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The proton form factors at large momentum transfer are dominated by two contributions which are

associated with the hard and soft rescattering, respectively. Motivated by a very active experimental form

factor program at intermediate values of momentum transfers, Q2 � 5–15 GeV2, where an understanding

in terms of only a hard rescattering mechanism cannot yet be expected, we investigate in this work the soft

rescattering contribution using soft collinear effective theory (SCET). Within such a description, the form

factor is characterized, besides the hard scale Q2, by a hard-collinear scale Q�, which arises due to the

presence of soft spectators, with virtuality �2 (�� 0:5 GeV), such that Q2 � Q�� �2. We show that

in this case a two-step factorization can be successfully carried out using the SCETapproach. In a first step

(SCETI), we perform the leading-order matching of the QCD electromagnetic current onto the relevant

SCETI operators and perform a resummation of large logarithms using renormalization group equations.

We then discuss the further matching onto a SCETII framework, and propose the factorization formula

(accurate to leading logarithmic approximation) for the Dirac form factor, accounting for both hard and

soft contributions. We also present a qualitative discussion of the phenomenological consequences of this

new framework.
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I. INTRODUCTION

The study of the nucleon form factors (FFs) is one of the
central topics in hadronic physics (for recent reviews see,
e.g., Refs. [1–3]). Substantial progress has been achieved in
this field over the past decade, mainly thanks to new ex-
perimental methods, using polarization observables, which
allow for precise measurements of the FFs. The results for
the proton FFs, obtained over the past few years at JLab
[4–7] up to a momentum transfer Q2 ’ 8:5 GeV2, consid-
erably boosted our knowledge about the distribution of the
electric charge inside the proton. A substantial program to
extend the measurements of the nucleon FFs up to Q2 ’
15 GeV2 in the spacelike region will be performed in the
near future at the JLab 12 GeV upgrade. In parallel, the
PANDA Collaboration at GSI is planning to carry out
precise measurements of the proton FFs at large timelike
momentum transfers, up to around 20 GeV2, using the
annihilation process pþ �p! eþ þ e� [8]. These experi-
ments will provide us with precious information on the FF
behaviors in the region of large momentum transfers.

On the theory side, an understanding of the nucleon FFs
at large momentum transfers, both spacelike and timelike,
from the underlying QCD dynamics, still remains a chal-
lenge. At present, the FF behavior for moderate and large
values of Q2 is still not well understood and an adequate
description, allowing for quantitative predictions, is absent.

The leading power behavior of the FFs was studied a
long time ago using the QCD factorization approach (see,
e.g., [9,10] and references therein). It was established that
the dominant contribution can be represented by a reduced
diagram as shown in Fig. 1. In this figure, the hard blob
describes the hard scattering of quarks and gluons with
virtualities of order Q2. Such a hard subprocess can be
systematically computed in perturbative QCD (pQCD)
order-by-order. The soft blobs, denoted by �, describe
the soft, nonperturbative subprocesses, and can be parame-
trized in terms of universal matrix elements known as
distribution amplitudes (DAs). Such a picture suggests
the well known factorization formula for the Dirac FF

F1¼
Z
dxi

Z
dyi�ðxiÞHðxi;yijQÞ�ðyiÞ���H��; (1)

p
H

FIG. 1 (color online). Reduced diagram describing the hard
scattering picture.
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and predicts the scaling behavior

F1 ��4

Q4
� ½lnQ=���; (2)

where the logarithmical corrections can be systematically
computed order-by-order.

Unfortunately, for the Pauli FF F2 this approach cannot
provide such a systematic picture and suggests only the
power estimate

F2 ��6

Q6
: (3)

Almost simultaneously, it was found that the picture
described by Fig. 1 is not complete. In Ref. [11] it was
demonstrated that the exchange of soft quarks between
initial and final states may also produce a contribution of
order 1=Q4 times logarithms. In Refs. [12,13] all such
contributions were computed with the leading logarithmic
accuracy at 2 and 3 loops. Using these results it was assumed
[13] that these ‘‘nonrenormalization’’ logarithms probably
can be resummed to all orders into an exponent similar to the
well known Sudakov logarithms [14]. However, this effect
was ignored in many later publications. In particular, in
Ref. [10] it was suggested that such contributions could be
strongly suppressed due to those Sudakov logarithms and
therefore can be ignored at large values of Q2.

At the same time, many phenomenological studies of
the hard rescattering picture support the conclusion that in
the region of moderate Q2 ’ 5–10 GeV2 the factorization
approach expressed by Eq. (1) cannot describe the data
properly (see, for instance, [15]). Moreover, existing data
for the FF ratio F2=F1 measured up to Q2 ¼ 8:5 GeV2 [7]
also do not support the expectation of Eq. (3) which
assumes that in the asymptotic region Q2F2=F1 � const
Therefore, it was suggested that the so-called Feynman
mechanism [16], associated with the scattering of the hard
virtual photon off one active quark, dominates the nucleon
FFs at moderate values of Q2. The other spectators remain
soft and therefore very often such scattering is associated
with the soft overlap of the nucleon wave functions.

Such a picture is supported by different phenomenologi-
cal approaches, such as QCD-motivated models for the
hadronic wave functions [17–19], QCD sum rules [20,21],
and light-cone sum rules [22,23]. The Sudakov suppression
in this case is always assumed to be relatively small. The
aim of the present work is to develop a systematic approach
for the specific soft contribution described first in Ref. [11],
and formulate it through a factorization theorem. We apply
the effective theory approach, known as soft collinear
effective theory (SCET), in order to describe contributions
from different regions of virtualities in the diagrams.

The effective theory is a very convenient tool in this
case because soft rescattering is characterized by
subprocesses which exhibit different scales: a hard rescat-
tering involving particles with momenta of order Q2,

hard-collinear scattering processes with virtualities of
order �Q, and soft nonperturbative modes with momenta
of order �2. Therefore one has to perform a two-step
matching procedure in order to perform full factorization
of such a process.
Following this scheme we obtain that the full description

of large-Q2 behavior of the nucleon FF F1 is given by the
sum of two contributions associated with the soft and hard
rescattering picture:

F1 ’ FðsÞ1 þ FðhÞ1 : (4)

The hard rescattering part FðhÞ1 is well known and described

by (1). One can expect that the soft contribution can also be
presented in a factorized form but with the more compli-
cated structure reflecting the presence of different scales.
Performing the leading logarithmic analysis of the leading
power contribution (� 1=Q4) we demonstrate in this work
that the corresponding soft term can be presented in the
following form,

FðsÞ1 ’HðQÞ
Z
Dyi�ðyiÞ

Z 1
0
d!1d!2J

0ðyi;!iQÞ

�
Z
Dxi�ðxiÞ

Z 1
0
d�1d�2Jðxi;�iQÞSð!i;�iÞ; (5)

which can be interpreted in terms of a reduced diagram as
in Fig. 2. This result involves a hard coefficient functionH,
and two hard-collinear jet functions J and J0 which can be
computed in pQCD. They describe the subprocesses with
hard momenta and hard-collinear momenta, respectively.
The nonperturbative functions � and S describe the scat-
tering of collinear and soft modes. The convolution inte-
grals in Eq. (5) are performed with respect to the collinear
fractions xi and yi, and with respect to the soft spectator
fractions !i, �i ��.
In the case of the Pauli FF F2, we can also perform a

factorization of the soft-overlap contribution but only par-
tially, separating the hard modes with momenta of order
Q2. The full factorization is problematic due to overlap-
ping integration regions corresponding with soft and col-
linear contributions, which lead to well known end-point
singularities in the convolution integrals. However, such a
partial result can be used to carry out a phenomenological

H

p

S
J

FIG. 2 (color online). Interpretation of the soft rescattering as a
reduced diagram.
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analysis of the FFs in the region of intermediateQ2 values.
Such a region corresponds to momentum transfers where
Q2 is large enough, allowing us to perform a power expan-
sion, but where the second, hard-collinear scale ��Q is
still relatively small, so that one expects the dominance of
the leading power asymptotic term. Such a situation may
indeed be relevant to interpret existing data and planned
experiments.

The specific feature of the factorization for the soft-
overlap contribution is the presence of the Sudakov loga-
rithms which can be resummed using the renormalization
group in effective field theory. It was suggested (see, e.g.,
[24]) that these logarithms could play an important role in
the timelike region providing an enhancement of the time-
like FFs compared to the spacelike region (the so-called K
factor). Within the factorization picture such an enhance-
ment can be clearly studied in a model independent way.

Our paper is organized as follows. In Sec. II, we consider
as an example the analysis of the dominant regions for
certain Feynman diagrams and demonstrate the existence
of the soft spectator contribution at leading power (in the
hard scale Q) for both the Dirac and Pauli FFs. In Sec. III,
we discuss the factorization scheme for such contributions,
perform the leading-order matching between QCD and the
SCET, and perform a resummation of large logarithms.
In Sec. IV we discuss the SCET power counting in 1=Q and
derive the factorization formula (5). In Sec. V, we perform
a first qualitative discussion of the phenomenological
consequences following from our results. In Sec. VI, we
summarize our findings.

II. SOFT RESCATTERING
MECHANISM: EXAMPLES

In this section we consider specific examples of soft
rescattering contributions. For the Dirac FF our analysis
overlaps with results of the work of Ref. [11], whereas for
the Pauli FF this is discussed here for the first time.

In our consideration we use the Breit frame

q ¼ p0 � p ¼ Q

�
n

2
� �n

2

�
; n ¼ ð1; 0; 0;�1Þ;

�n ¼ ð1; 0; 0; 1Þ; ðn �nÞ ¼ 2;
(6)

and define the external momenta as

p ¼Q
�n

2
þm2

N

Q
n

2
; p0 ¼Q

n

2
þm2

N

Q
�n

2
;

Q ¼ Q
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

N

Q2

s �
¼ QþOðm2

N=Q
2Þ;

(7)

2ðpp0Þ ¼Q2 þm4
N

Q2
� Q2; (8)

where mN is the nucleon mass. For the incoming and
outgoing collinear quarks we always imply

pi ¼ xiQ
�n

2
þ p?i þ

�
x0i
m2

N

Q

�
n

2
;

p0i ¼ yiQ
n

2
þ p0?i þ

�
y0i
m2

N

Q

�
�n

2
;

(9)

with the transverse momenta

p2
? � p02? ��2;

and where xi and x0i denote fractions of the corresponding
momentum component. In what follow we shall use the
convenient notation �xi ¼ 1� xi. We also use the following
notation for scalar products

ða 	 nÞ � aþ; ða 	 �nÞ � a�; (10)

and Dirac contractions

p��
� �p � p̂: (11)

Nucleon FFs are defined as the matrix elements of the
electromagnetic (e.m.) current between the nucleon states,

hp0jJ�e:m:ð0Þjpi¼ �Nðp0Þ
�
��ðF1þF2Þ�ðpþp0Þ�

2mN

F2

�
NðpÞ;
(12)

with nucleon spinors normalized as �NN ¼ 2mN . We also
use a standard normalization for particle states:

hp0; s0jp; si ¼ ð2�Þ32E�ss0�ð ~p� ~p0Þ: (13)

In what follows, we shall compute the Feynman diagrams
which provide contributions to the nucleon FFs. The com-
ponent of interest for our calculations is the soft matrix
element describing the overlap of the partonic configura-
tions with the hadron state. In the case of the FFs such
overlap is described by DAs. In the case of the nucleon, the
corresponding leading twist DAs can be defined as

4h0ju�Wi½�1n�u�Wj½�2n�d	Wk½�3n�jpi

¼ "ijk

3!

Z
Dxie

�ipþ
�P

xi�i

�
�ðxiÞ; (14)

where

q�W½x� � q�ðxÞP exp
�
ig

Z 0

�1
dtðn 	 AÞðxþ tnÞ

	
; (15)

and the measure reads Dxi ¼ dx1dx2dx3�ð1� x1 � x2
�x3Þ: The function �ðxiÞ can be further decomposed as

� ðxiÞ ¼ VðxiÞpþ
�
1

2
�nC

�
��
½�5N

þ�	

þ AðxiÞpþ
�
1

2
�n�5C

�
��
½Nþ�	

þ TðxiÞpþ
�
1

2
�n�?C

�
��
½�?�5N

þ�	: (16)
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The large componentNþ of the nucleon spinor is defined as

Nþ ¼ �nn

4
N; (17)

and C is the charge conjugate matrix C: C�1��C ¼ ��T
�.

The nucleon DA�ðxiÞ is shown by the soft blobs in Fig. 1.
For simplicity we restrict our consideration to the proton
state. In what follows we always assume that in pQCD
diagrams the first and second top lines correspond to u
quarks. Assuming projections on the leading twist DAs,
we can considerably simplify certain considerations sub-
stituting instead of DAs on-shell quark spinors. Such sub-
stitution is possible because at leading-order (LO) power
accuracy we can neglect the small components in the ex-
ternal quark momenta,

p’Q �n

2
; pi’xip; p0 ’Qn

2
; p0i’yip0; (18)

and assume that external collinear quarks are on-shell.
This is possible because the leading twist projectors
½�u

XC���½�d
XN
þ�	 in (14) satisfy to following relations,

�u
Xp̂ ¼ p̂�u

X ¼ p̂�d
XN
þ ’ 0; (19)

that are compatible with the free equation of motion for
quark spinors and allow us to use on-shell spinors in the
intermediate calculations. The contribution to the physical
amplitude can be obtained by resubstitution of the quark
spinors by the hadronic matrix element (14).

A. Soft rescattering contribution for the Dirac FF F1

Consider, following Ref. [11], the diagram in Fig. 3. The
incoming and outgoing particles must have invariant mass
��2 in order to overlap with nucleon states. This is
guaranteed by the momenta in Eq. (9). The interactions
between the external quarks are soft and described by DAs.
For simplicity, the corresponding soft blobs are not shown
in Fig. 3. One can easily find that

p1g ¼ p1 � k1; p2g ¼ p� p3 � k1 � k2;

p3g ¼ k1 � p01; p4g ¼ k1 þ k2 � p0 þ p03;
(20)

p2u ¼ p� p3 � k1; p3d ¼ p� k1 � k2;

p02u ¼ p0 � p03 � k1; p03d ¼ p0 � k1 � k2:
(21)

The analytical expression for the diagram of Fig. 3, where
the quark line with momenta p3 and p03 represents a d
quark, reads

D� ¼ C
Z

d4k1d
4k2

1

½k22 �m2�½k21 �m2�
�dðp03Þ��ðp̂0 � k̂1 � k̂2Þ��ðp̂� k̂1 � k̂2Þ��dðp3Þ
ðp0 � k1 � k2Þ2ðp� k1 � k2Þ2ðp1 � k1Þ2ðk1 � p01Þ2

� �uðp01Þ�iðk̂1 þmÞ�juðp1Þ �uðp02Þ�iðp̂0 � p̂03 � k̂1Þ��ðk̂2 þmÞ��ðp̂� p̂3 � k̂1Þ�juðp2Þ
ðp� p3 � k1Þ2ðp0 � p03 � k1Þ2ðk1 þ k2 � p0 þ p03Þ2ðp� p3 � k1 � k2Þ2

; (22)

where the numerical factor C accumulates all color factors
and vertex and propagator factors, andm denotes the quark
mass.1 We write on-shell quark spinors instead of projec-
tors on the nucleon DA as it was described above.

According to the factorization expressed by Eq. (1), one
could expect that dominant integration regions (providing
contributions of order�4=Q4) can be described as follows:

hard region: k�i �Q; k2i �Q2; (23)

collinear-pregion: ki: ðknÞ�Q; ðk �nÞ��2=Q;

k?��; k2i ��2;
(24)

collinear-p0 region: ki: ðk �nÞ�Q; ðknÞ��2=Q;

k?��; k2i ��2:
(25)

Then factorization formula (1) implies that the general
structure of any 2-loop diagram can be interpreted as

D¼��Tð2Þ ��þ�ð1Þ �Tð1Þ ��þ��Tð1Þ ��ð1Þ
þ�ð1Þ �Tð0Þ ��ð1Þþ�ð11Þ �Tð0Þ ��þ��Tð0Þ ��ð11Þ
þ�ð2Þ �Tð0Þ ��þ��Tð0Þ ��ð2Þ; (26)

where

� ðiÞ ¼V ðiÞ ��; �ð11Þ ¼V ð1Þ �V ð1Þ �� (27)

denotes the convolution of the collinear evolution kernel

V ðiÞ of order i with DA�. Such contributions related with

k
2

k
1

p
1

p
2

p
3

1

2

3p
3d 3d

p
2u 2u

p
1g

p
2g

p
3g

p
4g

ij

FIG. 3. The simplest diagram with soft exchanges.

1For simplicity we do not show explicitly the color indices.
The quarks mass is written only in the propagators where it can
be relevant.
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the collinear regions (24) and (25). The hard kernels Tð0;1;2Þ
denote the contributions to the hard coefficient function
in LO, next-to-leading order, and next-to-next-to-leading
order, respectively.

However, this description is not the full answer at the
leading-order accuracy in 1=Q. There is one more region,
which cannot be interpreted in the form of the reduced
diagram in Fig. 1, and is defined as the soft region [11]:

k�i ��; k2i ��2: (28)

Let us compare the power contribution from this region
with the contribution from the hard region (23). The latter
provides

DðhÞ�? �Q8 Num

Den
�Q8 Q6

½Q2�10
�
01�1
1

�
02�2
2
�
03�

�
?
3

� 1

Q6
�
01�1
1

�
02�2
2
�
03�

�
?
3; (29)

where �i denote some scaleless Dirac structures, and the
factor �Q8 arises from the measure. The term with ��

? in

(29) reflects the requirements of one transverse index
���

?. In order to arrive at the formula (29) we also used

the decomposition of the quark spinors onto large and
small components:

�qðp0iÞ ¼ �
0i þ ��0i; �
0i ¼ �qðp0iÞ
�nn

4
; ��0i ¼ �qðp0iÞ

n �n

4
;

(30)

qðpiÞ ¼ 
i þ �i; 
i ¼ �nn

4
qðpiÞ; �i ¼ n �n

4
qðpiÞ:
(31)

One can easily obtain that the small component � is sup-
pressed relative to the large component 
 as

�� 
=Q: (32)

Consider now the contribution from the soft region.
Neglecting small terms in the denominator of (22) one
obtains

Den ’ ½k22 �m2�½k21 �m2�
� fy1 �y23½�2p0 	 ðk1 þ k2Þ�2½�2ðk1 	 p0Þ�2g
� fx1 �x23½�2p 	 ðk1 þ k2Þ�2½�2ðk1 	 pÞ�2g

��2�2ð�QÞ8; (33)

where, recall, �xi ¼ 1� xi. Therefore

DðsÞ ��8 Num

Den
��8 Num

�2�2ð�QÞ8 : (34)

From Eq. (34) we see that the numerator must contain the
soft scale at least in the power ��4 or higher.

We next compute the largest terms in the numerator.
Neglecting the small momenta and the small spinor com-
ponents in the d-quark line we obtain

�dðp03Þ��ðp̂0 � k̂1 � k̂2Þ��ðp̂� k̂1 � k̂2Þ��dðp3Þ
’ �dðp03Þ��p̂0��p̂��dðp3Þ ’ 4p0�p� �
03�

�
?
3: (35)

Then the second u-quark line can be rewritten as

p0�p� �uðp02Þ�iðp̂0 � p̂03 � k̂1Þ��ðk̂2 þmÞ
� ��ðp̂� p̂3 � k̂1Þ�juðp2Þ

’ �
02�ik̂1p̂
0ðk̂2 þmÞp̂k̂1�j
2: (36)

The product of the u-quark lines yields

�
01�iðk̂1þmÞ�j
1
�
02�ik̂1p̂

0ðk̂2þmÞp̂k̂1�j
2

’2ðp0 	k1Þ2ðp 	k1Þ �
01�iðk̂1þmÞ�j
1
�
02�iðk̂2þmÞ�j
2:

(37)

Therefore we obtain

Num ¼ 2ðp0 	 k1Þ2ðp 	 k1Þ �
01�iðk̂1 þmÞ�j
1
�
02�iðk̂2 þmÞ

� �j
2
�
03�

�
?
3

�Q2�4 �
01�1
1
�
02�2
2

�
03�
�
?
3: (38)

Substituting this into (34) yields

DðsÞ�? ��8 Q2�4

�2�2ð�QÞ8
�
01�1
1

�
02�2
2
�
03�

�
?
3

� 1

Q6
�
01
1

�
02
2
�
03�

�
?
3; (39)

i.e., we obtain the same power ofQ as for the hard region in
(29). Therefore we established that the soft region is the
additional relevant region which is not accounted for in the
factorization formula (1). In Ref. [12] all diagrams with
the soft spectator quarks have been computed with the
leading logarithmic accuracy. Their sum does not cancel
providing some nontrivial answer. Hence we can avoid
consideration of such a possibility.
Consider now the whole expression for the soft contri-

bution:

DðsÞ�? ¼ 4C
Z

d4k1d
4k2½��

?��3�3

�
�ðk̂1 þmÞ�1�1

ðk̂2 þmÞ�2�2

½k22 �m2�½k21 �m2�
�

�
� ½ �
01�i��1

½ �
02�i��2
½ �
03��3

y1 �y
2
3½�2p0 	 ðk1 þ k2Þ�2½�2ðk1 	 p0Þ�

�

�
� ½�j
1��1

½�j
2��2
½
3��3

x1 �x
2
3½�2p 	 ðk1 þ k2Þ�2½�2ðk1 	 pÞ�

�
: (40)

Each expression in the square brackets describes some
subprocess involving the particles with appropriate virtual-
ities and momenta. We consider them term by term. The
factor
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�ðk̂1 þmÞ�1�1
ðk̂2 þmÞ�2�2

½k22 �m2�½k21 �m2�
�

(41)

describes the propagation of the soft spectator quarks and
includes only soft particles with k2i ��2. This term can be
associated with the soft part of the diagram. The factor� ½ �
01�i��1

½ �
02�i��2
½ �
03��3

y1 �y
2
3½�2p0 	 ðk1 þ k2Þ�2½�2ðk1 	 p0Þ�

�
(42)

describes the transition of two soft spectator quarks and
one active quark into three collinear quarks. It is described
by the subdiagram with the two-gluon exchange. As
one can see, all propagators have virtualities of order
ki 	 p0 �Q� and all involved momenta have a large com-
ponent �Q along the p0 direction.

In a similar way one can describe the second subprocess
given by � ½�j
1��1

½�j
2��2
½
3��3

x1 �x
2
3½�2p 	 ðk1 þ k2Þ�2½�2ðk1 	 pÞ�

�
: (43)

The difference from the previous case is only in the in-
volved momenta. They have large components �Q along
the p direction.

The simple vertex factor ½��
?��3�3

can be associated with

the hard scattering vertex of the subprocess �� þ dðpÞ !
dðp0Þ. It is clear that this subprocess in general involves
particles with large momenta of order Q2.

Taking into account the different virtualities of the par-
ticles,�2 
 Q�
 Q2, one can try to factorize the whole
result of Eq. (40) in accordance with the described sub-
processes. In order to do this we introduce the Sudakov
decomposition,

ðki 	nÞ¼kþi ; ðki 	 �nÞ¼k�i ; dki¼1

2
dkþi dk�i dk?; (44)

and rewrite Eq. (40) as

DðsÞ�? ¼ ½��
?��3�3

Z
dk�1 dk

�
2

�
�
C
Z

dk12?
ðk̂1 þmÞ�1�1

ðk̂2 þmÞ�2�2

½k21 �m2�½k22 �m2�
�

�
�
1

Q3

½ �
01�i��1
½ �
02�i��2

½ �
03��3

y1 �y
2
3ðkþ1 þ kþ2 Þ2½�kþ1 �

�

�
�
1

Q3

½�j
1��1
½�j
2��2

½
3��3

x1 �x
2
3ðk�1 þ k�2 Þ2½�k�1 �

�
: (45)

This equation almost represents the required form. To
make it more obvious Eq. (45) can be rewritten as

DðsÞ�? ¼ ½��
?��3�3

Z
d!1;2J

0
ð�Þðyi; !iÞ

�
Z

d�1;2Jð�Þðxi; �iÞSð��Þð!i; �iÞ; (46)

where we introduced

Sð��Þð!i; �iÞ ¼ C
Z

dk�1 dk
�
2 dk12?�ð!1 � kþ1 Þ�ð!2 � kþ2 Þ

� �ð�1 � k�1 Þ�ð�2 � k�2 Þ

� ðk̂1 þmÞ�1�1

½k21 �m2�
ðk̂2 þmÞ�2�2

½k22 �m2� : (47)

The two functions J0ð�Þ and Jð�Þ; , which we will refer to as

jet functions, read

J0ð�Þðyi; !iÞ ¼ 1

Q3

1

y1 �y
2
3

1

ð!1 þ!2Þ2½�!1�
� ½ �
03��3

½ �
02�i
?��2
½ �
01�i

?��1
; (48)

Jð�Þðxi; �iÞ ¼ 1

Q3

1

x1 �x
2
3

1

½�1 þ �2�2½��1�
� ½
3��3

½�j
?
2��2

½�j
?
1��1

; (49)

where the index in brackets denotes multi-index: ð�Þ �
f�1; �2; �3g. These functions describe the scattering of the
particles with hard-collinear virtualities:

p2
i �Q�: (50)

Such fluctuations appear in the case of scattering collinear
and soft particles and in our case they have momenta
components which scale as

in J function: ðpþi �Q;p�i ��; pi? �
ffiffiffiffiffiffiffiffi
Q�

p Þ; (51)

in J0 function:ðp0þi ��; p0�i �Q;p0i? �
ffiffiffiffiffiffiffiffi
Q�

p Þ: (52)

Such modes are often refereed to as hard-collinear
particles.
The soft correlation function Sð!i; �iÞ defined in (47)

describes the contribution of the subdiagram with the soft
momenta and low virtualities. In this particular case this is
the simple product of the two soft propagators. Taking into
account that the jet functions do not depend on the trans-
verse momenta the soft part can be represented as a light-
cone correlation function (CF):

Sð��Þð!i; �iÞ ¼ C
Z d�1

2�
ei!1�1

Z d�2

2�
ei!2�2

Z d�1

2�
e�i�1�1

�
Z d�2

2�
e�i�2�2h0jq�1

ð�1nÞ �q�1
ð�1 �nÞj0i

� h0jq�2
ð�2nÞ �q�2

ð�2 �nÞj0i: (53)

In pQCD, the leading-order CF factorizes into the prod-
uct of two propagators: h0j . . . j0ih0j . . . j0i. But it is clear
that this is specific for the perturbative result. In the general
case one can expect general matrix element h0j . . . j0i. Let
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us note that such a CF is a vacuum loop for the transverse
momentum and simultaneously a 4-point CF function from
the point of view of longitudinal subspace. Therefore in-
tegration over transverse components is UV-divergent.
Computing the convolution integrals

R
d!1;2

R
d�1;2 and

integrating over the soft quark momenta, we reproduce the
factorization breaking logarithmic contribution computed
in [11].

In our example we have only the leading-order, simple
contribution from the hard subprocess: tree-level scattering
of the transverse hard photon on the hard-collinear quark.
The corresponding amplitude ���

? can be associated with

the hard coefficient function.
The answer (46) can be interpreted in terms of a

reduced diagram as in Fig. 2. We observe that in this
case the scattering process contains soft spectators and
involves two large scales: the hard scale Q2 and hard-
collinear scale of order �Q. The presence of the soft
spectators allows us to associate the contribution from
the soft region with the Feynman mechanism [16]. In the
following, we shall refer to it, for simplicity, as the soft
rescattering mechanism.

B. Soft rescattering contribution for
the Pauli FF F2

A calculation of the helicity flip FF F2 carried out in the
hard rescattering picture cannot provide a well defined
result because the convolution integral (1) is divergent.
This divergence can be understood as an indication that
the definition of relevant regions according to Fig. 1 is not
complete. However, such a calculation allows us to define

the power behavior (3). As one can observe, F2 is sup-
pressed as 1=Q2 compared to F1. This is a consequence of
the helicity flip which requires us to involve one unit of
orbital quark momentum that leads to suppression of order
�=Q [one more factor Q arises from the kinematical
prefactor ðpþ p0Þ� in the FF definition—see Eq. (12)].
Consider now the diagram as shown in Fig. 4, where we

calculate the contribution where the hard photon couples to
a u quark. Following the same definitions of the external
momenta as before, the internal momenta read

p1u ¼ p� k2 � k3; p2u ¼ �x1p� k3;

p01u ¼ p0 � k2 � k3; p02u ¼ �y1p� k3;

p1g ¼ k2 þ k3 � �x1p; p2g ¼ k3 � p3;

p3g ¼ �y1p
0 � k2 � k3; p4g ¼ p03 � k3;

(54)

and the analytical expression for the diagram reads

D� ¼ C
Z dk2dk3
½k22 �m2�½k23 �m2�

�
01��ðp̂0 � k̂2 � k̂3Þ��ðp̂� k̂2 � k̂3Þ��
1

ðp0 � k2 � k3Þ2ðp� k2 � k3Þ2

�
�
02�ið �y1p̂0 � k̂3Þ��ðk̂2 þmÞ��ð �x1p̂� k̂3Þ�j
2 ��

0
3�

iðk̂3 þmÞ�j
3

ð �y1p� k3Þ2ð �x1p� k3Þ2ðk3 � p3Þ2ðk3 � p03Þ2ðk2 þ k3 � �x1pÞ2ð �y1p0 � k2 � k3Þ2
: (55)

Let us add few comments to this formula. Following con-
ventions, we assume that the first and second spinor lines
correspond to u quarks and we substitute instead of spinors
their large components �
01;2 and 
1;2 as defined in (30) and
(31). However, we cannot perform such a substitution for
all external quarks as we did in the case of the Dirac FF F1.
In order to obtain a nontrivial helicity flip amplitude, we
need to project the in or out collinear partonic state on the
higher twist (twist-4) DAs. The projections on twist-4 DAs
are well known and can be written in the same form as for
the twist-3 case [25]. Contrary to the twist-3 case, twist-4
projections do not satisfy the full set of relations (19)
because the twist-4 operator includes one small component
of the collinear quark field:

twist-3DA�h0j


jpi; twist-4DA�h0j

�jpi: (56)

For instance, one obtains the following projector (in gen-
eral, there are 9 twist-4 projections [25]):

twist -4: �u
V02
� �d

V02
� nC � �5 �n; (57)

where the u quarks projected on large components but the
d quark on the small component. Therefore in order to
obtain such a configuration one has to substitute instead of
a d-quark spinor its small projection (30):

�dðp03Þ ! ��03 ¼ �dðp03Þ
n �n

4
; with ��03n � 0: (58)

We take into account this particular case in the expression
(55) and do not consider the other configurations (with the
small u-quark components) for the sake of simplicity.

k
2

k
3

p
1

p
2

p
3

1

2

3

p
1u 1u

p
2u 2u

p
1g

p
2g

p
3g

p
4g

FIG. 4. Two-loop diagram for the helicity flip FF.
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Consider first the contribution from the hard region,
Eq. (23). In order to project the index � in Eq. (23) onto
the longitudinal subspace, we perform a contraction

�D ðhÞk ¼ ðnþ �nÞ� �DðhÞ� : (59)

Simple dimensional counting provides

�DðhÞ � 1

Q6
�
01�1
1

�
02�2
2 ��
0
3�3
3 � ðpþ p0Þ 	 ðnþ �nÞ

� 1

Q8
�
01�1
1

�
02�2
2½Q ��03��3
3; (60)

where we took into account the kinematical factor
ðpþ p0Þ 	 ðnþ �nÞ �Q and the fact that the small compo-
nent �03 is suppressed, according to Eq. (32). Then we

observe that the hard part of F2 is suppressed compared
to F1 (29) as expected.
Consider now the soft region, expressed by Eq. (28). In

the denominator DðsÞk we obtain

Den’½k22�m2�½k23�m2�Q2 �y1½ðk2þk3Þ 	n�2Q2 �y1y3½k3 	n�2
�Q2 �x1½ðk2þk3Þ 	 �n�2Q2 �x1x3½k3 	 �n�2: (61)

In the numerator, the first spinor line gives

�
 01��ðp̂0 � k̂2 � k̂3Þðnþ �nÞðp̂� k̂2 � k̂3Þ��
1 ’ �2ðk2 þ k3Þ 	 n2p� �
01��
?
1 � 2ðk2 þ k3Þ 	 �n2p0� �
01�

�
?
1: (62)

Combining the contribution �p���
? with the second and third lines we obtain

p� �
02�ið �y1p̂0� k̂3Þ��ðk̂2þmÞ��ð �x1p̂� k̂3Þ�j
2 ��
0
3�

iðk̂3þmÞ�j
3¼�4�y1Qðk3 	 �nÞ �
02��
?ðk̂2þmÞ�j
2 ��

0
3p̂
0ðk̂3þmÞ�j
3:

(63)

The same combination of the second term �p0���
? in Eq. (62) provides trivial results:

p0� �
02�ið �y1p̂0 � k̂3Þ��ðk̂2þmÞ��ð �x1p̂� k̂3Þ�j
2 ��
0
3�

iðk̂3þmÞ�j
3

¼ �x1 �

0
2�

ið�k̂3Þp̂0ðk̂2þmÞ��
?p̂�

j
2 ��
0
3�

iðk̂3þmÞ�j
3¼2�x1 �

0
2�

ið�k̂3Þp̂0ðk̂2þmÞ��
?
2 ��

0
3�

iðk̂3þmÞ p̂
3|{z}¼0: (64)

Therefore, we can write

Num ’ 16Q �y1ðk3 	 �nÞðk2 þ k3Þ 	 n �
01��
?
1

�
02��
?ðk̂2 þmÞ�j
2 ��

0
3p̂
0ðk̂3 þmÞ�j
3: (65)

Combining Eqs. (61) and (65) yields

DðsÞk ¼
ðpþ p0Þ 	 ðnþ �nÞ

Q7

Z 8Cdk2dk3
½k22 �m2�½k23 �m2�

�
01��
?
1

�
02��
?ðk̂2 þmÞ�j
2 ��

0
3n̂ðk̂3 þmÞ�j
3

�x21x3 �y1y3½ðk2 þ k3Þ 	 n�½ðk2 þ k3Þ 	 �n�2½k3 	 n�2½k3 	 �n�
: (66)

By simple power counting, we obtain

DðsÞk �
ðpþ p0Þ 	 ðnþ �nÞ

Q7
�8 �2

�10
�
01�1
1

�
02�2
2 ��
0
3�3
3 � ðpþ p0Þ 	 ðnþ �nÞ

Q8
�
01�1
1

�
02�2
2½Q ��03��3
3: (67)

One notices that we obtain the same power counting as for the hard region. Therefore we can conclude that the
soft rescattering is also relevant for the helicity flip case and is not suppressed compared to the hard rescattering
mechanism.

Let us perform an interpretation of Eq. (66) in terms of hard, jet, and soft functions introduced in the previous
section.

DðsÞk ¼
ðpþ p0Þ 	 ðnþ �nÞ

m

m

Q2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hard CF

Z
d!2d!3

1

Q2

½ �
01��
?��1
½ �
02��

?��2
½ ��03n̂��3

�y1y3ð!2 þ!3Þ!2
3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J0 function

Z
d�2d�3

1

Q3

½
1��1
½�j
2��2

½�j
3��3

�x21x3ð�2 þ �3Þ2�3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J function; same as in F1; see Eq:ð50Þ

� C
Z

dk�2 dk
�
3 dk23?

ðk̂2 þmÞ�2�2
ðk̂3 þmÞ�3�3

½k22 �m2�½k23 þm2� �ð!2 � kþ2 Þ�ð!3 � kþ3 Þ�ð�2 � k�2 Þ�ð�3 � k�3 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
soft S½!i;�i�

(68)
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We observe that the soft part and one jet function (twist-3
projection) are the same as for F1, but the outgoing jet
function (twist-4 projection) is different. We may expect
that the soft rescattering for F2 can also be described in
terms of a reduced diagram as in Fig. 1.

C. QCD factorization for the soft rescattering picture

The specific feature of the soft rescattering is the pres-
ence of two subprocesses related to the two hard scales: a
hard subprocess with typical scale of order Q2 and a hard-
collinear subprocess with typical scale of order �Q.
Therefore description of such processes could be carried
out in two steps: first, one integrates over hard fluctuations
so that the remaining degrees of freedom describe hard-
collinear and soft processes. From the previous analysis we
may conclude that such degrees of freedom include hard-
collinear (51) and (52), collinear,

pc�ðpþc �Q;p?��;p�c ��2=QÞ; p2
c��2;

p0c�ðp0þc ��2=Q;p?��;p0�c �QÞ; p02c ��2;
(69)

and soft,

p�
s ��; p2

s ��2; (70)

modes. Therefore one needs the effective theory describing
the dynamics of such a system. Such effective theory,
known as SCET, was built already for the description of
heavy quark decays and some other hadronic reactions.
Therefore we can apply it also for description of the soft
rescattering mechanism.

If Q is large enough and �Q� �2 one can further use
perturbation theory and factorize the hard-collinear fluctu-
ations, leaving at the end only collinear and soft modes
which describe soft QCD dynamics. Technically, such two-
step factorization is described as matching of full QCD
onto the soft collinear effective theory at the scale � ¼ Q
(SCETI), which is equivalent to calculating the hard coef-
ficient functions in front of an operator constructed from
SCETI fields described above. The second step is the

matching of SCETI at the scale � ¼ ffiffiffiffiffiffiffiffi
�Q

p
to SCETIi,

which again corresponds to the pQCD calculation of
hard-collinear coefficient functions (which are usually
called jet functions) in front of operators constructed
only from the collinear and soft fields. In the next section,
we perform the matching of QCD to the SCETI effective
theory.

III. MATCHING QCD TO SCETI AND
RESUMMATION OF LEADING LOGARITHMS

A. Soft collinear effective theory

In this section we briefly describe the main ingredients of
SCET [26–31]. The effective Lagrangian can be obtained
fromQCDLagrangian by integrating over hard fluctuations
and performing a systematical expansionwith respect to the

small dimensionless parameter � related to the large scale

Q. We define �� ffiffiffiffiffiffiffiffiffiffiffi
�=Q

p
, where � is the typical hadronic

scale of the order of a few hundred MeV. In general, the
physical amplitude describing a hard exclusive reaction can
be defined in a convenient reference frame, for instance, the
Breit frame. Then external particles usually are hard or
collinear. The fast moving hadron consists of energetic
partons carrying collinear momentum:

p�
c ¼ ðpc 	 nÞ �n

�

2
þ p�

?c þ ðpc 	 �nÞ n
�

2
� ðpþc ; p?c; p�c Þ;

p2
c � �4Q2: (71)

The individual momentum components have the following
scaling behavior,

p�
c �Qð1; �2; �4Þ;

as required by (71).However, aswe could see in the example
above, the relevant regions could involve fluctuations
with different momenta. We classify the different regions
following the terminology suggested in Refs. [32,33]:
hard ph �Qð1; 1; 1Þ, semihard psh �Qð�; �; �Þ, hard-
collinear phc �Qð1; �; �2Þ or p0hc �Qð�2; �; 1Þ, collinear
pc�Qð1;�2;�4Þ or p0c�Qð�4;�2;1Þ, and soft ps�
Qð�2;�2;�2Þ.
The large (small) components 
0hc of the quark fields

describing particles with momentum p0hc have been intro-

duced through a decomposition of exact collinear quark
fields c 0hc:


0hcðxÞ ¼
n �n

4
c 0hc; �0hcðxÞ ¼

�nn

4
c 0hc; (72)

with n̂
0hc ¼ 0. The small components �0hc are suppressed
with respect to those of 
0hc by a factor �2 ��=Q and are

integrated out when constructing the effective Lagrangian.
Such definitions set the following scaling relations for

the corresponding effective fields:


0hc��; �n 	A0hc�1; A0?hc��; n 	A0hc��2; (73)


0c��2; �n 	A0c� 1; A0?c��2; n 	A0c��4; (74)

A
�
s � �2; q� �3; (75)

with A
0�
hc , A

0�
c , A

0�
s denoting the gauge fields in the SCET,

and q the soft quark field.
After integration over hard modes we reduce full QCD

to the SCETI which describes the interaction of particles
with hard-collinear and soft momenta. This theory still
includes the particles with large virtuality of order �Q�
�2 if Q is large enough. Therefore, if possible, one can
perform a matching of the SCETI to the effective theory
which contains only collinear and soft particles (SCETII).
In present paper we consider in detail the matching of QCD
to SCETI and resummation of Sudakov logarithms which
arises due to the evolution of the SCET operators.
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The effective action describing the interaction of the
hard-collinear and soft particles can be written as an ex-
pansion with respect to �:[30,31]2

LSCETI
¼Lð0Þ
 þLð1Þ
 þLð1Þq
þOð�2ÞþLYMþLs; (76)

where

Lð0Þ
 ¼
Z
d4x �
0hcðxÞ

�
in 	Dþgn 	Asðx�Þþ iD̂?

1

i �n 	DiD̂?
�

� �n

2

0hcðxÞ; (77)

Lð1Þq
 ¼
Z

d4x �
0hcðxÞiD̂?W 0ðxÞqðx�Þ
þ �qðx�ÞW 0yðxÞiD̂?
0hcðxÞ; (78)

where x� � 1
2 ðx 	 �nÞn. The fields f
0hc, A0hcg and fq; Asg

describe hard-collinear [ðp0hc 	 �nÞ �Q] and soft fields,

respectively, whereas the covariant derivative reads
iD ¼ i@þ gA0hc. The Wilson lines are defined as

W 0ðxÞ ¼ P exp

�
ig

Z 0

�1
ds �n 	 A0hcðxþ s �nÞ

	
: (79)

We do not write explicitly the gluon part LYM because
we will not use it in this work. Ls is the usual QCD
Lagrangian with the soft fields. In Eqs. (77) and (78) we
provide only the contributions which will be relevant for
our discussion.

The expressions in Eqs. (77) and (78) have definite
(homogeneous) scaling in � which is indicated by the
number in the superscript brackets. In order to achieve
this the arguments of the soft fields are expanded with
respect to the small components of the position argu-
ments.3 From Eq. (77) one can see that the soft gluon fields
couple to the hard-collinear fields only via the longitudinal
component n 	 As. Using the field redefinition


0hcðxÞ ! Snðx�Þ
0ð0Þhc ðxÞ;
A0hcðxÞ ! Snðx�ÞA0ð0Þhc ðxÞSyn ðx�Þ;

(80)

with the soft Wilson line

SnðxÞ ¼ P exp

�
ig

Z 0

�1
dsn 	 Asðxþ snÞ

	
; (81)

we can eliminate the soft field from the leading-order
Lagrangian (77). However, the soft Wilson lines Sn remain
in the external operators with soft fields in order to ensure
the gauge invariance.

Obviously, all the above results also hold for the second
collinear region with momentum ðphc 	 nÞ �Q, by merely
interchanging light-cone vectors n$ �n and substituting
corresponding hard-collinear fields f
hc; Ahcg.
The formulation of SCET described above can be ex-

tended by introducing the so-called soft-collinear or mes-
senger modes as discussed in [34]. However, such particles
have virtualities which are much smaller then the typical
hadronic scale p2

sc 
 �2. This situation was investigated in
detail in several papers (see, e.g., [35–37]). It was shown that
the existence of such modes depends on the precise form of
the IR regularization used in massless pQCD. Therefore it
was suggested that in the processes with real hadrons, where
all nonperturbative effects have typical scales of order �,
such low-mass degrees of freedom cannot appear because
they are clearly an artefact of perturbation theory. Therefore
we do not include them in the present considerations.

B. Construction of the operator basis and leading-order
coefficient functions

In this section we briefly describe the matching of QCD
to the relevant leading-order operators in the SCETI. The
leading-order matching the e.m. current onto the SCET
operators has been already introduced and studied earlier.
In Ref. [38] it was used for a description of deep inelastic
scattering at large x! 1 and in Ref. [39] for the description
of Drell-Yan production. The matching onto subleading
operators was also discussed in [40]. For the convenience
of the reader we repeat here the main steps of these calcu-
lations in order to introduce required notations.
In order to obtain the allowed SCET operators we take

into account the restrictions imposed by the SCET count-
ing rules, gauge invariance, and invariance under the rep-
arametrization transformations. Explicit construction of
such operators can be performed in the same way as it
was done for heavy-to-light transitions in the works of
Refs. [41–45]. The building blocks, invariant under col-
linear gauge transformations are well known and read

fð �
0hcW 0Þ; ðWy
hcÞg � �; (82)

f½W 0yiD�W
0�; ½WyiD�W�g � fA0

�;A�g � �: (83)

In the terms with ½. . .�, the derivative is only applied inside
the brackets.
For the LO operator one can easily construct the ex-

pression which consists of two-quark jets:

Oðs1; s2Þ ¼ ½ �
0hcW 0�ðs1 �nÞ � ½Wy
hc�ðs2nÞ; (84)

where we do not explicitly write the color and spinor
indices for each jet and the symbol � is used to stress
that their indices are not contracted. From the previous
discussion it is clear that such an operator is relevant
for the Dirac FF F1. For the case of Pauli FF F2 we need
the subleading operator involving the transverse gluon
field as in Eq. (83). In this case it is useful to take into

2There are two different technical formulations of SCET
developed in [27,29–31]. In the present paper we follow the
technique suggested by Beneke et al. in Ref. [30].

3In momentum space such ‘‘multipole ‘‘ expansion corre-
sponds to the expansion with respect to small momentum
components.
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account the constraints imposed by reparametrization
transformations. The details were already discussed in
the literature, and we refer to Refs. [30,41,42,45] for these
details. The relevant for our consideration subleading op-
erators can be written as

O �nðs1; s2; s3Þ ¼ ½ �
0hcW 0�ðs2 �nÞA 0
?ðs3 �nÞ � ½Wy
hc�ðs1nÞ;

(85)

Onðs1; s2; s3Þ ¼ ½ �
0hcW 0�ðs2 �nÞ �A?ðs3nÞ½Wy
hc�ðs1nÞ:
(86)

So that for matching of the vector current we can write

�qð0Þ��qð0Þ ¼
Z

dŝ1dŝ2 tr½ ~C�ðŝ1; ŝ2ÞOqðs1; s2Þ�

þ
Z

dŝ1dŝ2dŝ3 tr½ ~C�
�n ðŝ1; ŝ2; ŝ3ÞOq

�nðs1; s2; s3Þ
þ ~C

�
n ðŝ1; ŝ2; ŝ3ÞOq

nðs1; s2; s3Þ�; (87)

where ŝi � siQ. The coefficient functions ~C are defined as
matrices in the spinor and color indices and the trace has to
be understood in a sense of contractions of all the indices
between coefficient functions and operators, for instance,

tr½C�ðŝ1; ŝ2; Q=�ÞOðs1; s2Þ�
¼ ½ ~C�ðŝ1; ŝ2Þ���½ �
0hc�W 0�ðs1 �nÞ½Wy
hc��ðs2nÞ: (88)

The further details of our calculations are presented in
Appendix A. It is convenient to pass in momentum space
where the final result can be presented in the compact form:

�qð0Þ��qð0Þ ¼ CAðQ;�ÞO�?
A � ðn

� þ �n�Þ
Q

�
Z 1

0
d�CBð�;Q;�ÞOB½�� þ . . . ; (89)

where the scalar coefficient functions CA;B include all

relevant contributions with large logarithms, and the opera-
tors are defined as

O�?
A ¼ð �
0hcW 0Þð0Þ��

?ðWy
hcÞð0Þ� ð �
0W 0Þ��
?ðWy
Þ; (90)

OB½�� ¼ ð �
0hcW 0Þð0Þ
Z dŝ

2�
½e�isðP0	 �nÞ�A0

?ðs �nÞ

þ eisðP	nÞ�A?ðsnÞ�ðWy
hcÞð0Þ
� ð �
0W 0Þ½A0

?ð�Þ þA?ð�Þ�ðWy
Þ: (91)

From the tree-level calculations it follows that

CAðQ;� ¼ QÞ ¼ 1þOð�SÞ;
CBð�;Q;� ¼ QÞ ¼ 1þOð�SÞ:

(92)

Note that the SCEToperators depend also on the renormal-
ization scale � that was ignored for simplicity.

C. Resummation of large logarithms

The next important step is the resummation of the large
logarithms or, equivalently, the solution for the evolution of
the SCETI operators. As we described above, we expect
that the scale for the remaining hard-collinear subprocesses
is of order �Q. Therefore it is natural to set the factoriza-
tion scale�2 to be of order�Q. However, we then obtain in
pQCD large logarithms lnQ2=�2 which must be resummed
to all orders. Such resummation can be easily performed
with the help of the renormalization group (RG) and has
been carried out for many applications. We therefore only
briefly describe the main steps and provide the final results.
We start our discussion from the coefficient function CA

in front of the LO operator, Eq. (90). The corresponding
RG equation reads

d

d ln�
CAðQ;�Þ ¼ CAðQ;�Þ~�ð�sÞ;

CAðQ;� ¼ QÞ ¼ 1þOð�sÞ:
(93)

The anomalous dimension ~�ð�sÞ is defined by renormaliza-
tionof the operatorOA (see, e.g., [38]). It iswell known that to
all orders the anomalous dimension ~� can be represented as

~�ð�sÞ ¼ ��cuspð�sÞ ln�
2

Q2
þ �ð�sÞ; (94)

where the coefficient in front of the logarithm in Eq. (94) is
known as the universal cusp anomalous dimension, and con-
trols the leading Sudakov double logarithms. Such specific
term is usual when Sudakov logarithms appear for the quan-
tity under consideration. The single-logarithmic evolution is
controlled by the �ð�sÞ.
The solution of Eq. (93) provides a systematic resum-

mation of large logarithms in pQCD. In order to find CA in
the next-to-leading logarithmic (NLL) approximation,

CNLL
A � exp

�X
an�

n
s ln

nþ1 þ bn�
n
s ln

n

	
; (95)

one needs to know the 2-loop cusp anomalous dimension
�0;1 and the leading-order term �1:

�cuspð�sÞ ¼ �sð�Þ
4�

�0 þ
�
�sð�Þ
4�

�
2
�1 þ . . . ;

�ð�sÞ ¼ �sð�Þ
4�

�1 þ . . . ;
(96)

where [38,46]

�0 ¼ 4CF; �1 ¼ 4CF

��
67

9
� �2

3

�
CA � 10

9
nf

�
;

�1 ¼ �6CF: (97)

The explicit NLL solution reads

CNLL
A ðQ;�Þ ¼ e�SðQ;�h;�ÞUAð�h;�Þ½1þOð�sð�hÞÞ�;

(98)
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where

SðQ;�h;�Þ¼��0

�0

lnrln
�h

Q
þ �0

2�2
0

�
4�

�sð�hÞ
�
lnr�1þ1

r

�

� �1

2�0

ln2rþ
�
�1

�0

��1

�0

�
½r�1� lnr�

�
; (99)

UAð�h;�Þ ¼ r��1=2�0 ; (100)

with r ¼ �sð�Þ=�sð�hÞ> 1 and �-function coefficients

�0 ¼ 11

3
CA � 2

3
nf;

�1 ¼ 34

3
C2
A �

�
10

3
CA þ 2CF

�
nf:

(101)

In Eq. (98) we assume that evolution is running from the
initial scale �h (which should be of order Q) to scale � of

order ðQ�Þ1=2.
A similar technique can also be used for the subleading

operator of Eq. (91). Notice that in this case our calculation
also provides the practical check for the existence of the
convolution integral in Eq. (89). If it does not exist then our
suggestion about the factorization must be reconsidered.

In order to find the anomalous dimension one has to
compute the diagrams shown in Fig. 5. The operator RG
equation reads

�
d

d�
OR½�� ¼ �

Z
d�0�½�; �0�OR½�0�;

with the evolution kernel �½�; �0�:

�½�; �0� ¼
�
��ð�� �0Þ�cusp½�s� ln

�
�2

Q2

�
þ �s

�
V½�; �0�

	
;

(102)

where (cf. [40])

V½�; �0� ¼ ��ð�� �0Þ
�
CF

�
5

2
� ln ��

�
þ CA

2
ln
��

�

�

� CA

2

�
ð� < �0Þ
ð�0 � �Þ þ

ð�0 < �Þ
ð�� �0Þ

�
þ

þ
�
CF � CA

2

��
�0

��0
ð�0 < ��Þ þ ð �� < �0Þ ��

�

�

þ CF ��� CA

2

�
ð� < �0Þ ��

�0

�
�0

��
� 3

2

�

þ ð�0 < �Þ ��
��0

�
3

2
� ��0

�
� 1

��

��
; (103)

where the prescription ½. . .�þ is defined for the symmetrical
kernel fð�; �0Þ ¼ fð�0; �Þ as

½fð�; �0Þ�þ ¼
Z

�0fð�; �0Þ½�ð�0Þ ��ð�Þ�:
Computing the convolution integral with the LO CB½��¼1
yields the well defined expression,Z 1

0
d�0V½�0; �� ¼ �

�
2CF � 3

8
CA

�
¼ ��B; (104)

which does not depend on �. Hence we can conclude that
the leading logarithmic convolution integral in Eq. (89) is
also well defined.
The corresponding RG equation for the coefficient func-

tion reads

�
d

d�
CBð�;Q;�Þ ¼ ��cusp½�s� ln

�
�2

Q2

�
CBð�;Q;�Þ

þ �s

�

Z 1

0
d�0V½�0; ��CBð�0; Q;�Þ:

(105)

Similar equations have been studied already in heavy-light
decays (see, e.g., Refs. [45,47]). The NLL solution of this
equation can be written as

CNLL
B ð�;Q;�Þ ¼ e�SðQ;�h;�Þ

Z 1

0
d�0U½�; �0;�h;��

� Cð0ÞB ð�0; Q;�hÞ; (106)

where the evolution kernel satisfies the integro-differential
equation

�
d

d�
U½�;�0;�h;�� ¼ �s

�

Z 1

0
d�00V½�00; ��U½�00; �0;�h;��

(107)

with initial condition U½�; �0;�h;�h� ¼ �ð�� �0Þ. Recall
that, in order to sum the large logarithms, the initial scale
�h should be of order Q, and the evolution ends at � of

order ð�QÞ1=2. The Sudakov factor SðQ;�h;�Þ is the same
as in Eq. (99). Taking into account that at NLL approxi-

mation the initial condition Cð0ÞB ð�0; Q;�hÞ is given by the
tree-level expression Eq. (92), one can perform the inte-
gration over �0 in Eq. (106), yielding

s

s

FIG. 5. One-loop diagrams required for renormalization of the
three-particle SCETI operator. As before, soft gluon lines in-
dicated by an index s. The wave function renormalization
diagram is not shown for simplicity.
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CNLL
B ð�;Q;�Þ ¼ e�SðQ;�h;�ÞUB½�;�h;��; (108)

with

�
d

d�
UB½�;�h;�� ¼ �s

�

Z 1

0
d�0V½�0; ��UB½�0;�h;��

(109)

and UB½�;�h;�h� ¼ 1. The solution of this equation can
be found numerically. We have found that to a very good
accuracy the approximate solution can be written as

UB½�;�h;�� � U
app
B ½�h;�� ¼

�
ln½�h=�

ðnfÞ�
ln½�=�ðnfÞ�

�
2�B=�0

(110)

with effective anomalous dimension �B defined in

Eq. (104) and with soft scale �ðnfÞ used for calculating
the running coupling�s. To avoid confusion let us note that
the soft scale � which we used to define the hard-collinear

scale �Q� is different � � �ðnfÞ. This difference
provides the slow dependence on Q in the approximate

solution of Eq. (110). In Fig. 6 we show UB½�;Q;
ffiffiffiffiffiffiffiffi
Q�

p �
computed for different values of Q and � and compare it
with the approximate solution Uapp

B . We obtained that for
all considered cases to a very good accuracy the kernel
does not depend on the momentum fraction � and evolves
quite slowly with respect to Q according to (110). At the
end let us note that the similar approximate solution for the
single-logarithmic evolution was also found for the heavy-
light current in Ref. [47].

The obtained results already lead to some qualitative
features when applying this formalism to the proton FFs, as
will be discussed in the next section.

IV. QCD FACTORIZATION AT LEADING ORDER
USING THE SCET APPROACH

In this section, we consider the matching on SCETII and
discuss the factorization formula for the soft rescattering
mechanism. We perform an analysis of the dominant re-
gions using the methods of the effective theory. We restrict

our consideration only to the terms relevant at leading
logarithmic approximation both at SCETI and SCETII

levels. The general, all order analysis is much more com-
plicated and goes beyond our present considerations.
However, using the results obtained above, we suggest a
leading-order factorization formula (i.e., restricted by lead-
ing logarithms) for the Dirac FF F1 which includes soft and
hard rescattering contributions.
In this section we would like to demonstrate that the soft

rescattering contribution can be estimated in SCET using
the counting rules (73)–(75) without direct calculation of
the diagrams as we did before. Such counting is an im-
portant ingredient of a factorization proof and can be
considered as a quite general argument in support of the
nontrivial soft rescattering contribution.
In addition to the field relations, we also need the

counting of the energetic (collinear) hadronic state. It reads

jpci � ��2; (111)

and follows from the conventional normalization (13).
Let us start from the well known hard rescattering

picture. From existing results one can easily obtain

hp0jJ�?jpi �
Q!1 �N0��

?NF1 � �N0��
?N

f2N
Q4
� �N0��

?N�8;

(112)

and

hp0; �0jJ�k jp; �i ¼
ðpþ p0Þ�

mN

�N01̂NF2ðQ2Þ

�Q!1 Q

mN

f2Nm
2
N

Q6
�N01̂N � �N01̂N�10; (113)

where the nonperturbative scale is presented by the nu-
cleon massmN �� and the overall normalization constant
for the nucleon distribution amplitudefN ��2.
The same counting in SCET is obtained directly from

the dimensional analysis of the leading operators con-
structed from the collinear and soft fields, which represent
the main degrees of freedom of SCETII. However,

FIG. 6 (color online). Left panel: numerical evaluation of the evolution kernel UB½�;Q;
ffiffiffiffiffiffiffiffi
Q�

p � as a function of � at fixed Q2. Right

panel: UB½�;Q;
ffiffiffiffiffiffiffiffi
Q�

p � as a function of Q at fixed � ¼ 0:5 for two different values of � (solid curves). The approximate solution
U

app
B ½�h;�� of Eq. (110) is shown by dotted (blue) curves.
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difficulties arise due to nonlocal contributions with inverse
powers of 1=� momenta if one computes time-ordered
products involving SCETI fields. We shall follow the strat-
egy suggested in Refs. [48,49]. Then matching onto
SCETII,

SCETI½p2
hc�Q�;k2s��2� !�2�Q�

SCETII½p2
c��2;k2s��2�

(114)

can be performed in two steps: decoupling the soft fields
from the hard-collinear modes using field redefinitions
expressed by Eq. (80), and subsequently matching hard-
collinear modes to collinear ones,

f
0ð0Þhc ; A0ð0Þhc ; 
ð0Þhc ; A
ð0Þ
hc g ! f
0c; A0c; 
c; Acg; (115)

lowering the off-shellness of the external hard-collinear
fields. Notice that the last step changes the power counting
of the fields from Eq. (73) to Eq. (74).

In the case of the hard rescattering we perform the
matching of QCD directly onto SCETII. Therefore, the
power counting is simple because it does not involve the
intermediate effective theory.

Matching for the Dirac FF F1 involves the six-quark
operator constructed only from the collinear fields 
0c, 
c

and Wilson lines with longitudinal collinear gluons �n 	 A0
and n 	 A, respectively. It is the product of two twist-3
3-quark operators which define the leading twist nucleon
DA (14). Then using (74) one obtains

hp0jJ�?jpiðhÞ � hp0j �
0c �
0c �
0cj0i � C�
?ðQÞ � h0j
c
c
cjpi

� �8 �N0��
?N: (116)

For the helicity flip FF F2, the matching involves the
product of twist-3 and twist-4 operators, as we discussed
in Sec. III. Schematically this situation can be described by
substituting 
c ! �c � 
c=Q. Then

hp0jJ�k jpiðhÞ � hp0j �
0c �
0c �
0cj0i � C�
k ðQÞ � h0j�c
c
cjpi

� ðnþ �nÞ��10 �N01̂N (117)

� �12 ðpþ p0Þ�
m

�N01̂N; (118)

and we obtain that F2 is suppressed as 1=Q2 relative to F1

as it should be.
In order to estimate the soft rescattering contribution one

has to perform a more complicated analysis with the two-
step matching: QCD! SCETI ! SCETII. The matching
onto SCETI has been done in Sec. IV and for the electro-
magnetic current at leading order it yields the formula
Eq. (89). In matching onto SCETII we need at least six
collinear quarks in order to have overlap with the in and out
nucleon states. Next, guided by the perturbative QCD
calculations from Sec. II we need higher order vertices

LðnÞ
q in order to describe the soft spectators in the inter-

mediate state.

A. Leading-order SCET analysis for Dirac FF F1

Let us start with a discussion for the FF F1. To leading
order in 1=Q we can restrict our consideration by the first
term in Eq. (89). Therefore our task is to compute the time-
ordered product which contributes to the matrix element

hp0jJ�?ð0ÞjpiðsÞ ’ hp0jTfCAO
�?
A e

iLð �nÞ
SCETI

þiLðnÞ
SCETI

þiLsgjpi:
(119)

The calculations amount to integrating out hard-collinear
modes and, if possible, to deriving the expression for the
vector current J�? in terms of SCETII collinear and soft

fields which can be schematically written as

TfCAO
�?
A e

iLð �nÞ
SCETI

þiLðnÞ
SCETI

þiLsg
’ CA Tr½��

?TfOoutð’0cÞeiLð �nÞc g � J0 � TfSð’sÞeiLsg�
J � TfOinð’cÞeiLðnÞc g�; (120)

where J and J0 are jet functions, LðnÞc denotes the collinear
Lagrangian, Tr denotes contractions over the Dirac and
color indices which are not shown explicitly, and where we
used the notation ’c;s � f
c;s; Ac;sg. We also assumed that

the collinear operators Oin;out have nontrivial overlap with

nucleon states. The Dirac matrix ��
? is associated with the

vertex of the OA operator. It is clear that the existence of
the factorized representation (120) is equivalent to estab-
lishing the factorization theorem. Guided by our QCD
analysis, carried out in Sec. II, we demonstrate below
that at leading order in 1=Q such a contribution definitely
exists. For simplicity, we restrict our consideration to a
leading-order analysis in �s, and consider it as a first step
towards a complete proof.
Obviously, the time-ordered product in the left hand side

of (120) can be represented as the product of two:

Tf. . .g ¼ Tð �
0hcW 0ð0ÞeiL
ð �nÞ
SCETI Þ��

?TðW
hcð0ÞeiL
ðnÞ
SCETI Þ

� Tout�
�
?Tin; (121)

where we ‘‘freeze’’ the soft fields, i.e., consider them as
external. As the calculations of each of the T products are
almost identical, we only consider one of them. The result
of the integration over hard-collinear modes can be sche-
matically written as

Tout ¼ Tð �
0hcW 0eiL
ð �nÞ
SCETI Þ ’ �
0c �
0c �
0c � J0 � qq; (122)

where the last equation shows the desired structure in terms
of collinear and soft fields. Combining such results for Tin

and Tout we obtain desired representation (120).
Let us now consider in details the calculation of the

right-hand side of Eq. (122). The relevant T product is of
order �3 and to leading order in �s reads
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Tout � Tð3Þout ’
Z

d4x1
Z

d4x2
Z

d4x3

� Tð �
0hcW 0ð0Þ;Lð1Þ
qðx1Þ;Lð1Þ
qðx2Þ;Lð0Þ
 ðx3ÞÞ; (123)

where Lð1Þ
q is the leading-order soft collinear contribution

in Eq. (78). We did not find the other possibilities to obtain
the leading in the 1=Q result. Time-ordered products with

insertions of other higher order contributions LðnÞ
q with

n  2 from the collinear or soft collinear sectors can
provide only suppressed operators in SCETII and therefore
can be excluded from the consideration. Performing a
decoupling of the soft field with the help of Eq. (80) we
obtain

�
0hcW 0ð0Þ ! �
0ð0Þhc W 0ð0ÞSyn ð0Þ;
Lð1Þ
qðxÞ ! �
0ð0Þhc iD̂?W½Syn ðx�Þqðx�Þ�:

(124)

The eikonal factors Syn ensure the gauge invariance of the
soft sector described by the soft quark fields. Subsequently,
we compute the contractions of the hard-collinear fields
which can be conveniently presented by Feynman graphs.

The leading-order contribution to Tð3Þout is given by the set of
diagrams shown in Fig. 7. Note that the last two diagrams
with the three-gluon vertex have zero color factor and
therefore do not contribute. This is in full agreement with
the similar observation made in Ref. [12]. The remaining
diagrams have a similar topology and the corresponding
power counting can be easily established. The contractions
of the hard-collinear fields yield

Z
d4x1hA�

hc?ðx1ÞA�
hc?ðx2Þi

�
Z

d4x2hð �n 	 AhcÞðx2Þðn 	 AhcÞðx3Þi � ��2; (125)

Z
d4x3h �
hcðx1Þ
hcðx3Þi � ��2; (126)

i.e., all hard-collinear contractions cost ��2, which results
from the hard-collinear propagators in momentum space.
Remember that we assume that external hard-collinear
particles are matched onto collinear ones. Therefore taking
into account the external collinear and soft fields we obtain

Tð3Þout � ��2��2��2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
h-coll contractions

� �3�3|{z}
2 soft fields

� �2�2�2|fflfflffl{zfflfflffl}
3 coll fields

� �6: (127)

The same counting is relevant also for the second time-
ordered product in Eq. (121). Therefore the order of the
total contribution in SCETII now reads

hp0jJ�?jpiðsÞ � Tð3Þout � Tð3Þin � ��4 �N0��
?N � �8 �N0��

?N:

(128)

We observe that the soft rescattering contribution has the
same power suppression as the hard one [Eq. (116)].
Let us briefly discuss the general structure of the soft

rescattering contribution. It is clear from the above con-
sideration that the leading-order jet functions can be com-
puted from the diagrams in Fig. 7. The details of their
calculations and explicit expressions will be presented in
a different publication [50]. From the QCD calculation, we
noticed that at tree level the transverse momentum is
completely defined by external soft and collinear fields
and therefore it scales as k? �Q�2. Such a counting ratio
remains true for the hard-collinear lines inside diagrams
due to the momentum conservation. Therefore the trans-
verse components in the hard-collinear propagators (for
tree diagrams only) can be neglected. Consequently, the
arguments of the external collinear and soft fields are local
in transverse space4 and depend only on the relevant light-
cone components. In SCET the same properties follow
from the multipole expansion of the fields with respect to
the small parameter �. Therefore computing the diagrams
in Fig. 7 and passing to momentum space one obtains

Tð3Þout ’
Z

DyiOoutðyiÞ
Z

d!1;2J
0ðyi; !iQÞSnð!iÞ; (129)

with the following collinear and soft operators:

OoutðyiÞ ¼ 4
Y3
i¼1

Z dẑþi
2�

e�ði=2ÞðP0	 �nÞðy1zþ1 þy2zþ2 þy3zþ3 Þ"ijk �
0c

�W 0ic
�
1

2
zþ1 �n

�
�
0cW

0j
c

�
1

2
zþ2 �n

�
�
0cW 0kc

�
1

2
zþ3 �n

�
;

(130)

and

S nð!iÞ ¼ "i
0j0k0

Z dz�1;2
2�

eði=2Þð!1z
�
1
þ!2z

�
2
Þ½Syn ð0Þ�k0l

�
�
Syn

�nn

4
q

�
1

2
z�1 n

��
j0�

Syn
�nn

4
q

�
1

2
z�2 n

��
k0
;

(131)

FIG. 7. Leading-order SCET diagrams required for the calculation of jet functions. The inner dashed and curly lines denote hard-
collinear quarks and gluons, external dashed lines correspond to collinear quarks, fermion lines with crosses denote soft quarks. Black
squares denote the vertex of the SCETI operator.

4We choose x ¼ 0 in (119) that correspond to x? ¼ 0.
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where we do not show for simplicity the spinor indices,
P0 denotes the total collinear momentum operator, z�i �ðzi 	 �nÞ, zþi � ðzi 	 nÞ, and dẑþi � dzþi Q. The structure for

Tð3Þin can be obtained in an analogous way. Combining these

results we obtain operator expression with structure (120)
which schematically can be written as

TfCAO
�?
A g ’ CA Tr½��

?OoutðyiÞ � J0½yi; !iQ� � fS �nSng�
J½xi; �iQ� �OinðxiÞ�: (132)

Substituting these results into the matrix element of
Eq. (119) and taking account of the decoupling of the
collinear and soft modes (see, e.g., [28,48]), one obtains
three matrix elements: two with the collinear fields and the
soft correlation function. The collinear matrix elements
can be easily converted into DAs (14):Z
Dyihp0jOoutðyiÞj0iJ0ðyi;!iQÞ¼

Z
Dyi�

0ðyiÞJ0ðyi;!iQÞ:
(133)

Rewriting the initial matrix element h0j
c
c
cjpi �� in
the same way and combining all contributions, we obtain
the factorization formula for the soft rescattering
contribution:

FðsÞ1 ðQ2Þ ’ CAðQ;�IÞ
Z

Dyi�
0ðyi; �IIÞ

�
Z 1
0

d!1d!2J
0ðyi; !iQ;�I; �IIÞ

�
Z

Dxi�ðxi; �IIÞ

�
Z 1
0

d�1d�2Jðxi; �iQ;�I; �IIÞSð!i; �i;�IIÞ;
(134)

where the soft correlation function is defined as

S ð!i; �i;�IIÞ ¼
Z d�1

2�

Z d�2

2�
e�i�1�1�i�2�2

Z d�1

2�

�
Z d�2

2�
ei�1!1þi�2!2h0jOSð�i; �iÞj0i;

(135)

with the operator

OSð�i;�iÞ¼"i
0j0k0 ½Syn ð0Þ�i0l

�
Syn

�nn

4
qð�1nÞ

�
j0

	

�
�
Syn

�nn

4
qð�2nÞ

�
k0

�
"ijk½S �nð0Þ�li

�
�
�q
�nn

4
S �nð�1 �nÞ

�
j

�

�
�q
�nn

4
S �nð�2 �nÞ

�
k

�
; (136)

which is shown graphically in Fig. 8. In the last equation
we assume �qS �nð�2 �nÞ ¼ �qð�2 �nÞS �nð�2 �nÞ, and the color and
Dirac indices are shown explicitly. Furthermore in
Eq. (134), CA denotes the hard coefficient function which
has been computed in the leading-order approximation
(92).

In Eq. (134) we show explicitly two factorization scales
�I and �II. The total contribution, as usually, does not
depend on these auxiliary quantities. The first scale �I

arises at the matching QCD to SCETI. The evolution
equations at leading logarithmic approximation with re-
spect to �I were discussed above. In practical applications
it is convenient to fix this scale at the value�2

I ’ �Q. Then
the large logarithms ln½Q2=�2

I ] can be resummed solving
RG equations. The second scale �II appears when one
performs the second reduction to SCETII. Usually, the
corresponding coefficient functions (¼ jet functions J0
and J ) are computed at �2

II ’ �Q and then the scale is
fixed to be �2

II ’ �2. Again, arising large logarithms
ln½Q�=�2

II� must be resummed with the help of evolution
equations for nucleon DAs �ðxi; �IIÞ and CF
Sð!i; �i; �IIÞ. The evolution of the DAs is well studied in
the literature (see, e.g., Refs. [9,10,51] for recent progress)
but the corresponding equation for Sð!i; �i; �IIÞ is new and
has not been derived before. Such a calculation must be
done because it will provide an important check of the
factorization formula (134) at leading logarithmic accu-
racy. A derivation of the jet functions and evolution kernel
for Sð!i; �i; �Þ will be presented in a separate publication
[50]. In Appendix B to this paper we demonstrate how the
perturbative QCD result of Eq. (48) is reproduced from the
corresponding SCET diagram in Fig. 7.
It turns out that the product of the nucleon DA and

jet function has the same Dirac and color structure as
�0ðyiÞ (16):

Jðxi; !iÞ�ðxiÞ ¼ �Vðxi; !iÞpþ
�
1

2
�nC

�
��
½�5N

þ�	

þ�Aðxi; !iÞpþ
�
1

2
�n�5C

�
��
½Nþ�	

þ�Tðxi; !iÞpþ
�
1

2
�n�?C

�
��
½�?�5N

þ�	;

(137)

where the coefficients �Xðxi; !iÞ are linear combinations
of the nucleon DAs (16) and hard-collinear jet functions,

�Xðxi; !iÞ ¼ JXVðxi; !iÞVðxiÞ þ JXAðxi; !iÞAðxiÞ
þ JXTðxi; !iÞTðxiÞ: (138)

1

2

1 j
0

i

2 k

l l

FIG. 8. Graphical representation of the operator of Eq. (136)
entering the soft correlation function. Dashed and dotted lines
denote the different light-cone directions.
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Therefore, the jet function can be interpreted as a hard-
collinear component of the three-quark nucleon wave func-
tion describing the transition of the three collinear quark
state into configuration with one hard-collinear and two
soft quarks. Correspondingly, the CF Sð!i; �i; �IIÞ (135)
describes the propagation of the soft diquark state in
the background of the soft-gluon field created by a fast
moving active quark; i.e., it describes the soft overlap of
the nucleon wave function. Therefore we expect that the
soft rescattering picture can also be associated with the
well-known mechanism, suggested by Feynman a long
time ago [16].

In the factorization formula of Eq. (134) we restricted
the fractions !i and �i to be defined on the real semiaxis,
assuming that all the functions in (134) are real functions.
This allows us to avoid the poles in the propagators of the
tree diagrams in Fig. 7 and ensures that the jet functions are
real. Recall, that the reality of the nucleon form factors is
guaranteed by the time reversal invariance of QCD.

The other interesting observation which follows already
from the QCD computation (48) is the absence of the
end-points singularities in the convolution integrals of
DAs with jet functions in Eq. (137). Let us assume that
the convolution integrals with respect to the soft fractions
!i, �i in (134) are also well defined. Then this allows us to
suggest that the hard rescattering and the soft rescattering
mechanisms provide additive contributions to the total FF
F1 at least to leading logarithmic accuracy,

F1 ’ FðsÞ1 þ FðhÞ1 ; (139)

with the well known expression for the hard rescattering

part: FðhÞ1 ¼ � �H ��. Recall that the convolution inte-

grals for FðhÞ1 at leading logarithmic accuracy are also well

defined. Hence we may conclude that there is no double
counting in this case. The formula of Eq. (139), together
with the result of Eq. (134), is our suggestion for the full
factorization formula for the Dirac FF at large Q2. We
would like to emphasize that the obtained results have
been derived at leading order and only partially verified
at the leading logarithmic approximation. A discussion of
an all order factorization proof for Eqs. (134) and (139)
requires more detailed analysis and goes beyond this
publication.

B. Leading-order SCET analysis for Pauli FF F2

In contrast to F1, the description of the Pauli FF F2 is
more complicated. First, it is well known that hard gluon
exchange can produce large logarithms,

FðhÞ2 ¼� �H �� � �2
s ln

2Q2=�2; (140)

which arise due to the end-point singularities in the con-
volution integrals [52]. This is perhaps an indication that
the hard and soft rescattering mechanisms overlap.
Therefore, in order to find the correct description for F2

one has to formulate a clear recipe for how to avoid double
counting in the calculation of soft and hard rescattering
contributions. Such a problem for F2, probably, arises al-
ready at the level of matching QCD to SCETI. However,
our analysis from the previous section does not show any
problems with the SCETI convolution integrals for the
coefficient function CB [see, e.g., Eq. (104)]. Moreover,
resummation of the leading Sudakov logarithms can be
carried out exactly because the problematic logarithms
(140) admix only at the next-to-leading accuracy. The
structure of the logarithms beyond the leading order is an
important subject which remains to be established for a full
proof of the factorization theorem. As a first step in this
direction, we demonstrate here that the SCET counting
rules confirm the power suppression of the soft rescattering
contribution in F2 obtained from the QCD calculation in
Sec. II.
For this purpose, the relevant part of the SCETI vector

current follows from Eq. (89) as

J�k ð0Þ ¼ �
1

Q
ðn� þ �n�Þ

Z 1

0
d�ð �
0hcW 0Þ½A0

?ð�Þ

þA?ð�Þ�ðWy
hcÞ; (141)

withA0
?ð�Þ þA?ð�Þ as given in Eq. (91). For the quali-

tative discussion we consider the first term withA0
? only.

Following the similar arguments as before we arrive at an
analysis of time-ordered products:

TfJ�k ð0ÞeiL
ð �nÞþiLðnÞ g ¼ �n�

ð �n 	 @ÞT
ð4Þ
outT

ð3Þ
in þ . . . ; (142)

Tð4Þout ¼ Tfð �
0hcW 0Þð0ÞA0
?ð0ÞeiL

ð �nÞ g;
Tð3Þin ¼ TfðWy
hcÞð0ÞeiLðnÞ g: (143)

To obtain Eq. (142) we converted (141) into position space
and for simplicity wrote explicitly only the term� �n�. The

second term Tð3Þin in Eq. (143) is the same as the one

appearing in F1. Hence we only have to consider the new

term Tð4Þout. Consider the following contribution:

Tð4Þout ’ T

�
�
0cð0ÞA0

hc?ð0Þ
Z

dx1L
ð1Þ

qðx1Þ

Z
dx2L

ð0Þ


ðx2Þ

�
Z

dx3L
ð1Þ

qðx3Þ

�
(144)

’ T

�
�
0cð0ÞA0

hc?ð0Þ;
Z

dx1 �

0
hcAhc?qðx1Þ;Z

dx2 �

0
cðn 	 AhcÞ
hcðx2Þ;

Z
dx3 ��

0
cð �n 	 AhcÞqðx3Þ

�
;

(145)

where we substituted the small component
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��0c ¼ �
0ci 6D
 
?cði �n 	D

 
cÞ�1 �n

2
’ �
0cgÂc?ði �n 	 @

 Þ�1 �n

2
: (146)

The presence of the small component ��0c can be explained
by interaction with the longitudinal photon. The outgoing
collinear state must have one collinear transverse gluon or
transverse derivative in order to satisfy conservation of the
orbital momentum. Contracting the hard-collinear fields
in Eq. (145) one obtains the diagram as in Fig. 9. Using
Eqs. (125) and (126) one easily obtains

Tð4Þout � �3�3|{z}
2 soft fileds

� �2�2�4|fflfflffl{zfflfflffl}
3 coll fields

� ��2��2��2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
h-coll contractions

� �8: (147)

Then the total contribution reads

hp0jJ�k jpi � Tð4Þout � Tð3Þin � ��4ðnþ �nÞ� �N 1̂N (148)

��6�8��4ðnþ �nÞ� �N 1̂N��10ðnþ �nÞ� �N 1̂N; (149)

i.e., we obtained the same result as in the case of the hard
rescattering mechanism (118). In the Appendix B we dem-
onstrate that the diagram in Fig. 9 reproduces the QCD
expression for J0 from Eq. (68). However, contrary to the
Dirac FF, the convolution integral with respect to the col-
linear momentum fraction �0 � J0 is not defined due to the
end-point divergencies. Therefore we assume that the
matching onto SCETII for the Pauli FF F2 cannot provide
a well defined expression. As we discussed above, even
matching onto SCETI, one is faced with the mixing prob-
lem between hard and soft rescattering contributions.

V. PHENOMENOLOGICAL APPLICATION
TO THE NUCLEON FFS

In order to perform a phenomenological analysis we
introduce SCETI form factors defined as the following
nucleon matrix elements,

hp0jð �
0qW 0Þ��
?ðWy
qÞjpiSCETI

¼ �Nðp0Þ �nn
4
��
?
�nn

4
NðpÞfq1 ðQI;�Þ

� �N0þ�
�
?Nþf

q
1ðQI;�Þ; (150)

and

hp0jOB½��jpiSCETI
¼ �N0þ1̂NþðpÞ

mN

2
fq2 ð�;QI;�Þ; (151)

with the operator OB½�� defined in Eq. (91). We also used

the notation QI �
ffiffiffiffiffiffiffiffi
Q�

p
in order to stress that the defined

quantities do not depend on the large scaleQ2. We indicate
explicitly in the right-hand side of Eqs. (150) and (151) the
renormalization scale dependence. Definitions given in
Eqs. (150) and (151) are illustrated in Fig. 10.
Taking the nucleon matrix element from both sides of

Eq. (89), we obtain

FðsÞ1 ðQ2Þ ¼ CAðQ;�IÞ
X
q

eqf
q
1 ðQI;�Þ

¼ CAðQ;�Þf1ðQI;�Þ; (152)

FðsÞ2 ðQ2Þ ¼ m2
N

Q2

Z 1

0
d�CBð�;Q;�ÞX

q

eqf
q
2 ð�;QI;�Þ

¼ m2
N

Q2

Z 1

0
d�CBð�;Q;�Þf2ð�;QI;�Þ: (153)

Using NLL approximation for the coefficient functions
(98) and (108) these results can be represented as

FðsÞ1 ðQ2Þ ’ e�SðQ;�h;�IÞUAð�h;�IÞf1ðQI;�IÞ; (154)

FðsÞ2 ðQ2Þ ’m
2
N

Q2
e�SðQ;�h;�IÞ

Z 1

0
d�UB½�;�h;�I�f2ð�;QI;�IÞ;

(155)

where the scale�I ’ QI �
ffiffiffiffiffiffiffiffi
�Q

p
. From the right-hand side

of Eqs. (154) and (155) one can see that the SCET1 FFs f1;2
depend now only on the hard-collinear scales. All depen-
dence from the large scale of order Q2 is factorized into

Sudakov factors e�SðQ;�h;�IÞ. This is the main feature of the
Feynman mechanism. We could expect that the hard scat-
tering contribution in F1 provides corrections of order
�nþ2
s lnnQ2=�2 which are suppressed relative to the con-

tributions computed in Eq. (154), and therefore can be
neglected:

F1ðQ2Þ ’ FðsÞ1 ðQ2Þ: (156)

In the case of the Pauli FF F2, the situation is more
delicate due to a possible overlap of hard and soft rescat-
tering terms. From the calculations of the hard scattering

FIG. 9. SCET diagram for matching the quark-gluon hard-
collinear state onto three collinear quarks for Pauli FF. The
small component ��0c is shown as a quark gluon state �
0cAc?.

FIG. 10. Graphical representation of the SCET1 FFs f1 (left
panel) and f2 (right panel). In f2, � corresponds with the gluon
momentum fraction.
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contribution [52], one obtains, due to the end-point singu-
larities, contribution of order �2

s ln
2Q2=�2. Such loga-

rithms are of the same accuracy as next-to-leading
Sudakov or single logarithms in Eq. (155). Therefore,
Eq. (155) is exact only at the level of leading Sudakov
logarithms. Beyond this accuracy one has to perform a
more accurate analysis in order to avoid double counting.
For a first numerical estimate, we shall neglect the hard
scattering contribution in F2 assuming

F2ðQ2Þ ’ FðsÞ2 ðQ2Þ: (157)

Such an approximation, perhaps, may work if Q2 is not
very large, of order a few GeV2, and one may expect that
the dominant contribution is provided by the soft spectator
contributions of Eqs. (154) and (155).

First, it is interesting to investigate how strong suppres-
sion is obtained from the resummed Sudakov logarithms.
In Fig. 11 we demonstrate the results for the leading

Sudakov logarithm factor e�SðQ;�h;�IÞ taking �h ¼ Q and

�I ¼
ffiffiffiffiffiffiffiffi
�Q

p
. We use two different values for the soft scale

� ¼ f0:4; 0:6g GeV and consider Q2 ¼ 4–16 GeV2.
For our numerical estimate, we used formula Eq. (99)
with the two-loop running coupling [Nf ¼ 4 and

�sð2 GeVÞ ¼ 0:31]. We observe that the Sudakov factor
provides a reduction of around 10%–25% depending on the
choice of�, and changes quite slowly in the given range of
Q2. Therefore we can conclude that the soft spectator
scattering contribution may provide quite a substantial
effect over an extended range of Q2 if the SCETI FFs
f1;2 are not too small.

However, the full next-to-leading evolution includes
also single logarithms described by the kernels UA;B. In

the case of F2, the evolution effect from UB½�;�h;�I� in
Eq. (155) is given by the approximate solution of Eq. (110)
and does not depend on the gluon momentum fraction �.
Using Eq. (110) we can write

FðsÞ2 ðQÞ ¼
m2

N

Q2
e�SðQ;�h;�IÞ

Z 1

0
d�UB½�;Q;�I�f2ð�;QI;�IÞ

� m2
N

Q2
e�SðQ;�h;�IÞUapp

B ½Q;�I�
Z 1

0
d�f2ð�;QI;�IÞ:

(158)

Therefore in the ratio F2=F1 the leading and next-to-
leading Sudakov logarithms cancel and we obtain that
this quantity depends only on the SCETI FFs:

Q2FðsÞ2
FðsÞ1

’ U
app
B ½Q;�I�
UA½Q;�I�

m2
N

R
1
0 d�f2ð�;QI;�IÞ
f1ðQI;�IÞ : (159)

The ratio of the kernels UA;B in Eq. (159) changes slowly,

for instance,

0:93�U
app
B ½Q;�I�
UA½Q;�I� � 0:95 for 4 GeV2 �Q2 � 16 GeV2

and �¼ 400 MeV: (160)

For largeQ values, when jQIj �
ffiffiffiffiffiffiffiffi
�Q

p ! 1 we expect the
asymptotic Q2F2=F1 ! const as it follows from SCET
counting rules. It is clear that such asymptotic behavior
could be reached only at very large values ofQ2. Therefore
it is not surprising that the ratio, measured recently up to
Q2 & 8:5 GeV2 [7], shows a behavior which drops less fast
in Q2, when compared with the expected power Q�2. For
such values of Q2 the ratio Eq. (159) is defined practically
only by the ratio of the SCET form factors f1;2 depending
on QI. But the hard-collinear scale in this region is ap-

proximately QI �
ffiffiffiffiffiffiffiffi
�Q

p ’ 0:9–1:3 GeV, i.e., quite small
in order to expect the asymptotic behavior.
We obtained that the effect from the Sudakov suppres-

sion in the region of moderate spacelike Q2 can be esti-
mated as �10%–25%. However the situation can be
different for timelike momenta q2 > 0. In this case, the
Sudakov factor after analytical continuation from space-
like to timelike region may produce a substantial enhance-
ment. Properties of the timelike processes have been
studied in many publications (see, for instance,
[24,53,54]). It is well known that analytic continuation of
the Sudakov FF to the timelike region produces enhanced
�2 terms. Such corrections were resummed for different
processes [53–55]. In order to perform such resummation it
was suggested to perform the matching at a timelike re-
normalization point ��2

h [55]. Then the timelike Sudakov

factor e�STL accumulates the large �2 contributions to-
gether with the Sudakov logarithms. Using this recipe we
must compute STL � S½�q2 � i";��h � i";�� in the
timelike region. This can be done with the help of analyti-
cal continuation of the running coupling which to our
accuracy reads [55,56]

FIG. 11. Effect on the FFs from the leading logarithmic (LL)
summation for different values of �.
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�sð�2Þ
�sð��2Þ ¼ 1� iað�2Þ þ �1

�0

�sð�2Þ
4�

ln½1� iað�2Þ�

þOð�2
sÞ; (161)

where að�2Þ ¼ �0�sð�2
hÞ=4�Oð1Þ for moderate values

of Q2.
Existing experimental data for the ratio RM ¼

jGMðq2Þj=GMðQ2Þ show a considerable enhancement of
timelike FFs over their spacelike counterparts: RM ’
1:5–2 over the range Q2 � 10 GeV2. Despite that the ex-
traction of the absolute value of the timelike FF jGMðq2Þj
involves considerable assumptions about the behavior of
the timelike electric FF GE and probably includes large
systematic errors, the timelike enhancement is considered
as a well established fact. In Ref. [24] it was suggested that
‘‘soft terms’’ accompanied by the Sudakov double loga-
rithms could play an important role in a so-called, K-factor
type enhancement to hadronic FFs in the timelike region.
Using the results of Eqs. (154) and (155) with resummed
Sudakov logarithms we can easily estimate such an effect
in our approach.

In order to study the qualitative effect of the SCETI

evolution we consider the ratio of the Dirac timelike (TL)
and spacelike (SL) FFs. Let us introduce

R1 ¼ jF1ðq2Þj
F1ðQ2Þ ’

je�STL j
e�SSL

jUTL
A j

UA

jf1ðqI; �IÞj
f1ðQI;�IÞ ; (162)

where we used qI in order to specify timelike momentum

transfer jqIj �
ffiffiffiffiffiffiffi
�q

p
in the numerator. We assume that the

soft spectator scattering mechanism dominates also in
timelike kinematics and appropriate quantities are related
by analytical continuation. At present we do not know the
SCET FFs f1;2. However, we can study the pQCD evolu-

tion effect from the resummed logarithms. In Fig. 12 we
demonstrate the TL to SL ratio je�STL j=e�SSL which repre-
sents the Sudakov logarithms in the ratio R1. One can see

that the obtained ratio je�STL j=e�SSL very weakly depends
on the choice of � and provides an almost 30%–40%
enhancement effect of the timelike FFs relative to their
spacelike counterparts. When we combine the Sudakov
evolution with the UA kernel of Eq. (100) we obtain the
results shown in Fig. 12 (right panel). We see that single
logarithms increase the ratio by 5%–8%. But this effect is
only a small fraction of the full evolution; i.e., non-
Sudakov logarithms cannot provide substantial enhance-
ment. Therefore we can conclude that the soft spectator
scattering mechanism plays an important role in the dis-
cussion of the timelike FFs. Sudakov logarithms appearing
in this case provide an important enhancement in the
region of moderate values of timelike momentum transfers
q2. This enhancement is in qualitative agreement with the
extracted absolute value jGMj. Moreover, taking account of
the simple relation of the pQCD evolution in the spacelike
and timelike regions, we can assume that the enhancement
in the timelike region suggests an additional, indirect con-
firmation of the dominance of the soft spectator scattering
mechanism in the spacelike region. This might be true if
the SCET FFs f1;2 are not modified very strongly after

analytical continuation from spacelike to timelike regions.

VI. CONCLUSIONS

In the present work, we studied the soft rescattering
contribution to the nucleon Dirac and Pauli FFs. This
work is motivated by phenomenological studies of nucleon
FFs suggesting that in the Q2 range 5–10 GeV2, the nu-
cleon FFs are not yet dominated by a hard scattering
mechanism involving three active quarks, interacting via
hard two-gluon exchange. In the soft rescattering picture
studied here, as first suggested by Feynman, the highly
virtual photon interacts with one active quark, whereas the
other spectator quarks remain soft. Such a picture is
characterized by two large scales: the hard scale Q2,

FIG. 12. Left panel: Contribution of the TL to SL ratio of Sudakov logarithms je�STL j=e�SSL as function of q2 for different choices of
�. Solid and dash-dotted curves correspond to LL approximation with � ¼ 400 and 600 MeV, respectively; dashed and dotted curves
describe next-to-leading approximation. Right panel: complete NLL evolution (including kernel UA) with � ¼ 400 MeV.
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representing the virtuality of the hard photon probe, and the
hard-collinear scale �Q (with � a soft scale of order
�0:5 GeV), corresponding to the virtuality of the active,
so-called hard-collinear quark.

By way of example, we started our investigation by
calculating within perturbation theory the soft rescattering
contributions to the nucleon FFs. Within such perturbative
calculation, the three collinear quarks in the initial nucleon
wave function are connected to the active hard-collinear
quark and two remaining soft quarks through (hard-
collinear) two-gluon exchange. Analogously, the hard-
collinear quark after the interaction with the hard photon
also scatters with the remaining two soft quarks through
(hard-collinear) two-gluon exchange. For the Dirac FF F1,
this analysis overlaps with previous work in the literature,
whereas for the Pauli FF F2 it has been performed for the
first time here. We have demonstrated that such a specific
two-loop contribution to the nucleon FFs gives the same
scaling behavior as the hard region, involving hard
two-gluon exchange, i.e., F1 � 1=Q4, and F2 � 1=Q6.
Furthermore, the perturbative calculation suggests a facto-
rization formula for the FFs in terms of nucleon distribu-
tion amplitudes, describing how the collinear quarks make
up the initial and final nucleon, a hard scattering process on
the active quark, and a soft correlation function describing
the propagation of the remaining two soft spectator quarks.

The specific perturbative calculation demonstrates that a
description of the soft rescattering mechanism could be
carried out in general in two steps. First, one integrates
over hard fluctuations (of order Q2), leaving only hard-
collinear virtualities (of order �Q) and soft virtualities (of
order �2). For large enough scale Q, such that �Q� �2,
one can then further use perturbation theory and also
factorize hard-collinear fluctuations leaving at the end
only collinear and soft modes, describing the soft QCD
dynamics.

The possibility of such a two-step factorization, with the
aim of developing a systematic approach of the soft con-
tribution in the case of nucleon form factors, was addressed
for the first time in this paper. A similar approach has also
been considered recently for inclusive cross sections in
[57]. The first step corresponds with the matching of full
QCD onto the soft collinear effective field theory at a
factorization scale �2

I ¼ Q2, and denoted by SCETI.

Technically, we have demonstrated this step by calculating
the leading-order hard coefficient functions in front of the
operators constructed from SCETI fields, corresponding
with the Dirac and Pauli FF structures. These leading-order
hard coefficient functions involve the emission of hard-
collinear transverse gluons, comoving with the active
quark. We subsequently resummed the large logarithms
of order � lnQ2=�2

I , which appear when evolving the

SCETI operators from the hard scale Q2 down to the scale
�2

I �Q�. Both for the leading e.m. current operator

structure, corresponding with the Dirac FF F1, and the

subleading operator structure, corresponding with the
Pauli FF F2, we solved the renormalization group equa-
tions for the corresponding coefficient functions, and ob-
tained the NLL solution. This provides a practical check
that to NLL accuracy the first-step factorization (so-called
SCETI factorization) for both F1 and F2 indeed holds.
We next discussed the further matching of the SCETI

theory to the effective theory involving only collinear and
soft particles (so-called SCETII), defined at a factorization
scale �2

II ¼ Q�. As a first step to arrive at such a full

factorization formula for the soft rescattering contribution,
we analyzed in this work the leading terms in the effective
theory. The factorization formula involves two so-called jet
functions, describing the amplitude for the transition of
three collinear quarks into a hard-collinear (active) quark
and two soft quarks; a soft correlation function describing
the soft rescattering of the two soft spectator quarks in the
background soft-gluon fields emitted by the hard-collinear
(active) quark; and the two nucleon distribution ampli-
tudes, describing how the three initial and final collinear
quarks make up the nucleons. The jet functions can be
computed performing the matching from SCETI operators
onto SCETII at the factorization scale �2

II ¼ Q�. Also

here large logarithms � ln�Q=�2
II arise, when we evolve

the factorization scale�2
II down to value of order�

2. They

can be resummed again using RG equations. We leave this
consideration to a future work.
For the Pauli FF F2 we also discussed that an analysis is

more involved as there may be a double counting between
the hard and soft rescattering mechanisms. Furthermore
the matching from SCETI onto SCETII does not yield a
well defined expression for the Pauli FF, due to end-point
singularities, which calls for a more refined treatment for
F2 in a future publication.
The SCETI factorization formulas allowed us already to

discuss some phenomenological consequences in this
work. For the soft rescattering contribution to the
Q2F2=F1 ratio, we found that the ratio of the next-to-
leading-order evolution kernels changes only by a few
percent in the rangeQ2 ’ 4–16 GeV2, and is mainly domi-
nated by SCETI FFs defined at a corresponding scale
Q2

I ��Q ’ 0:8–1:6 GeV2. Such a scale is quite small to

expect the asymptotic constant behavior. The experimental
data for the Q2F2=F1 ratio in this Q2 range indeed show
rising behavior, in agreement with the above analysis. A
second phenomenological consequence of our framework
was discussed for the ratio of the spacelike to timelike FF
F1. We showed that the resummed Sudakov logarithms
provide a 30%–40% enhancement to this ratio in the range
of momentum transfers q2 around 10 GeV2. This enhance-
ment is in qualitative agreement with the empirical ex-
tracted ratio for the absolute value of the dominant FF GM

in the timelike as compared to the spacelike region. A more
detailed phenomenological analysis requires us to parame-
trize the SCETI FFs, which is equivalent to using the
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SCETII factorization formula, and express them in terms of
DAs, jet functions, and a two-quark soft correlation func-
tion, as outlined in this work. Such an analysis remains a
challenge for a future work.

APPENDIX A: LEADING-ORDER
COEFFICIENT FUNCTIONS

Here we discuss in detail calculation of leading-order
hard coefficient functions. First, Eq. (87) can be rewritten
in compact form in momentum space,

�qð0Þ��qð0Þ ¼ tr½C�ðQ;�ÞOqð0Þ�
þ

Z 1

0
d� tr½C�

�n ð�;Q;�ÞOq
�nð�Þ

þ C�
n ð�;Q;�ÞOq

nð�Þ� þ . . . ; (A1)

where we used translation invariance and defined the
momentum space coefficients as

C�ðQ;�Þ ¼
Z

dŝ1dŝ2 ~C
�ðŝ1; ŝ2ÞeiðP0	 �nÞs2�iðP	nÞs1 ; (A2)

C
�
�n ð�;Q;�Þ ¼

Z
dŝ1dŝ2dŝ3e

�iðP	nÞs1eiðP0	 �nÞ�s3þiðP0	 �nÞ ��s2

� ~C
�
�n ðŝ1; ŝ2; ŝ3Þ; (A3)

C
�
n ð�;Q;�Þ ¼

Z
dŝ1dŝ2dŝ3e

iðP0	nÞs2e�iðP	nÞ�s3�iðP	nÞ ��s1

� ~C
�
n ðŝ1; ŝ2; ŝ3Þ: (A4)

Here P and P0 denote the total hard-collinear momentum
of the external state for each jet, and ðP 	 nÞ ¼ ðP0 	 �nÞ ¼
Q is the large component of each momentum. The variable
� is the fraction of large momentum component ðP0 	 �nÞ
[ðP 	 nÞ] carried by the hard-collinear gluon A0

? (A?),
�� � 1� �. The objects Oq

�nð�Þ and Oq
nð�Þ denote the

Fourier transformed SCET operators:

Oq
�nð�Þ ¼

Z dŝ3
2�

e�is3ðP0	 �nÞ� ~Oq
�nð0; 0; s3Þ;

Oq
nð�Þ ¼

Z dŝ3
2�

eis3ðP	nÞ� ~Oq
nð0; 0; s3Þ:

(A5)

The tree-level coefficient functions in momentum space
can be obtained from an analysis of the matrix elements in
QCD and SCET. In order to compute C�ðQ;�Þ defined in
Eq. (A1) consider the matrix element of the e.m. current
between collinear quark states:

hp0j �qð0Þ��qð0Þjpi ¼ hp0jtr½C�ðQ;�ÞOqð0Þ�jpi: (A6)

The subleading term in Eq. (A1) does not contribute in this
case. Then for the matrix element at LO we obtain

left-hand side of Eq: ðA6Þ:
hp0j �qð0Þ��qð0ÞjpiLO ¼ �u0��u ¼ �
0��

?
þOð1=QÞ;
(A7)

right-hand side of Eq: ðA6Þ:
hp0jtr½C�ðQ;�ÞOqð0Þ�jpi ¼ tr½C�ðQ;�Þ �
0 � 
�; (A8)

where 
0, 
 without subscript hc denote large components
of Dirac spinors (30) and (31). Comparison of (A7) and
(A8) yields

C�ðQ;�Þ ¼ �
�
?�F0F þOð�sÞ; (A9)

where F0, F describe quark color indices.
In order to compute the subleading coefficient functions

one has to consider the matrix element with the quark-
gluon external state. We consider an outgoing gluon with
hard-collinear momentum q0 collinear to p0 and for sim-
plicity we neglect the transverse components of the out-
going momenta. Then we can compute the leading-order
contribution to C�

�n ð�;Q;�Þ.
We start by considering the QCD calculation. The cor-

responding diagrams are shown in Fig. 13. For the first
graph we have

D1 ¼ ðigÞ �uðp0ÞA0 iðp̂
0 þ q̂0Þ

ðp0 þ q0Þ2 �
�uðpÞ

’ ðigÞ �
0A0
�
n

2

i

ðp0 þ q0Þ 	 nþ
�n

2

i

ðp0 þ q0Þ 	 �n
�
��


¼ ðigÞ �
0
�
A0?

i �n�

ðp0 þ q0Þ 	 �n
�

: (A10)

For clarity, we write A� for the external gluon line with

momentum q0 instead of polarization "�ðq0Þ. The second
diagram:

D2 ¼ ðigÞ �uðp0Þ�� iðp̂� q̂0Þ
ðp� q0Þ2 A

0uðpÞ

’ ðigÞ �
0��

�
�n

2

i

�ðq0 	 �nÞ þ
n

2

i

ðp 	 nÞ
�
A0


¼ �
0
�
ðigÞA0?

in�

ðp 	 nÞ
�

: (A11)

p’ p

FIG. 13. QCD tree diagrams required for matching onto the
subleading 3-particle operator.
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Therefore the sum reads

D1þD2¼ �
0
�
ð�gÞA0?

�
n�

ðp 	nÞþ
�n�

ðp0 þq0Þ 	 �n
	�

; (A12)

which involves the transverse gluon field and the longitu-
dinal projection of the e.m. current, as required. It is easy to
see that the obtained kinematical structure is e.m. gauge
invariant. This term must be compared with the SCET
matrix element,

�
p0; q0

��������
Z 1

0
d� tr½C�

�n ð�;Q;�ÞOq
�nð�Þ�

��������p



¼
Z 1

0
d� tr½C�

�n ð�;Q;�Þhp0; q0jOq
�nð�Þjpi�; (A13)

with

hp0; q0jOq
�nð�Þjpi ’ �
0A0?
�

� ðq0 	 �nÞ
ðp0 þ q0Þ 	 �n� �

�
: (A14)

Substituting this into Eq. (A13) and comparing this with
the QCD result of Eq. (A12) we obtain

C
�
�n ð�;Q;�Þ ¼ � 1

Q
ðn� þ �n�Þ1̂�F0F; (A15)

where the symbol 1̂ denotes the unity operator in
Dirac space. Notice that the obtained coefficient function
does not depend on the momentum fraction � at the LO
level. A calculation of the second term with C�

n can be
done in an analogous way. The result can also be obtained
without explicit calculations by invoking time reversal
invariance which demands the result to be symmetric
under n$ �n.

APPENDIX B: CORRESPONDENCE BETWEEN
QCD AND SCET CALCULATIONS

In order to illustrate the correspondence of SCET with
QCD we here perform the calculation of the jet functions

discussed in Sec. II. We start from the calculation of J0
defined in (122). In order to have a direct correspondence
with the expression (48)

J0ð�Þ½yi; !i� ¼ 1

Q3

1

y1 �y
2
3

1

ð!1 þ!2Þ2ð�!1Þ
½ �
03��3

½ �
02�i
?��2

�½ �
01�i
?��1

;

we consider the appropriate subprocess


0hcðp0 � k1 � k2Þ þ qsðk1Þqsðk2Þ
!SCETI


cðy1p0Þ
cðy2p0Þ
cðy3p0Þ (B1)

described by the matrix element

J0ð�Þq�1
ðk1Þq�2

ðk2Þ
¼ hy1p0; y2p0; y3p0jTð �
0hcW 0ð0Þ;Lð1Þ
q;Lð1Þ
q;Lð0Þ
 Þj0i:

(B2)

The soft quark fields qs are considered as external. In order
to reproduce the expression in Eq. (48) we need the dia-
gram shown in Fig. 14.

From the Lagrangians Lð0Þ
 and Lð1Þq
 one can easily

define the Feynman rules. They were already presented
in the literature (see, e.g., Refs. [28,42,49]). For the con-
venience of the reader we reproduce the relevant vertices
here. Taking account of only the required leading-order
terms one obtains

Assuming the same choice of momenta as in Fig. 3, we obtain the following analytical expression,

k
1

k
2

y
1

y
2

y
3

FIG. 14. One of the diagrams describing subprocess (B1) in
SCETI. The soft fields are considered as external fields, and
outgoing quarks are collinear.
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J0ð�Þq�1
ðk1Þq�2

ðk2Þ � �
01��
?T

bqðk1Þ �
02
�
� �n���

?
ðp4g 	 �nÞT

bTa

	
qðk2Þ �
03

�nn

4
fTan�g 1

ðp3g 	 nÞ
1

p2
3g

1

p2
4g

� 1

ðkþ1 þ kþ2 Þ2
1

ð�kþ1 Þ
1

Q3

1

y1 �y
2
3

�
01�i
?qðk1Þ �
02�i

?qðk2Þ½ �
03��3

¼
Z

d!1;2J
0
ð�Þ½yi; !i�q�1

ðk1Þq�2
ðk2Þ�ð!1 � kþ1 Þ�ð!2 � kþ2 Þ; (B5)

with the same J0ð�Þ as in Eq. (48). Consider the color
structure which we ignored in the calculation in Sec. II.
Projecting the color indices of the outgoing collinear
quarks onto the colorless nucleon, we obtain

"i
0j0k0

3!
½Tb�i0i � ½TbTa�j0j � ½Ta�k0k ¼ 2

27
"ijk: (B6)

The resulting antisymmetrical tensor "ijk is then contracted
with the color indices of the soft fields yielding the soft
operator in Eq. (131).

Consider now the helicity flip FF F2. Again, from the
QCD calculation we obtained the result of Eq. (68):

J0ð�Þ½yi; !i� ¼ 1

Q2

½ �
01��
?��1
½ �
02��

?��2
½ ��03n̂��3

�y1y3ð!2 þ!3Þ!2
3

: (B7)

In this case, we have to consider the presence of the small
component ��03. In SCET this field is eliminated by the

equation of motion, yielding

�� 0c ’ � �
0iD̂?c
�n

2
ði �n 	D cÞ�1: (B8)

In order to have a connection with the QCD result of
Eq. (68), we must substitute

�� 0c ¼ �
0ciD̂?cði �nD
 

cÞ�1 �n

2
’ �
0cÂc?ði �n 	 @

 Þ�1 �n
2
: (B9)

From this expression one can see that such a state consists
of a collinear quark and a transverse gluon, as is shown in
Fig. 9. The corresponding vertex is generated by the

Lagrangian Lð1Þ
q , includes 2 gluons, and can be associated

with the following combination:

�
hciD̂?Wq ’ �
cgA
0
?c

�
i

ð �n@Þ ig �n 	 Ahc

�
q

¼ �
0cgA0?cð �n 	 @
 Þ�1 �n

2
gÂhc

�nn

4
qðk3Þ

¼
�
��0cA0?cð �n 	 @

 Þ�1 �n

2

�
Âhc

�nn

4
qðk3Þ: (B10)

Therefore, we obtain for the diagram in Fig. 14 (again
ignoring color structures)

J0ð�Þq�2
ðk2Þq�3

ðk3Þ � ½ �
01��
?��1

�
02fn�g
�nn

4

1

kþ3
�
�
?qðk2Þ ��03�� �nn

4
qðk3Þ 1

y3Qkþ3

1

�y1Qðkþ2 þ kþ3 Þ

� 1

Q2

½ �
01��
?��1
½ �
02��

?��2
½ ��03n̂��3

�y1y3ðkþ2 þ kþ3 Þðkþ3 Þ2
q�2
ðk2Þq�3

ðk3Þ

¼
Z

d!1;2J
0
�½yi; !i�q�1

ðk1Þq�2
ðk2Þ�ð!1 � kþ1 Þ�ð!2 � kþ2 Þ; (B11)

with the same J0ð�Þ as in Eq. (B7).
Using these two examples, we demonstrated that the SCET correctly reproduces the tree-level hard-collinear subpro-

cesses computed before in QCD.
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