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In minimal trinification models light neutrino masses can be generated via a radiative seesaw

mechanism, where the masses of the right-handed neutrinos originate from loops involving Higgs and

fermion fields at the unification scale. This mechanism is absent in models aiming at solving or

ameliorating the hierarchy problem, such as low-energy supersymmetry, since the large seesaw scale

disappears. In this case, neutrino masses need to be generated via a TeV-scale mechanism. In this paper,

we investigate an inverse seesaw mechanism and discuss some phenomenological consequences.
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I. INTRODUCTION

Trinified models, SUð3ÞC � SUð3ÞL � SUð3ÞR, are at-
tractive candidates for a more symmetric extension of the
standard model (SM) as all matter can be arranged in bi-
fundamental representations, no adjoint Higgs representa-
tions are needed to break the symmetry to the Standard
Model, and gauge interactions conserve baryon number,
thus proton decay is naturally suppressed [1,2]. Moreover,
trinified models can be motivated as the low-energy limit
of string theory, both as a subgroup of E8 in heterotic string
theory [3] and N ¼ 8 supergravity [4] as well as in IIB
string theories via AdS/CFT duality with a conformal
SUð3Þn gauge theory (see e.g. [5–7]).1 A generic problem
arising in all theories which aim at unifying the gauge
interactions at some large unification-scale MU is the
hierarchy problem: the large hierarchy between the uni-
fication and the electroweak scale is unstable against ra-
diative corrections. The most popular way out is to
introduce weak-scale supersymmetry, which gives rise to
the cancellation of radiative corrections of SM particles
and their superpartners. The additional particle content can
ensure gauge-coupling unification at MU; moreover, there
exists also a natural dark matter candidate. Alternatives of
supersymmetry which adress at least some of these points
and, in particular, the hierarchy problem include theories
with large extra dimensions [11–14], a large number of
copies of the SM states [15], or models based on AdS/CFT
complementarity [5]. In such scenarios, the Planck scale is
typically lowered to the electroweak scale, avoiding any
high-energy scale in the theory.

As we will see, the extension of trinified models with
either of these ideas leads to important consequences for
the mechanism of neutrino mass generation, namely, the
absence of a large seesaw scale and the necessity to

generate neutrino masses at the TeV scale. In this paper
we study the implementation of TeV neutrino mass gen-
eration via an inverse seesaw mechanism and some of its
phenomenological consequences. We will show that in
general, neutrino masses can be generated in the desired
range.

II. A SHORT REVIEW ON MINIMAL
TRINIFICATION

We begin by briefly reviewing the trinified model
[1,2,16,17]. Gauge-coupling unification is guaranteed
by an additional discrete Z3 symmetry, which results in
‘‘minimal trinification’’, SUð3ÞC�SUð3ÞL�SUð3ÞR�Z3.
The fundamental representation of SUð3ÞC � SUð3ÞL �
SUð3ÞR is ð1; 3; 3�Þ � ð3�; 1; 3Þ � ð3; 3�; 1Þ, which forms
the fundamental fermion representation 27 of E6 [18].
The fermion multiplets are assigned to the irreducible
representations as follows:

c L � c Qc � c Q � ð1; 3; 3�Þ � ð3�; 1; 3Þ � ð3; 3�; 1Þ: (1)

With respect to the SM (GSM ¼ SUð3ÞC � SUð2ÞL �
Uð1ÞY) the fermion multiplets decompose into

c L !
�
1; 2;

1

2

�
� 2

�
1; 2;� 1

2

�
� ð1; 1; 1Þ � 2ð1; 1; 0Þ;

c Qc !
�
3�; 1;� 2

3

�
� 2

�
3�; 1;

1

3

�
;

c Q !
�
3; 2�;

1

6

�
�
�
3; 1;� 1

3

� (2)

The hypercharge Y is given by the Gell-Mann–Nishijima
formula Y ¼ Qþ I3, where I3 is the third component of
the SUð2ÞL isospin and Q is the electric charge. The SM
charged leptons and the neutrino of each generation are
accommodated in the same c L multiplet,

c L ¼ ðEÞ ðEcÞ ðLÞ
N 1 ec N 2

� �
: (3)
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A superposition of E and L forms the known standard
model weak lepton doublet, whereas ec is the common
positron field. Ec is a new lepton doublet with the opposite
hypercharge compared to E andL.N 1 andN 2 are heavy
neutral leptons, and therefore sterile SUð2Þ singlet neutri-
nos. The right-handed and left-handed quarks are em-
bedded in c Qc and c Q, respectively,

c Qc ¼
Dc

uc

Bc

0
@

1
A; c Q ¼ ðð�duÞBÞ: (4)

Here uc is the common up-conjugate quark field, whereas
Dc and Bc are a superposition of the common dc quark
and a new heavy quark Bc carrying the same quantum
numbers. The doublet ð�duÞ is the conjugate of the usual
quark doublet Q ¼ ðudÞ:

When the GUT symmetry is broken, as discussed below,
a linear combination of Dc and Bc together with B will
become massive with mass OðMGUTÞ, whereas the or-
thogonal combination remains light. This combination is
the down-quark singlet field of the SM. We denote the
mixing angle between Dc and Bc as � such that2

dc

Bc

� �
¼ �s�Dc þ c�Bc

c�Dc þ s�Bc

� �
: (5)

For brevity we write c� ¼ cos� and s� ¼ sin�. Similarly,
we denote the mixing angle in the lepton sector as � such
that

E

L

 !
¼ �s�E � c�L

c�E � s�L

 !
;

N1 ¼ s�N 1 � c�N 2; and

N2 ¼ �c�N 1 � s�N 2:

(6)

Two ð1; 3; 3�Þ Higgs multiplets ’1;2
L are used to break

down both the electroweak and the unified symmetry [16].
The vacuum expectation values (VEVs) vi break the trini-
fied group at the unification-scale MU, while ui and ni are
OðMEWÞ and thus break the SM group

’a
L¼

ð’a
1Þ ð’a

2Þ ð’a
3Þ

Sa1 Sa2 Sa3

 !
; h’1

Li¼
u1 0 0

0 u2 0

0 0 v1

0
BB@

1
CCA;

h’2
Li¼

n1 0 n3

0 n2 0

v2 0 v3

0
BB@

1
CCA: (7)

Because of the quantum number assignment of the
ð1; 3; 3�Þ multiplet, this is the most general expression for
the VEVs. In order to generate up-type quark masses, one
of u2 and n2 needs to be nonzero; similarly, at least one of
u1, n1, and n3 is necessary for the down-type quark and the
charged lepton masses.
Using the minimal set of VEVs required to obtain the

correct fermion masses, u1, u2, v1, and v2 are chosen to be
nonzero and all others zero. The discrete Z3 symmetry
requires colored Higgs fields ’a

Qc and ’a
Q in addition to

the Higgs multiplets ’a
L

’Qc ¼
Dc

H

Uc
H

Bc
H

0
@

1
A; ’Q ¼ ð�DHUHBHÞ: (8)

The general Higgs potential was studied in Ref. [16]. For
our purpose, however, it is sufficient to restrict ourselves to
a simplified case which considers only one of the two
possible Higgs multiplets, ’L � ’1

L, as well as only the
dimension-two and -three terms. In this case, the potential
simply reads

Lh ¼ m2ð’�
Q’Q þ ’�

Qc’Qc þ ’�
L’LÞ

þ ½�1’Qc’Q’L þ �2ð’L’L’L þ cyclicÞ þ H:c:�;
(9)

where m, �i ¼ OðMUÞ. The bilinear terms are mass terms
proportional to m2, while the cubic terms are proportional
to �i.
The Yukawa couplings are given by two types of inter-

actions, which are allowed due to their singlet structure
under gauge group transformations

c Qcc Q’
a
L � ðc QcÞijðc QÞjkð’a

LÞki ;
c Lc L’

a
L � "ijk"rstðc LÞri ðc LÞsjð’a

LÞtk
(10)

and their cyclic permutations. The general Yukawa cou-
plings for Quarks and Leptons are therefore

Lq¼gðc Qcc Q’Lþc Lc Qc’Qþc Qc L’QcÞþH:c: and

L‘¼hðc Lc L’Lþc Qc Q’Qþc Qcc Qc’QcÞþH:c: (11)

On tree level, the minimal trinification model yields one
active neutrino at the electroweak scale and a
SUð2ÞL-singlet neutrino with a mass of a few eV.
Because of large radiative contributions, these tree-level
results are corrected at one-loop level, giving rise to the
radiative seesaw mechanism. Then one light and two heavy
neutrinos emerge, where the light neutrino is identified
with the SM neutrino. However, as pointed out in
Ref. [17], this mechanism is absent in a weak-scale super-
symmetric extension of minimal trinification and other
attractive approaches to the weak hierarchy problem.
With the given Lagrangian L ¼ Lq þL‘ þLh, it is

possible to construct the diagrams shown in Fig. 1. While

2There are small corrections OðMEW=MGUTÞ when the elec-
troweak symmetry is broken and the down-quark acquires mass.
For three generations, this relation expands to a six-by-six
mixing matrix for ðd; BÞ and ðDc;BcÞ, which includes the
CKM matrix. For more details, see Ref. [17].
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the left diagram contributes via colored Higgs and fermion
fields involving the couplings c Qcc Q’L, c Lc Qc’Q,

c Qc L’Qc and ’Qc’Q’L, the right diagram uses the cou-

plings c Lc L’L and ’L’L’L instead and contributes via
color-singlet Higgs and fermion fields. Both diagrams are
dominated by the fermion that acquires a unification-scale
mass and are proportional to the mass of the involved
Higgs fields in the loop. The diagrams are in the interaction
basis. In order to evaluate the contribution it is necessary to
work in the mass eigenstate basis. After a straightforward
calculation, the dominant contribution of the left diagram,
which is proportional to the fermion and the Higgs mass in
the loop, gives the loop-factor

FB¼ mB

ð4�Þ2
1

2

� m2
BH1

m2
B�m2

BH1

log
m2

BH1

m2
B

� m2
BH2

m2
B�m2

BH2

log
m2

BH2

m2
B

�
:

(12)

The second diagram in Fig. 1 adds up in an analogous
contribution where the quark B is replaced by the lepton
doublet E and the Higgs fields BH1;2 are replaced by

SUð2ÞL-doublet, color-singlet Higgs fields. The mass en-
tries in Eq. (13), however, are proportional to both the
loop-factor and the corresponding Yukawa couplings. As
the latter are smaller for leptons, the leptonic contributions
are smaller. Hence, the one-loop neutrino mass matrix for
one generation in the ð�; N1; N2Þ basis is given by

M1-loop
N ’

0 �h1u2 0
�h1u2 s���c�g

2FB ðs2�s��c�Þg2FB

0 ðs2�s��c�Þg2FB c���s�g
2FB

0
B@

1
CA;

(13)

where � and � parameterize the mixing in the quark (to
single out the light states dc) and leptonic sector, respec-
tively. This matrix has two eigenvalues of Oð1Þ and one

eigenvalue Oð�2Þ, with �� h1u2
g2FB

,

mN1;2
� g2FB; m� � h21u

2
2

g2FB

: (14)

In order to obtain the correct values for the tau and
top masses, we expect h1 ’ 0:1, g ’ 1, and u1;2 ¼
Oð102 GeVÞ [19].

With a unification scale at approximately 1016 GeV and
FB ’ 1

ð4�Þ2 MU � 6� 1013 GeV, the mass of the light neu-

trino is of Oð0:1–0:01 eVÞ. Thus, the two sterile neutrinos
become heavy with masses at the unification scale, while
the mass of the light standard model-like neutrino is sup-
pressed by a radiative seesaw [20].

III. THE INVERSE SEESAW MECHANISM

Extensions of the standard models introduce new phys-
ics which suppresses the one-loop contributions to
Oð1 TeVÞ. In supersymmetry, sparticle loop contributions
generate cancellations due to the nonrenormalization of the
superpotential in the limit of exact supersymmetry. Hence,
the nonvanishing entries in the neutrino mass matrix are all
of the same order. The natural cutoff scale of such effects
ranges from a few TeV in weak-scale supersymmetry up
to several hundred TeV in scenarios with large extra
dimensions.
We will show, however, that it is possible to generate

light neutrino masses via radiative corrections in a
TeV-scale extension of minimal trinification. With
Oð105–106 GeVÞ loop contributions and certain assump-
tions, a modified inverse seesaw mechanism is capable of
reproducing the observed neutral lepton mass spectrum
with one light neutrino per family as well as the remaining
standard model particle masses.
The original idea behind the inverse seesaw mechanism

[21,22] is to introduce a new heavy SUð2Þ �Uð1Þ singlet
lepton N with an effective mass term, �NN. The mass of
the singlet lepton can be much smaller than the mass of
the singlet lepton of the standard seesaw. In this case the
smallness of the neutrino mass is directly related to the
smallness of �. For one generation, the mechanism is
characterized by a mass matrix of the following shape, in
the ð�; �c; NÞ basis:

M ¼
0 mT

D 0
mD 0 MT

0 M �

0
@

1
A; (15)

which yields a light, active neutrino with a mass
Oð0:1 eVÞ [23]�

m�

0:1 eV

�
¼
�

mD

100 GeV

�
2
�

�

1 keV

��
M

104 GeV

��2
: (16)

This matrix has the same structure as the mass matrix in
minimal trinification, Eq. (13) in the basis ð�;N1; N2Þ, with
the loop factor FB ’ MU

ð4�Þ2 and a unification scale of ap-

proximately MU ’ 2� 1016 GeV. In order to achieve a
light neutrino mass, we aim to match both matrices given
in Eqs. (13) and (15). We start with the (2, 3) and the (3, 2)
entry. Looking at the matrix in Eq. (15) and comparing it to
Eq. (16), these entries are of Oð10 TeVÞ.
In contrast to minimal trinification, the loop factor FB is

reduced from Oð1014 GeVÞ to 1
ð4�Þ2 MX, where the new

FIG. 1. One-loop contributions to neutrino masses via colored
Higgs and fermion fields (left) and color-singlet Higgs and
fermion fields (right). In the first case there is another diagram
in which the Yukawa vertices are interchanged [17].
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mass scale MX is in the multi-TeV region. The Yukawa
coupling h1 can be chosen such that MX ’ Oð105 GeVÞ
and therefore M�Oð1 TeVÞ (see Eq. (16)).

In addition, we need the (2, 2)-entry to vanish and the
(3, 3)-entry to be O ð1 keVÞ in order to satisfy the inverse
seesaw conditions. These requirements may be fulfilled by
an appropriate choice of the remaining free parameters, the
mixing angles � and �,

c���s� ¼ Oð10�9Þ; s���c� ¼ 0: (17)

Let us choose � ¼ �, which may be explained by an
appropriate flavor symmetry. In this case, the (3, 3)-entry
is simply given by s� and requires nearly vanishing

mixing in the lepton and the quark sector, � ¼ � ¼
arcsinð10�9Þ � 10�9 such that

M
1-loop
N �

0 10 GeV 0
10 GeV 0 1 TeV

0 1 TeV 1 keV

0
@

1
A: (18)

As in minimal trinification, two neutrinos are heavy while
the third one is light

mN1;2
’ 1 TeV; m� ¼ 0:1 eV: (19)

Alternatively, one might choose � ’ 10�9 and � ¼ �
2 , i.e.,

tan� ! 1. This scenario, however, is not feasible, as
tan� ¼ h1v1=h2v2 and both h2 and v2 have to be different
from zero in order to reproduce the electron masses
and allow for breaking SUð3ÞL � SUð3ÞR to SUð2ÞL �
SUð2ÞR �Uð1Þ. Thus this scenario is ruled out.

To ensure a valid symmetry-breaking chain, we thus
choose � ¼ � ¼ 10�9. These small mixing angles, how-
ever, are not consistent with the general setup of the
trinified model, which can easily be seen as follows. In
order to correctly describe the fermion masses and mixing
angles, the Yukawa couplings may not be too small such
that

tan� ¼ tan� � v1

v2

¼ Oð10�9Þ; (20)

yielding v1 	 v2. We can now take a look at the heavy
fermion masses given and find [17]

mB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21v

2
1 þ g22v

2
2

q
� g2v2 ’ 1016 GeV;

mE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21v

2
1 þ h22v

2
2

q
� h2v2 ’ 1016 GeV:

(21)

With the known masses for the top and the bottom
quarks as well as the tau lepton, we can calculate the
Yukawa couplings for this model. To determine an allowed
parameter set, two conditions have to be fulfilled: one, the
ratio of the bottom and the top quark masses; two, the
squares of the weak VEVs at up ð247 GeVÞ2

mb

mt
¼ u1

u2
s� ¼ 0:0245;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
¼ 247 GeV:

(22)

Combining these two conditions yields the weak VEVs as
functions of the quark mixing angle �

u1 ¼ 247 GeVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmt

mb
sin�Þ2

q ; u2 ¼ 247 GeVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmb

mt
csc�Þ2

q :

(23)

The couplings g1 and h1 are then given by

g1 ¼ mt

u2
; h1 ¼ m�

u1 sin�
: (24)

Since � ¼ � ¼ 10�9, we obtain

u1 ’ 247 GeV; u2 ’ 10�5 GeV;

g1 ’ 1:7� 107 and h1 ’ 6:9� 106:
(25)

These large values for the Yukawa coupling are an obvious
problem. So we can either choose reasonable values for the
Yukawa couplings or for the vacuum expectation values,
but not for both.

IV. A MODIFIED INVERSE SEESAW

As the two conditions for the inverse seesaw mechanism
cannot be fulfilled simultaneously within our model, we
investigate whether it is possible to relax either of them.
We will therefore have another look at the neutrino mass
matrix, Eq. (13). The conditions listed in Eq. (17) stem
from the (2, 2)- and (3, 3)-entries; however, it is obvious
that the latter one accounts for the inverse seesaw mecha-
nism as it introduces the large hierarchy among the entries.
Then the (2, 2)-entry simply has to be chosen such that it
does not spoil the mechanism. Of course, relaxing the
condition on the (2, 2)-entry, i.e., allowing for larger mix-
ing angles, has an impact on the (2, 3)-entry. Its value is
bound from below by the masses of the heavy neutral
leptons of 90.3 GeV [19], which corresponds to a lower
bound on the (2, 3)-entry of about 330 GeV.
Let us therefore consider the mass matrix

M
1-loop
N ¼

0 mD 0
mD

~M M
0 M �

0
@

1
A

�
0 10 GeV 0

10 GeV 0–1 TeV 0:33–1 TeV
0 0:33–1 TeV 1 keV

0
@

1
A:
(26)

In fact, this kind of matrix was already considered in the
context of inverse type-III seesaw models [24]. It is
straightforward to show that two eigenvalues are
Oð1 TeVÞ, while the third one is indeed given by
Oðð0:1–1Þ eVÞ
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	h � 1

2

�
~Mþ�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ 4m2

D þ ~M2 þ�2 � 2 ~M�
q �

;

	‘ � m2
D�

M2
: (27)

We want to show now that the doublet neutrino � be-
comes light while the singlet neutrinos N1;2 remain mas-

sive enough to evade the experimental bounds. An
analytical determination of the eigenspace of the mass
matrix is not possible due to the approximation used during
the calculation of the eigenvalues. Instead we constrain
ourselves to a numerical analysis. The eigenvectors of MN

(Eq. (26)) are3

w1 ’ ð�1;�10�11; 0:01Þ
w2 ’ ð0:009;�0:5; 0:9Þ
w3 ’ ð0:005; 0:9; 0:5Þ:

(28)

So the rotation matrix S to diagonalize the mass matrix

Mdiag
N ¼ STMS can be constructed using the eigenvectors

as columns

S �
�1 0:009 0:005

�10�11 �0:5 0:9
0:01 0:9 0:5

0
@

1
A: (29)

This yields a minimal mixing of the lightest neutrino �
and a nearly maximal mixing betweenN1 andN2, as shown
in Fig. 2. Now we want to determine the conditions on �
and � to fulfill the scheme introduced in Eq. (26). At first
there is again c���s� ¼ 
10�9, which is crucial for the

light neutrino mass. Additionally the second condition
s2�s� � c� � 0:33 has to be fulfilled.4 Fig. 3 shows the

allowed range of values. The overlay of both plots in Fig. 4
shows, that large portions of the parameter space of each
individual angle � and � are allowed, while the values of
the angles are strongly correlated. The dashed line shows
this correlation between � and �.
We discard the case where � is nearby 0 or �=2 since

this choice does not allow for symmetry breaking to the
standard model, as was discussed in section III. Instead we
concentrate on the other region where � is given by

� ¼ arccos

0
@� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� cos2�� 4� 10�9 sin�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�ðcos2�þ 4� 10�9ðsin�� 10�9ÞÞ

qr 1
A (30)

for 0 � �< �=2, and

� ¼ arccos

0
@1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� cos2�� 4� 10�9 sin�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�ðcos2�þ 4� 10�9ðsin�� 10�9ÞÞ

qr 1
A (31)

for �=2<� � �.
We determine the parameter spectrum for the fermion

and gauge boson masses as before. Using the correlation of
� and� given in Eqs. (30) and (31) we are able to calculate
the VEVs and the Yukawa couplings with respect to a
specific value of the quark mixing angle �. Figures 5 and
6 show the weak-scale vacuum expectation values and
the Yukawa couplings g1 and h1 as a function of �,

respectively. We notice that part of these parameters be-
come divergent for the mixing angles � ¼ 0, �=2 and �.
These regions, however, are already excluded, as discussed
above, so the parameters fulfill all provided conditions in
the remaining regions.
All values except for the regions around 0, �=2, and �

imply a neutrino mass around 0.1 eV for the SUð2Þ-doublet
neutrino. By varying the condition c���s� ’ Oð10�9Þ, it is
furthermore possible to achieve even smaller SM neutrino
masses down to Oð10�4 eVÞ without changing the masses

FIG. 2. Neutrino mixing in a modified inverse seesaw model.
The three different mass eigenstates are given by three different
gray tones. While for the lightest neutrino � mixing is almost
absent (as required by unitarity of the light neutrino PMNS
mixing matrix), the two heavy neutrinos N1 and N2 show up a
nearly maximal mixing in mass eigenstates.

3For the (2, 2) entry ~M ¼ M ¼ 1 TeV has been chosen, as the
exact value of ~M has no influence on the mass eigenstates
obtained. However with a vanishing ~M we get exactly maximal
mixing between the two heavy sterile states.

4As mentioned in the last subsection, the (3, 2)- and the (2, 3)
entry must not be smaller than 330 GeV. See Eq. (26).
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of the new heavy neutrinos. Figures 7 and 8 show the light
and heavy neutrino masses as functions of �, respectively.
The masses of the heavy neutrinos N1 and N2 are smaller
around the well-known points 0, �=2, and �. In particular
N2 becomes as light as a few hundred MeV for � ¼ �=2.

It is evident that the strong correlation between the quark
and lepton mixing angles � and � requires a considerable
amount of fine-tuning. This could be obtained by an ap-
propriate flavor symmetry which would protect the relation
against renormalization effects as well. Moreover, this
model has to be compared to minimal trinification, where
gauge-coupling unification results if five Higgs doublets
are at the weak scale, without supersymmetry, as well as to
SUSY models based on SUð5Þ or SOð10Þ, which require
intermediate scales, additional Higgs fields, or higher-
dimensional operators to correctly describe the fermion
masses and mixing angles.

FIG. 4. Overlay of the two plots in Fig. 3. The white band
marks the forbidden area, with respect to the experimental
bounds of new heavy neutral leptons. The dashed lines indicate
the allowed values for � and � to get an (3, 3) entry equal 10�9.

FIG. 3. The left plot shows the allowed range of values for � and � to fulfill the condition s2�s� � c� � 0:33 from the bound on the
(2, 3) and (3, 2) elements. The white band marks the forbidden area. On the second plot the contour describes the value of the (3, 3)
entry, where the dashed lines indicate the allowed values for � and � to get an (3, 3) entry equal 10�9.

FIG. 5. The vacuum expectation values u1 and u2 as a function
of the quark mixing angle �. The solid line corresponds to u1,
the dashed line to u2
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V. PROTON DECAYAND LIFETIME

In minimal trinification, proton decay is mediated at tree
level, through Yukawa interactions involving the colored
Higgs fields ’Q, ’Qc . Because of the same baryon number

assignment in both the quark and the lepton Yukawa
Lagrangian a ’L mediated proton decay is forbidden. In
general, there are two distinct types of operators, namely,
those involving only left- or right-handed fields, LLLL and
RRRR, and the mixed operators, LLRR and RRLL. The
mixed operators read [17]

L mixed / ðg�ijhmnQmQne
c�
i uc�j þ ðgŝ�Þij

�ð�ŝ>� hÞ�mndc�m uc�n QiLkÞ þ H:c:; (32)

where we explicitly display the generation indices. They
are of mass-dimension six; a unification scale of
Oð1016 GeVÞ, as is the case in the supersymmetric model,
sufficiently suppresses the corresponding decay rate. The
LLLL and RRRR operators, however, can be of mass-
dimension five,

L dim5 / ððgŝ�ÞijhmnQmQnQiLj

þ gijð�ŝ>�hÞmndcmu
c
ne

c
i u

c
jÞ þ H:c: (33)

In the presence of supersymmetry, they stem from F terms.
When the sfermions are integrated out, they give rise to
effective four-fermion operators of dimension six. Thus the
operators are suppressed by ðmsMUÞ2 instead of M4

U.
It is beyond the purpose of this paper to calculate the

lifetime of the various decay channels. It is well known that
in ordinary SUSY GUTs, the decay rate is naturally con-
sistent with the experimental limit if the sfermion masses,
ms, are above a few hundred TeV. (The PeV scale as the
‘‘best place for supersymmetry’’ was discussed in [25].)
Moreover, it is remarkable that the operators in Eqs. (32)
and (33) are naturally suppressed for those choices of the
mixing angles � and � which also predict small neutrino
masses.

FIG. 6. Both Yukawa couplings, g1 for the quark sector and h1
for the lepton sector are plotted against the quark mixing angle
�. The solid line corresponds to g1, the dashed line to h1.

FIG. 7. The mass of the lightest neutrino as a function of the
quark mixing angle �. Naturally this behavior depends also on
the restrictions for the (3, 3) matrix entry. The mass function
diverges around �=2 as well as for � ¼ 0 and �, which is not
clearly visible in this plot.

FIG. 8. The mass of N1 and N2 as a function of �. Again the masses depend on the restrictions for the (2, 3), (3, 2), and (3, 3) matrix
entries which have been chosen to fulfill the experimental bounds from searches for new heavy neutral leptons.
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VI. CONCLUSION

Neutrino masses in TeV-scale extensions of minimal

trinification have been a challenge, as they either request
higher-dimensional operators or large Higgs representa-
tions. In this paper, we have presented a new approach for

light neutrino masses: a radiatively-generated inverse see-
saw mechanism with loop contributions from the PeV

scale. We have discussed how the basic mechanism can
be implemented into minimal trinification and demon-
strated that a realistic pattern of fermion masses can be

obtained. If we compare the specific constraints which are
set on the model parameters with the so-far discussed

scenarios in the literature, we note that both higher-
dimensional operators and large Higgs representations
introduce additional sets of free parameters, as does mini-

mal trinfication, which requires several Higgs fields.
Models based on other gauge groups (like SUð5Þ or

SOð10Þ) share these issues as well. Hence, the model
discussed in this paper is a viable and an attractive sce-
nario: it is able to generate neutrino masses in the 0.1 eV

region if the mixing patterns in the quark and lepton

sectors are correlated. This correlation might be explained
by an appropriate flavor symmetry.
The existence of new gauge singlet neutrino states with

large Yukawa couplings around the TeV scale has poten-
tially interesting consequences for phenomenology. While
lepton number violation in the inverse seesaw is suppressed
by the smallness of the parameter � in the inverse seesaw
mass matrix, large lepton flavor-violating effects can arise.
For example, enhanced rates for � ! e� as well as
�-e conversion in nuclei with respect to seesaw-I model
expectations both with and without supersymmetry have
been found in [23,26].
Another exciting possibility would be the direct produc-

tion of the gauge singlet neutrinos at the LHC. As lepton
number is almost conserved, this scenario resembles the
production of heavy Dirac neutrinos at the LHC discussed
in [27]. In this paper a 5
 discovery reach for heavy
neutrino masses up to 100 GeV was advocated with
30 fb�1. While for larger masses the production cross
section would decrease, new decay channels open up
once the heavy neutrino mass exceeding the Higgs mass,
which would require a detailed simulation.
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