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The solution of Einstein’s field equations with the energy-momentum tensor of a massless scalar field is

known as the Fisher solution. It is well known that this solution has a naked singularity due to the

‘‘charge’’ � of the massless scalar field. Here I obtain the radial null geodesic of the Fisher solution and

use it to confirm that there is no black hole. In addition, I use the parametrized post-Newtonian formalism

to show that the Fisher spacetime predicts the same effects on solar-system experiments as the

Schwarzschild one does, as long as we impose a limit on �. I show that this limit is not a strong

constraint and we can even take values of � bigger thanM. By using the exact formula of the redshift and

some assumptions, I evaluate this limit for the experiment of Pound and Snider [Phys. Rev. 140, B788

(1965)]. It turns out that this limit is �< 5:8� 103 m.
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I. INTRODUCTION

Despite the fact that no scalar field has ever been ob-
served in nature, physicists have used it in many different
theories. The interest in these fields appears in both clas-
sical and quantum field theories. As an example, we have
the Higgs boson, which plays an important role in the
standard model and it is expected to be found soon. One
also uses scalar fields to confine particles in hypersurfaces
in models with extra dimensions [1], to explain the accel-
erated expansion of the Universe [2–4] and so on. There are
many roles that a scalar field can play. One of them is
played by a massless scalar field that makes the event
horizon disappear in a spherically symmetric solution of
general relativity.

The spherically symmetric solution of Einstein’s equa-
tion (with zero cosmological constant) with an energy-
momentum tensor of a massless scalar field (EMS) has
no black hole [5,6]. This solution was first obtained by
Fisher [7] and rediscovered by many other authors [5,8,9],
such as Wyman, whose version became well known in the
literature [10]. It was proved later that this solution is the
most general static and spherically symmetric solution to
the EMS [9]. In Ref. [5], the authors obtain many other
solutions with scalar fields, namely, the massless scalar
field with electric charge, with a rotating body, and a static
spherically symmetric solution with a conformally invari-
ant scalar field. The generalization of the Fisher solution to
a d-dimensional spacetime was given in [11], and studied
in detail in [12].

The aim of this paper is to obtain the exact solution of
the radial null geodesics and prove that, for a long range of
values of the ‘‘massless scalar charge’’ �, the four-
dimensional Fisher solution yields the same results to
solar-system experiments as the Schwarzschild one.
This article is organized as follows. In Sec. II, the Fisher

solution is presented. In Sec. III, I show the possibility of
round-trip travel for a light signal which goes from an
observer to the center of a spherical body, which is treated
as a pointlike particle, and is reflected back. This result is
used to relate the proper time measured by the observer to
his or her radial coordinate. In Sec. IV the solar-system
experiments are analyzed by using the parametrized post-
Newtonian (PPN) formalism. In addition, the spectral shift
predicted by the Fisher solution is calculated and compared
with the one predicted by the Schwarzschild solution for
the Pound-Snider experiment [13]. Our results are summa-
rized in Sec. V. Except for some few details, the notation
and conventions used throughout this article are basically
the same as those of Ref. [12].

II. THE GENERALIZED FISHER SOLUTION

The Einstein field equations with a massless scalar field
’ and a massive body can be written as [5]

G�� ¼ �2

�
’�’� � 1

2
g��’

�’�

�
; (1)

where G�� is the Einstein tensor, and ’� stands for

@’=@x�. Furthermore, the scalar field satisfies h’ ¼ 0,
where h is the d’Alembertian in a curved spacetime.
The static, spherically symmetric, and asymptotically

flat solution of Eq. (1) can be written in the form [12]

ds2 ¼ WSdt2 �W�Sdr2 � r2W1�Sd�2; (2)

’ðrÞ ¼ �

2�
lnjWðrÞj; (3)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

p
and S ¼ M=� are constants, and

d�2 ¼ d�2 þ sin2�d�2. The constant M � 0 is the mass
of the body, while� can be interpreted as the scalar charge.
Since M is always positive, we have S 2 ½0; 1�. The func-
tion WðrÞ is given by*jansen@fisica.ufpb.br
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WðrÞ ¼ 1� r0
r
; (4)

where r0 ¼ 2�. In Ref. [12] the authors take into account
two disconnected parts of the Fisher manifold: the Fisher
universe r 2 ð0; r0Þ, and the Fisher spacetime r 2 ðr0;1Þ.
However, I shall consider only the former, and so the radial
coordinate r in the metric (2) takes values between r0
and 1, where r0 is the center of the body. In this case,
we have W 2 ð0; 1Þ.

III. RADIAL NULL GEODESICS

In the case of the Schwarzschild metric one may asso-
ciate the coordinates with the empirical distances directly
because the error made can be neglected. Because of this,
the coordinate positions of a coordinate system may differ
from other equally good, but the values predicted for the
experiments are basically the same (see, e.g., Ref. [14],
p. 1107). This discrepancy clearly depends on the value of
the mass M, and big values of M, compared with the
distances used, would increase the error. As we are inter-
ested in the effects caused by the metric (2), we have to be
very careful about the identification of r with those dis-
tances. In order to avoid imposing constraints on the values
we may choose for �, at least while calculating the spectral
shift, let us obtain an exact relation between the proper
time��measured by an observer and his or her coordinate
position. To do so, we consider that the observer sends a
light signal toward the center of a spherical body, which is
characterized by r ¼ r0, and the signal is reflected back. It
should be clear that we are treating the spherical body as a
pointlike particle, which allows us to use the exterior
solution (2) during the whole trajectory.

The radial null geodesics allow us to relate the proper
time �� of the observer with his or her radial coordinate r1
through the integral

�� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WSðr1Þ

q Z r1

r0

dr½WðrÞ��S: (5)

To solve this integral, it is more convenient to change the
variable of integration to W. By doing so, we get

�� ¼ 2r0W
S=2
1

Z W1

0
dWð1�WÞ�2W�S; (6)

whereW1 ¼ Wðr1Þ. At first sight, one might be tempted to
express this integral in terms of the incomplete beta func-
tion Bxðp; qÞ directly. However, this is not possible because
q cannot be negative (see, e.g., [15], p. 523), as would be
necessary in this case. It turns out to be more suitable to
express this integral in terms of the hypergeometric func-
tion 2F1ða; b; c; xÞ. By performing the substitution u ¼
W=W1, one sees that (6) can be written in the following
form (see, e.g., [16], p. 558),

�� ¼ 2r0W
1�S=2

1� S 2F1ð2; 1� S; 2� S;WÞ; (7)

where the index 1 has been dropped from W.
By using the ratio test one can easily prove that the

series which represents the hypergeometric function
(see, e.g., Ref. [16], p. 556) converges for the case in
Eq. (7), and so �� is finite. The finiteness of �� is in
agreement with the fact that there is no black hole in this
model. In the Schwarzschild case, treating the body as a
pointlike particle is equivalent to putting it inside its
Schwarzschild radius, and then the light signal would never
come back.
The formula (7) is very useful to get the values of the

coordinate position of an observer by means of experimen-
tal data, at least for values of � that are not ‘‘too close to
zero’’ (or equivalently S � 1) [17]. Of course, no one is
able to send a light signal to the center of either a planet or
the Sun and those bodies are not pointlike particles.
Nevertheless, it is reasonable to assume that�� is basically
twice the empirical distance. As an example, consider

� ¼ ffiffiffi
5

p
M, where M is the Earth’s mass, and �� ¼

2� 6:37� 106 m (twice the Earth’s mean radius). The
resultant radial coordinate is r ¼ 6:369 999 8� 106 m.

IV. SOLAR-SYSTEM EXPERIMENTS

A. PPN formalism

The PPN formalism consists in expanding the metric of
any conceivable metric theory to the lowest-order correc-
tions provided by this theory to the Newtonian one. In
doing so, one obtains for the kind of solution we are deal-
ing with the following PPN metric [18],

ds2 ¼
�
1� 2M

ri
þ 2�M2

r2i

�
dt2

�
�
1þ 2	M

ri

�
ðdr2i þ r2i d�

2Þ; (8)

where ri is the radial isotropic coordinate, and 	, � are
one of the PPN parameters. These parameters are
directly related to the type of experiment performed. For
instance, the gravitational spectral shift is independent of
	, while the gravitational deflection of light and the time
delay do depend on it. In the Schwarzschild case one has
	 ¼ � ¼ 1.
In order to use this formalism for the Fisher spacetime,

we have to write the metric given by (2) in an isotropic
coordinate system. The relation between the radial iso-
tropic coordinate ri and r is already known (see, e.g.,
Ref. [12], footnote 21). This relation, which is invertible,
allows us to write (2) in the following form,

ds2 ¼ WSdt2 � 16
W1�S

ð1þ ffiffiffiffiffi
W

p Þ4 ½dr
2
i þ r2i d�

2�; (9)
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where W is still a function of r. By using rðriÞ, we can
expand the coefficient of dt2 to the second order of " ¼
r0=ri and the other to just the first order, which leads us to

ds2 ¼
�
1� 2M

ri
þ 2M2

r2i

�
dt2 �

�
1þ 2M

ri

�
ðdr2i þ r2i d�

2Þ:
(10)

This is exactly the Schwarzschild metric in the isotropic
coordinate, and so we can conclude that the scalar field
does not affect the solar-system experiments for ri � r0.
However, this does not mean that we can choose any value
of � without changing the predictions. This is so because
r0 increases with � or, equivalently, with�. Therefore, one
has to choose a value for �, obtain the value of the
coordinate r [by using Eq. (7), for example], and only
then see if r0 � riðrÞ is satisfied. Some values of r0=ri
are given in Table I. One can numerically check that the
value of r0=ri decreases as � does, and so does the error
too. As Table I suggests, we may take large values for �
without causing any significant change in the experimental
predictions. For example, in the case of M being the
Earth’s mass, we can take � � � ¼ 104M � 44:4 m.
As another example, we can take ��=2 as being the
perihelion of Mercury, M as the Sun’s mass, and � ¼
102M � 1:5� 105 m. As we shall see next, the value of
� can be much larger than the one given in the first
example without changing the prediction of the redshift.

B. Spectral shift

Roughly speaking, the spectral shift experiment consists
basically in sending a light signal with a certain frequency
from one point to another and seeing if there is any change
in the frequency. We can represent this change by ��=�,
where we take � as being the frequency measured by the
observer who sends the signal and the other, say, ��, the one
measured by the observer who receives the signal. When
�� is negative, the light is shifted to the red (redshift).

Given a metric g��, the gravitational redshift for a static

spacetime can be calculated through (see, e.g., Ref. [19],
p. 202)

��

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðx
1 Þ
g00ðx
2 Þ

s
� 1; (11)

where x
1 and x
2 are the positions of the observer who
sends and the one who receives the signal, respectively.
To compare the formula (11) with the value measured

in the Pound-Snider experiment [13], one needs to take
the difference between the blueshift and the redshift,
which gives twice the magnitude of (11). The value
measured in this experiment was (0:9990� 0:0076) times
4:905� 10�15. In turn, the value predicted by the
Schwarzschild solution is 4:92� 10�15 [20]. With the
help of the formula (7), one finds that the spectral shift
starts to deviate from the one predicted by the
Schwarzschild case when � � 5:8� 103 m; it gives the
exact value of the experiment for � ¼ 1:58� 104 m and is
outside the margin of error for �> 4:02� 104 m (see
Table II). The degree of accuracy of these results depends
on how accurate the association of��=2with the empirical
distances is. Perhaps one would overcome this problem by
using a nonradial geodesic that allowed the direct mea-
surement of ��, which does not seem to be an easy task.

V. CONCLUSIONS

As we already know the presence of a massless scalar
field prevents the formation of black holes in the static and
spherical symmetric solution of the EMS, no matter how
small the value of its charge� is. This allowed me to relate
the proper time of an observer to his or her radial coor-
dinate by using a radial null geodesic only. It was also
possible to verify that the difference between��=2 and the
radial coordinate r is negligible for values of � not much
bigger than M.
With the assumption that r0 is much smaller than r, which

is not a strong constraint, we saw that the Fisher spacetime
agrees with the solar-system experiments. In general, all the
results are in good agreement with these experiments for
� 	 104 m. We can even take � ¼ 1:47� 105 m without
changing the result predicted by the Schwarzschild solution
for distances of the order of 4:59� 1010 m (see Table I). In
this sense, this result generalizes the statement made at the
end of Ref. [5], where the authors state, without proof, that
the effect of � on the precession of the perihelion is un-
detectable at least when �2 � M2.
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TABLE I. The values of r0=ri for some choices of ��=2, the
mass M, and �.

��=2ð108 mÞ M � (r0=ri)

0.0637 Earth 104M 10�5

6.96 Sun 10M 4� 10�5

459 Sun 102M 10�5

TABLE II. The values of 2j��=�j for ��1=2 equal to the
Earth’s radius, while ��2=2 ¼ ��1=2þ 22:5, and some values
of �. The mass M is the Earth’s mass.

�ð104 mÞ 2j��=�j � 1015

0.58 4.915

1.58 4.900

4.02 4.863
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