three
distinguished momentum regions. In the infrared, the
quark propagator is essentially constant displaying the
behavior of a constituent quark. Then for 1 GeV2 < p2 <
10 GeV2 there is a region of rapid change, where the quark
mass function follows the well-known 1=p2 behavior ex-
pected from the operator product expansion. For even
larger momenta and nonvanishing current quark mass,
the quark mass function behaves logarithmically as ex-
pected for a current quark. The fully dressed quark propa-
gator thus naturally interpolates between the constituent
and current quark picture. We consider this feature of the
Dyson-Schwinger approach to QCD as an advantage com-
pared with effective models such as the ENJL model.

A. Bethe-Salpeter equation

The chiral symmetry preserving truncation for the
Bethe-Salpeter equation, consistent with the rainbow ap-
proximation above, is given by the ladder approximation

�q �q
tu ðp;PÞ ¼

Z d4k

ð2�Þ4 Ktu;rsðp; k;PÞ

� ½SFðkþÞ�q �qðk;PÞSFðk�Þ�sr (14)

with the kernel Ktu;rs given by

Ktu;srðq; p;PÞ ¼ g2Zðk2Þ�YMðk2ÞZ1F

k2

�
��� �

k�k�

k2

�

�
�

a

2
	�

�
ts

�

a

2
	�

�
ru
; (15)

see Fig. 12 for a graphical representation. Here �q �qðp;PÞ is
the Bethe-Salpeter vertex function corresponding to a
pseudoscalar quark antiquark bound state, specified below.
The momenta kþ ¼ kþ P=2 and k� ¼ k� P=2 are such
that the total momentum P of the meson is given by P ¼
kþ � k� and the relative momentum k ¼ ðkþ þ k�Þ=2.
The Latin indices ðt; u; r; sÞ of the kernels refer to color,
flavor, and Dirac structure.
The form of the kernel Eq. (15) is uniquely determined

from the axial-vector Ward-Takahashi identity and ensures
that the pion is a Goldstone boson in the chiral limit
without any fine-tuning of parameters. It also ensures that
important constraints from chiral symmetry such as the
Gell-Mann-Oakes-Renner relation are satisfied.
In general, the covariant structure of the Bethe-Salpeter

vertex function, �q �qðp;PÞ, determines the quantum
numbers of the bound state under consideration. In par-
ticular, a pseudoscalar meson is completely specified by
the following form:

�q �qðp;PÞ¼	5½Fq �q
1 ðp;PÞ� iPFq �q

2 ðp;PÞ
� ipðp �PÞFq �q

3 ðp;PÞ�½P;p�Fq �q
4 ðp;PÞ�: (16)
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FIG. 11 (color online). Mass function and wave-function
dressing functions corresponding to quark propagators solved
with the Maris-Tandy interaction [44] are shown.
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This amplitude is obtained through the solution of Eq. (14)
on-mass shell: P2 ¼ �m2

q �q in Euclidean space. While (16)

represents a quark antiquark bound state, physical mesons
are defined as matrices in flavor space built out of the q �q
amplitudes. This then leads to the same decomposition as
in Eq. (16) but with flavor-matrix valued quantities � and
Fi. In the following, however, we will keep the flavor index
implicit and use Eq. (16) for q �q amplitudes and mesons
alike. Anyway, in the isospin-limit considered herein the
pion amplitude differs from the u �u=d �d amplitudes only by
flavor-matrix structure. The pole masses and the scalar
amplitudes that contain the dynamical information are
identical (up to normalization). This is different for the �
and �0.

In the chiral limit the leading behavior of the pion

amplitude �̂� is given by

F̂ �
1 ðp;PÞ :¼ 
3Bðp2Þ=f�; (17)

where Bðp2Þ is the scalar dressing function of the quark, f�
is the chiral limit value of the leptonic decay constant, and

3 is a Gell-Mann matrix that represents the flavor struc-
ture. The hat in Eq. (17) indicates that the object is matrix
valued in flavor space. The expressions for the calculation
of f� and the normalization condition of the Bethe-
Salpeter amplitude together with details on the numerical
procedure for dealing with the Bethe-Salpeter equation are
given in [45]. For the convenience of the reader we display
the resulting Bethe-Salpeter amplitudes for p2 ¼ �m2

�

and p:P ¼ 0 in Fig. 13. Qualitatively, the amplitudes
have a similar form as the quark mass function in the chiral
limit. For large momenta and up to logarithmic corrections

they fall off like 1=p2, which is a necessary condition to
correctly describe the anomalous decay of the pion and to
reproduce the asymptotics of the pion form factor [46].

B. Quark-photon vertex

An important quantity for the determination of the LBL
contribution to the muon g� 2 is the dressed quark-photon
vertex. This quantity is genuinely nonperturbative in nature
and necessary for the calculation of the PS		 form factor.
It describes the coupling of a fully dressed quark to a
photon and is dominated by QCD corrections. As a func-
tion of one Lorentz and two spinor indices, it can be
decomposed into 12 Dirac structures

��ðP; kÞ ¼
X12
i¼1


iðP; kÞVi
�ðP; kÞ; (18)

where Vi
�ðP; kÞ represents the basis components, and


iðP; kÞ the nonperturbative dressing functions. A common
basis is that of Ball and Chiu [47], in which Vi

�ðP; kÞ is split
into terms that are transverse and nontransverse with re-
spect to the photon momentum. The Ward-Takahashi iden-
tity and regularity assumptions constrain the form of the
nontransverse part in terms of quark-propagator functions

�BC
� ðk; PÞ :¼

�
	�

Aðk2þÞ þ Aðk2�Þ
2

þ ðkþ þ k�Þðkþ þ k�Þ� 1

2

Aðk2þÞ � Aðk2�Þ
k2þ � k2�

þ iðkþ þ k�Þ� Bðk2þÞ � Bðk2�Þ
k2� � k2þ

�
; (19)

leaving only the strictly transverse pieces undetermined.
Equation (19) can therefore be seen as an approximation of
the full vertex and has been used in situations where the
full vertex cannot be determined numerically.
A more sophisticated approach, however, is to solve the

inhomogeneous Bethe-Salpeter equation of the quark-
photon vertex, shown diagrammatically in Fig. 14. It is
given by

��
tuðk; PÞ ¼ Z1	

�
tu þ

Z
q
Ktu;rs½SFðkþÞ��ðq; PÞSFðk�Þ�sr;

(20)

where Z1 is the renormalization factor associated with the
quark-photon vertex. By using the same interaction kernel
as in the Bethe-Salpeter equation for mesons, Eq. (15), not
only do we achieve self-consistency within the truncation
scheme, but also by virtue of its symmetry pre-
serving nature we satisfy the Ward-Takahashi identity.
Consequently, the nontransverse part of the vertex, given
in Eq. (19), is nicely reproduced numerically, with trans-
verse terms additionally generated [48–51].
We note here that such a determination of the quark-

photon vertex automatically contains poles in the timelike

=

FIG. 12 (color online). The homogeneous Bethe-Salpeter
equation for the meson amplitude is shown.
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FIG. 13 (color online). Normalized Bethe-Salpeter amplitudes
F1 and F2 of the pion solved with the Maris-Tandy interaction
(leading Chebyshev component) [44] are shown.
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region corresponding to vector meson exchange. Thus,
presupposing that vector-meson dominance is an important
feature in the structure of the pion electromagnetic form
factor, it is already included here as a result of the approach
we employ. This has been discussed in detail also in
Refs. [48,49].

The numerical details involved in the calculation of the
quark-photon vertex have been described in several works,
see, e.g., the appendix of Ref. [51]. Below we will use the
fully dynamical, self-consistent solution of Eq. (20) for our
calculation of the PS ! 		 form factor and the resulting
meson-exchange contribution to LBL. Unfortunately, be-
cause of the numerical complexity we have to restrict
ourselves to the exact longitudinal part given by Eq. (19)
in the quark-loop diagram. It will be a subject of future
work to overcome this limitation.

C. The PS ! �� form factor

The coupling of the exchanged pseudoscalar mesons to
photons is the quantity that is central to the resonant
expansion of Fig. 2. In impulse approximation, consistent
with the rainbow-ladder truncation scheme introduced in
Sec. III, the Bethe-Salpeter amplitude is connected via a
quark triangle to the fully dressed quark-photon vertex, as
shown in Fig. 15. For a pseudoscalar PS we have

�PS	�	�
�� ðk1; k2Þ ¼ 2e2Nc

Z
k
tr½iQ̂e��ðk2; p12ÞSFðp2Þ

� �̂PSðp23; PÞSFðp3ÞiQ̂e��ðk1; p31ÞSFðp3Þ�; (21)

where k1 and k2 are the outgoing photon momenta;
p1 ¼ q, p2 ¼ q� k2, and p3 ¼ qþ k1 are the quark mo-
menta; and pij ¼ ðpi þ pjÞ=2. The factor of 2 stems from

an exchange of the two photon vertices and Q̂ ¼
diag½2=3;�1=3;�1=3� gives the quark’s charge. The PS

vertex �̂PS is explicitly matrix valued in flavor space. It is
defined as

�0: �̂�0 ¼ 1ffiffiffi
2

p diag½�u �u;��d �d; 0�;

�8: �̂�8 ¼ 1ffiffiffi
6

p diag½�u �u;�d �d;�2�s�s�;

�0: �̂�0 ¼ 1ffiffiffi
3

p diag½�u �u;�d �d;�s�s�; (22)

for the pseudoscalar mesons. The �q �q are solutions of

Eq. (14). In addition we work in the isospin-limit (�u �u ¼
�d �d). Since the quantities in Eq. (22) are defined in the
singlet-octet basis we have to rotate in order to obtain the
�-�0 amplitudes

�̂� ¼ cos��̂�8 � sin��̂�0

;

�̂�0 ¼ sin��̂�8 þ cos��̂�0

; (23)

where we haven taken � ¼ �15:4	 [52]. The pseudoscalar
electromagnetic form factor can be described by a single

scalar function, F�	�	�
. For the pion this function

can be given a natural normalization via the Abelian
anomaly [53]

��	�	�
�� ðk21; k22Þ ¼ i

�em

�f�
"����k

�
1 k

�
2F

�	�	� ðk21; k22Þ; (24)

where �em is the fine structure constant and f� the pion
decay constant. The definition of the prefactors is such that
F�		ð0; 0Þ ¼ 1. The � and�0 mesons have the same tensor
structure.
Note that the form factors determined here do not accu-

rately reflect all effects due to the topological mass of the
�0, simply because the UAð1Þ anomaly is not represented
correctly in the Maris-Tandy model.2 In the form factors
this may be a minor problem. The effect is larger, however,
in the meson propagators attached to the form factors. We
therefore prefer to use the experimental masses in these
propagators, thereby taking care of the majority of the
UAð1Þ-anomaly effects.
The �0 electromagnetic form factor has been explored

in detail in Ref. [50], wherein it has been confirmed that the
correct normalization is satisfied. In addition it has been
shown analytically (and numerically) that the correct
asymptotic behavior, modulo potential logarithms, is
obtained [50,57]

lim
Q2!1

F�0		� ð0;Q2Þ/ 1

Q2
lim

Q2!1
F�0	�	� ðQ2;Q2Þ/ 1

Q2
: (25)

In Fig. 16 we plot the form factor as a function of the two
photon momenta k21 and k22 and compare with the vector-
meson dominance (VMD) inspired model used in
Ref. [13]. One clearly sees that both form factors agree
nicely on a qualitative and even quantitative level. Whereas
the low-momentum behavior is governed by the anomaly,
at large momenta both form factors fall off according to
Eqs. (25). There are small quantitative differences in the

FIG. 14 (color online). The inhomogeneous BS equation for
the quark-photon vertex, in rainbow-ladder approximation, is
shown.

2Perspectives to improve this issue in the framework of Dyson-
Schwinger equations have been reported in Refs. [54–56]. In
Ref. [56] a topological mass of the �0 has been obtained which
goes well with lattice results of the topological susceptibility via
the Witten-Veneziano relation.

HADRONIC LIGHT-BY-LIGHT SCATTERING IN THE . . . PHYSICAL REVIEW D 83, 094006 (2011)

094006-9



midmomentum regime, which will lead to a small differ-
ence in the meson-exchange contributions to LBL,
discussed below. In general, however, the results of our
calculation may be viewed as a confirmation of the pre-
viously used model approaches almost from first
principles.

D. Off-shell prescription

It is evident from the kinematics of the diagram shown in
Fig. 9 that the form factors, thus far defined as on-shell
quantities, must be evaluated for momenta of the ex-
changed pseudoscalar meson that would be far from the
pole mass. In the approach considered here, the pseudo-
scalar amplitude is obtained from its homogeneous Bethe-
Salpeter equation and hence is by definition an on-shell
quantity. Thus, to proceed we must introduce a prescription
for the continuation of this quantity to the off-shell
momentum region.

Since the off-shell behavior should be dominated by the
pseudoscalar-pole contribution, the introduction of any
prescription that provides for a suppression at off-shell
momentum should be a suitable starting point. Here, we
will employ a prescription that is inspired from the axial-
vector Ward-Takahashi identity in the chiral limit

2P��
5;3
� ðk; PÞ ¼ iS�1ðkþÞ	5 þ i	5S

�1ðk�Þ: (26)

Here the axial-vector vertex is defined as the correlation
function �5;3

� ¼ hj5;3� q �qi that includes the axial-vector cur-
rent in the pion channel j5;3� ¼ �q	�	

5 
3

2 q. It is clear that

Eq. (26) relates �5;3
� to the quark propagator. Taking ex-

plicit parametrizations for vertex and propagator (see [45])
that include the pion pole in the axial-vector vertex, the
following form of the dominant amplitude for the �0 can
be deduced:

F̂ �
1 ðk; PÞ ¼ 
3

BðkþÞ þ Bðk�Þ
2f�

: (27)

Here k� ¼ k� P=2. Note that in the chiral on-shell limit
(P2 ¼ 0) the above equation reduces to Eq. (17). We

generalize the pseudoscalar amplitude, Eq. (16), by using
Eq. (27) as a guideline for all four structures also away
from the chiral limit. The final off-shell meson amplitude
reads

�̂PS ¼ 	5½F̂PS
1 ðp;PÞ þ fðP2Þf�iPF̂PS

2 ðp;PÞ
� ipðp � PÞF̂PS

3 ðp;PÞ � ½P;p�F̂PS
4 ðp;PÞg�; (28)

where the hat over the functions F̂PS
i indicates that the

flavor structure of the corresponding meson is included
in the same manner as in Eqs. (22) and (23). The scalar off-

shell amplitudes Fq �q
i ðk; PÞ are defined in terms of the on-

shell amplitudes3 Fq �q
i ðk; k � PÞ through

Fq �q
i ðk; PÞ ¼ Fq �q

i ðkþ; kþ � PÞ þ Fq �q
i ðk�; k� � PÞ

2
; (29)

for which i ¼ 1; . . . ; 4. The on-shell amplitudes are ob-
tained via Eq. (14). In order to account for the mass

dimensions of the form factors F̂PS
2;3;4 we attach to each

the function

fðP2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
PS

P2 þ 2m2
PS

s
: (30)

This prevents an unnatural enhancement at high meson
virtuality while at the same time leaving the on-shell
behavior unchanged. The off-shell form factor

�PS�	�	�
�� ðP;k1;k2Þ¼�����k

�
1 k

�
2F PS�	�	� ðP2;k21;k

2
2Þ; (31)

is then obtained via the generalization of Eq. (21) by taking
the Bethe-Salpeter amplitude�q �q to be defined via Eq. (28).
The contribution to the derivative of the four-point-

function can now be written as [13]

FIG. 15. The �0		 form factor in impulse approximation is
shown. All internal quantities are fully dressed.

FIG. 16 (color online). The � ! 		 form factor plotted as a
function of the two photon momenta k21 and k22 is shown. We

compare our numerical results in the Dyson-Schwinger/Bethe-
Salpeter approach with an ansatz inspired by vector-meson
dominance discussed in Ref. [5].

3With a slight abuse of notation we denote off-shell quantities
to depend on P whereas on-shell they depend only on k � P with
P2 ¼ �m2

PS.
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~�ð
Þ��
�ðq1; q2;�q12Þ ¼
F PS�	�	� ðq212; q21; q22ÞF PS�	�	� ðq212; q212; 0Þ

q212 þm2
PS

�����q
�
1 q

�
2 �
�
�q

�
12

þF PS�	�	� ðq21; q21; 0ÞF PS�	�	� ðq21; q22; q212Þ
q21 þm2

PS

����
q
�
1��
��q

�
1 q

�
2

þF PS�	�	� ðq22; q21; q212ÞF PS�	�	� ðq22; q22; 0Þ
q22 þm2

PS

��
��q
�
1 q

�
2 ���
�q

�
2; (32)

where q12 ¼ q1 þ q2. The function ~�ð
Þ��
� is now only
dependent upon two momenta since the limit k ! 0 for the
external photon momentum has been carried out.

IV. RESULTS

With the approach to hadronic LBL scattering within the
functional approach outlined, and our truncation scheme
defined we proceed to combine our propagators, vertices,
amplitudes, and form factors together and calculate the
respective contributions to hadronic LBL scattering in
the muon g� 2.

A. Pion-pole contribution to LBL

To demonstrate parity between our approach and others
in the determination of hadronic LBL, we calculate the
ladder-exchange diagram of Fig. 3 assuming pseudoscalar-
pole dominance. Once more, we reiterate that on-mass-
shell this is identical to the pseudoscalar exchange diagram
portrayed in Fig. 2, whereas off-shell we make the com-
mon assumption that the meson-exchange picture provides
a good approximation.

In order to determine the pseudoscalar exchange contri-
bution we must numerically determine the dressed quark
propagator, the quark-photon vertex, and the homogeneous
Bethe-Salpeter amplitude for the pseudoscalar meson.
Combining these together allows us to calculate from first
principles the �		 form factor. We wish to emphasize
again that the resulting quark-photon vertex also contains
timelike poles corresponding to vector meson exchange
[49]. Thus the main ideas of VMD are naturally included
here in the form factor due to the nonperturbative approach
that we employ. We have checked that the total numerical

error of our calculation is of the order of 1%. In a similar
fashion we also evaluate the corresponding form factors for
the � and �0 mesons. We then use our results for the form
factors to evaluate the pseudoscalar meson exchange con-
tribution to LBL. For this, we use the off-shell prescription
for the pseudoscalar Bethe-Salpeter amplitude proposed in
Eq. (28) for the exchanged mesons. This prescription gives
a reduction of the contribution that is similar to that found
in other approaches.
The systematic error of our calculation of the pseudo-

scalar exchange diagrams can be attributed entirely to the
validity of the rainbow-ladder approximation, by the MT
model, Eq. (13), and the off-shell prescription for the
mesons, Eq. (27). No other approximations have been
used. While in the Goldstone-Boson sector the MT model
works well, there is certainly a larger error in the flavor
singlet sector. We therefore guesstimate a total systematic
error: 10% for the pion contribution, and 20% for the� and
�0 contributions. With a numerical error of 2% we then

obtain aLBL;�
0

� ¼ ð57:5� 6:9Þ � 10�11, a
LBL;�
� ¼ ð13:6�

3:0Þ � 10�11, and aLBL;�
0

� ¼ ð9:6� 2:1Þ � 10�11 leading
to

aLBL;PS� ¼ ð80:7� 12:0Þ � 10�11 (33)

for the pseudoscalar meson-exchange contribution to LBL.
As compared to our previous work [23], the values for

aLBL;�� and aLBL;�
0

� are slightly reduced due to a more
consistent off-shell prescription in these channels. Our
result (33) is compatible with previous ones [5,6,17],
which for the pion-pole contribution are displayed in
Table II. This is not surprising, since the form factors
themselves are compatible at a qualitative level, cf.

TABLE II. Results for the �0-pole and quark-loop contribution (where appropriate) to hadronic light-by-light scattering, in different
models are shown. For y the quark-loop correction is incorporated as a boundary condition on the pion-pole contribution, while for z
the quark-loop corrections are currently under investigation [58].

Group Model aLBL� (�0 pole) aLBL� (quark loop)

Bijnens, Prades, Pallante [16] ENJL 59(11) 21(3)

Hayakawa, Kinoshita [10], HK and Sanda [8,9] HLS 57(4) 9.7(11.1)

Knecht and Nyffeler [13] LMDþ V 58(10) � � �
Melnikov and Vainshtein [14] LMDþ V 77(5) y
Dorokhov and Broniowski [18] NL�QM 65(2) z
Nyffeler [5] LMDþ V 72(12) y
Our Result DSE 58(10) 136(59)
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Fig. 16, and all approaches make the assumption that
pseudoscalar-pole dominance is valid far from the meson
mass-shell.

B. Quark-loop contribution to LBL

Having convinced ourselves that the method works we
now focus on the quark-loop contribution to LBL. Here we
follow the strategy described around Eq. (6) where
the Ward identity obeyed by the four-point function with
respect to the external field is exploited to construct
quantities that are explicitly finite. As for our numerical
error we verified that we reproduce the well-known per-
turbative result for the corresponding electron loop with an
accuracy of better than one per mille. In the quark loop we
use the fully dressed quark propagators for the up, down,
strange, and charm quarks, extracted from the DSE,
Fig. 10. As already mentioned above, due to numerical
complexity we are unfortunately not yet in a position
where we can use the full, numerically determined
quark-photon vertex used for the meson-exchange contri-
butions in the previous section. Instead, we use three
different approximations to the full vertex and compare
the results. As explained in section III B due to the Ward-
identity we are in possession of exact expressions for
the non-transversal, Ball-Chiu (BC) part of the vertex,
Eq. (19). We exploit this knowledge to compare results
with (a) a bare vertex, (b) the first term of Eq. (19) (1BC)

��ðp; qÞ ¼ Aðp2Þ þ Aðq2Þ
2

	�; (34)

where p, q are the quark and antiquark momenta, and
(c) the full Ball-Chiu (BC) expression Eq. (19). A com-
parison between these three approximations may serve as a
guide for the systematic error due to the relevance of vertex
effects. We emphasize, however, that only our most elabo-
rate approximation, (c), satisfies the constraints of gauge
invariance. Previous approximations based on purely trans-
verse parts of the vertex [16] do not satisfy this constraint.
We believe that the ansatz (c) provides an excellent basis
for the calculation of the quark-loop diagram, which can
and should be expanded in future work to also include
transverse parts of the vertex.

As a result of our calculation we find

aLBL;quarkloop ðbare vertexÞ� ¼ ð61� 2Þ � 10�11;

a
LBL;quarkloop ð1BCÞ
� ¼ ð107� 2Þ � 10�11;

aLBL;quarkloop ðBCÞ� ¼ ð176� 4Þ � 10�11; (35)

for the quark-loop contribution. Clearly these are sizable
contributions. Whereas the bare vertex result roughly
agrees with the number 60� 10�11 given in [14], the
dressing effects of the vertex lead to a drastic increase.
As compared to our result for the first part of the Ball-Chiu
vertex [23] we again find a drastic increase from
107� 10�11 to 176� 10�11 when the other two terms of

the full Ball-Chiu vertex are included. In this calculation
we included effects from four quark flavours in the quark-
loop. Their individual contributions are given by

a
LBL;quarkloop ðBCÞ;u=d
� ¼ ð158� 3Þ � 10�11;

aLBL;quarkloop ðBCÞ;s� ¼ ð6� 1Þ � 10�11;

a
LBL;quarkloop ðBCÞ;c
� ¼ ð12� 1Þ � 10�11: (36)

It is interesting to note that due to charge effects the heavy
charm quark contributes more than the much lighter
strange quark.
We have checked the model dependence of the above

result by comparing with a similar calculation using a
different model for the quark-gluon interaction [38]. The
results are similar to the one in Eq. (35) within an error
margin of five to 10%. Details will be given elsewhere.
Because of these results we estimate an additional system-
atic error for our BC result of 15� 10�11, which has to be
added to the 4� 10�11 given in Eq. (35).
In general, these large dressing effects also make it very

hard if not impossible to guess the effect of the total vertex
dressing without an explicit calculation. Certainly, how-
ever, given these findings, all previous estimates for the
systematic error in the quark-loop contributions seem to be
an order of magnitude too small.

V. CONCLUSIONS

In this paper we have presented a new approach towards
the anomalous magnetic moment of the muon. We have
used a combination of Dyson-Schwinger and Bethe-
Salpeter equations to evaluate the pseudoscalar meson-
exchange contribution and the quark-loop contribution to
LBL. Our only input is the Maris-Tandy model, a phenom-
enologically successful ansatz for the combined strength of
the gluon propagator and the quark-gluon vertex. Our
treatment of the meson-exchange contribution to LBL is
different from earlier approaches in that we do not rely on
an ansatz for the PS		 form factor, but calculate this
quantity starting from the basic equations of motion of
QCD. Nevertheless, our result basically agrees with those
from previous approaches. This result once more empha-
sizes that the meson-exchange contributions to LBL are
largely controlled by analytic constraints from QCD at
large and small Q2.
As for the quark-loop contribution, analytic constraints

have been used which arise from the requirement of gauge
invariance: the quark-photon vertex appearing in this loop
has to satisfy the vector Ward-Takahashy identity. In con-
trast to previous approaches, we have implemented this
identity by using the Ball-Chiu ansatz for this vertex. We
believe this is a systematic improvement. The consequences
are drastic: we observe a dramatic increase for the quark-
loop contribution to LBL. Our result of ð176� 4Þ � 10�11
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is more than 3 times larger than the constituent quark result
of Ref. [14].

When combining our two results, Eqs. (33) and (35), we
arrive at a hadronic LBL contribution of

aLBL;PSþquarkloop
� ¼ ð257� 31Þ � 10�11: (37)

This value, however, does not yet account for transverse
parts of the quark-photon vertex in the quark-loop contri-
bution and for effects from the right-hand diagrams of
Fig. 2 or Fig. 3. In general, it is difficult to gauge the
effects of additional transverse vertex contributions in the
quark-loop diagram. In Ref. [16] part of these effects have
been taken into account by using an ansatz motivated by
VMD ideas. They found a reduction due to these effects of
roughly 40� 10�11. Since we agree with Ref. [16] on the
size of the pion exchange contribution, where VMD works
very well, it may be justified to use their result as a rough
estimate for the size and also for the potential error in
these effects. We therefore add a contribution4 of

a
LBL;quarkloop;transverse
� ¼ ð�40� 40Þ � 10�11 to arrive at

a
LBL;quarkloop ðBCþtransverseÞ
� ¼ ð136� 59Þ � 10�11.
The additional contributions due to the right-hand dia-

grams of Fig. 2 or Fig. 3 are also difficult to judge. It may
help, though, to observe that these involve an additional
quark-loop. Typically such contributions are negative and
of the order of 10 to 20 percent of the leading-Nc contri-
butions [28,29]. Since on the other hand one also expects
positive contributions of a similar size from nonpseudo-
scalar exchange diagrams [1] we choose to subsume all
these contributions to another aLBL;other� ¼ ð0� 20Þ �
10�11, where the error is clearly subjective. This gives us
the following total hadronic LBL contribution:

aLBL� ¼ ð217� 91Þ � 10�11; (38)

in our approach. Note that the increase of the central
value as compared to our previous result in Ref. [23] is
due to a combination of taking the full BC-vertex instead
of 1BC and in addition accounting for the transverse
corrections in the quark-loop using the results of
Ref. [16]. Taken at face value these numbers together
with the other contributions quoted in [1] clearly reduce
the discrepancy between theory and experiment.
Combining our light-by-light scattering results with the
other SM contributions gives

atheor:� ¼ 116 591 891:0ð105:0Þ � 10�11: (39)

To put this result in perspective we wish to recall the
caveats that to our mind are tied to it. First, there is the
contribution of transverse parts of the quark-photon vertex
to the quark-loop diagram. Although the results of
Ref. [16] may serve as an estimate, we definitely need to
explicitly calculate these contributions in our approach.
Second, there is the question whether the pseudoscalar
meson-exchange diagram provides for a good approxima-
tion of the gluon exchange contribution discussed around
Fig. 3. Also this assumption needs to be questioned by an
explicit calculation. In this sense, our results certainly do
not provide final answers but still have to be seen as a
further step towards a fundamental determination of a�.

Finally, we point out that the current approach will also
be checked by a calculation of the hadronic vacuum po-
larization contribution to a�. Preliminary results in this

direction are encouraging.
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