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Active-sterile neutrino mixing is strongly constrained for ms * 100 keV to avoid excessive energy

losses from supernova cores. For smaller ms, matter effects suppress the effective mixing angle except

for a resonant range of energies where it is enhanced. We study the case of ��-�s mixing where a

��- ��� asymmetry builds up due to the strong excess of �s over ��s emission or vice versa, reducing the

overall emission rate. In the warm dark matter range ms & 10 keV the mixing angle is essentially

unconstrained.
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I. INTRODUCTION

Sterile neutrinos �s can be produced in the early uni-
verse or in supernova (SN) cores if they mix with one of
the active flavors [1,2]. Even if the mixing angle � is very
small, repeated collisions of the active component allow
for an efficient �s production. The SN 1987A neutrino
signal duration implies sin22� & 10�9 to avoid excessive
energy losses [3–10]. In detail, this limit depends on
whether the dominant mixing is with �e or one of the other
active flavors. This result assumes ms * 100 keV for mat-
ter effects on neutrino propagation to be negligible com-
pared with the vacuum mass.

For smaller masses, the matter effect typically sup-
presses the effective mixing angle and thus diminishes
the limit on sin22�. Forms & 1 keV even maximal mixing
is allowed. However, no detailed treatment of the SN
bound exists for 1 keV & ms & 100 keV, where matter
and resonance effects are important [4,6]. On the other
hand, this is precisely the mass range where sterile neu-
trinos could play an interesting warm dark matter role
in cosmology [11–13]. While sterile neutrinos can be
produced in the early universe by different mechanisms
[11,12], the production by oscillations and collisions once
more depends on the active-sterile mixing angle, so one
naturally wonders about the SN bound on �.

In particular, we study the role of feedback of sterile
neutrino emission on the emission rate itself. When matter
effects are important, the mixing angle is resonantly en-
hanced in some range of neutrino energies [14–16]. At first
the emission of ��s is more efficient than �s because in the
neutrino sector the mixing angle is suppressed for all
energies. As a consequence, the active flavor, being trapped
in the SN core, builds up a � excess. The opposite could
happen for larger mixing angles, when most antineutrinos
��s are trapped rather than freely escape and the emission of
�s is more efficient than that of ��s. To be specific we use ��

as the active flavor because there is no initial ��- ��� asym-
metry in a SN core andm� is so large that charged � leptons
never play any role. Our main point is that the depletion of
�� or ��� relative to the other always goes in the direction of

quenching the initial emission rate, implying that in the
1–100 keV-mass range the � bounds are indeed suppressed.
Our conclusion differs somewhat from previous discus-

sions where it was suggested that the buildup of a ��- ���

asymmetry goes in the direction of reducing the matter
effect and leads to restrictive SN limits on � [10]. While we
agree that the matter effect can be modified in this direc-
tion, the positive ��- ��� asymmetry also implies a depletion
of source ��� to be converted to ��s relative to source �� to be
converted to �s. It is also possible in some region of the
parameter space that the matter effects are enlarged due to
a negative ��- ��� asymmetry. In both cases, the compound
effect is a reduction, not an enhancement, of the energy
loss.
In Sec. II, we briefly review the matter effects on active-

sterile neutrino mixing in the SN core. The development of
a ��- ��� asymmetry is discussed in Sec. III, where we
identify a stationary state with equal neutrino and antineu-
trino emission rates and estimate the time scale to reach it.
Sec. IV is devoted to the calculation of the energy-loss rate
caused by sterile neutrinos and the SN bound on sterile
neutrino masses and mixing angles. Finally, we summarize
our conclusions in Sec. V.

II. MATTER EFFECTS

The dispersion relation of neutrinos will be modified in
matter due to the coherent forward scattering of neutrinos
off background particles [16]. This matter effect can be
described by an effective potential V��

for each kind

of active neutrino �� ¼ �e, ��, and ��. The effective

potentials for antineutrinos have the opposite signs, i.e.,
V ���

¼ �V��
. In the case of ��-�s oscillation in matter, the

effective Hamiltonian is

Heff ¼ V��
�!c2� !s2�
!s2� !c2� � V��

� �
; (1)

where s2� � sin2�, c2� � cos2� with � being the vacuum
mixing angle and ! � �m2=2E the oscillation frequency
in vacuum. As far as the keV-mass sterile neutrinos are
concerned, we have �m2 � m2

s with ms being the sterile
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neutrino mass. In contrast with the flavor conversions of
ordinary neutrinos in the SN, there are no collective effects
in active-sterile neutrino oscillations.

In SN cores, the main ingredients of matter are protons
p, neutrons n, electrons e, some muons � as well as active
neutrinos �� and antineutrinos ���. We ignore the possibil-
ity of a meson condensate or hyperons. In such a medium,
the effective potential for tau neutrinos is

V��
¼ ffiffiffi

2
p

GFNB½�1
2Yn þ Y�e

þ Y��
þ 2Y��

�; (2)

where GF is the Fermi constant, NB the baryon number
density, and YX � ðNX � N �XÞ=NB with NX and N �X being
the number densities of particle X and its antiparticle �X.
Because of charge neutrality Yp ¼ Ye þ Y�, we have

Yn ¼ 1� Ye � Y�. While �� and ��� of all flavors can

be produced in pairs, electron neutrinos �e can also be
generated in beta processes such as e� þ p ! �e þ n,
and similar for muon neutrinos. The muon mass
m� ¼ 106 MeV is comparable to the average thermal

energy hEi ¼ 3T with T ¼ 30 MeV, thus a small popula-
tion of muons is unavoidable. Beta equilibrium �� þ n $
�� þ p implies the relation among chemical potentials
�� ����

¼ �n ��p � �̂, where �̂ typically lies in the

range 50–100 MeV, depending sensitively on the equation
of state. Noting that the initial � lepton number is vanish-
ing and taking �̂ ¼ 50 MeV, one finds�� � 18 MeV and

��� � �32 MeV [17]. On the other hand, the �e chemical

potential will be much larger due to the electron lepton
number trapped during infall.

For simplicity, we consider a SN core just after
the bounce and assume the temperature T ¼ 30 MeV and
matter density � ¼ 3:0� 1014 g cm�3 to be constant.
We furthermore take a typical value of electron lepton
number fraction YL ¼ Ye þ Y�e

¼ 0:37, which leads to

Ye ¼ 0:3 and Y�e
¼ 0:07 due to beta equilibrium with

�̂ ¼ 50 MeV. It is straightforward to verify that
Y�=Ye ¼ 0:01 and Y��

=Y�e
¼ �0:05, so henceforth we

simply set Y� ¼ Y��
¼ 0. Tau neutrinos initially follow

the Fermi-Dirac distribution without chemical potential,
but later an asymmetry develops due to �s emission. With
these simplifications, the effective potential in Eq. (2) is

V��
¼ �GFffiffiffi

2
p NBð1� Ye � 2Y�e

� 4Y��
Þ: (3)

It is now evident that V��
is negative for Y��

¼ 0, implying

that the Mikheyev-Smirnov-Wolfenstein resonance occurs
in the antineutrino sector [14,15].

Given the effective Hamiltonian in Eq. (1), one imme-
diately obtains the effective mixing angle

sin 22��; �� ¼ sin22�

sin22�þ ðcos2�� E=ErÞ2
; (4)

where the upper sign refers to � and the lower to ��. The
resonant energy Er � �m2=2jV��

j is

Er ¼ 3:25 MeV

�
ms

10 keV

�
2
��1
14 jY0 � Y��

j�1; (5)

where �14 is the matter density � in units of 1014 g cm�3

and Y0 � ð1� Ye � 2Y�e
Þ=4. As indicated by Eq. (4), the

mixing angle �� for the whole energy range is always
suppressed by matter effects, while � �� can be resonantly
enhanced for E� Er cos2�. Note that the ‘‘vacuum limit’’
with �� � � �� � � is reached for large sterile neutrino
masses ms � 10 keV, while the ‘‘medium limit’’ with
reduced mixing angle �� � � �� � ðEr=EÞ� is obtained for
small masses ms 	 10 keV. For intermediate masses, we
have a resonance in the antineutrino sector.
Sterile neutrinos are produced in the SN core via oscil-

lations and collisions of tau neutrinos. If the effective
mixing angles �� and � �� are small enough, �s and ��s can
escape from the core immediately after production. Since
the mixing angle of antineutrinos is always larger than that
of neutrinos, the emission rate of antineutrinos exceeds
that of neutrinos. Consequently, a ��- ��� asymmetry arises
from these different emission rates. As we can observe
from Eq. (5), it might turn out that a relatively large ��- ���

asymmetry is achieved, i.e., Y��
! Y0, so as to drive the

resonant energy Er to infinity, leading to the ‘‘vacuum
limit’’ even for small masses. Put another way, the ��- ���

asymmetry seems to develop in the direction of reducing
the matter effects, resulting in restrictive SN limits on
the vacuum mixing angle � for both large and small
sterile neutrino masses. It has been argued [10] that there
exists a stationary state with Y��

¼ Y0, which can be

achieved rapidly and thus validates the ‘‘vacuum limit’’
and restrictive bounds on �.
However, the state with Y��

¼ Y0 cannot be stationary,

because the population of �� at this moment is larger than
that of ���, implying that more neutrinos than antineutrinos
are ready to be emitted and thus the condition Y��

¼ Y0

breaks down. Furthermore, it is even possible that the
emission rate of �s exceeds that of ��s, since the effective
mixing angle � �� can be so large that most of ��s are trapped
in the core. Therefore one may obtain a negative asymme-
try Y��

< 0, driving the system towards the ‘‘medium

limit.’’ In the following sections, we shall examine how
the ��- ��� asymmetry actually develops, and explore its
implications on the anomalous energy-loss rate of the SN
core and thus the SN bounds on sterile neutrinos.

III. STATIONARY STATE

A. Weak-damping limit

The matter density of SN cores is so high that both
neutrino oscillations and frequent collisions with back-
ground particles are important. An elegant method to
treat neutrino flavor conversions in this case is to

implement the matrix of occupation numbers ð�pÞij �
hbyj ðpÞbiðpÞi, where biðpÞ denotes the annihilation operator
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for a neutrino of flavor i and momentum p, and to derive
the non-Abelian Boltzmann equations of �p [18–20]. The

diagonal elements ð�pÞii are the usual occupation numbers

fip, while the off-diagonal ones encode the phase informa-

tion. The analogous definition for antineutrinos is ð ��pÞij �
hdyi ðpÞdjðpÞi with diðpÞ being the annihilation operator for
an antineutrino of flavor i and momentum p. In general, the
equations of motion for �p and ��p are complicated by the

nonlinear nature of the collision integrals.
For keV-mass sterile neutrinos, the problem can be much

simplified by taking the weak-damping limit, which is
usually valid in SN cores. To be more explicit, we estimate
the neutrino oscillation length in matter

�osc & 0:7 cm

�
E

30 MeV

��
10�4

sin2�

��
10 keV

ms

�
2

(6)

and the mean free path of tau neutrinos

�mfp ¼ 1

NB��N

� 1:1� 103 cm

�
30 MeV

E

�
2
��1
14 ; (7)

where ��N �G2
FE

2=	 is the cross section of neutrino-
nucleon scattering via the neutral-current interaction. The
weak-damping limit is �osc 	 �mfp, meaning that the

active-sterile neutrino oscillations take place many times
before a subsequent collision of active neutrinos with the
nucleons. It deserves mention that the weak-damping limit
is violated for smaller masses ms 	 1 keV, however, the
effective neutrino mixing angle in this case is highly sup-
pressed by matter effects and thus the energy-loss rate is
negligibly small. We shall always assume the weak-
damping limit in the mass range of our interest.

B. Emission rates

In the weak-damping limit, �p is averaged over many

cycles of oscillations and then can be parametrized by the
neutrino occupation numbers f�E and fsE with the neutrino
energy E ¼ jpj and similar for antineutrinos [4]. Note that
we consider a homogenous and isotropic ensemble of
active neutrinos and antineutrinos, which are trapped in
the SN core and stay in thermal equilibrium with ambient
matter, so the momentum direction is irrelevant. Assuming
that sterile neutrinos freely escape, we obtain the evolution
equation of the �� density

_N ��
¼ � 1

4

X
a

Z E2dE

2	2
s22��

Z E02dE0

2	2
Wa

E0Ef
�
E0 ; (8)

where a denotes the target particle, andWa
E0E the transition

probability for ��ðE0Þ þ a ! ��ðEÞ þ a via the neutral-
current interaction. In a similar way, we can derive the
evolution equation of the ��� number density, involving the
mixing angle � ��, the occupation number f ��

E, and the tran-
sition probability �Wa

E0E. However, only the neutrino ener-

gies ensuring ��, � �� & �c are taken under the integration,

where the critical mixing angle �c � 10�2 can be esti-
mated by requiring the mean free path of sterile neutrinos
to equal the core radius R� 10 km. On the other hand, the
transition probabilitiesWa

E0E and �Wa
E0E of neutrino-nucleon

scattering dominate over those of neutrino-electron
scattering if the sterile neutrino mass is lying in the
range of 1 keV & ms & 100 keV. Hence, we consider
only the neutral-current �-N scattering in the leading-order
approximation.

C. Degeneracy parameter

In order to describe the ��- ��� asymmetry, we assume the
occupation number f�EðtÞ ¼ ½expðE=T � 
ðtÞÞ þ 1��1 for
�� and f ��

EðtÞ ¼ ½expðE=T þ 
ðtÞÞ þ 1��1 for ���, where T
is the temperature of the SN core and 
ðtÞ is the degener-
acy parameter. In the absence of active-sterile neutrino
mixing, the spectra of �� and ��� just follow the Fermi-
Dirac distribution with a vanishing chemical potential,
namely, 
 ¼ 0 at t ¼ 0. Substituting the occupation num-
bers into Eq. (8), taking account of the neutral-current
��-N scattering and subtracting the corresponding equa-
tion for antineutrinos, one arrives at

d
ðtÞ
dt

¼ NBG
2
Fs

2
2�T

2

4	
½F ��ð
Þ �F �ð
Þ�G�1ð
Þ; (9)

where the relevant functions are defined as follows:

F ��ð
Þ ¼
Z 1

0

x4

exþ
 þ 1

1�Bðx; xr��; xr�þÞ
s22� þ ðc2� � x=xrÞ2

dx;

F �ð
Þ ¼
Z 1

0

x4

ex�
 þ 1

�ðxþ xr�
�Þ

s22� þ ðc2� þ x=xrÞ2
dx;

(10)

and Gð
Þ � d½F2ð
Þ � F2ð�
Þ�=d
 with F2ð
Þ being
the Fermi-Dirac integral of order two. In addition, we
have introduced xr � Er=T, �

� � s2ð�c��Þ=s2�c , and the

box function Bðx; a; bÞ � �ðx� aÞ ��ðx� bÞ, which
equals one for x 2 ½a; b� and vanishes otherwise.
Here �ðxÞ denotes the unit step function, i.e., �ðxÞ ¼ 0
for x < 0 and �ðxÞ ¼ 1 for x 
 0. Note that Eq. (10) has
been cast into a compact form so as to include both � � �c
and � > �c cases.
Taking typical values of the matter density �14 ¼ 3:0

and the core temperature T ¼ 30 MeV, we can rewrite
Eq. (9) as _
ðtÞ ¼ ��1

0 H ð
Þ with �0 ¼ 1 sð10�8=s22�Þ and
H ð
Þ ¼ ½F ��ð
Þ �F �ð
Þ�G�1ð
Þ. The time evolution
of the degeneracy parameter 
ðtÞ depends crucially on
the initial difference between neutrino and antineutrino
emission rates, i.e., ��1

0 H ð0Þ, as well as the evolution of

H ð
Þ with respect to 
. In Fig. 1, we show the initial
rate _
ð0Þ ¼ ��1

0 H ð0Þ in the ðsin22�;msÞ plane, where the
blank region with ‘‘þ’’ denotes a strong excess of ��s over
�s emission while that with ‘‘�’’ represents the opposite
case. The cyan regions on the left-hand and right-hand
side indicate _
ð0Þ> 0 and _
ð0Þ< 0, respectively, but the
magnitude of j _
ð0Þj is extremely small for both cases.
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The reason for the former case is just that the effective
mixing angle is too small, and for the latter case is that
most of �s and ��s are trapped.

If the initial emission rate of ��s is larger than that of �s,
i.e., _
ð0Þ> 0, the degeneracy parameter increases from
zero to a positive stable value 
�, at which the emission
rates of �s and ��s are equal, namely, F ��ð
�Þ ¼ F �ð
�Þ or
equivalently H ð
�Þ ¼ 0. In this case, we are finally left
with a positive ��- ��� asymmetry when such a stationary
state is reached. If the initial emission rate of �s exceeds
that of ��s, i.e., _
ð0Þ< 0, the degeneracy parameter de-
creases from zero to a negative stable value 
�. At this
moment, we have equal neutrino and antineutrino emission
rates as well, but a negative ��- ��� asymmetry.

The important point here is feedback of the established
��- ��� asymmetry or a finite degeneracy parameter. In the
case of _
ð0Þ> 0, a positive 
 suppresses the ��� population
and shifts the resonant energy to a larger value. The
combined result is just to reduce the ��s emission rate.
Meanwhile, the population of �� is accordingly increased
and the mixing angle �� becomes less suppressed, enhanc-
ing the �s emission rate. Similar arguments apply to the
case of _
ð0Þ< 0. It is also possible that _
ð0Þ ¼ 0, which
lies in the narrow strip in Fig. 1, the system remains in its
initial state with a vanishing ��- ��� asymmetry. Hence, we
have no feedback effect in this special case.

In Fig. 2, the degeneracy parameter 
� of the stationary
state has been solved from F ��ð
Þ ¼ F �ð
Þ, no matter
whether such a stationary state can be reached. The large
values of 
� appear in the region where the initial emission
rate of �s is significantly different from that of ��s. This
condition can be satisfied for (1) small mixing angles and

intermediate masses, when the mixing angle � �� is reso-
nantly enhanced so that F ��ð0Þ � F �ð0Þ; (2) large mixing
angles and large masses, when more ��s than �s are trapped
in the core such that F ��ð0Þ 	 F �ð0Þ. However, it is
obvious that the �s and ��s emission rates in both cases
are extremely small.
The timescale for the system to achieve the stationary

state can be determined by numerically solving Eq. (9). For
a rough estimate, we take _
ðtÞ � _
ð0Þ ¼ ��1

0 H ð0Þ and

then obtain the timescale � ¼ 
�=½��1
0 H ð0Þ�. In Fig. 3,

we show the estimated timescale � in the ðsin22�;msÞ
plane. In the mass range 1 keV & ms & 10 keV, where
sterile neutrinos can be warm dark matter, the timescale is
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FIG. 2 (color online). Contour plot of the asymptotic degen-
eracy parameter 
�, which is determined by F ��ð
�Þ ¼ F �ð
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implying equal neutrino and antineutrino emission rates.
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larger than the neutrino diffusion time �d ¼ 1 s for small
mixing angles sin22� & 10�6. For larger mixing angles,
the stationary state can be achieved within a fraction
of a second, but 
� in this case is quite small as shown
in Fig. 2. Hence, we expect that the feedback effects
are negligible. In this connection, the most interesting
parameter space should be 20 keV & ms & 80 keV and
10�9 & sin22� & 10�4, where both sizable 
� and
� < �d are expected. Since jH ð
Þj decreases from the
initial value jH ð0Þj to zero, as the absolute value of the
degeneracy parameter j
ðtÞj increases from zero to j
�j,
the relaxation time may be underestimated. However, this
rough estimate has already shown the main features of the
relaxation timescale.

IV. SUPERNOVA BOUNDS

The emission of sterile neutrinos �s and ��s may cause
rapid energy losses from the SN cores, which can signifi-
cantly shorten the duration of neutrino signals [21].
In order to avoid conflict with the observation of SN
1987A neutrinos, we require the energy-loss rate per unit
mass to be smaller than 1:0� 1019 erg g�1 s�1, which
can be translated into the volume energy-loss rate
E < 3:0� 1033 erg cm�3 s�1 for �14 ¼ 3:0. Given the
emission rate of neutrinos in Eq. (8) and the counterpart
for antineutrinos, the energy-loss rate is

E ðtÞ ¼ NBG
2
Fs

2
2�T

6

8	3
½R ��ð
Þ þR�ð
Þ�; (11)

with

R ��ð
Þ ¼
Z 1

0

x5

exþ
 þ 1

1�Bðx; xr��; xr�þÞ
s22� þ ðc2� � x=xrÞ2

dx;

R�ð
Þ ¼
Z 1

0

x5

ex�
 þ 1

�ðxþ xr�
�Þ

s22� þ ðc2� þ x=xrÞ2
dx;

(12)

where the definitions of relevant parameters are given
below Eq. (10). The energy-loss rate EðtÞ depends on
time through the degeneracy parameter 
ðtÞ, for which
the time evolution has been discussed in last section.

To constrain the sterile neutrino mass and mixing angle,
we evaluate the emission rate

hEi ¼ ��1
d

Z �d

0
EðtÞdt (13)

averaged over the neutrino diffusion timescale �d ¼ 1 s.
Beyond the diffusion timescale, one may expect that all
active neutrinos have already diffused out of the core and
thus the emission of sterile neutrinos is physically mean-
ingless. Our strategy is to follow the time evolution of 
ðtÞ
for each point in the ðsin22�;msÞ parameter space, and then
calculate the averaged energy-loss rate in Eq. (13). We
show in Fig. 4 the contour plot of the averaged energy-loss

rate hEi in the ðsin22�;msÞ plane, where the purple region
corresponds to hEi> 3:0� 1033 erg cm�3 s�1 and is thus
excluded.
Some comments are in order. First, the initial energy-

loss rate with 
 ¼ 0 is shown in Fig. 4 for comparison.
Except for 20 keV & ms & 100 keV and small mixing
angles, the averaged energy-loss rate hEi cannot be distin-
guished from the initial one Eð0Þ. The reason is that either
the stationary state has not been reached within 1 s, or the
asymptotic value 
� for the stationary state is quite small.
In the mass range 20 keV<ms < 100 keV, the buildup of
a ��- ��� asymmetry is efficient and strongly reduces the
energy-loss rate.
Second, keV-mass sterile neutrinos can be produced in

the early universe and contribute as dark matter to the total
energy density. In a nonresonant production scheme with-
out large primordial lepton asymmetries, the relic sterile
neutrino abundance can be estimated as [10,13]

�sh
2 � 0:3

�
sin22�

10�10

��
ms

100 keV

�
2
: (14)

The correct dark matter abundance �sh
2 ¼ 0:1 is shown

in Fig. 4, where one can see that the masses around
ms ¼ 50 keV have been excluded by the SN bound if the
degeneracy parameter is assumed to be vanishing. In a
realistic situation, this region is retrieved because the
energy-loss rate is reduced as the ��- ��� asymmetry
builds up. However, the warm dark matter range 1 keV &
ms & 10 keV is essentially unconstrained. For sterile neu-
trinos of masses below 1 keV, even maximal mixing is
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m
s

ke
V
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2 0.1
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0

FIG. 4 (color online). Supernova bound on sterile neutrino
masses ms and mixing angles �, where the purple region is
excluded by the energy-loss argument while the green one by the
energy-transfer argument. The excluded region will be extended
to the dashed (red) line if the build-up of degeneracy parameter
is ignored, i.e., 
ðtÞ ¼ 0. The dot-dashed (green) line represents
the sterile neutrinos as dark matter with the correct relic abun-
dance �sh

2 ¼ 0:1.
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allowed, because the total energy-loss rate is highly sup-
pressed by matter effects.

Finally, our discussion was based on the energy-loss
argument, ignoring the sterile neutrinos trapped in the
SN core. For this reason, the top-right green region in
Fig. 4, where both the sterile neutrino mass and vacuum
mixing angle are large, was not excluded. However, the
mean free path of these trapped sterile neutrinos is much
larger than that of ��, so the energy-transfer in the SN core
will be more efficient. The energy in a SN core is carried by
those trapped particles with the largest mean free path,
a role played here by the sterile states. Once more the
neutrino burst duration is shortened too much if the sterile
mfp is larger than a few times the one for �� [7]. Therefore,
the large mixing angle region is actually excluded in the
spirit of the energy-transfer argument.

V. CONCLUSIONS

Since keV-mass sterile neutrinos are a promising candi-
date for warm dark matter, we have revisited the supernova
bound on the sterile neutrino masses and mixing angles by
studying the case of ��-�s mixing in the SN core and
requiring no excessive energy losses induced by sterile
neutrinos. It turns out that the warm dark matter range
is essentially unconstrained, while sterile neutrinos of
masses around 50 keV receive the most stringent con-
straint, i.e., sin22� & 4:0� 10�9. For even larger masses
ms * 100 keV, the SN limit on the mixing angles
is sin22� & 5:0� 10�8, which is about 1 order of
magnitude weaker than that for ms � 50 keV. It is the
matter effects that render these constraints quite different.

We have identified a mass range 20 keV & ms &
100 keV where a sizable ��- ��� asymmetry can be

established due to the strong excess of ��s over �s emission
or vice versa. The buildup of this asymmetry feeds back
on the emission rates, leading to a stationary state where
the neutrino and antineutrino emissions become equal.
For proper mixing angles, such a stationary state can
be achieved within the neutrino diffusion timescale
�d ¼ 1 s. As a consequence, the energy-loss rate will be
significantly reduced, and thus the bounds are relaxed.
As for the ��-�s-mixing case, our discussions about the

feedback effects are essentially applicable. However, the
charged-current interactions of �� and ��� should be taken

into account, and the change of ��- ��� asymmetry will be

redistributed between muon neutrinos and charged muons.
The �e-�s mixing in SN cores is more involved because of
the large trapped electron number and high �e degeneracy.
Besides energy loss, deleptonization by sterile neutrino
emission is an effect to be taken into account. This case
requires a dedicated investigation.
We have performed a ‘‘single zone’’ analysis by assum-

ing a homogenous and isotropic SN core with constant
matter density and temperature. This treatment should
capture the dominant feedback effect. However, the local
variation of these quantities may modify the final results,
for example, smearing out the resonance in the energy-loss
rate. Such a refinement is also left for future works.

ACKNOWLEDGMENTS

’This work was partly supported by the Deutsche
Forschungsgemeinschaft under Grants No. TR-27 and
No. EXC-153 and by the Alexander von Humboldt
Foundation.

[1] A. Kusenko, Phys. Rep. 481, 1 (2009).
[2] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu.

Rev. Nucl. Part. Sci. 59, 191 (2009).
[3] K. Kainulainen, J. Maalampi, and J. T. Peltoniemi, Nucl.

Phys. B358, 435 (1991).
[4] G. Raffelt and G. Sigl, Astropart. Phys. 1, 165 (1993).
[5] J. T. Peltoniemi, Astron. Astrophys. 254, 121 (1992).
[6] X. Shi and G. Sigl, Phys. Lett. B 323, 360 (1994); 324, 516

(E) (1994).
[7] A. D. Dolgov, S. H. Hansen, G. Raffelt, and D.V. Semikoz,

Nucl. Phys. B590, 562 (2000).
[8] A. D. Dolgov, S. H. Hansen, G. Raffelt, and D.V. Semikoz,

Nucl. Phys. B580, 331 (2000).
[9] A. D. Dolgov and S. H. Hansen, Astropart. Phys. 16, 339

(2002).
[10] K. Abazajian, G.M. Fuller, and M. Patel, Phys. Rev. D 64,

023501 (2001).

[11] S. Dodelson and L.M. Widrow, Phys. Rev. Lett. 72, 17
(1994).

[12] X.D. Shi andG.M. Fuller, Phys. Rev. Lett. 82, 2832 (1999).
[13] T. Asaka, M. Laine, and M. Shaposhnikov, J. High Energy

Phys. 01 (2007) 091.
[14] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[15] S. P. Mikheyev and A.Yu. Smirnov, Yad. Fiz. 42, 1441

(1985) [Sov. J. Nucl. Phys. 42, 913 (1985)].
[16] T.K. Kuo and J. T. Pantaleone, Rev. Mod. Phys. 61, 937

(1989).
[17] S. Hannestad, H. T. Janka, G. G. Raffelt, and G. Sigl, Phys.

Rev. D 62, 093021 (2000).
[18] L. Stodolsky, Phys. Rev. D 36, 2273 (1987).
[19] G. Raffelt, G. Sigl, and L. Stodolsky, Phys. Rev. Lett. 70,

2363 (1993); 98, 069902(E) (2007).
[20] G. Sigl and G. Raffelt, Nucl. Phys. B406, 423 (1993).
[21] G. G. Raffelt, Phys. Rep. 198, 1 (1990).

GEORG G. RAFFELT AND SHUN ZHOU PHYSICAL REVIEW D 83, 093014 (2011)

093014-6

http://dx.doi.org/10.1016/j.physrep.2009.07.004
http://dx.doi.org/10.1146/annurev.nucl.010909.083654
http://dx.doi.org/10.1146/annurev.nucl.010909.083654
http://dx.doi.org/10.1016/0550-3213(91)90354-Z
http://dx.doi.org/10.1016/0550-3213(91)90354-Z
http://dx.doi.org/10.1016/0927-6505(93)90020-E
http://dx.doi.org/10.1016/0370-2693(94)91232-7
http://dx.doi.org/10.1016/0370-2693(94)90233-X
http://dx.doi.org/10.1016/0370-2693(94)90233-X
http://dx.doi.org/10.1016/S0550-3213(00)00566-6
http://dx.doi.org/10.1016/S0550-3213(00)00203-0
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevLett.82.2832
http://dx.doi.org/10.1088/1126-6708/2007/01/091
http://dx.doi.org/10.1088/1126-6708/2007/01/091
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1103/RevModPhys.61.937
http://dx.doi.org/10.1103/RevModPhys.61.937
http://dx.doi.org/10.1103/PhysRevD.62.093021
http://dx.doi.org/10.1103/PhysRevD.62.093021
http://dx.doi.org/10.1103/PhysRevD.36.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2363
http://dx.doi.org/10.1103/PhysRevLett.70.2363
http://dx.doi.org/10.1103/PhysRevLett.98.069902
http://dx.doi.org/10.1016/0550-3213(93)90175-O
http://dx.doi.org/10.1016/0370-1573(90)90054-6

