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By demanding a compact spectrum for the right-handed neutrinos and an approximate quark-lepton

symmetry inspired from SOð10Þ gauge unification (assuming a Dirac neutrino mass matrix close to the up

quark mass matrix), we construct a fine-tuning scenario for baryogenesis via leptogenesis. We find two

solutions with a normal hierarchy, with the lightest neutrino mass m1 different from zero, providing an

absolute scale for the spectrum. In the approximations of the model, there are three independent CP

phases: �L (that we take of the order of the quark Kobayashi-Maskawa phase) and the two light neutrino

Majorana phases � and �. A main conclusion is that, although this general scheme is rather flexible, in

some regions of parameter space we find that the necessary baryogenesis with its sign is given in terms of

the �L phase alone. The light Majorana phases can also be computed, and they turn out to be close to �=2

or very small. Moreover, SOð10Þ breaks down to the Pati-Salam group SUð4Þ � SUð2Þ � SUð2Þ at the
expected natural intermediate scale of about 1010–1011 GeV. A prediction is made for the effective mass

in ð��Þ0� decay, the �e mass, and the sum of all light neutrino masses.
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I. INTRODUCTION AND
QUALITATIVE REMARKS

The discovery of oscillations, advocated so many years
ago by Pontecorvo [1] in solar and atmospheric neutrinos,
is one of the most important experimental discoveries of
the last century, the most relevant after the proposal of the
standard model and its precision tests. The discovery of
neutrino oscillations is also a milestone in the search of
new physics.

Up to now four quantities related to the Pontecorvo,
Maki, Nagakawa and Sakata matrix [2,3] have been ex-
perimentally measured:

�m2
s ’ 8� 10�5 eV2; (1)

tan 2�s ’ 0:4; (2)

�m2
a ’ 2:5� 10�3 eV2; (3)

tan 2�a ’ 1; (4)

where the subindices s and a mean, respectively, solar and
atmospheric neutrinos.

An upper bound has been found for the component of
�eL along the heaviest �L mass eigenstate

sin 2�13 < 0:05 (5)

and the limits

m�e
< 2:2 eV (6)

jhmeeij< 0:4 eV (7)

X
i

m�i
< 1 eV (8)

from the high energy spectrum of the electrons in nuclear
beta decay, from the upper limit on the rate in neutrinoless
double beta decay (for Majorana neutrinos) and from
astrophysics.
Interestingly, a more restrictive bound combining all

cosmological data has been obtained recently by G. Fogli
et al. [4]: X

i

m�i
< 0:2 eV; (9)

to which we will refer in Sec. VIII, comparing it to our
results.
But for the moment, in this qualitative introduction, we

will rely on the generally accepted looser bound (8).
The most natural framework to account for the

order of magnitude of neutrino masses is the seesaw model
[5], where the 6� 6 neutrino mass matrix has the
form

0 mt
D

mD MR

� �
; (10)
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where the 3� 3 Dirac neutrino mass matrix mD has ele-
ments of the order of the masses of charged fermions and
MR is the Majorana mass matrix of the right-handed neu-
trinos, which are singlets of the standard model gauge
group, with elements of the order of the scale of breaking
the lepton quantum number.

The information on oscillations gives us only four of the
nine parameters of the light neutrino mass matrix. Within
the simplifying assumption of neglecting �13 and conse-
quently the neutrino Dirac CP-violating phase, we will be
able to strongly constrain the value of its smallest eigen-
value, and fix the values of the two higher ones, as well as
the two Majorana phases, simply by demanding that these
parameters have a soft dependence on the values of the
matrix elements ofMR. We will obtain these results despite
the fact that we expect a rather hierarchical spectrum for
the eigenvalues of mD, as it happens for the other fermions
and as is natural in a SOð10Þ framework. The mathematical
principle is quite simple: the inverse of a function with a
critical dependence on a variable is a very slowly varying
function; the product of the derivatives is of Oð1Þ. The
demand of having matrix elements and eigenvalues of MR

of the same order, given a mixing matrix of leptons similar
to the one for quarks, will fix m1 and the Majorana phases
of light neutrinos. As a result of this requirement, we shall
get a compact spectrum for the NR masses, which will
make the leptogenesis scenario for baryogenesis natural, as
well as predictions for the electron neutrino mass bounded
from tritium � decay and the matrix element jhmeeij ap-
pearing in neutrinoless double beta decay. By compact
spectrum for the heavy right-handed neutrinos we simply
mean to have eigenvalues of the same order of magnitude.

From the seesaw formula

mL ¼ �mDM
�1
R mt

D; (11)

one gets

detMR ¼ �ðdetmDÞ2
detmL

: (12)

From Eq. (8) one obtains the upper limit

j detmLj< 1

27
eV3; (13)

while in principle there is no lower limit for the left-hand
side (lhs) of the inequality (13). Notice that we write the
absolute value in the lhs of (13) because neutrino masses,
being Majorana masses, can differ in sign for neutrinos
with opposite CP.

Moreover, from Eqs. (1) and (3) we get:

�m2
s ¼ jm2j2 � jm1j2 ’ 8� 10�5 eV2; (14)

�m2
a ¼ jm3j2 � cos2�sjm2j2 � sin2�sjm1j2
’ 2:5� 10�3 eV2; (15)

where the unfamiliar formula (15) for �m2
a, proposed in

[6], is demonstrated in the Appendix. This formula is
an improvement over the usual ones found in the litera-
ture, �m2

a ¼ jm3j2 � jm2j2 or �m2
a ¼ jm3j2 � jm1j2.

Of course, in the limit jm2j ’ jm1j, all these formulas
coincide. However, we must underline that the results of
this paper are not really sensitive to adopting formula (15)
or the usual ones.
From the preceding formula one gets a lower limit for

the ratio: ��������
m2

m3

��������>0:18 (16)

A tentative lower bound for j detmLjmay be found in the
SOð10Þ framework by taking, as in [7],

j detmDj ¼ 4� 10�2 GeV3 (17)

and for j detMRj the upper limit

j detMRj � 2:7� 1034 GeV3; (18)

which comes by assuming that the three right-handed
neutrinos take a mass at the scale of B–L spontaneous
symmetry breaking in the SOð10Þ model, with breaking
to the SUð4Þ � SUð2Þ � SUð2Þ Pati-Salam group [8] at the
intermediate scale 3� 1011 [9,10].
We then get, from the seesaw formula (12),

j detmLj � 6� 10�11 eV3: (19)

Assuming a normal hierarchy for the light neutrinos,

jm2j �
ffiffiffiffiffiffiffiffiffiffi
�m2

s

q
’ 8:9� 10�3 eV; (20)

jm3j �
ffiffiffiffiffiffiffiffiffiffi
�m2

a

q
’ 5:0� 10�2 eV; (21)

Eq. (19) will then imply the following lower bound
for jm1j:

jm1j � 1:3� 10�7 eV (22)

i.e., a nonvanishing value for the lightest neutrino massm1,
an absolute scale for the light neutrino spectrum.
As we will see below, a rather sharp prediction for m1

and relevant predictions for the lhs of Eqs. (6)–(8) will be
achieved by our demand of a compact MR spectrum and
successful leptogenesis.
The measurements of the cosmic microwave back-

ground anisotropies [11] and the abundance of light nuclei
produced in primordial nucleosynthesis [12] give a con-
sistent value for the baryon asymmetry:

YB ¼ nB � n �B

s
’ 1

7:04

nB � n �B

n�
’ 9� 10�11: (23)

This baryonic asymmetry may arise from the leptogen-
esis scenario [13], with a leptonic asymmetry produced
at a high scale, which gives rise by the B–L conserving
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sphaleron processes [14] at the electroweak scale to a
baryon asymmetry below that scale.

Within the leptogenesis scenario, the baryon asymmetry,
baryon to entropy fraction, is given by

YB ’ � 1

2
YL (24)

that should be compared with the experimental value given
by (23).

Concerning grand unification, the SUð5Þminimal model
is disfavored, since it generates a small baryon asymmetry
at the high scale, washed out at the electroweak scale, since
in that model B–L is conserved. Thus, SOð10Þ, with its
B–L generator spontaneously broken, that we will adopt in
its nonsupersymmetric version, should be preferred to
SUð5Þ to realize the leptogenesis scenario.

The paper is organized as follows. In Sec. II we give the
relevant formulas for the inverse seesaw, mass matrices and
mixings. In Sec. III we formulate our SOð10Þ ansatz. In
Sec. IV we give the formulas needed for CP violation and
the baryon asymmetry. Section V is devoted to a simple
mathematical procedure to obtain a quasidegenerate right-
handed neutrino spectrum (that presents a level crossing)
and a realistic light neutrino spectrum. We underline an
illuminating limit of considering, for the matrix diagonal-
izing mD, a pure Cabibbo matrix that we then extend
to a general matrix of the Cabibbo-Kobayashi-Maskawa
(CKM) form, therefore introducing CP violation. We find
two possible solutions. In Sec. VI we expose a simple
procedure to slowly lift the degeneracy of the heavy
right-handed neutrinos, and give the corresponding evolu-
tion of�m2

s and�m
2
a. In Sec. VII we exhibit the results for

CP violation and baryon asymmetry, in the one-flavor
approximation, and in Sec. VIII we give the predictions
for m�e

and the effective neutrino mass in ð��Þ0�.

In Sec. IX we relax a reality assumption used in Secs. VI
and VII. In Sec. X we comment on the compact heavy
neutrino spectrum and on the level crossing region. Finally
in Secs. XI and XII we underline open problems within the
present approach and we conclude.

II. INVERSE SEESAW, MASS MATRICES
AND MIXINGS

From Eq. (11), we can deduce the inverse seesaw
formula,

MR ¼ �mt
Dm

�1
L mD; (25)

and diagonalizing the neutrino Dirac mass matrix mD by

mD ¼ VLþmdiag
D VR; (26)

one gets the formula [6]

MR ¼ �mt
Dm

�1
L mD ¼ �VRtmdiag

D VL�m�1
L VLþmdiag

D VR

¼ �VRtmdiag
D ALmdiag

D VR; (27)

where the last equality follows from the definition [6] of
the matrix AL:

AL ¼ VL�m�1
L VLþ: (28)

The neutrino mass matrix mL is diagonalized by the
Pontecorvo, Maki, Nagakawa and Sakata matrix U:

mL ¼ U�mdiag
L Uþ; (29)

where

mdiag
L ¼ diagðm1; m2; m3Þ; (30)

and U writes:

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA:diagð1; ei�; ei�Þ; (31)

where � is the Dirac phase and � and � are the Majorana
phases. For the latter we adopt the convention of Davidson
et al. [13].

Let us make a remark on the counting of phases. One
has, in all generality, 6 independent phases in the Type I
seesaw scheme, as established in [15,16] and as exposed in
the review [13], last reference, Sec. 2.1. In the model that
we develop below, the number of independent phases will
be reduced according to the hypotheses adopted.

Taking into account the data on solar and atmospheric
neutrinos and the fact that s13 is bounded to be small, we
will take

s13 ’ 0 (32)

and approximate, from now on, the matrix U as follows:

U ’
cs ss 0

� ssffiffi
2

p csffiffi
2

p 1ffiffi
2

p
ssffiffi
2

p � csffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCA:diagð1; ei�; ei�Þ; (33)

and CP violation originating in the Dirac phase � drops
out.
To simplify the expressions in what follows, we change

the notation for the diagonal matrix in (29)–(31):

diag ðm1; e
�2i�m2; e

�2i�m3Þ ! diagðm1; m2; m3Þ; (34)
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where, from now on,m2 andm3 are assumed to be complex
parameters.

Eq. (29) now writes, in the approximation (33), and with
the notation convention of the rhs of (34),

mL ’
cs ss 0

� ssffiffi
2

p csffiffi
2

p 1ffiffi
2

p
ssffiffi
2

p � csffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCAdiagðm1;m2;m3Þ

cs � ssffiffi
2

p ssffiffi
2

p

ss
csffiffi
2

p � csffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCA:

(35)

Let us strongly underline again that in (35), and in what
follows, the parametersm2,m3 are assumed to be complex,
containing, according to (34), the Majorana phases defined
by (31).
These phases will be computed at different stages. Their

calculation will depend on some hypotheses to be made
explicit below, and on the successive parametrizations
assumed for the matrix mD (26).
From the previous hypotheses we obtain the following

complex symmetric matrix:

m�1
L ¼

c2s
m1

þ s2s
m2

� csssffiffi
2

p
�

1
m1

� 1
m2

�
csssffiffi
2

p
�

1
m1

� 1
m2

�

� csssffiffi
2

p
�

1
m1

� 1
m2

�
1
2

�
s2s
m1

þ c2s
m2

þ 1
m3

�
� 1

2

�
s2s
m1

þ c2s
m2

� 1
m3

�

csssffiffi
2

p
�

1
m1

� 1
m2

�
� 1

2

�
s2s
m1

þ c2s
m2

� 1
m3

�
1
2

�
s2s
m1

þ c2s
m2

þ 1
m3

�

0
BBBBBBBBB@

1
CCCCCCCCCA
; (36)

and the matrix AL (28) is also complex symmetric:

ALt ¼ AL: (37)

In a previous work [6], to comply with the lower bound
for the mass of the lightest right-handed neutrino claimed
by [17], we did set upper limits on the coefficients of
contributions proportional to the products of the Dirac
matrix eigenvalues ðmD3

Þ2 and mD2
mD3

in the MR matrix,

related to mL by the inverse seesaw formula.

From formula (27) we see that to get a quasidegenerate
heavy Majorana neutrino spectrum we need that the terms
proportional to ðmD3

Þ2 and mD2
mD3

have to be small,

which means that, for a hierarchical Dirac mass spectrum,
the matrix elements of (28) AL

33 and AL
23 ¼ AL

32 have to be

small. From (28), we get the following expression for these
matrix elements of interest:

AL
23 ¼ VL�

31

��
c2s
m1

þ s2s
m2

�
VL�
21 � csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
22 þ csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
23

�

þ VL�
32

�
� csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
21 þ 1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
VL�
22 � 1

2

�
s2s
m1

þ c2s
m2

� 1

m3

�
VL�
23

�

þ VL�
33

�
csssffiffiffi
2

p
�
1

m1

� 1

m2

�
VL�
21 � 1

2

�
s2s
m1

þ c2s
m2

� 1

m3

�
VL�
22 þ 1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
VL�
23

�
; (38)

AL
33 ¼ VL�

31

��
c2s
m1

þ s2s
m2

�
VL�
31 � csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
32 þ csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
33

�

þ VL�
32

�
� csssffiffiffi

2
p

�
1

m1

� 1

m2

�
VL�
31 þ 1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
VL�
32 � 1

2

�
s2s
m1

þ c2s
m2

� 1

m3

�
VL�
33

�

þ VL�
33

�
csssffiffiffi
2

p
�
1

m1

� 1

m2

�
VL�
31 � 1

2

�
s2s
m1

þ c2s
m2

� 1

m3

�
VL�
32 þ 1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
VL�
33

�
: (39)

III. OUR SOð10Þ ANSATZ
The seesaw model is realized in the framework of

SOð10Þ unified gauge theories [18], where B–L is a gen-
erator which has to be spontaneously broken. Long before
we saw the firm evidence for neutrino oscillations, this
phenomenon had been claimed [19] as the most promising
experimental signal for SOð10Þ unification.

A systematic study of the spontaneous symmetry break-
ing in SOð10Þ unified theories has lead researchers to
propose [9] the model with SUð4Þ � SUð2Þ � SUð2Þ [8]
intermediate gauge group, broken at the scale of order
3� 1011 GeV [10].
A general analysis has been done in [7] on the possibility

to construct a realistic leptogenesis scenario within the
seesaw model with neutrino Dirac masses in a hierarchical
ratio, as is the case for u-type quarks. The most promising
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case has been found with M3 � 1014 GeV and nearby
values for the masses of the two lightest right-handed
neutrinos.

Although in the present paper we follow the general idea
[7] of leptogenesis generated by quasidegenerate right-
handed neutrinos, we look for a more compact spectrum
for NR, with the heaviest right-handed neutrino at the
intermediate scale, of the order 1011 GeV.

In SOð10Þ the hypothesis that the electroweak Higgs
transforms as a combination of 10 representations
implies at the unification scale the equalities among mass
matrices

me ¼ md; (40)

mD ¼ mu: (41)

For b and � masses, relation (40) at the intermediate
scale is in reasonable agreement with experiment but, as
Georgi and Jarlskog [20] have shown in the SUð5Þ
case, one also needs higher dimensional representations.
The generalization of this argument to SOð10Þ was given
by Harvey et al. [21]. For an overview on fermion
masses and mixings in gauge theories, see the review
article [22].

Within SOð10Þ, with the electroweak Higgs boson be-
longing to the 10 and/or 126 representations, and no com-
ponent along the 120 representation, the mass matrices are
symmetric. As a consequence, the unitary matrices VR and
VL that diagonalize the Dirac neutrino matrix (26) are
related:

VR ¼ VL�; (42)

and the matrix MR (27) becomes

MR ¼ �mt
Dm

�1
L mD ¼ �VLþmdiag

D VL�m�1
L VLþmdiag

D VL�

¼ �VLþmdiag
D ALmdiag

D VL�: (43)

Let us now go back to the question of the phase count-
ing, quoted for the seesaw scheme in Sec. III, in the

particular case of SOð10Þ with a symmetric Dirac neutrino
matrix. Since VL has only one phase, and mL, through the
mixing matrix U (31), has three phases, we have reduced
the number of independent phases, from 6 in the general
case to 4 independent phases. In the approximation (32)
s13 ’ 0 that we have adopted, this means that we have 3
independent phases, namely, a phase from VL, that we will
call �L, and the two Majorana phases � and � from (33).
Below, in Secs. V and VI, we will impose two other

conditions that further reduce the number of independent
phases, from 3 to a single one.
For the diagonalized Dirac neutrino matrix

m
diag
D ¼

mD1
0 0

0 mD2
0

0 0 mD3

0
B@

1
CA; (44)

we will adopt the numerical values proposed in [7], in-
spired from the up quark mass matrix:

mD1
¼ 10�3 GeV; mD2

¼ 0:4 GeV;

mD3
¼ 100 GeV: (45)

The matrix mdiag
D ALmdiag

D appearing in (27) has the form

m
diag
D ALm

diag
D ¼

m2
D1
AL
11 mD1

mD2
AL
12 mD1

mD3
AL
13

mD1
mD2

AL
12 m2

D2
AL
22 mD2

mD3
AL
23

mD1
mD3

AL
13 mD2

mD3
AL
23 m2

D3
AL
33

0
BBB@

1
CCCA;

(46)

which clearly shows that in order to have a compact NR

spectrum from (27) one needs small values for the matrix
elements AL

23 and AL
33.

For VL wewill assume a form qualitatively similar to the
Cabibbo-Kobayashi-Maskawa (CKM) quark matrix, that
reads, in the standard convention (except for the phase �L,
we take the same notation as for the light neutrino mixing
matrix (31), but in what follows there is no ambiguity):

VL ¼
c12c13 s12c13 s13e

�i�L

�s12c23 � c12s23s13e
i�L c12c23 � s12s23s13e

i�L s23c13

s12s23 � c12c23s13e
i�L �c12s23 � s12c23s13e

i�L c23c13

0
BB@

1
CCA; (47)

where �L is the CP-violating phase. This form is exact in
the limit of considering only 10 Higgs representations.

We define, as usual, in terms of Wolfenstein parameters:

s12¼	; s23¼A	2; s13e
i�L ¼A	3ð
þ i�Þ: (48)

Of course, in our problem the parameters 	, A, 
, � do not
necessarily have the same precise values as in the quark
sector: we are interested only in an order-of-magnitude
estimate.

Let us say somewords concerning the diagonalization of
the right-handed neutrino matrix. Since in our SOð10Þ
ansatz MR (43) is complex and symmetric, we can diago-
nalize it by using a single unitary matrix:

MR ¼ WRM
diag
R Wt

R: (49)

The matrix WR is such that all eigenvalues are real and
positive. The effect of phases will appear in the matrixWR.
These phases will of course have consequences for baryo-
genesis and for neutrinoless double beta decay.
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As we will see below, our demand of suppressed values
for AL

33 and AL
23 generates a compact form for the MR

spectrum, which helps in getting the desired lepton asym-
metry in a natural way.

IV. LEPTOGENESIS AND BARYON ASYMMETRY

In this section we recall the basic formulas concerning
the CP-violating asymmetry �1 and the corresponding
baryogenesis asymmetry YB1

. We work in the basis in

which the mass matrices of charged leptons and of right-
handed neutrinos are diagonal, i.e. from (25) and (49):

M
diag
R ¼ �Wþ

R m
t
Dm

�1
L mDW

�
R: (50)

Therefore, in the computation of the CP-violating asym-
metry �1, we define

m̂ D ¼ mDW
�
R (51)

such that

M
diag
R ¼ �m̂t

Dm
�1
L m̂D: (52)

By convention we label the masses of the heavy neutrinos
NRi

(i ¼ 1, 2, 3):

0 � M1 � M2 � M3: (53)

In terms of m̂D, the CP asymmetry writes, for the light-
est heavy neutrino NR1

:

�1 ¼ 1

8�v2

X
k�1

f

�
M2

k

M2
1

�
Im½ðm̂þ

Dm̂DÞ21k�
ðm̂þ

Dm̂DÞ11 ; (54)

where v ¼ 174 GeV is the scale of electroweak symmetry
breaking, and the function fðxÞ is given by [23]

fðxÞ ¼ ffiffiffi
x

p �
1

1� x
þ 1� ð1þ xÞ log

�
1þ x

x

��
; (55)

that in the limit x � 1 becomes

fðxÞ ’ � 3

2
ffiffiffi
x

p ; (56)

and the effective neutrino mass, that controls the amount of
washout, writes:

~m 1 ¼ ðm̂þ
Dm̂DÞ11
M1

: (57)

The cases that we encounter in our calculations below
satisfy the strong washout condition

~m 1 � 3� 10�3 eV; (58)

and the corresponding baryon asymmetry writes, in the
one-flavor approximation that we will adopt in the follow-
ing [24]

YB1
¼ � 1

2
0:3

�1
g�

�
0:55� 10�3 eV

~m1

�
1:16

; (59)

where g� ’ 107 in the standard model, in the nonsuper-
symmetric case.

V. QUASIDEGENERATE HEAVY RIGHT-HANDED
NEUTRINOS AND A REALISTIC LIGHT

NEUTRINO SPECTRUM

In order to get a compact NR spectrum, a sufficient
condition is to impose that the matrix elements AL

33 and

AL
23 are suppressed, because we are dealing with the matrix

(46) and the mD eigenvalues (45). As a first exercise, we
thus consider the solutions of the equations, linear and
homogeneous in the inverse of the neutrino masses
1
mi
ði ¼ 1; 2; 3Þ,

AL
23ðm1; m2; m3Þ ¼ AL

33ðm1; m2; m3Þ ¼ 0: (60)

We are aware that this is a very drastic assumption, but it
will help to guide our research of a compact right-handed
neutrino spectrum and also to look for its consequences on
the light neutrino masses and the amount of baryogenesis
that one can get. We must emphasize that, in this section
and in the following ones, we are dealing with a fine-tuning
scheme. We cannot content ourselves with just order-of-
magnitude estimates; instead, we need precise numerical
calculations.
Notice a new important point in the phase counting of

Eq. (43) with the hypothesis (32). Under the two reality
conditions (60) that we now impose, the 3 phases (see
Sec. III) are now reduced to a single phase, either �L or
one of the two Majorana phases � or �.
Since we do not have experimental information on the

Majorana phases, we will, from now on, compute � and �,
and later the CP asymmetry �1 and baryon asymmetry YB1

in terms of �L. Of course, in principle, one could also
compute the pair (�L, �) in terms of � or (�L, �) in terms
of �. But in the present SOð10Þ approach the natural thing
to do is to take �L as input, since we can take it to be of the
order of Kobayashi-Maskawa (KM) phase �KM, on which
we have information.

A. VL in the limit of a pure Cabibbo matrix

For our purpose, it is a good illustration to study the
consequences of this hypothesis, considering it within the
very simplified approximation of a 2� 2 Cabibbo matrix:

VL ¼
c12 s12 0
�s12 c12 0
0 0 1

0
@

1
A: (61)

Since from (61) �L drops out, we are left with only two
phases, namely, the Majorana phases � and �. Imposing
the two reality conditions (60), these phases will be fixed,
as we see below.
From (60) and (61), we find that the light and heavy

neutrino spectra turn out to be reasonable. From (38) and
(39), the matrix elements of AL we are interested in are
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AL
23¼AL

32¼�1

2

�
s2s
m1

þ c2s
m2

� 1

m3

�
c12�csssffiffiffi

2
p

�
1

m1

� 1

m2

�
s12;

AL
33¼

1

2

�
s2s
m1

þ c2s
m2

þ 1

m3

�
: (62)

If we impose the very strong assumption (60), we have the
two equations

s2s
m1

þ c2s
m2

� 1

m3

þ ffiffiffi
2

p
csss

�
1

m1

� 1

m2

�
tan�12 ¼ 0;

s2s
m1

þ c2s
m2

þ 1

m3

¼ 0; (63)

and solving for m2 and m3 in terms of m1, one gets:

m2 ¼ �
ffiffiffi
2

p � tan�s tan�12ffiffiffi
2

p
tan2�s þ tan�s tan�12

m1;

m3 ¼
ffiffiffi
2

p � tan�s tan�12
tan�s tan�12

m1:

(64)

From the data (1)–(4) and formulas (14) and (15) one gets,
from (64), a number of solutions for m1 and �12.

However, if one looks for solutions with �12 in the
neighborhood of the Cabibbo angle �C, one finds the
following two solutions, according to the sign of tan�s,
since only its square (2) is measured:

(1) For tan�s ’ � ffiffiffiffiffiffiffi
0:4

p
, one gets

tan�12 ¼ 0:140; (65)

jm1j ¼ 0:0030 eV; m2 ¼ �3:1522m1;

m3 ¼ �16:9273m1:
(66)

We have taken several digits for the mi values to get
a compact spectrum for the NRi

and, as we will see

below, for later to obtain the nondegeneracy of the
two higher states. The reason is that we are
dealing with a fine-tuning problem. Of course, one
could take the first digits and say the degree of
approximation at each stage, but we believe that
our way of presenting the results, although harder
to read, corresponds better to the reality of the
calculation.
In consistency with (34), we assume the convention
m1 > 0, and one gets the following spectrum:

m1 ¼ 0:0030 eV; m2 ¼ �0:0094 eV;

m3 ¼ �0:0507 eV;
(67)

where two heavier neutrinos have opposite CP from
the lighter one. This means that the Majorana phases
are

� ¼ �

2
; � ¼ �

2
: (68)

We find, from (26) and (42) and the value
tan�12 (65), for the symmetric Dirac mass matrix:

mD ¼
0:0087 �0:0549 0

�0:0549 0:3923 0

0 0 100

0
BB@

1
CCA GeV; (69)

and

M1 ¼ 5:5504� 109 GeV;

M2 ¼ 1:429 91� 1010 GeV;

M3 ¼ 1:429 92� 1010 GeV:

(70)

(2) For tan�s ’ þ ffiffiffiffiffiffiffi
0:4

p
, one gets

tan�12 ¼ 0:243; (71)

jm1j ¼ 0:0062 eV; m2 ¼ �1:752m1;

m3 ¼ 8:191m1: (72)

Assuming again the conventionm1 > 0, one gets the
following hierarchical spectrum,

m1 ¼ 0:0062 eV; m2 ¼ �0:0109 eV;

m3 ¼ 0:0509 eV;
(73)

where two neutrinos (the lightest and the heaviest)
have opposite CP from the third one. This means
that the Majorana phases are

� ¼ ��

2
; � ¼ 0: (74)

We obtain for this solution, from the value tan�12 (71), the
Dirac neutrino matrix:

mD ¼
0:0233 �0:0916 0

�0:0916 0:3777 0

0 0 100

0
BB@

1
CCA GeV (75)

and the quasidegenerate right-handed heavy neutrino
spectrum:

M1 ¼ 6:72168� 109 GeV;

M2 ¼ 8:30366� 109 GeV;

M3 ¼ 8:30409� 109 GeV:

(76)

The results for these two solutions seem encouraging
because we get in both cases a value of the angle �12 that is
rather close to the Cabibbo angle �C. It seems highly
nontrivial and amazing that such a simplified form of the
VL matrix could already give these results consistent with
quark-lepton symmetry.
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B. VL with approximate CKM form

We now switch on the other VL parameters and consider
the full matrix (47). To perform the calculations we adopt
for m1 and tan�12 the values obtained in the pure Cabibbo
limit, namely, m1 ¼ 0:0030 eV, tan�12 ¼ 0:140 for solu-
tion (1) and m1 ¼ 0:0062 eV, tan�12 ¼ 0:243 for
solution (2).

For the numerical calculations we thus proceed in the
following way:

(i) From either solution (1) or solution (2) of Sec.VA,
we fix the parameters m1 and tan�12:

(1)

tan�s ¼ � ffiffiffiffiffiffiffi
0:4

p
; m1 ¼ 0:0030 eV;

tan�12 ¼ 0:140;
(77)

(2) tan�s ¼ þ ffiffiffiffiffiffiffi
0:4

p
; m1 ¼ 0:0062 eV;

tan�12 ¼ 0:243:
(78)

(ii) For the rest of the VL matrix elements we deduce the
Wolfenstein parameter 	 in (48) from (77) and (78)
and take, just a guess, the parameters A, 
 and �
from the quark sector CKM matrix, i.e., for
example,

A ¼ 0:8; 
 ¼ 0:13; � ¼ 0:35; (79)

and, using these parameters, we fix s23, s13 follow-
ing (48):

(1) tan�12 ¼ 0:140; s23 ¼ 0:0154;

s13 ¼ 0:0008; �L ¼ 1:2152
(80)

gives

VL ’
0:990 0:139 ð2:8� 7:5iÞ � 10�4

�0:139 0:990 0:015

ð18:6� 7:4iÞ � 10�4 �0:015 1

0
BB@

1
CCA; (81)

while from

(2) tan�12 ¼ 0:243; s23 ¼ 0:0446; s13 ¼ 0:0039; �L ¼ 1:2152 (82)

one obtains

VL ’
0:972 0:236 ð1:37� 3:68iÞ � 10�3

�0:236 0:971 0:045

ð9:20� 3:58iÞ � 10�3 �0:045 1

0
BB@

1
CCA: (83)

(iii) Then, we solve Eqs. (60) for m2 and m3 and com-
pare with experiment for �m2

s and �m2
a.

Notice that this numerical procedure is less rigid
that the one adopted in the simpler case of a pure
Cabibbo matrix of the preceding subsection, where
�m2

s and �m2
a were fixed to the experimental cen-

tral values (1) and (3) and we did solve for tan�12,
m1, m2 and m3. We prefer to change our numerical
approach here due to the extreme fine tuning of the
problem. It seems to us sensible enough if we get
results for �m2

s and �m2
a that are roughly consis-

tent with experiment.
We find the following results.

(1) For tan�s ’ � ffiffiffiffiffiffiffi
0:4

p
, m1 ¼ 0:0030 eV and tan�12 ¼

0:140, one gets

m2 ¼ �0:0095e0:0036i eV;

m3 ¼ �0:0495e0:0075i eV
(84)

that correspond to the Majorana phases

� ¼ �

2
� 0:0018; � ¼ �

2
� 0:0038: (85)

Let us notice an important point. We obtain the
CP-violating part of the Majorana phases for the
light neutrinos [i.e. their departure relative to �

2 in

(85)] from the �L phase, that we take close to the
KM phase �KM. This can seem paradoxical, because
�L concerns the Dirac neutrino mass. However,
because of �L, the matrix AL is complex. This
implies that, setting m1 real as we have done above,
the solutions from Eqs. (60) form2 andm3 [with the
notation (34)] must be complex. The departure of
these Majorana phases relative to the ones obtained
in the real Cabibbo limit (68) and (74) turn out to be
numerically small.
We obtain, from (14), (15), and (84),
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�m2
s ¼ 8:1� 10�5 eV2; �m2

a ¼ 2:4� 10�3 eV2: (86)

The agreement with the data is good.
Let us now give the complex symmetric Dirac neutrino mass and the right-handed heavy neutrino spectrum for this
solution. We get

mD ¼
0:0090þ 0:0003i �0:0576� 0:0011i 0:1849þ 0:0739i

�0:0576� 0:0011i 0:4155� 0:0003i �1:5206þ 0:0103i

0:1849þ 0:0739i �1:5206þ 0:0103i 99:9764

0
BB@

1
CCA GeV (87)

and the quasidegenerate right-handed heavy neutrino spectrum:

M1 ¼ 5:53144� 109 GeV; M2 ¼ 1:43230� 1010 GeV; M3 ¼ 1:43232� 1010 GeV: (88)

(2) For tan�s ’ þ ffiffiffiffiffiffiffi
0:4

p
, m1 ¼ 0:0062 eV and tan�12 ¼ 0:243 one gets:

m2 ¼ �0:0106e�0:016i eV; m3 ¼ 0:0455e0:0078i eV; (89)

that correspond to the Majorana phases

� ¼ ��

2
þ 0:0080; � ¼ �0:0039: (90)

We obtain, from (14), (15), and (89):

�m2
s ¼ 7:4� 10�5 eV2; �m2

a ¼ 2:0� 10�3 eV2: (91)

The agreement with the data is not as good as for solution (1). We could change the initial conditions form1 and tan�12 and
get a better agreement. However, it is not our intention to make a fit but to get a qualitative agreement with the data.

We get the Dirac matrix for this solution:

mD ¼
0:0304þ 0:0066i �0:1319� 0:0148i 0:9152þ 0:3575i

�0:1319� 0:0148i 0:5676� 0:0076i �4:3450þ 0:0869i

0:9152þ 0:3575i �4:3450þ 0:0869i 99:8003

0
BB@

1
CCA GeV; (92)

and the quasidegenerate right-handed heavy neutrino spectrum:

M1 ¼ 6:846 78� 109 GeV; M2 ¼ 8:848 78� 109 GeV; M3 ¼ 8:849 09� 109 GeV: (93)

The signs and phases of the results (84) and (89) will
have quantitative consequences for the effective neutrino
mass in neutrinoless double beta decay, as we will see
below.

C. CP violation and baryon asymmetry

The results of Sec. VB show that, imposing the very
drastic conditions (60), one gets quasidegenerate right-
handed neutrino spectra.

To have a feeling on how to proceed, let us make an
exercise in the case (1), where the quasidegeneracy (88) is
less pronounced. Let us compute the Dirac matrix (51) in
the basis in which the heavy right-handed neutrino mass
matrix is diagonal, �1, ~m1 and finally YB1

. We will assume

that the lightest neutrino decays out of equilibrium and that
one can apply the one-flavor approximation.
We find the following result:

m̂D ’
�0:055i �0:052þ 0:132i �0:131� 0:052i

�0:001þ 0:391i �0:006� 1:081i 1:080� 0:006i

�0:002þ 0:347i �0:064þ 70:702i �70:702� 0:064i

0
BB@

1
CCA GeV: (94)
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Of course, unlike expression (87), this matrix is no longer
symmetric. Using it in Eqs. (54), (57), and (59), we obtain

�1 ’ �3:805� 10�10; ~m1 ’ 0:050 eV;

YB1
’ 3:05� 10�15;

(95)

where we have used the exact formula (55) for the function
fðxÞ since the three heavy neutrinos are rather close in
mass, although NR1

is lighter, and formula (59) is applied
because, according to the value of ~m1 (95), we are in the
strong washout regime (58).

The obtained baryon asymmetry YB1
ffi 3� 10�15 is

much too small, by about four to 5 orders of magnitude,
although of the right sign. The reason is the smallness of
�1, that follows from the quasidegeneracy of M2 and M3

and the opposite CP asymmetry contribution from
both heavy neutrinos. Indeed, one finds, for the two terms
in (54):

f

�
M2

2

M2
1

�
Im½ðm̂Dm̂

þ
DÞ212�

8�v2ðm̂Dm̂
þ
DÞ11

’ �f

�
M2

3

M2
1

�
Im½ðm̂Dm̂

þ
DÞ213�

8�v2ðm̂Dm̂
þ
DÞ11

’ �3:634� 10�6 (96)

that shows a strong cancellation giving a very small CP
violation �1.

Although for the moment we do not get good phenome-
nological results, we should however emphasize an inter-
esting limit of the present scheme, namely:

�L ! 0 implies �1 ! 0; YB1
! 0;

� ¼ � ! �

2
½solution ð1Þ�;

� ! ��

2
; � ! 0 ½solution ð2Þ�:

(97)

Notice that we have an intuitive argument to understand
the quasidegeneracy between M2 and M3 (88) and the
smallness of the CP violation (95). Indeed, in the limit
AL
23 ¼ AL

33 ¼ 0 (60), and neglecting terms of orderm2
D1

and

mD1
mD2

, since we take VL to be close to a diagonal matrix,

the MR matrix has only MR13
, MR31

and MR22
sizeable

matrix elements with MR13
’ MR31

, and the matrix MR is

close to real. Therefore, one has M2 ’ M3 and �1 ’ 0.
We can try to modify our very simplified scheme by

lifting the degeneracy of NR2
and NR3

. We will thus relax

somewhat the strong condition (60), but keep the general
physical idea of a compact heavy NR spectrum. We will
allow for nonvanishing values for the matrix elements jAL

23j
and jAL

33j, keeping them ‘‘small,’’ i.e. values much smaller

than each of their individual contributions that, due to the
smallness of the light neutrino masses, are naturally of the
order �1011 GeV�1, as can be seen in Eqs. (38) and (39).

As we will further examine, one can thus obtain a rather
compact NR spectrum, and also reasonable values for the
baryon asymmetry consistent with the data without spoil-
ing the good properties of the light neutrino spectrum.

VI. LIFTING THE QUASIDEGENERACY OF
HEAVY NEUTRINOS

We will proceed now, in terms of some parameters, to a
continuous and slow lifting of the quasidegeneracy of the
heavy right-handed neutrino masses obtained in the pre-
vious section within the strong hypothesis (60).
In this section we do the calculation considering non-

vanishing values for the rhs of Eqs. (60). Moreover, since
we have seen that even the drastic assumption of taking
AL
33 ¼ AL

23 ¼ 0 gives reasonable neutrino spectra (84) or

(89), we will allow jAL
23j and jAL

33j to vary within a very

wide range, keeping small values (
 1011 GeV�1),
and observe how the heavy neutrino and the light neutrino
spectra evolve, as well as the consequences for the
CP-violation asymmetry �1, the effective neutrino mass
m̂1 and baryon asymmetry YB1

. We will perform the

calculations for both solutions (1) ( tan�s ’ � ffiffiffiffiffiffiffi
0:4

p
) and

(2) ( tan�s ’ þ ffiffiffiffiffiffiffi
0:4

p
).

Notice that the strong conditions (60) AL
33 ¼ AL

23 ¼ 0 are
linear homogeneous equations in 1

mi
ði ¼ 1; 2; 3Þ. We now

allow for nonvanishing inhomogeneous terms:

AL
23ðm1; m2; m3Þ ¼ CL

23; (98)

AL
33ðm1; m2; m3Þ ¼ CL

33: (99)

To lift the very close degeneracy betweenM2 andM3 in
the case examined before, AL

33 ¼ AL
23 ¼ 0, we just need to

have nonvanishing, in general complex parameters CL
23 and

CL
33 in the rhs of (98) and (99). However, to have an overall

compact heavy neutrino spectrum, we need inhomogene-
ous terms that should be small in modulus relative to each
individual term in AL

33 and AL
23 (38) and (39). This means

that we will take nonvanishing values for CL
23 and C

L
33 with

the condition

jCL
23j; jCL

23j 
 1011 GeV�1: (100)

In principle, one should scan the general two complex
numbers CL

23 and CL
33 and see how the heavy neutrino

spectrum evolves, as well as the light neutrino masses,
the light neutrino Majorana phases � and �, the CP
asymmetry �1 and final baryon asymmetry YB1

.

As pointed out at the beginning of Sec. V, the Majorana
phases (85) and (90), that we found for CL

23 ¼ CL
33 ¼ 0

have their origin in the approximation adopted for the
matrix VL, that we take close to the CKM matrix. In order
to preserve this interesting feature, we will assume that the
nonvanishing values of the inhomogeneous terms CL

23 and

CL
33 are real and satisfy (100). Later, in Sec. IX we will

relax this reality assumption and will see that we have a
wide domain of values for complex CL

23 and CL
33 that can

give reasonable results.
The first important observation to be made is that the

degeneracy between NR2
and NR3

, that we have found

solving Eqs. (60), is lifted considerably if jCL
33j is
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nonvanishing in some region with jCL
33j 
 1011 GeV�1,

and we have realized that the mass difference M3 �M2 is
rather insensitive to the precise value of jCL

23j, provided
that its value is not ‘‘too large.’’ Importantly, the amount of
CP violation, and therefore of baryon asymmetry, also
depends on the value adopted for jCL

23j.
To reduce the number of parameters, we assume that CL

23

andCL
33 are real and of equal modulus jCL

23j ¼ jCL
33j. As we

vary CL
23 and CL

33 we find essentially the same heavy

neutrino spectrum and roughly the same values for �m2
s

and �m2
a, independent of their relative sign. We find that

what is dependent on this relative sign is the amount of CP
violation and baryon asymmetry. If CL

23 ¼ CL
33 (indepen-

dent of its sign), the baryon asymmetry can be at most of
Oð10�12Þ, but if CL

23 and CL
33 are of opposite sign, one can

get a correct amount of baryon asymmetry.

In conclusion, after some trial and error guesses, we,
respectively, adopt real numbers for CL

23 and CL
33 for both

solutions (1) ( tan�s < 0) and (2) ( tan�s > 0):

(1) � CL
23 ¼ CL

33 > 0; (101)

(2) � CL
23 ¼ CL

33 < 0; (102)

with jCL
33j 
 1011 GeV. As will become clear below, the

adopted sign for each of the solutions corresponds to the
experimental sign YB > 0 in some region for the parame-
ters CL

23, C
L
33. We assume that YB1

’ YB, a hypothesis that

will be justified in Sec. X.
We will now show how the heavy neutrino and the light

neutrino spectra evolve under the conditions (101) and

(a)

(c) (d)

(e)

(b)

FIG. 1. (a) Log-log plot of the right-handed heavy neutrino spectrum (masses in GeVunits) as a function of�CL
23 ¼ CL

33 > 0 in units
of GeV�1, for fixed m1 ¼ 0:0030 eV and tan�12 ¼ 0:140. Within the range �CL

23 ¼ CL
33 ¼ 106–107 GeV�1, there is a level crossing.

The angular points come from the fact that the curves are obtained from interpolation of a finite number of points. The same applies to
the other figures. (b) �m2

s in eV2 units as a function of �CL
23 ¼ CL

33 > 0 in units of GeV�1, for fixed m1 ¼ 0:0030 eV and tan�12 ¼
0:140, in a log scale for CL

33. (c) �m
2
a in eV2 units as a function of �CL

23 ¼ CL
33 > 0 in units of GeV�1, for fixed m1 ¼ 0:0030 eV and

tan�12 ¼ 0:140, in a log scale for CL
33. (d) The Majorana phase � as a function of�CL

23 ¼ CL
33 > 0 in units of GeV�1, in a log scale for

CL
33, for fixed m1 ¼ 0:0030 eV and tan�12 ¼ 0:140. The x-axis is centered at �=2. (e) The Majorana phase � as a function of�CL

23 ¼
CL
33 > 0 in units of GeV�1, in a log scale for CL

33, for fixed m1 ¼ 0:0030 eV and tan�12 ¼ 0:140. The x-axis is centered at �=2.

BARYOGENESIS VIA LEPTOGENESIS FROM QUARK- . . . PHYSICAL REVIEW D 83, 093013 (2011)

093013-11



(102). In the next section we will show how �1, m̂1 and
YB1

behave.

Of course, our ansatz for CL
23, C

L
33 is just a guess. We do

not intend to make a fit to the overall data, light neutrino
spectrum and baryon asymmetry. We just want to see if the
description of these data is possible within this scheme of a
compact heavy neutrino spectrum and approximate quark-
lepton symmetry. Other equations of the type (98) and (99),
with complex rhs values for the parameters CL

23, C
L
33 also

give acceptable results, as we will see in Sec. IX.

A. Heavy and light neutrino spectra
for case (1) tan�s < 0

To perform the calculations we again adopt the values of
the pure Cabibbo limit, namely, m1 ¼ 0:0030 eV,
tan�12 ¼ 0:140, although one could change these values
slightly to get a better fit.

In Fig. 1(a) the right-handed heavy neutrino spectrum is
plotted. In Figs. 1(b) and 1(c) we show, respectively, the
solar and atmospheric quantities �m2

s , �m
2
a.

Let us comment on these figures. The angular points that
appear in the figures are an artifact of the representation of
the curves, obtained from an interpolation of a finite num-
ber of points. Notice that for each point we must perform
the singular value decomposition of the matrixMR in order
to compute the quantities necessary to obtain the baryon
asymmetry.
The first striking point is that, as we have learned from

Eqs. (98) and (99), the NR spectrum [Fig. 1(a)] is
very compact for CL

33 not ‘‘too large,’’ CL
33 < 107 GeV�1.

As explained in the Introduction, there is an expected
correlation between the stability of the light neutrino
spectrum and the compact heavy right-handed neu-
trino one. The fine tuning for the close heavy neutrino
masses ensures the stability of the light neutrino ones.

(a)

(c) (d)

(e)

(b)

FIG. 2. (a) Log-log plot of the right-handed heavy neutrino spectrum (masses in GeVunits) as a function of CL
23 ¼ �CL

33 > 0 in units
of GeV�1, for fixed m1 ¼ 0:0062 eV and tan�12 ¼ 0:243. Within the range �CL

33 ¼ 105–106 GeV�1, there is a level crossing.

(b) �m2
s in eV2 units as a function of CL

23 ¼ �CL
33 > 0 in units of GeV�1, in a log scale for �CL

33, for fixed m1 ¼ 0:0062 eV and

tan�12 ¼ 0:243. (c) �m2
a in eV2 units as a function of CL

23 ¼ �CL
33 > 0 in units of GeV�1, in a log scale for �CL

33, for fixed

m1 ¼ 0:0062 eV and tan�12 ¼ 0:243. (d) The Majorana phase � as a function of CL
23 ¼ �CL

33 > 0 in units of GeV�1, in a log scale for

�CL
33, for fixed m1 ¼ 0:0062 eV and tan�12 ¼ 0:243. The x-axis is centered at ��=2. (e) The Majorana phase � as a function of

CL
23 ¼ �CL

33 > 0 in units of GeV�1, in a log scale for �CL
33, for fixed m1 ¼ 0:0062 eV and tan�12 ¼ 0:243.
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For �CL
23 ¼ CL

33 > 107 GeV�1, the right-handed neutrino

spectrum evolves into a hierarchical spectrum. The values
obtained for �m2

s [Fig. 1(b)] and �m2
a [Fig. 1(c)] are very

stable and consistent with experiment for a wide range of
values of �CL

23 ¼ CL
33, of about 8 orders of magnitude.

We observe two other important things in Fig. 1(a): the
degeneracy between NR2

and NR3
is lifted, and there is a

level crossing around �CL
23 ’ CL

33 ¼ 3� 106 GeV�1.

An important point also to be underlined is that one of
the levels (NR1

before the crossing) remains practically

constant in the whole studied range, while the mass of
NR2

decreases. After the crossing we will call NR1
this

right-handed neutrino, being the lightest, according to
convention (53).

As we can see from Figs. 1(b) and 1(c), the values
obtained for �m2

s and �m2
a are in good agreement with

the data for a very wide range of the parameters.
For the Majorana phases � and �, shown in Figs. 1(d)

and 1(e), we find rather constant values (in a logarithmic
scale) that are very close but a little smaller than �

2 , as

shown in the figures.

B. Heavy and light neutrino spectra
for case (2) tan�s > 0

To perform the calculations, we again adopt the
values obtained in the pure Cabibbo limit, namely,
m1 ¼ 0:0062 eV, tan�12 ¼ 0:243.

In Fig. 2(a) the right-handed heavy neutrino spectrum is
plotted. In Figs. 2(b) and 2(c) we show, respectively, the
solar and atmospheric quantities �m2

s , �m
2
a. Figures 2(d)

and 2(e) display the results for the Majorana phases
� and �.

As shown in the figures, in a logarithmic scale, we find
for the Majorana phase � a rather constant value that is
very close to but a little larger than � �

2 and for � a small

negative, almost constant value.
The first striking point in case (2) is that, as imposed from

Eqs. (98) and (99), the NR spectrum [Fig. 2(a)]
has the same features as for the precedent solution, although
it is very compact for�CL

33 < 106 GeV�1, muchmore than

in case (1). Within the range CL
23 ¼ �CL

33 ¼
105–106 GeV�1, there is also a level crossing, on which
we will comment below. For CL

23 ¼ �CL
33 > 106 GeV�1

the right-handed neutrino spectrum evolves also into a
hierarchical spectrum. Second, �m2

s [Fig. 2(b)] and �m2
a

[Fig. 2(c)] are very stable for a wide range of values of
CL
23 ¼ �CL

33, of about 7 orders of magnitude. However, the

agreement with experiment is not as good as it was for
solution (1), although it is acceptable within a 3
 range.
Of course, we could somewhat change the initial conditions
m1 ¼ 0:0062 eV, tan�12 ¼ 0:243 and get results closer to
the data. This could be done, but we will not do it because
our purpose is only a qualitative onewithin our (fine-tuning)
scheme.

VII. CP VIOLATION AND BARYON ASYMMETRY
IN THE REGION APPROACHING

THE LEVEL CROSSING

Let us turn now to the quantities that are important for
baryogenesis via leptogenesis. Labeling the lightest heavy
right-handed neutrino NR1

, our calculations show that the

quantities ��1, ~m1 and YB1
have a strong discontinuity

across the level crossing region. We always call NR1
the

lightest heavy neutrino, even after the crossing, according
to the convention (53).
We will justify and characterize this term of level cross-

ing, and discuss its implications before and after this region
in Sec. X.
To simplify the presentation of the results, we will

restrict ourselves to the region before the crossing, where
M2 and M1 become relatively close, i.e. to the following
regions, slightly different in both cases:

(1)
105 GeV�1 � �CL

23 ¼ CL
33 � 106:4 GeV;�1

109 GeV � M2 �M1 � 8:3� 109 GeV; (103)

(2)
104 GeV�1 � CL

23 ¼ �CL
33 � 105:6 GeV;�1

109 GeV � M2 �M1 � 2:� 109 GeV: (104)

To avoid the delicate situation related to the quaside-
generacy of two heavy neutrinos, extensively studied by
A. Pilaftsis et al. [25], we need the condition
(see also [7])

�1 
 M2 �M1; (105)

where �1 is the width of the lightest heavy right-handed
neutrino, that has an upper bound qualitatively given
by [7]:

�1 � m2
t

16�v2
M1: (106)

Before the level crossing region one gets, from the parame-
ters quoted above (mt ’ mD3

’ 100 GeV, v ¼ 174 GeV

and M1 ’ 5:� 109 GeV),

�1 � 3:� 107 GeV: (107)

Therefore, before the level crossing region, taking into
account the inequalities (103) and (104), we see that, in
both cases (1) and (2), the condition (105) is satisfied. We
are far away from resonant leptogenesis and we do not
have to face complications related to quasidegenerate
heavy neutrinos, for which M2 �M1 � �1.
Let us now show the quantities��1, ~m1 and YB1

for both

solutions within the interesting ranges (103) and (104).
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A. Case (1) tan�s < 0

Figure 3(a) displays the CP violation parameter ��1,
Fig. 3(b) plots thewashout parameter ~m1, andFig. 3(c) shows
the baryon asymmetry YB1

in the one-flavor approximation.

We observe that �1 is negative and becomes large
enough in absolute magnitude to give a large positive YB1

with rather stable values of the parameter ~m1 that imply

strong washout in the whole region. Notice that ��1 as
well as YB1

grow as the mass difference M3 �M2 slowly

grows and the mass difference M2 �M1 becomes smaller,
a phenomenon already underlined by Akhmedov et al. [7].
The main conclusion that we can draw from Fig. 3(c) is

that there is no problem to getting a baryon asymmetry YB1

of the right order of magnitude ðYBÞexp ’ 9� 10�11.

(a)

(c)

(b)

FIG. 3. (a) Log-log plot of ��1 as a function of �CL
23 ¼ CL

33 in units of GeV�1, for fixed m1 ¼ 0:0030 eV and tan�12 ¼ 0:140.
(b) ~m1 in eV units as a function of �CL

23 ¼ CL
33 in units of GeV�1, in a log scale for CL

33, for fixed m1 ¼ 0:0030 eV and tan�12 ¼
0:140. (c) Log-log plot of YB1

as a function of �CL
23 ¼ CL

33 in units of GeV�1, for fixed m1 ¼ 0:0030 eV and tan�12 ¼ 0:140.

(a)

(c)

(b)

FIG. 4. (a) Log-log plot of ��1 as a function of CL
23 ¼ �CL

33 in units of GeV�1, for fixed m1 ¼ 0:0062 eV and tan�12 ¼ 0:243.
(b) ~m1 in eV units as a function of CL

23 ¼ �CL
33 in units of GeV�1, in a log scale for �CL

33, for fixed m1 ¼ 0:0062 eV and tan�12 ¼
0:243. (c) Log-log plot of YB1

as a function of CL
23 ¼ �CL

33 in units of GeV�1, for fixed m1 ¼ 0:0062 eV and tan�12 ¼ 0:243.
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Wemust underline that if we had taken the opposite sign
in (101), we would have obtained the opposite sign for �1
and therefore also for YB1

. Therefore, our scheme does not

predict the sign of YB, since it depends on the chosen sign
of the inhomogeneous terms.

B. Case (2) tan�s > 0

Figure 4(a) displays the CP violation parameter ��1,
Fig. 4(b) plots the washout parameter ~m1, and Fig. 4(c)
shows the baryon asymmetry YB1

in the one-flavor

approximation.
We observe that �1 is negative and becomes large in

absolute magnitude to give a rather large positive YB1
with

values of the parameter ~m1 within the strong washout
regime.

We must again point out that if we had taken the oppo-
site sign in the rhs of (102), we would have obtained the
opposite sign for �1 and therefore also for YB1

.

The main conclusion that we can draw from Fig. 4(c) is
that in this case we are somewhat short of having a baryon
asymmetry YB1

of the right order of magnitude ðYBÞexp ’
9� 10�11. However, as pointed out above, one could
modify the initial conditions (the values m1 ¼ 0:0062
and tan�12 ¼ 0:243) and get results in better agreement
with the data. But it is not our purpose to make a detailed fit
for �m2

s , �m
2
a and YB1

; we only want to give a qualitative

trend.
Let us emphasize again that in the present scheme

developed in Secs. VI and VII, due to the reality conditions
on CL

23 and CL
33, we again have the interesting limit (97):

�L ! 0 implies �1 ! 0 YB1
! 0

� ¼ � ! �

2
½solution ð1Þ�;

� ! ��

2
; � ! 0 ½solution ð2Þ�:

(108)

VIII. RESULTS FOR m�e
, ð��Þ0� AND

THE SUM OF THE NEUTRINO MASSES

We give here the predictions for the electron neutrino
mass, on which one has limits from tritium � decay,

m�e
¼ cos2�sjm1j þ sin2�sjm2j (109)

and for the effective mass relevant for neutrinoless double
beta decay jhmeeij that writes, within the approxi-
mation (33),

jhmeeij ¼ jcos2�sm1 þ sin2�sm2j: (110)

The neutrino masses and their phases for both solutions
(84) and (89) are very close to those obtained in the region
that give an acceptable value for YB. Taking thus the values
for both solutions, and using the notation (34),

(1) m1 ¼ 0:0030 eV; m2 ¼ �0:0095e0:0036i eV;

m3 ¼ �0:0495e0:0075i eV; (111)

(2) m1 ¼ 0:0062 eV; m2 ¼ �0:0106e�0:016i eV;

m3 ¼ 0:0455e0:0078i eV; (112)

we obtain, respectively:

(1) m�e
’ 4:9� 10�3 eV;

jhmeeij ’ 5:7� 10�4 eV;
(113)

(2) m�e
’ 7:5� 10�3 eV;

jhmeeij ’ 1:4� 10�3 eV: (114)

For both solutions, due to the relative signs among the mi

(i ¼ 1, 2, 3) (i.e. due to the Majorana phases), there is a
strong cancellation between the two terms in (110), a
phenomenon already exhibited in [6] in another context.
The cancellation is stronger for solution (1).
For the sum of the absolute magnitude of all neutrino

masses, we obtain:

(1)
X
i

jm�i j ¼ 0:0620 eV; (115)

(2)
X
i

jm�i j ¼ 0:0623 eV: (116)

One gets very close results for both solutions that com-
ply with the cosmological bounds (8) and (9) [4].
Let us make a last qualitative remark comparing the

different possible future experiments on neutrino masses
and stress the importance of cosmological limits.

If one takes m1 ’ 0, one finds, from the data, jm2j ’ffiffiffiffiffiffiffiffiffiffi
�m2

s

p ’ 9� 10�3 eV and jm3j ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

a þ cos2�s�m
2
s

p ’
5� 10�2 eV, which correspond to a value for the lhs in
Eqs. (8) and (9) of the order 6� 10�2 eV, very near the
value that we have found and only a factor 3.3 below
the bound (9) [4]. So, according to the present scenario,
the most promising search for effects of neutrino masses,
apart from oscillation experiments, is the analysis of cos-
mological data, while for beta decay and neutrinoless
double beta decay one would need an improvement of
more than 2 orders of magnitude.

IX. RELAXING THE ADDITIONAL REALITY
CONSTRAINTS OF THE MODEL

We now relax the conditions of the particular model that
we have studied quantitatively, namely, those given by
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Eqs. (98) and (99) with real CL
23 and CL

33 satisfying (101)

and (102), and allow complex numbers for these parame-
ters, keeping, however, ‘‘small’’ values for the moduli, as
stated in (100).

Notice the important point that now we have two new
sources of CP violation besides a single independent phase
�L (or � or �), and we recover the situation in which there
are three independent phases: �L,� and�. However, as we
will see below, in the range of interest for YB1

, the magni-

tude of the Majorana phases is not very different than in the
real case studied in detail in Secs. V, VI, and VII. However,
their new contributions have important implications for the
baryon asymmetry.

Just to have a feeling of what can happen, we take an
extreme case and adopt relations (101) and (102) with the
condition (100), but now taking CL

23 and CL
33 purely imagi-

nary. Interestingly, the results are phenomenologically
good and show that our general scheme of a compact NR

spectrum is flexible enough.
We do not give the corresponding curves of Secs. VI and

VII, and give values for representative points with accept-
able phenomenological results.

For case (1), i.e. tan�s ’ � ffiffiffiffiffiffiffi
0:4

p
with m1 ¼ 0:0030 eV

and tan�12 ¼ 0:140, taking

� CL
23 ¼ CL

33 ¼ i10�5; (117)

we find the following results:

�m2
s ¼8:1�10�5 eV2; �m2

a¼2:4�10�3 eV2;

�¼�

2
�0:0018; �¼�

2
�0:0038;

M1¼5:531�109 GeV; M2¼1:383�1010 GeV;

M3¼1:483�1010 GeV; ~m1¼0:050 eV;

�1¼�2:755�10�5; YB1
¼2:211�10�10; (118)

while for case (2), i.e. tan�s ’ þ ffiffiffiffiffiffiffi
0:4

p
with m1 ¼

0:0062 eV and tan�12 ¼ 0:243, taking

� CL
23 ¼ CL

33 ¼ �i10�3; (119)

we find:

�m2
s ¼7:4�10�5 eV2; �m2

a¼2:0�10�3 eV2;

�¼��

2
þ0:0079; �¼�0:0039;

M1¼6:847�109 GeV; M2¼8:844�109 GeV;

M3¼8:954�109 GeV; ~m1¼0:170 eV;

�1¼�3:622�10�5; YB1
¼7:035�10�11; (120)

These results are phenomenologically reasonable, and
we find a whole region in their neighborhood that also
gives good results.

Notice that in the numbers of case (2) we are not far
away from saturating the bound (107), and therefore we are
approaching the regime of resonant leptogenesis.

Let us emphasize again that in the case examined here
we have two different sources of CP violation: �L and the
Majorana phases �, �.
To illustrate how these new contributions to Majorana

phases occur, it is useful to recall again how we perform
our calculations. Proceeding like in Sec. VI, using
Eqs. (117) and (119), we compute, from (38) and (39),
m2 and m3 [with the convention (34)] in terms of the given
values for m1 and tan�12. Then, m2 and m3 get by con-
struction new CP-violating contributions to the Majorana
phases because, according to (117) and (119), the inhomo-
geneous terms must be pure imaginary.
Of course, since we now have new sources of CP

violation in the Majorana phases, in the limit �L ! 0 we
do not recover the simple limit (108) that we got for real
values of CL

23 and CL
33 or, equivalently, for CP violation in

the Majorana phases fixed exclusively from the phase �L.
We had CP violation in Majorana phases that were

induced by their calculation for a given �L in the case of
vanishing CL

23 and C
L
33 (Sec. VB). But, from the imaginary

inhomogeneous terms of the present section, we now have
new sources of CP violation in these phases.
These new sources of CP violation in the Majorana

phases, although small, are very efficient in producing
a baryon asymmetry, as we realize from the results (118)
and (120).
It can easily be understood that the constraints (117) and

(119) imply new contributions to the baryon asymmetry.
These equations mean that the entries AL

23 ¼ AL
32 and AL

33

are purely imaginary. This in turn implies, from (43), new
CP violation contributions to the mass matrixMR, provid-
ing, after its diagonalization, new contributions to �1 and
YB1

. This important phenomenon certainly deserves further

investigation for general complex inhomogeneous terms,
keeping however a compact NR spectrum.
The important conclusion of the calculations of the

present section is that the results presented in Secs. VI
and VII remain much more general than the very particular
model that, for the sake of simplicity, was exposed there.
Our scheme, although fine-tuned because we look for a
compact heavy neutrino spectrum, allows for a wide range
of parameters giving good results.

X. COMMENTS ON THE COMPACT HEAVY
NEUTRINO SPECTRUM AND ON THE

LEVEL CROSSING REGION

We now go back to the case that we have studied in
quantitative detail, namely, Eqs. (98) and (99) with the
conditions (101) and (102).
Before and around the level crossing region, we have a

rather or very compact heavy neutrino spectrum. For sim-
plicity, we have assumed that the lightest heavy neutrino
NR1

decays out of equilibrium and gives the main contri-

bution to the important quantities relevant for baryogene-
sis: �, ~m and YB.
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In such a fine-tuned situation, this can seem rather
artificial. Actually, one should consider the contributions
of all three heavy neutrinos, and therefore the contributions
of all the CP-violation parameters �1, �2 and �3, and the
corresponding washout factors. Notice that there are stud-
ies in the literature that consider all these contributions.
See, for example, the paper by E. Bertuzzo et al. [26] and
also, in a qualitative way, the work by Akhmedov et al. [7].
However, to take into account the contributions of all three
heavy neutrinos can present some subtleties. We have not
dared, for the moment, to roughly add YB1

, YB2
and YB3

. We

simply expect that the possible contributions of all three
heavy neutrinos will not strongly affect the results that we
have found from NR1

. An argument given below supports

this hypothesis.
Let us now comment on the crossing region. As pointed

out above, there is a level crossing in both cases:
(1) tan�s < 0 and (2) tan�s > 0. This happens around
�CL

23 ¼ CL
33 ’ 3� 106 GeV�1 for solution (1) and CL

23 ¼
�CL

33 ’ 5� 105 GeV�1 for solution (2). At some point in

this region, the heavy neutrinos NR1
and NR2

become

degenerate.
But we want to make more precisely explicit what we

understand by level crossing. What we mean is that the
properties of the NR1

neutrino before the level crossing

become (up to signs) those of the NR2
neutrino after the

level crossing, and vice versa, exchanging their effect on
the absolute magnitude of the final quantities �, ~m and YB.
This can easily be seen by writing the effective Dirac
neutrino mass that enters in formulas (51) and (54), before
and after the crossing region.
To illustrate what happens, we will take as an example

solution (1). Similar features appear for solution (2). To be
definite, we consider NR1

(the lightest neutrino) and NR2

(the next-to-lightest neutrino) before the crossing region,
as we have computed in Sec. VII. Naı̈vely applying for NR2

the formulas (54), (57), and (59) and making just the
exchange M1 $ M2, let us give for solution (1) the quan-
tities ~m1, �1, YB1

and ~m2, �2, YB2
at one point before

the crossing region, for example, for the value CL
33 ¼

106 GeV�1, and at one point after the crossing, for ex-
ample, for CL

33 ¼ 107 GeV�1. Let us recall that the Dirac

matrix (87) is completely fixed, but the redefined matrix
(51) changes from point to point because it depends on the
diagonalization of the matrix MR by (49).
One finds, before the crossing, for CL

33 ¼ 106 GeV�1,

these values for the heavy neutrino masses:

M1 ¼ 5:531� 109 GeV; M2 ¼ 1:017� 1010 GeV;

M3 ¼ 2:017� 1010 GeV; (121)

and the Hermitian matrix that enters in (57) and (54):

m̂þ
Dm̂D ’

0:259 18:176� 0:089i �0:125� 25:597i

18:176þ 0:089i 3352:06 �0:000 06� 4720:59i

�0:125þ 25:597i �0:000 06þ 4720:59i 6647:84

0
BB@

1
CCA GeV;2 (122)

and one gets therefore:

~m1¼0:047 eV; �1¼�2:749�10�6;

YB1
¼2:383�10�11; ~m2¼329:586 eV;

�2¼�1:425�10�10; YB2
¼4:245�10�20:

(123)

Notice one point here. The numbers obtained in (123)
are very interesting in relation to the calculations done in
Sec. VII for the region before the level crossing. We have
assumed there that YB is dominated by the contribution of
the lightest neutrino YB1

. We see indeed that, at least within

these naı̈ve estimates, this is true as far as the consideration
of the next-to-lightest neutrino is concerned.

Remember that we have adopted the level ordering
convention (53) that also applies after the crossing: NR1

is the lightest neutrino and NR2
is the next-to-lightest

neutrino.
One finds, after the crossing, for example, for CL

33 ¼
107 GeV�1, the heavy neutrino masses:

M1 ¼ 2:011� 109 GeV; M2 ¼ 5:531� 109 GeV;

M3 ¼ 1:020� 1011 GeV; (124)

and the Hermitian matrix that enters in (57) and (54):

m̂þ
Dm̂D ’

193:27 �5:937� 0:020i �0:000 29þ 1376:69i

�5:937þ 0:020i 0:342 �0:143� 42:293i

�0:000 29� 1376:69i �0:143þ 42:293i 9806:55

0
BB@

1
CCA GeV2; (125)
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and one gets therefore:

~m1 ¼ 96:125 eV; �1 ¼ 8:023� 10�10;

YB1
¼ �9:981� 10�19; ~m2 ¼ 0:062 eV;

�2 ¼ 3:694� 10�6; YB2
¼ �2:312� 10�11:

(126)

The shifts in order of magnitude among the elements of
the matrices before and after the crossing, (122) or (125),
explain the strong differences (in magnitude and even in
sign) of the relevant quantities in these two regions, (123)
or (126). We observe a strong discontinuity for the lightest
neutrino properties (and for the next-to-lightest ones) that
happens going through the crossing region. Up to the sign
of � and therefore of YB, we see that after the crossing the
lightest neutrino has very strong washout and very small
j�1j and therefore jYB1

j, and that the opposite is true for the
next-to-lightest heavy neutrino NR2

. It is easy to examine

this for the parameter ~mi (i ¼ 1, 2), just by inspection of
the matrix elements ðm̂þ

Dm̂DÞii in (122) and (125). For �i it
is a little more involved, but it can also be seen by looking
at the squares of the matrix elements of m̂þ

Dm̂D.
Let us now comment on the change of sign of �i and YBi

before and after the level crossing region (123) and (126).
For solution (1), that we discuss here, the sign of the
inhomogeneous term (101) �CL

23 ¼ CL
33 > 0 gives �i < 0

and YBi
> 0 before the crossing, and �i > 0 and YBi

< 0

after the crossing. We have realized that, if one changes the
sign of (101), i.e. �CL

23 ¼ CL
33 < 0, then one has the op-

posite: �i > 0 and YBi
< 0 before the crossing, and �i < 0

and YBi
> 0 after the crossing. Adopting this latter sign for

CL
23, C

L
33, nothing essential changes for the heavy neutrino

spectrum and for �m2
s and �m2

a. The same considerations
apply to solution (2) using (102) and changing its sign.

Our conclusion is that, provided NR1
and NR2

are close

enough in mass, one can have the right order of magnitude
and sign for YB before and after the crossing. This happens
only at the price of changing the sign of our single free real
parameter �CL

23 ¼ CL
33.

An interesting conclusion is that, after the level crossing,
the second-to-lightest heavy neutrino NR2

dominates. The

possibility of next-to-lightest neutrino dominance has been
extensively studied recently by S. Antusch et al. [27].

XI. OPEN PROBLEMS WITHIN THE
PRESENTAPPROACH

There are a number of problems to face and study within
the present approach. Let us make an incomplete list:

(i) There is the possibility that more than one heavy
right-handed neutrino decays out of equilibrium,
contributing to the leptogenesis, a point that, in
particular, has been suggested rather clearly in
Ref. [7]. If we guess a temperature T ’ 1011 GeV
below which all heavy neutrinos decay out of equi-
librium, then not only the lightest NR1

decays out of

equilibrium after the level crossing, but alsoNR2
is in

the same situation. On the other hand, the heavy
neutrino spectrum being rather compact, the natural
thing to do would be to consider the contributions to
YB of all three heavy neutrinosNR1

, NR2
and NR3

, i.e.

to compute �1, �2 and �3 and the relevant washout
factors.
For the moment we just expect that the consideration
of the three neutrinos will not spoil the good features
of the calculations of the present paper, which take
into account only the lightest neutrinoNR1

before the

crossing.
We have given an argument in this sense in Sec. X
where we have seen that, before the level crossing,
the contribution of the next-to-lightest neutrino NR2

is negligible compared to the one of the lightest
one NR1

.

(ii) One should also take into account the level crossing
region and therefore the finite width of the right-
handed neutrinos, as well as the delicate question of
their interference. These problems have been treated
in great detail by A. Pilaftsis and collaborators [25]
and, to be complete, need to be adopted within our
approach.

(iii) The flavor effects, thoroughly studied by A. Abada
et al. [28], are also a delicate question to study in
this region of compact right-handed neutrino spec-
trum, and this should be performed.

(iv) It would be worth studying the more general case
for CP violation outlined in Sec. IX, and making a
detailed scan of the results in the case of general
complex inhomogeneous terms—or equivalently
general light neutrino Majorana phases—with the
constraint of having a compact heavy neutrino
spectrum.

(v) It could be that the homogeneous Eqs. (60) corre-
spond to some symmetry, the inhomogeneous terms
(that we have introduced to get a large enough CP
violation �1) being a breaking of this symmetry, a
possibility that would also be interesting to study.

XII. CONCLUSIONS

Our demand of a compact NR spectrum, and of an
approximate quark-lepton symmetry implying a hierarch-
ical spectrum for the Dirac neutrino masses with a similar
structure between VL and the CKM mixing matrix, brings
us to a scenario where the lepton asymmetry comes out
naturally, producing the required order of magnitude for
the baryon asymmetry YB �Oð10�10Þ. We have assumed
and justified that YB is dominated by the contribution of the
lightest neutrino NR1

.

In this way, not only can one get a good magnitude for
YB, but as a natural consequence there are also a number of
other strong points in this approach.
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We get two possible solutions with a normal hierarch-
ical light neutrino mass spectrum and an absolute
scale, i.e. the lightest neutrino mass m1 must be
nonvanishing.

The light neutrino squared mass differences �m2
s and

�m2
a are very stable and consistent with the data.

There are three CP-violating phases in the whole ap-
proach, the phase �L of the V

L unitary matrix, and the light
neutrino Majorana phases � and �. We take �L to be of the
order of the Kobayashi-Maskawa phase �KM.

We have thoroughly studied in a quantitative way a
particular case in which all CP-violating effects are com-
puted in terms of �L, in particular, �1 and YB1

. It is

interesting that one can get a baryon asymmetry of the
right order of magnitude taking �L ’ �KM. Of course, this
result is not obtained in the standard model, but in a new
physics scheme under particular assumptions: baryogene-
sis via leptogenesis, SOð10Þ grand unification, approxi-
mate quark-lepton symmetry and the compact heavy NR

spectrum. In the limit �L ! 0, one indeed gets �1 ! 0 and
YB1

! 0.

The �e mass, bounded by tritium � decay, is of the order
of a few times 10�3 eV.

The sum
P

im�i
satisfies the cosmological bounds, with

a value rather close to the present upper limits.
Let us emphasize that �L also induces small

CP-violating corrections to the light neutrino Majorana
phases that turn out to be naturally close to � ¼ �

2 , � ¼
�
2 or 0. The effective neutrino mass, relevant for neutrino-

less double beta decay, comes out to be rather small, of the
order of 10�3 eV, because of strong cancellations due to
the Majorana phases.

In the region of quasidegeneracy, the heaviest NR has a
mass of the order 1:5� 1010 GeV, roughly consistent with
the expected scale of B–L symmetry breaking, so that
SOð10Þ breaks down to the Pati-Salam group SUð4Þ �
SUð2Þ � SUð2Þ at the expected natural intermediate scale.

We also expose an example in which the phase of the
Dirac neutrino mass matrix �L and the Majorana phases �,
� are independent, providing an efficient generation of
baryon asymmetry.
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APPENDIX

In this Appendix we demonstrate the approximate for-
mula (15) for �m2

a:

�m2
a ¼ jm3j2 � cos2�sjm2j2 � sin2�sjm1j2: (A1)

The mass eigenstates read:

j�1i ¼ csj�ei � ssffiffiffi
2

p j��i þ ssffiffiffi
2

p j��i

j�2i ¼ ssj�ei þ csffiffiffi
2

p j��i � csffiffiffi
2

p j��i;

j�3i ¼ 1ffiffiffi
2

p j��i þ 1ffiffiffi
2

p j��i;

(A2)

and therefore the �-neutrino state is given, in terms of the
mass eigenstates:

j��i ¼ � ssffiffiffi
2

p j�1i þ csffiffiffi
2

p j�2i þ 1ffiffiffi
2

p j�3i (A3)

that evolves in time according to:

j��ðtÞi ¼ � ssffiffiffi
2

p eð�ip�iðm2
1
=2pÞÞtj�1i þ csffiffiffi

2
p eð�ip�iðm2

2
=2pÞÞtj�2i

þ 1ffiffiffi
2

p eð�ip�iðm2
3=2pÞÞtj�3i

¼ eð�ip�iðm2
3
=2pÞÞt

�
� ssffiffiffi

2
p eiððm2

3
�m2

1
Þ=2pÞtj�1i

þ csffiffiffi
2

p eiððm2
3�m2

2Þ=2pÞtj�2i þ 1ffiffiffi
2

p j�3i
�
; (A4)

and, from (A2), we can write the scalar products:

eðipþiðm2
3
=2pÞÞth�ej��ðtÞi

¼
�
� ssffiffiffi

2
p eiððm2

3
�m2

1
Þ=2pÞth�ej�1i

þ csffiffiffi
2

p eiððm2
3
�m2

2
Þ=2pÞth�ej�2i þ 1ffiffiffi

2
p h�ej�3i

�

¼ sscsffiffiffi
2

p ½�eiððm2
3�m2

1Þ=2pÞt þ eiððm2
3�m2

2Þ=2pÞt�

¼ sscsffiffiffi
2

p eiððm2
3
�m2

2
Þ=2pÞt½�1þ eiððm2

2
�m2

1
Þ=2pÞt�; (A5)

eðipþiðm2
3=2pÞÞth��j��ðtÞi

¼
�
� ssffiffiffi

2
p eiððm2

3�m2
1Þ=2pÞth��j�1i

þ csffiffiffi
2

p eiððm2
3
�m2

2
Þ=2pÞth��j�2i þ 1ffiffiffi

2
p h��j�3i

�

¼ 1

2
½s2seiððm2

3
�m2

1
Þ=2pÞt þ c2se

iððm2
3
�m2

2
Þ=2pÞt þ 1�; (A6)

eðipþiðm2
3=2pÞÞth��j��ðtÞi

¼
�
� ssffiffiffi

2
p eiððm2

3�m2
1Þ=2pÞth��j�1i

þ csffiffiffi
2

p eiððm2
3
�m2

2
Þ=2pÞth��j�2i þ 1ffiffiffi

2
p h��j�3i

�

¼ 1

2
½�s2se

iððm2
3
�m2

1
Þ=2pÞt � c2se

iððm2
3
�m2

2
Þ=2pÞt þ 1�: (A7)
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Denoting

�ji ¼
ðm2

j �m2
i Þt

2p
; (A8)

one obtains, from (A7) and (A8) and the relation

�31 � �32 ¼ �21; (A9)

the following probabilities:

jh�ej��ðtÞij2 ¼ s2sc
2
s½1� cosð�21Þ�; (A10)

jh��j��ðtÞij2 ¼ 1

4
½s4s þ c4s þ 1þ 2s2sc

2
s cosð�21Þ

þ 2s2s cosð�31Þ þ 2c2s cosð�32Þ�; (A11)

jh��j��ðtÞij2 ¼ 1

4
½s4s þ c4s þ 1þ 2s2sc

2
s cosð�21Þ

� 2s2s cosð�31Þ � 2c2s cosð�32Þ�; (A12)

and one obtains, as expected:

jh�ej��ðtÞij2 þ jh��j��ðtÞij2 þ jh��j��ðtÞij2 ¼ 1: (A13)

Performing an expansion in powers of �ji ¼ ðm2
j�m2

i Þt
2p , one

finds

jh�ej��ðtÞij2 ’ s2sc
2
s

2

�ðm2
2 �m2

1Þt
2p

�
2
; (A14)

jh��j��ðtÞij2 ’ 1� s2sc
2
s

4

�ðm2
2 �m2

1Þt
2p

�
2

� s2s
4

�ðm2
2 �m2

1Þt
2p

�
2 � c2s

4

�ðm2
3 �m2

2Þt
2p

�
2
;

(A15)

jh��j��ðtÞij2 ’ � s2sc
2
s

4

�ðm2
2 �m2

1Þt
2p

�
2

þ s2s
4

�ðm2
2 �m2

1Þt
2p

�
2 þ c2s

4

�ðm2
3 �m2

2Þt
2p

�
2
;

(A16)

with:

jh�ej��ðtÞij2 þ jh��j��ðtÞij2 þ jh��j��ðtÞij2 ’ 1: (A17)

The last terms in the rhs of (A15) and (A16) read:

s2s
4

�ðm2
2 �m2

1Þt
2p

�
2 þ c2s

4

�ðm2
3 �m2

2Þt
2p

�
2

¼ 1

4
½s2sðm2

3 �m2
1Þ2 þ c2sðm2

3 �m2
2Þ2�

�
t

2p

�
2
; (A18)

and, for m2
1, m

2
2 
 m2

3, the bracket in (A18) becomes

½s2sðm2
3 �m2

1Þ2 þ c2sðm2
3 �m2

2Þ2� ’ ½m2
3 � ðs2sm2

1 þ c2sm
2
2Þ�2;

(A19)

and therefore, formulas (A14)–(A16) can be approxi-
mated by

jh�ej��ðtÞij2 ’ s2sc
2
s

2

�ðm2
2 �m2

1Þt
2p

�
2
; (A20)

jh��j��ðtÞij2 ’ 1� s2sc
2
s

4

�ðm2
2�m2

1Þt
2p

�
2�1

4

�ðm2
3�m2

xÞt
2p

�
2
;

(A21)

jh��j��ðtÞij2 ’ � s2sc
2
s

4

�ðm2
2 �m2

1Þt
2p

�
2 þ 1

4

�ðm2
3 �m2

xÞt
2p

�
2
;

(A22)

that satisfies (A17) and where

m2
x ¼ s2sm

2
1 þ c2sm

2
2: (A23)

Therefore the formula (A1) or (15) follows.

[1] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1958); 7, 173
(1958).

[2] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.
28, 870 (1962).

[3] S.M. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225
(1978).

[4] G. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, P.
Serra, J. Silk, and A. Slosar, Phys. Rev. D 75, 053001
(2007).

[5] P. Minkowski, Phys. Lett. 67B, 421 (1977); M. Gell-
Mann, P. Ramond, and R. Slansky, in Supergravity, edited
by P. von Nieuwenhuizen and D. Freedman (North-
Holland, Amsterdam, 1979); T. Yanagida in United
Theories and Baryon Number in the Universe, edited by
O. Sawada and A. Sugamoto (KEK, Tsukuba, Japan,
1979).

[6] F. Buccella and D. Falcone, Mod. Phys. Lett. A 19, 2993
(2004).

F. BUCCELLA, D. FALCONE, AND L. OLIVER PHYSICAL REVIEW D 83, 093013 (2011)

093013-20

http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1016/0370-1573(78)90095-9
http://dx.doi.org/10.1016/0370-1573(78)90095-9
http://dx.doi.org/10.1103/PhysRevD.75.053001
http://dx.doi.org/10.1103/PhysRevD.75.053001
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1142/S0217732304016317
http://dx.doi.org/10.1142/S0217732304016317


[7] E. K. Akhmedov, M. Frigerio, and A.Yu. Smirnov, J. High
Energy Phys. 09 (2003) 021.

[8] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[9] Dae-Gyu Lee, R. N. Mohapatra, M.K. Parida, and M.

Rani, Phys. Rev. D 51, 229 (1995).
[10] F. Acampora, G. Amelino-Camelia, F. Buccella, O.

Pisanti, L. Rosa, and T. Tuzi, Nuovo Cimento Soc. Ital.
Fis. A 108, 375 (1995).

[11] D. N. Spergel et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 170, 377 (2007).

[12] W.M. Yao et al., J. Phys. G 33, 1 (2006).
[13] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44,

912 (1980); M. Fukugita and T. Yanagida, Phys. Lett. B
174, 45 (1986); M. Luty, Phys. Rev. D 45, 455 (1992); L.
Covi, E. Roulet, and F. Vissani, Phys. Lett. B 384, 169
(1996); R. Barbieri, P. Creminelli, A. Strumia,
and N. Tetradis, Nucl. Phys. B575, 61 (2000); S.
Davidson, E. Nardi, and Y. Nir, Phys. Rep. 466, 105
(2008).

[14] V. A. Kuzmin, V.A. Rubakov, and M. E. Shaposhnikov,
Phys. Lett. 155B, 36 (1985).

[15] A. Santamaria, Phys. Lett. B 305, 90 (1993); G. C. Branco,
R. Gonzalez Felipe, F. R. Joaquim, I. Masina, M.N.
Rebelo, and Carlos A. Savoy, Phys. Rev. D 67, 073025
(2003).

[16] T. Endoh, T. Morozumi, T. Onogi, and A. Purwanto, Phys.
Rev. D 64, 013006 (2001); 64, 059904(E) (2001); G. C.
Branco, R. Gonzalez Felipe, F. R. Joaquim, I. Masina,
M.N. Rebelo, and Carlos A. Savoy, Phys. Rev. D 67,
073025 (2003).

[17] S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002);
W. Buchmüller, P. Di Bari, and M. Plumacher, Phys. Lett.
B 547, 128 (2002).

[18] H. Georgi, in Particles and Fields, edited by C. Carlson
(AIP, New York, 1975); H. Fritzsch and P. Minkowski,
Ann. Phys. (N.Y.) 93, 193 (1975).

[19] F. Buccella, L. Cocco, A. Sciarrino, and T. Tuzi, Nucl.
Phys. B274, 559 (1986).

[20] H. Georgi and C. Jarlskog, Phys. Lett. 86B, 297 (1979).
[21] J. A. Harvey, P. Ramond, and D. B. Reiss, Phys. Lett. 92B,

309 (1980).
[22] D. Falcone, Int. J. Mod. Phys. A 17, 3981 (2002).
[23] L. Covi, E. Roulet, and F. Vissani, Phys. Lett. B 384, 169

(1996).
[24] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A.

Strumia, Nucl. Phys. B685, 89 (2004); W. Buchmüller, P.
Di Bari, and M. Plumacher, Ann. Phys. (N.Y.) 315, 305
(2005).

[25] A. Pilaftsis and T. Underwood, Nucl. Phys. B692, 303
(2004), and references therein.

[26] E. Bertuzzo, P. Di Bari, F. Feruglio, and E. Nardi, J. High
Energy Phys. 11 (2009) 036.

[27] S. Antusch, P. Di Bari, D. A. Jones, and S. F. King,
arXiv:1003.5132.

[28] A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux,
M. Losada, and A. Riotto, J. High Energy Phys. 09 (2006)
010; A. Abada, Sacha Davidson, F.-X. Josse-Michaux, M.
Losada, and Antonio Riotto, J. Cosmol. Astropart. Phys.
04 (2006) 004; E. Nardi, Y. Nir, E. Roulet, and J. Racker,
J. High Energy Phys. 01 (2006) 164.

BARYOGENESIS VIA LEPTOGENESIS FROM QUARK- . . . PHYSICAL REVIEW D 83, 093013 (2011)

093013-21

http://dx.doi.org/10.1088/1126-6708/2003/09/021
http://dx.doi.org/10.1088/1126-6708/2003/09/021
http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevD.51.229
http://dx.doi.org/10.1007/BF02787063
http://dx.doi.org/10.1007/BF02787063
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1088/0954-3899/33/1/001
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1103/PhysRevD.45.455
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/S0550-3213(00)00011-0
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1016/0370-2693(93)91110-9
http://dx.doi.org/10.1103/PhysRevD.67.073025
http://dx.doi.org/10.1103/PhysRevD.67.073025
http://dx.doi.org/10.1103/PhysRevD.64.013006
http://dx.doi.org/10.1103/PhysRevD.64.013006
http://dx.doi.org/10.1103/PhysRevD.64.059904
http://dx.doi.org/10.1103/PhysRevD.67.073025
http://dx.doi.org/10.1103/PhysRevD.67.073025
http://dx.doi.org/10.1016/S0370-2693(02)01735-5
http://dx.doi.org/10.1016/S0370-2693(02)02758-2
http://dx.doi.org/10.1016/S0370-2693(02)02758-2
http://dx.doi.org/10.1016/0003-4916(75)90211-0
http://dx.doi.org/10.1016/0550-3213(86)90526-2
http://dx.doi.org/10.1016/0550-3213(86)90526-2
http://dx.doi.org/10.1016/0370-2693(79)90842-6
http://dx.doi.org/10.1016/0370-2693(80)90270-1
http://dx.doi.org/10.1016/0370-2693(80)90270-1
http://dx.doi.org/10.1142/S0217751X02011047
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://dx.doi.org/10.1016/j.nuclphysb.2004.02.019
http://dx.doi.org/10.1016/j.aop.2004.02.003
http://dx.doi.org/10.1016/j.aop.2004.02.003
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://dx.doi.org/10.1088/1126-6708/2009/11/036
http://dx.doi.org/10.1088/1126-6708/2009/11/036
http://arXiv.org/abs/1003.5132
http://dx.doi.org/10.1088/1126-6708/2006/09/010
http://dx.doi.org/10.1088/1126-6708/2006/09/010
http://dx.doi.org/10.1088/1475-7516/2006/04/004
http://dx.doi.org/10.1088/1475-7516/2006/04/004
http://dx.doi.org/10.1088/1126-6708/2006/01/164

