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A theory of exponential modified gravity which explains both early-time inflation and late-time

acceleration, in a unified way, is proposed. The theory successfully passes the local tests and fulfills

the cosmological bounds and, remarkably, the corresponding inflationary era is proven to be unstable.

Numerical investigation of its late-time evolution leads to the conclusion that the corresponding dark

energy epoch is not distinguishable from the one for the �CDM model. Several versions of this

exponential gravity, sharing similar properties, are formulated. It is also shown that this theory is

nonsingular, being protected against the formation of finite-time future singularities. As a result, the

corresponding future universe evolution asymptotically tends, in a smooth way, to de Sitter space, which

turns out to be the final attractor of the system.
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I. INTRODUCTION

Modified gravity is getting a lot of attention from the
scientific community, owing, in particular, to the remark-
able fact that it is able to describe early-time inflation as
well as the late-time (dark energy) acceleration epoch in a
unified way. This approach appears to be very economical,
as it avoids the introduction of any extra dark component
(inflaton or dark energy of any kind) for the explanation of
both inflationary epochs. Moreover, it may be expected
that, with some additional effort, it will be able to provide a
reasonable resolution of the dark matter problem as well as
of reheating, two other important issues in the description
of the evolution of our Universe. Furthermore, as a by-
product, modified gravity has the potential to lead to a
number of interesting applications in high-energy physics.
In particular, R2 gravity, which provides a simple example
of modified gravity, may serve for the unification of all
fundamental interactions, including quantum gravity, in an
asymptotically-free theory [1]. Modified gravity may also
be used to provide the scenario for the resolution of the
hierarchy problem of high-energy physics [2]. Finally, the
corresponding string M-theory approach modifies gravity
already in the low-energy effective-action approximation,
so that a theory of the kind considered appears to be quite
natural from very fundamental considerations (see, for
instance, [3]).

Presently, a number of viable FðRÞ gravities leading
to a unified description as explained have been identified
(for a recent review, see [4], and for a description of the
observable consequences of such models, see [5]). It
goes without saying that all those models are constrained
to obey the known local tests, as well as cosmological
bounds. However, this might not be such a severe problem,
since already the first model proposed [6] which unified
inflation with dark energy already satisfied many of these
local tests. The real internal problem of FðRÞ gravity is
related with its being a higher-derivative theory, which
renders it highly nontrivial. This means that it is hard, in
fact, to explicitly work with such theories and to get
observable predictions from them.
The main aim of this paper is to propose a reasonably

simple but indeed viable version of FðRÞ gravity which
consistently describes the unification of the inflationary
epoch with the dark energy stage, while satisfying the
known local tests and cosmological bounds. Specifically,
to address the issues above, we here propose exponential
gravity, which on top of being simple is moreover free
from any kind of finite-time future singularity and exhibits
other very interesting properties, as we will see.
The paper is organized as follows. In the next section

we briefly review FðRÞ gravity as well as the corre-
sponding Friedman-Robertson-Walker (FRW) cosmologi-
cal equations. Special attention is paid to de Sitter and
spherically-symmetric solutions. Section III is devoted to
the discussion of the viability conditions in FðRÞ gravity.
These conditions are investigated for the simple and real-
istic theory of exponential gravity, proposed as a dark
energy model, in Sec. IV. In Sec. V we carry out a detailed
analysis of our explicit proposal: exponential gravity
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which describes in a natural, unifying way both early-time
inflation and late-time acceleration. It is there demon-
strated, too, that the model leads to a satisfactory, graceful
exit from inflation (the de Sitter inflationary solution being
unstable). In Sec. VI we show that the theory does not
lead to any sort of finite-time future singularities. A careful
numerical investigation of late-time cosmological dynam-
ics is carried out in Sec. VII. It will be demonstrated there
that exponential gravity makes specific predictions which
are not distinguishable from those of the �CDM model in
the dark energy regime. The asymptotic behavior of the
theory at late times is investigated in Sec. VIII. Section IX
is devoted to a somehow different model, a variant of
exponential gravity which unifies unstable inflation with
the dark energy epoch and which is protected against future
singularities by construction. This opens the window to
other variations of the basic model sharing all its good
properties. In Sec. X a final summary and outlook are
provided, and there is an Appendix on the Einstein frame.

II. FðRÞ-GRAVITY: GENERAL OVERVIEW
AND FRW COSMOLOGY

A. The classical action

The action of modified FðRÞ theories is [4]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
FðRÞ
2�2

þLðmatterÞ
�
; (2.1)

where g is the determinant of the metric tensor g��,

LðmatterÞ is the matter Lagrangian and FðRÞ a generic
function of the Ricci scalar, R. In this paper we will use
units where kB ¼ c ¼ ℏ ¼ 1 denote the gravitational con-
stant �2 ¼ 8�GN � 8�=M2

Pl, with the Planck mass being

MPl ¼ G�1=2
N ¼ 1:2� 1019 GeV. We shall write

FðRÞ ¼ Rþ fðRÞ: (2.2)

The modification is represented by the function fðRÞ added
to the classical term R of the Einstein-Hilbert action of
General Relativity (GR). In what follows we will analyze
modified gravity in this form, explicitly separating the
contribution of GR from its modification.

By variation of Eq. (2.1) with respect to g��, we obtain

the field equations

R�� � 1

2
Rg�� ¼ �2ðTMG

�� þ ~TðmatterÞ
�� Þ: (2.3)

Here, R�� is the Ricci tensor and the part of modified

gravity is formally included into the ‘‘modified gravity’’
stress-energy tensor TMG

�� , given by

TMG
�� ¼ 1

�2F0ðRÞ
�
1

2
g��½FðRÞ � RF0ðRÞ�

þ ðr�r� � g��hÞF0ðRÞ
�
: (2.4)

The prime denotes derivative with respect to the curvature
R, r� is the covariant derivative operator associated with

g�� and h� � g��r�r�� is the d’Alembertian for a

scalar field�. ~TðmatterÞ
�� is given by the nonminimal coupling

of the ordinary matter stress-energy tensor TðmatterÞ
�� with

geometry, namely,

~T ðmatterÞ
�� ¼ 1

F0ðRÞT
ðmatterÞ
�� : (2.5)

In general, TðmatterÞ
�� ¼ diagð�; p; p; pÞ, where � and p are,

respectively, the matter energy density and pressure. When

FðRÞ ¼ R, TMG
�� ¼ 0 and ~TðmatterÞ

�� ¼ TðmatterÞ
�� .

It should be noted that, due to the diffeomorphism

invariance of the total action, only TðmatterÞ
�� is covariantly

conserved and, formally, �2

F0ðRÞ may be interpreted as an

effective gravitational constant, assuming we are dealing
with models such that F0ðRÞ> 0.
The trace of Eq. (2.3) reads

3hF0ðRÞ þ RF0ðRÞ � 2FðRÞ ¼ �2TðmatterÞ; (2.6)

with TðmatterÞ the trace of the matter stress-energy tensor.
We can rewrite this equation as

hF0ðRÞ ¼ @Veff

@F0ðRÞ ; (2.7)

where

@Veff

@F0ðRÞ ¼ 1

3
½2FðRÞ � RF0ðRÞ þ �2TðmatterÞ�; (2.8)

F0ðRÞ being the so-called ‘‘scalaron’’ or the effective
scalar degree of freedom. On the critical points of the
theory, the effective potential Veff has a maximum (or
minimum), so that

hF0ðRCPÞ ¼ 0; (2.9)

and

2FðRCPÞ � RCPF
0ðRCPÞ ¼ ��2TðmatterÞ: (2.10)

Here, RCP is the curvature of the critical point. For ex-

ample, in absence of matter, i.e. TðmatterÞ ¼ 0, one has the
de Sitter critical point associated with a constant scalar
curvature RdS, such that

2FðRdSÞ � RdSF
0ðRdSÞ ¼ 0: (2.11)

Performing the variation of Eq. (2.6) with respect to R,
by evaluating hF0ðRÞ as

hF0ðRÞ ¼ F00ðRÞhRþ F000r�Rr�R; (2.12)

we find, to first order in �R,
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hRþ F000ðRÞ
F00ðRÞ g

��r�Rr�R

� 1

3F00ðRÞ ½2FðRÞ � RF0ðRÞ þ �2Tmatter� þh�R

þ
��
F000ðRÞ
F00ðRÞ �

�
F000ðRÞ
F00ðRÞ

�
2
�
g��r�Rr�Rþ R

3
� F0ðRÞ

3F00ðRÞ
þ F000ðRÞ

3ðF00ðRÞÞ2 ½2FðRÞ � RF0ðRÞ þ �2Tmatter�

� �2

3F00ðRÞ
dTmatter

dR

�
�Rþ 2

F000ðRÞ
F00ðRÞ g

��r�Rr��R

þOð�R2Þ ’ 0: (2.13)

This equation can be used to study perturbations around
critical points. By assuming R ¼ R0 ’ const (local ap-
proximation), and �R=R0 � 1, we get

h�R ’ m2�RþOð�R2Þ; (2.14)

where

m2 ¼ 1

3

�
F0ðR0Þ
F00ðR0Þ � R0 þ �2

F00ðR0Þ
dTmatter

dR

��������R0

�
: (2.15)

Here, Eq. (2.10) with RCP ¼ R0 has been used. Note that

m2 ¼ @2Veff

@F0ðRÞ2
��������R0

: (2.16)

The second derivative of the effective potential represents
the effective mass of the scalaron. Thus, if m2 > 0 (in the
sense of the quantum theory, the scalaron, which is a new
scalar degree of freedom, is not a tachyon), one gets a
stable solution. For the case of the de Sitter solution, m2 is
positive provided

F0ðRdSÞ
RdSF

00ðRdSÞ
> 1: (2.17)

The value of the above mass will be later used to check the
emergence of the Newtonian regime.

B. Modified FRW dynamics

The spatially-flat Friedman-Robertson-Walker (FRW)
space-time is described by the metric

ds2 ¼ �dt2 þ a2ðtÞdx2; (2.18)

where aðtÞ is the scale factor of the Universe. The Ricci
scalar is

R ¼ 6ð2H2 þ _HÞ: (2.19)

In the FRW background, from ð�;�Þ ¼ ð0; 0Þ and the trace
part of the ð�; �Þ ¼ ði; jÞ ði; j ¼ 1; . . . ; 3Þ components in
Eq. (2.3), we obtain the equations of motion:

�eff ¼ 3

�2
H2; (2.20)

peff ¼ � 1

�2
ð2 _Hþ 3H2Þ; (2.21)

where �eff and peff are the total effective energy density
and pressure of matter and geometry, respectively, given by

�eff ¼ 1

F0ðRÞ
�
�þ 1

2�2
½ðF0ðRÞR� FðRÞÞ � 6H _F0ðRÞ�

�
;

(2.22)

peff ¼ 1

F0ðRÞ
�
pþ 1

2�2
½�ðF0ðRÞR� FðRÞÞ

þ 4H _F0ðRÞ þ 2 €F0ðRÞ�
�
: (2.23)

Here, H ¼ _aðtÞ=aðtÞ is the Hubble parameter and the dot
denotes time derivative @=@t. This is the form that the total
stress tensor in Eq. (2.3) assumes in the FRW space-time.
The standard matter conservation law is

_�þ 3Hð�þ pÞ ¼ 0; (2.24)

and, for a perfect fluid,

p ¼ !�; (2.25)

! being the thermodynamical EoS parameter of matter.
We also introduce the effective EoS by using the corre-

sponding parameter !eff

!eff ¼ peff

�eff

; (2.26)

and get

!eff ¼ �1� 2 _H

3H2
: (2.27)

If the strong energy condition (SEC) is satisfied
(!eff >�1=3), the Universe expands in a decelerated
way, and vice-versa. We are interested in the accelerating
FRW cosmology below.

C. Spherically-symmetric solutions

In this section we investigate spherically-symmetric
solutions (like the Schwarschild black hole), which con-
stitute an essential element for the local tests of modified
gravity under consideration. For the metric, we start from a
static, spherically-symmetric ansatz of the type:

ds2 ¼ �CðrÞe2�ðrÞdt2 þ dr2

CðrÞ þ r2d�; (2.28)

where d� ¼ r2ðd	2 þ sin2	d�2Þ and �ðrÞ and CðrÞ are
functions of r.
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Plugging this ansatz into the action (2.1), and noting that

Rsp ¼ �3

�
d

dr
CðrÞ

�
d

dr
�ðrÞ � 2CðrÞ

�
d

dr
�ðrÞ

�
2

� d2

dr2
CðrÞ � 2CðrÞ d

2

dr2
�ðrÞ � 4

r

d

dr
CðrÞ

� 4CðrÞ
r

d

dr
�ðrÞ � 2CðrÞ

r2
þ 2

r2
; (2.29)

one arrives at the following equations of motion (in
vacuum) [7]:

RspF
0ðRspÞ � FðRspÞ
F0ðRspÞ � 2

ð1� CðrÞ � rðdCðrÞ=drÞÞ
r2

þ 2CðrÞF00ðRspÞ
F0ðRspÞ

�
d2Rsp

dr2
þ

�
2

r
þ dCðrÞ=dr

2CðrÞ
�
dRsp

dr

þ F000ðRspÞ
F00ðRspÞ

�
dRsp

dr

�
2
�
¼ 0; (2.30)

�
d�ðrÞ
dr

�
2

r
þ F00ðRspÞ

F0ðRspÞ
dRsp

dr

�
� F00ðRspÞ

F0ðRspÞ
d2Rsp

dr2

� F000ðRspÞ
F0ðRspÞ

�
dRsp

dr

�
2
�
¼ 0: (2.31)

These equations form a system of ordinary differential
equations in the three unknown quantities �ðrÞ, CðrÞ, and
RspðrÞ. When FðRÞ ¼ R, the above system of differential

equations lead to the Schwarzschild solution, namely

�ðrÞ ¼ const; (2.32)

CðrÞ ¼
�
1� 2M

r

�
; (2.33)

with M a dimensional constant, and Rsp ¼ 0.

Another well-known case is the one associated with Rsp

being constant. As a result, with � ¼ 0, Eq. (2.31) is
trivially satisfied, and the other two equations lead to the
Schwarschild-de Sitter solution

CðrÞ ¼
�
1� 2M

r
��r2

3

�
; (2.34)

with

Rsp ¼ 4�; (2.35)

and

2FðRspÞ ¼ RspF
0ðRspÞ: (2.36)

III. VIABILITY CONDITIONS IN FðRÞ-GRAVITY

The viability conditions follow from the fact that the
theory is consistent with the results of General Relativity
if Fð0Þ ¼ 0. In this way we can have the Minkowski
solution. Recall that in order to avoid antigravity effects,

it is required that F0ðRÞ> 0, namely, the positivity of the
effective gravitational coupling.

A. Existence of a matter era and stability of
cosmological perturbations

On the critical points, _F0ðRÞ ¼ 0, and from Eqs. (2.22)
and (2.23), one has

�eff ¼ 1

F0ðRÞ
�
�þ 1

2�2
½ðF0ðRÞR� FðRÞÞ�

�
; (3.1)

peff ¼ 1

F0ðRÞ
�
pþ 1

2�2
½�ðF0ðRÞR� FðRÞÞ�

�
: (3.2)

During the matter dominance era, we have peff ¼ 0. As a
consequence, neglecting the contribution of the radiation,
namely p ¼ 0, one has �eff ¼ �=F0ðRÞ and

RF0ðRÞ
FðRÞ ¼ 1; (3.3)

thus

d

dR

�
RF0ðRÞ
FðRÞ

�
¼ 0; (3.4)

and using Eq. (3.3), this leads to

F00ðRÞ
F0ðRÞ ¼ 0; (3.5)

so that, during the matter era, we have F00ðRÞ ’ 0.
In order to reproduce the results of the standard model,

where R ¼ �2� when matter drives the cosmological
expansion, a FðRÞ-theory is acceptable if the modified
gravity contribution vanishes during this era and
F0ðRÞ ’ 1. However, another condition is required on the
second derivative of FðRÞ: it not only has to be very small,
but also positive. This last condition arises from the
stability of the cosmological perturbations. We consider a
small region of space-time in the weak-field regime, so that
the curvature is approximated by R ’ R0 þ �R, where
R0 ’ const. From Eq. (2.10), we obtain

� �2T ¼ F0ðRÞRþ 2ðFðRÞ � RF0ðRÞÞ (3.6)

and, since F0ðRÞ ’ 1 and jðFðRÞ � RÞj � R, we can ex-
pand this expression as

� �2T ’ ��2ðTjR þ dTÞ ¼ Rþ 2ðF0ðRÞ � 1Þ�R;
(3.7)

with ð�R=RÞ � 1. By evaluating it at R ¼ R0, from
Eq. (2.15) one has

m2 ’ 1

3

�
2

F00ðR0Þ �
F0ðR0Þ
F00ðR0Þ � R0

�

’ 1

3

�
1

F00ðR0Þ �
ðF0ðR0Þ � 1Þ

F00ðR0Þ
�
; (3.8)
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which is in agreement with Ref. [8]. Since ðF0ðR0Þ � 1Þ �
1 and as F00ðR0Þ is very close to zero, if F00ðR0Þ< 0 the
theory will be strongly unstable. Thus, we have to require
F00ðRÞ> 0 during the matter era.

B. Existence and stability of a late-time de Sitter point

It is convenient to introduce the following function,
GðRÞ:

GðRÞ ¼ 2FðRÞ � RF0ðRÞ: (3.9)

On the zeros ofGðRÞwe recover the condition in Eq. (2.11)
and we have the de Sitter solution which describes the
accelerated expansion of our Universe. If the condition in
Eq. (2.17) is satisfied, the solution will be stable.

A reasonable theory of modified gravity which reprodu-
ces the current acceleration of the Universe needs to lead to
an accelerating solution for R ¼ 4�, � being the cosmo-
logical constant (typically � ’ 10�66 eV2). Recall that in
the de Sitter case, the EoS parameter !eff ¼ !dS ¼ �1,
and all available cosmological data confirm that its value is
actually very close to �1. The possibility of an effective
quintessence/phantom dark energy is not excluded, but the
most realistic solution for our current Universe is a (asymp-
totically) stable de Sitter solution.

C. Local tests and the stability on a planet’s surface

GR was first confirmed by accurate local tests at the
level of the Solar System. A theory of modified gravity has
to admit an asymptotically flat (this is important in order to
define the mass term) static spherically-symmetric solution
of the type (2.34), with � very small. The typical value
of the curvature in the Solar System, far from sources, is
R ¼ R�, where R� ’ 10�61 eV2 (it corresponds to one
hydrogen atom per cubic centimeter). If a Schwarzshild-
de Sitter solution exists, it will be stable provided

F0ðR�Þ
R�F00ðR�Þ > 1: (3.10)

The stability of the solution is necessary in order to find the
post-Newtonian parameters in GR.

Concerning the matter instability [6,8,9], this might
also occur when the curvature is rather large, as on a planet
(R ’ 10�38 eV2), as compared with the average curvature
of the Universe today (R ’ 10�66 eV2). In order to arrive to
a stability condition, we can start from Eq. (2.13), where
R ¼ Rb assumes the typical curvature value on the
planet and �R is a perturbation due to the curvature dif-
ference between the internal and the external solution.
Since Rb ’ ��2Tmatter and �R depends on time only,
one has

� @tð�RÞ ’ constþUðRbÞ�R; (3.11)

where

UðRbÞ ¼
���

F000ðRbÞ
F00ðRbÞ

�
2 � F000ðRbÞ

F00ðRbÞ
�
g��r�Rbr�Rb � Rb

3

þ F0ðRbÞ
3F00ðRbÞ �

F000ðRbÞ
3ðF00ðRbÞÞ2

ð2FðRbÞ

� RbF
0ðRbÞ � RbÞ

�
�R: (3.12)

If UðRbÞ is negative, then the perturbation �R becomes
exponentially large and the whole system becomes un-
stable. Thus, the matter stability condition is

UðRbÞ> 0; where Rb ’ 10�38 eV2: (3.13)

At the cosmological level this means that F00ðRÞ ’ 0þ, in
the matter era. If FðR ’ RbÞ ’ R, Eq. (3.12) reads, simply,
UðRbÞ ¼ 1=ð3F00ðRbÞÞ.

D. Existence of an early-time acceleration
and the future singularity problem

In order to reproduce the early-time acceleration of our
Universe, namely, the inflation epoch, the modified gravity
models have to admit a solution for !eff in Eq. (2.27)
smaller than�1=3. An important point is that this solution
should be unstable.
If the model reproduces the de Sitter solution when

R ¼ RdS ’ 1020–38 GeV2 (this is the typical curvature
value at inflation), we have to require that Eq. (2.17) is
violated. Thus, the characteristic time of the instability
ti is given by the inverse of the mass of the scalaron in
Eq. (2.15):

ti ’
��������1

m

��������¼
��������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðRdSÞ

F0ðRdSÞ � RdSF
00ðRdSÞ

s ��������: (3.14)

Note that if the scalaron mass is equal to zero, a more
detailed analysis, as in Sec. IX, is needed.
Furthermore, it is well-known that many of the effective

quintessence/phantom dark energy models, including
modified gravity, bring the future Universe evolution to a
finite-time singularity. The most familiar of them is the
famous Big Rip [10], which is caused by phantom dark
energy. Finite-time future singularities in modified gravity
have been studied in Refs. [11,12]. As is known, a finite-
time future singularity occurs when some physical quantity
(as, for instance, the scale factor, effective energy density
or pressure of the Universe or, more simply, some of the
components of the Riemann tensor) diverges. The classifi-
cation of the (four) finite-time future singularities has been
done in Ref. [13]. Some of these future singularities are
softer than others and not all physical quantities neces-
sarily diverge on the singularity.
The presence of a finite-time future singularity may

cause serious problems to the cosmological evolution or
to the corresponding black hole or stellar astrophysics [14].
Thus, it is always necessary to avoid such a scenario in
realistic models of modified gravity. It is remarkable that
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modified gravity actually provides a very natural way to
cure such singularities by adding, for instance, an R2 term
[11,15]. Simultaneously, with the removal of any possible
future singularity, the addition of this term supports
the early-time inflation caused by modified gravity.
Remarkably, even in the case where inflation was not
produced in the alternative gravity dark energy model
that is being considered, it will eventually occur after the
addition of it to such a higher-derivative term. Hence, the
removal of future singularities is a natural prescription for
the unified description of the inflationary and dark energy
epochs.

IV. REALISTIC EXPONENTIAL GRAVITY

In Refs. [16–18] several versions of viable modified
gravity have been proposed, the so-called one-step models,
which reproduce the current acceleration of the Universe.
They incorporate a vanishing (or fast decreasing) cosmo-
logical constant in the flat (R ! 0) limit, and exhibit a
suitable, constant asymptotic behavior for large values of
R. The simplest one was proposed in Ref. [18]:

FðRÞ ¼ R� 2�ð1� e�R=R0Þ: (4.1)

Here, � ’ 10�66 eV2 is the cosmological constant
and R0 ’ � a curvature parameter. In flat space one has
Fð0Þ ¼ 0 and recovers the Minkowski solution. For
R � R0, FðRÞ ’ R� 2�, and the theory mimics the
�CDM model. Note that the late-time cosmology of
such exponential gravity was also considered in Ref. [19].

For simplicity, we will set

fðRÞ ¼ �2�ð1� e�R=R0Þ; (4.2)

and thus

f0ðRÞ ¼ �2
�

R0

e�R=R0 ; (4.3)

f00ðRÞ ¼ 2
�

R2
0

e�R=R0 : (4.4)

Since jf0ðR � R0Þj � 1, the model is protected against
antigravity during the whole cosmological evolution,
until the de Sitter solution (R ¼ 4�) of today’s Universe
is reached. For large values of the curvature, FðR � R0Þ ’
R, we can reconstruct the matter-dominated era, as in GR.

In particular, in F00ðR � R0Þ ��e�R=R0 ’ 0þ we do not
have any instability problems related to the matter epoch,
or obtaining matter stability on a planet’s surface and at the
Solar System scale.

Let us consider the GðRÞ function of Eq. (3.9):

GðRÞ ¼ Rþ 2fðRÞ � Rf0ðRÞ: (4.5)

Since Gð0Þ ¼ 0, one has a trivial de Sitter solution for
R ¼ 0. Consider now

G0ðRÞ ¼ 1þ f0ðRÞ � Rf00ðRÞ: (4.6)

Since G0ð0Þ< 0, the function GðRÞ becomes negative and
starts to increase after R ¼ R0. For R ¼ 4�, FðRÞ ’ �2�,
F0ðRÞ ’ 1 and F00ðRÞ ’ 0þ. It means that Gð4�Þ ’ 0 and
we find that the de Sitter solution of the dark energy phase
is able to describe the current acceleration of our Universe.
After this stage, GðR> 4�Þ ’ R> 0 and we do not find
other de Sitter solutions. Note that the de Sitter solution for
R ¼ 4� is stable, since the first term in Eq. (2.17) diverges.
On the other hand, the Minkowski space solution is un-
stable. In sum, we have two FRW-vacuum solutions, which
correspond to the trivial de Sitter point for R ¼ 0 and to the
stable de Sitter point of current acceleration, for R ¼ 4�.
Finally, we have to consider the existence of spherically-

symmetric solution. In R ¼ 0 we find the Schwarzschild
solution, which is unstable. On the other hand, the
physical Schwarzschild-de Sitter solutions are obtained
for R � R0. For example, in the Solar System,
R� ’ 10�61 eV2. In this case ðFðR�Þ ’ R� � 2�Þ we find
the Schwarzschild-de Sitter solution as in Eq. (2.34), which
can be approximated with the Schwarzschild solution of
Eqs. (2.32) and (2.33), owing to the fact that � is very
small. For R� � R0, Eq. (3.10) with Rsp ¼ R� is satisfied
and the solution is stable.
The description of the cosmological evolution in expo-

nential gravity has been carefully studied in Refs. [19,20]
where it was explicitly demonstrated that the late-time
cosmic acceleration following the matter-dominated stage,
as a final attractor of the Universe, can indeed be realized.
By carefully fitting the value of R0, the correct value of
the rate between matter and dark energy of the current
Universe follows (see Sec. VI). Our next step will be to
generalize the model in order to describe inflation. We will
follow the method first suggested in Ref. [18].

V. INFLATION

A simple modification of the one-step model which
incorporates the inflationary era is given by a combination
of the function discussed above with another one-step
function reproducing the cosmological constant during
inflation. A quite natural possibility is

FðRÞ ¼ R� 2�ð1� e�ðRÞ=ðR0ÞÞ
��i

�
1� e�ððRÞ=ðRiÞÞn

�
þ 
R�: (5.1)

For simplicity, we call

fi ¼ ��i

�
1� e�ððRÞ=ðRiÞÞn

�
; (5.2)

where Ri and�i assume the typical values of the curvature
and expected cosmological constant during inflation,
namely Ri, �i ’ 1020–38 eV2, while n is a natural number
larger than 1. The presence of this additional parameter is
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motivated by the necessity to avoid the effects of inflation
during the matter era, when R � Ri, so that, for n > 1, one
gets

R � jfiðRÞj ’ Rn

Rn�1
i

: (5.3)

The last term in Eq. (5.1), namely 
R�, where 
 is a
positive dimensional constant and � a real number,
is necessary to obtain the exit from inflation. If

� 1=R��1

i and �> 1, the effects of this term vanish in
the small-curvature regime, when R � Ri and

R � R�

R��1
i

: (5.4)

Note that fið0Þ ¼ 0 and fiðR � RiÞ ’ ��i. We also
obtain

f0iðRÞ ¼ ��inR
n�1

Rn
i

e�ððRÞ=ðRiÞÞn ; (5.5)

f00i ðRÞ ¼ ��inðn� 1ÞRn�2

Rn
i

e�ððRÞ=ðRiÞÞn

þ�i

�
nRn�1

Rn
i

�
2
e�ððRÞ=ðRiÞÞn : (5.6)

The first derivative f0iðRÞ has a minimum at R ¼ ~R, where
f00i ð ~RÞ ¼ 0. One gets

~R ¼ Ri

�
n� 1

n

�ð1=nÞ
: (5.7)

Thus, in order to avoid the antigravity effects (jf0iðRÞj< 1),
it is sufficient to require jf0ið ~RÞj< 1. This leads to

Ri >�in

�
n� 1

n

�ðn�1Þ=ðnÞ
e�ðn�1Þ=ðnÞ: (5.8)

For example, one can choose n ¼ 4. In this case Eq. (5.8)
is satisfied for Ri > 1:522�i. A reasonable choice is
Ri ¼ 2�i. The last power-term of Eq. (5.1) does not give
any problem with antigravity, because its first derivative is
positive.

It is necessary that the modification of gravity describing
inflation does not have any influence on the stability of the
matter era in the small-curvature range. When R � Ri, the
second derivative of such modification, namely

f00i ðRÞ þ �ð�� 1Þ
R��2

’ 1

R

�
�nðn� 1Þ

�
R

Ri

�
n�1 þ �ð�� 1Þ

�
R

Ri

�
��1

�
; (5.9)

must be positive, that is

n > �: (5.10)

We require the existence of the de Sitter critical
point RdS which describes inflation in the high-curvature
regime of fiðRÞ, so that fiðRdS � RiÞ ’ ��i and
f0iðRdS � RiÞ ’ 0þ. In this region, the role of the first
term of Eq. (5.1) is negligible, while the term 
R� needs
to be taken into account. For simplicity, we shall assume
that 
 ¼ 1=R��1

dS . The function GðRÞ in Eq. (3.9),

GðRÞ ¼ Rþ 2fi � Rf0i þ
ð2� �Þ
R��1
dS

R�; (5.11)

has to be zero on the de Sitter solution. We get

RdS ¼ 2�i

3� �
; RdS � Ri: (5.12)

Since �i � Ri, in order to satisfy the last two conditions
simultaneously, one has to choose

2<�< 3: (5.13)

Let us consider the effective scalar mass of Eq. (2.15) on
the de Sitter solution:

m2 ’ RdS

3

�
1þ 2�� �2

�ð�� 1Þ
�
: (5.14)

It is negative if �> 2:414. In this case inflation is strongly
unstable. Using Eq. (3.14) we derive the characteristic time
of the instability as

ti � 1ffiffiffiffiffiffiffiffi
RdS

p � 10�10–10�19 sec; (5.15)

in accordance with the expected value. The new condition
on �, in order to have unstable inflation, is

5=2 	 �< 3: (5.16)

Now, we will try to reconstruct the evolution of the
function GðRÞ in Eq. (5.11),

GðRÞ ¼ Rþ 2fiðRÞ � Rf0iðRÞ þ ð2� �Þ R�

R��1
dS

: (5.17)

WhenR ¼ 0, we find a trivial de Sitter point andGð0Þ ¼ 0.
For the first derivative of GðRÞ,

G0ðRÞ ¼ 1þ f0iðRÞ � Rf00i ðRÞ þ �ð2� �ÞR
��1

R��1
dS

: (5.18)

G0ð0Þ> 0 and GðRÞ increases. Since f00i ðRÞ starts being
positive for R> ~R (where ~R is expressed as in Eq. (5.7))
and 2� �< 0, it is easy to see that GðRÞ begins to
decrease at around R ¼ Ri and that it is zero when
R ¼ RdS. After this point, G0ðR> RdSÞ< 0 and we do
not have other de Sitter solutions. On the other hand, it is
possible to have a fluctuation of GðRÞ along the R axis just
before the de Sitter point describing inflation takes over. In
order to avoid other de Sitter solutions (i.e., possible final
attractors for the system), we need to verify the fulfillment
of the following condition:
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GðRÞ> 0 for 0<R< RdS: (5.19)

Precise analysis of this condition leads to a transcendental
equation. In the next subsection we will limit ourselves
to a graphical evaluation. In general, it will be enough to
choose n sufficiently large in order to avoid such effects.

A. Construction of a realistic model for inflation

By taking into account all the conditions met in the
previous paragraph, the simplest choice of parameters to
introduce in the function of Eq. (5.1) is

n ¼ 4; � ¼ 5

2
; (5.20)

while the curvature Ri is set as

Ri ¼ 2�i: (5.21)

In this way, n > � and we avoid undesirable instability
effects in the small-curvature regime. Ri satisfies Eq. (5.8)
and we have no antigravity effects. From Eq. (5.12)
one recovers the unstable de Sitter solution describing
inflation as

RdS ¼ 4�i: (5.22)

We note that, due to the large value of n, RdS is sufficiently
large with respect to Ri, and fiðRdSÞ ’ ��i. One can also
expect that, on top of this graceful exit from inflation, the
effective scalar degree of freedom may also give rise to
reheating, in analogy with Ref. [21].

In Fig. 1 a plot of GðRÞ is shown. The zeros of GðRÞ
correspond to de Sitter solutions. One can see that the only
nontrivial zero is the de Sitter point of Eq. (5.22), and here
the function crosses the R axis up-down, according to the
instability of such solution (since F00ðR> ~RÞ> 0, we get
G0ðRÞ �m2 < 0). This means that the inflationary de Sitter
point corresponds to a maximum of the theory (without
matter/radiation). The system gives rise to the de Sitter
solution where the Universe expands in an accelerating

way but, suddenly, it exits from inflation and tends towards
the minimal attractor at R ¼ 0, unless the theory develops
a singularity solutions for R ! 1. In such case, the model
could exit from inflation and move in the wrong direction,
where the curvature would grow up and diverge, and a
singularity would appear. In the next section we will recall
some important facts about singularities, which will be
considered in the context of exponential gravity.

VI. FINITE-TIME FUTURE SINGULARITIES

In general, future singularities appear when the Hubble
parameter has the form

H ¼ h

ðt0 � tÞ� ; (6.1)

where h and t0 are positive constants, and t < t0, because it
should correspond to an expanding universe. Here � is a
positive constant or a negative noninteger number, so that,
when t is close to t0, H or some derivatives of H, and
therefore the curvature, become singular.
Note that such a choice of the Hubble parameter corre-

sponds to an accelerated universe, because on the singular
solution of Eq. (6.1) it is easy to see that the strong energy
condition (�eff þ 3peff 
 0) is always violated when
�> 0, or for small values of t when �< 0. What means
that, in any case, is that a singularity could emerge at the
final evolution stage of an accelerating universe.
The finite-time future singularities can be classified as

follows [13]:
(i) Type I (Big Rip): for t ! t0, aðtÞ ! 1, �eff ! 1

and jpeffj ! 1. It corresponds to � ¼ 1 and �> 1.
(ii) Type II (sudden): for t ! t0, aðtÞ ! a0, �eff ! �0

and jpeffj ! 1. It corresponds to �1<�< 0.
(iii) Type III: for t ! t0, aðtÞ ! a0, �eff ! 1 and

jpeff j ! 1. It corresponds to 0<�< 1.
(iv) Type IV: for t ! t0, aðtÞ ! a0, �eff ! 0, jpeffj ! 0

and higher derivatives of H diverge. The case in
which � and/or p tend to finite values is also
included. It corresponds to �<�1 but � is not
any integer number.

Here, a0ð� 0Þ and �0 are positive constants.
It is easy to see that in the case of Type I and Type III

singularities we have R ! þ1. Those types are the most
dangerous in the cosmological scenario. On the other hand,
also the soft Type II and Type IV (R ! const) singularities
may cause various problems related, for instance, to the
description of stellar astrophysics.

A. Singularities in exponential gravity

Let us now consider the exponential model of Eq. (5.1),
but avoiding the last term, 
R�. When R ! þ1, we have
FðR ! þ1Þ ’ Rþ const, F0ðR ! þ1Þ ’ 1, while the
high-order derivatives of FðRÞ tend to zero in an exponen-
tial way. This means that �eff in Eq. (2.22), by neglecting

1 2 3 4 5 6 7

3

2

1

1

2
G

FIG. 1 (color online). Plot ofGðR=�iÞ The zeros correspond to
the de Sitter solutions.
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the matter contribution, tends to a constant on the singular
solution of Eq. (6.1) with �> 0 (namely, R ! þ1). For
this reason, neither Type I nor Type III singularities, where
�eff has to diverge, can appear in exponential gravity.
However, a model of this kind, which mimics the cosmo-
logical constant in the high-curvature regime, can be af-
fected by Type II or IV singularities.

Regarding Type II singularities, we have to consider the
behavior of the model when R is negative, which is very
different from the case of positive values of the curvature.
This is the reason why this kind of singularities does not
appear: when R ! �1, �eff of Eq. (2.22) exponentially
diverge, and the sudden singularity, where �eff has to tend
to a constant, cannot be realized.

Also Type IV singularities are not realized: when
R ! 0�, FðR ! 0�Þ ’ R� R=R0, and it is easy to see
that �eff of Eq. (2.22) behaves as 1=ðt0 � tÞ�þ1, and it is
larger than H2ð¼ h2=ðt0 � 1Þ2�Þ, when �<�1. For this
reason, Eq. (2.20) is inconsistent with Type IV singular-
ities. The argument is valid also if we consider the more
general case whereH ¼ H0 þ h=ðt0 � tÞ� and tends to the
positive constant H0 in the asymptotic singular limit:
also in this situation FðRÞ approaches a constant like
1=ðt0 � 1Þ�þ1, while the time dependent part of H2 be-
haves as 1=ðt0 � tÞ�.

Consider now adding back the term 
R�. This becomes
relevant just when R � Ri, so that it can produce Type I
or III singularities, only. However, in Ref. [12] it is explic-
itly demonstrated that the model Rþ 
R� is protected
against singularities of this kind if 2 
 �> 1.

Thus, we have found our theory to be free from singu-
larities. In particular, when our model is approximated as

FðRÞ ’ R��i þ 
R�; (6.2)

Type I or III singularities do not occur. When inflation
ends, the model moves to the attractor de Sitter point. In
this way, the small-curvature regime arises, the first term of
Eq. (5.1) becomes dominant and the physics of the �CDM
model are reproduced.

VII. DARK ENERGY EPOCH

We will now be interested in the cosmological evolution
of the dark energy density �DE ¼ �eff � �=F0ðRÞ in the
case of the two-step model of Eq. (5.1), near the late-time
acceleration era describing the current Universe. We as-
sume the spatially-flat FRW metric of Eq. (2.18). Let us
follow the method first suggested in Ref. [16] and more
recently used in Ref. [20].

To this end, we introduce the variable

yH � �DE

�ð0Þ
m

¼ H2

~m2
� a�3 � �a�4: (7.1)

Here, �ð0Þ
m is the energy density of matter at present time,

~m2 is the mass scale

~m 2 � �2�ð0Þ
m

3
’ 1:5� 10�67 eV2; (7.2)

and � is defined as

� � �ð0Þ
r

�ð0Þ
m

’ 3:1� 10�4; (7.3)

where �ð0Þ
r is the energy density of radiation at present

(the contribution from radiation is also taken into
consideration).
The EoS parameter !DE for dark energy is

!DE ¼ �1� 1

3

1

yH

dyH
dðlnaÞ : (7.4)

By combining Eq. (2.20) with Eq. (2.19) and using
Eq. (7.1), one gets

d2yH
dðlnaÞ2 þ J1

dyH
dðlnaÞ þ J2yH þ J3 ¼ 0; (7.5)

where

J1 ¼ 4þ 1

yH þ a�3 þ �a�4

1� F0ðRÞ
6 ~m2F00ðRÞ ; (7.6)

J2 ¼ 1

yH þ a�3 þ �a�4

2� F0ðRÞ
3 ~m2F00ðRÞ ; (7.7)

J3 ¼ �3a�3

� ð1� F0ðRÞÞða�3 þ 2�a�4Þ þ ðR� FðRÞÞ=ð3 ~m2Þ
yH þ a�3 þ �a�4

� 1

6 ~m2F00ðRÞ ; (7.8)

and thus, we have

R ¼ 3 ~m2

�
dyH
d lna

þ 4yH þ a�3

�
: (7.9)

The parameters of Eq. (5.1) are chosen as follows:

� ¼ ð7:93Þ ~m2;

�i ¼ 10100�;

Ri ¼ 2�i; n ¼ 4;

� ¼ 5

2
; 
 ¼ 1

ð4�iÞ��1
;

R0 ¼ 0:6�; 0:8�; �: (7.10)

Equation (7.5) can be solved in a numerical way, in the
range of R0 � R � Ri (matter era/current acceleration).
yH is then found as a function of the red shift z,
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z ¼ 1

a
� 1: (7.11)

In solving Eq. (7.5) numerically we have taken the follow-
ing initial conditions at z ¼ zi:

dyH
dðzÞ

��������zi

¼ 0;

yHjzi ¼
�

3 ~m2
; (7.12)

which correspond to the ones of the �CDM model.
This choice obeys to the fact that in the high red shift
regime the exponential model is very close to the
�CDM Model. The values of zi have been chosen so
that RF00ðz ¼ ziÞ � 10�5, assuming R ¼ 3 ~m2ðzþ 1Þ3.
We have zi ¼ 1:5, 2.2, 2.5 for R0 ¼ 0:6�, 0:8�, �, re-
spectively. In setting the parameters, we have used the last
results of the WMAP, BAO and SN surveys [22].

Using Eq. (7.4), one derives !DE from yH. In Figs. 2–4,
we plot !DE as a function of the redshift z for R0 ¼ 0:6�,
0:8�, �, respectively. Note that !DE is very close to
minus one. In the present Universe (z ¼ 0), one has

!DE ¼ �0:994, �0:975, �0:950 for R0 ¼ 0:6�, 0:8�,
�. The smaller R0 is, our model becomes more indistin-
guishable from the �CDM model, where !DE ¼ �1.
We can also extrapolate the behavior of the density

parameter of dark energy, �DE,

�DE � �DE

�eff

¼ yH
yH þ ðzþ 1Þ3 þ �ðzþ 1Þ4 : (7.13)

Plots of �DE as a function of the redshift z for
R0 ¼ 0:6�, 0:8�, �, are shown in Figs. 5–7. For the
present Universe (z ¼ 0), one has �DE ¼ 0:726, 0.728,
0.732 for R0 ¼ 0:6�, 0:8�, �, respectively.
The data are in accordance with the last and very accu-

rate observations of our present Universe, where

!DE ¼ �0:972þ0:061
�0:060;

�DE ¼ 0:721� 0:015: (7.14)

As a last point, we want to analyze the behavior of the
Ricci scalar in Eq. (7.9) for R0 ¼ 0:6�, 0:8�, �. Results
are shown in Figs. 8–10. We clearly see that the transition
crossing the phantom divide does not cause any serious

1.0 0.5 0.5 1.0 1.5
z

1.02

1.01

0.99

0.98

FIG. 3 (color online). Plot of !DE for R0 ¼ 0:8�.
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FIG. 2 (color online). Plot of !DE for R0 ¼ 0:6�.
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FIG. 4 (color online). Plot of !DE for R0 ¼ �.
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FIG. 5 (color online). Plot of �DE for R0 ¼ 0:6�.
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problem to the accuracy of the cosmological evolution
arising from our model. In particular, Rðz ! �1þÞ tends
to 12 ~m2yHðz ! �1þÞ, which is an effective cosmological
constant (note that R0 is small and we are close to the
value of the �CDM model, where 12 ~m2yH ¼ 4�). As a

consequence, the de Sitter solution is a final attractor of our
system and describes an eternal accelerating expansion.

VIII. ASYMPTOTIC BEHAVIOR

As a last issue, we will analyze the solutions of our
model when R is very large in comparison with the de
Sitter curvature RdS. This means that Eq. (5.1) can be
approximated by

FðR ! 1Þ ’ 
R�; (8.1)

which is proved by the fact that �> 2 and, by setting

 ¼ R��1

dS , one has 
R� � R. In order to check for

solutions, we use Eq. (2.22) and verify Eq. (2.20). A class
of asymptotic solutions of the model of Eq. (8.1) at the
limit t ! 0þ is

HðtÞ ¼ H0

t�
; (8.2)

where H0 is a large positive constant and � a positive
parameter so that � ¼ 1 or �> 1. It follows from
Eq. (2.19),
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FIG. 6 (color online). Plot of �DE for R0 ¼ 0:8�.
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FIG. 7 (color online). Plot of �DE for R0 ¼ �.
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FIG. 8 (color online). Plot of R=� for R0 ¼ 0:6�.
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FIG. 9 (color online). Plot of R=� for R0 ¼ 0:8�.
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FIG. 10 (color online). Plot of R=� for R0 ¼ �.
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R ’ 12
H2

0

t2�
: (8.3)

Equation (2.22) gets

�eff ’ �

t2�
: (8.4)

Here, � is a positive constant and Eq. (2.20), in the limit
t ! 0þ, is perfectly consistent. This result shows that in
the limit R ! 1 the model exhibits a past singularity,
which could be identified with the Big Bang one. It is
important to stress that this kind of solution is disconnected
from the de Sitter inflationary solution, where the term R is
of the same order of 
R� and is therefore not negligible as
in Eq. (8.1). We may assume that, just after the Big Bang, a
Planck epoch takes over where physics is not described by
GR and where quantum gravity effects are dominant.
When the Universe exits from the Planck epoch, its curva-
ture is bound to be the characteristic curvature of inflation
and the de Sitter solution takes over.

IX. ON THE STABILITY OF DE SITTER
SPACE AND A REALISTIC MODEL

WITHOUT SINGULARITIES

We investigate here in more detail the stability of the de
Sitter solution (or its absence) and construct another model
which does not generate any singularity. The de Sitter
condition (2.11) can be rewritten as

0 ¼ d

dR

�
FðRÞ
R2

�
: (9.1)

Let R ¼ RdS be a solution of (9.1). Then FðRÞ has the form
FðRÞ
R2

¼ f0 þ f1ðRÞðR� RdSÞn: (9.2)

Here, f0 is a constant, which should be positive if we
require FðRÞ> 0. We now assume that n is an integer
bigger or equal than 3: n 
 3. Assume the function fðRÞ
does not vanish at R ¼ RdS, fðRdSÞ � 0. Since n 
 3,
one finds

� RdS þ F0ðRdSÞ
F00ðRdSÞ ¼ 0; (9.3)

which tells us thatm2 in (2.15) vanishes. Therefore, a more
detailed investigation is necessary in order to check stabil-
ity. Using the expression of m2


,

m2

 ¼ 3

2

�
R

F0ðRÞ �
4FðRÞ
ðF0ðRÞÞ2 þ

1

F00ðRÞ
�
; (9.4)

one can investigate the sign of m2

 in the region R� RdS.

Note that the Eq. (2.15) is not used since this expression is
only valid at the point R ¼ RdS. Hence, we get

m2

 �� 3nðn� 1ÞR2

dSf1ðRdSÞ
2f20

ðR� R0Þn�2: (9.5)

Equation (9.5) indicates that, when n is an even integer, the
de Sitter solution is stable provided f1ðRdSÞ< 0 but it is
unstable if f1ðRdSÞ> 0. On the other hand, when n is an
odd integer, the de Sitter solution is always unstable. Note,
however, that when f1ðRdSÞ< 0 (f1ðRdSÞ> 0), we find
m2


 > 0 (m2

 < 0) if R> RdS, but m2


 < 0 (m2

 > 0) if

R< RdS. Therefore when f1ðRdSÞ< 0, R becomes small
but when f1ðRdSÞ> 0, R becomes large. The stability
condition can thus be used to get realistic (unstable) de
Sitter inflation for a specific FðRÞ gravity.
The following model, instead of (5.1), is considered

(compare with [23]),

FðRÞ
R2

¼ 1
~R
� 2�

~R

�
1� e�ðð ~RÞ=ðR0ÞÞ

�
þ � ~R��;

~R � Ri

n

��
R� Ri

Ri

�
n þ 1

�
: (9.6)

Here n is assumed to be an odd integer n 
 3. We also
assume that Ri, �, and � are positive constants and that �
satisfies the condition 0 	 � < 1=n. We choose � to be
small enough. When 0<R � Ri, we find ~R� R and
therefore the model (4.1) is reproduced. When R� Ri,
FðRÞ=R2 behaves as in (9.2), with

f0 ¼ n

Ri

� 2n�

Ri

þ �

�
Ri

n

���
;

f1ðRiÞ ¼ �
�
n

Ri

� 2n�

Ri

�
1� e�ððRiÞ=ðnR0ÞÞ þ Ri

nR0

�

þ ��

�
Ri

n

���
�
: (9.7)

Since 0<� � 1 and it is assumed that � � ð nRi
Þ1��,

we find

f0 � n

Ri

; f1ðRiÞ � � n

Ri

< 0; (9.8)

and, therefore, there exists a de Sitter solution R ¼ Ri and
the curvature always becomes smaller, slowly decreasing
from the de Sitter point. Therefore, no future singularity is
generated. When R ! 1, FðRÞ behaves as

FðRÞ � �R2�2n�R�ðn�1Þ
i : (9.9)

Since 1< 2� 2n� 	 2, the singularity cannot emerge.
Using the same numerical techniques as in the above
sections, one can numerically fit this nonsingular model
with actual observable data coming from the dark energy
epoch.

X. DISCUSSION

In summary, we have investigated in this paper some
models corresponding to the quite simple exponential the-
ory of modified FðRÞ gravity which are able to explain the
early- and late-time universe accelerations in a unified way.
The viability conditions of the models have been carefully
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investigated and it has been demonstrated that the theory
quite naturally complies with the local tests as well as with
the observational bounds. Moreover, the inflationary era
has been proven to be unstable and a graceful exit from
inflation has been established. A numerical investigation of
the dark energy epoch shows that the theory is basically
nondistinguishable from the latest observational predic-
tions of the standard �CDM model in this range. Special
attention has been paid in this paper to the occurrence of
finite-time future singularities in the theory under consid-
eration. It has been shown that it is indeed protected
against the appearance of such singularities. Moreover,
its evolution turns out to be asymptotically de Sitter (it
has a late-time de Sitter universe as an attractor of the
system). Hence, the future of our Universe, according to
such modified gravity, is eternal acceleration. We have also
demonstrated that slight modifications of the theory may
lead to other nonsingular exponential gravities with similar
predictions, which points towards a sort of stable class of
well-behaved theories.

Very nice properties of exponential gravity are its ex-
treme analytic simplicity, as well as the noted singularity
avoidance. In this respect, the theory considered seems to
be a very natural candidate for the study of cosmological
perturbations and structure formation, which are among
the most basic issues of evolutional cosmology. However,
the theory remains in the class of higher-derivative grav-
ities, which is not yet well understood, even concerning its
canonical formulation [24]. In this respect, the covariant
perturbation theory developed in [25] could presumably be
applied for such investigation. This will be pursued
elsewhere.
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APPENDIX: THE EINSTEIN FRAME

FðRÞ gravity may be rewritten in a scalar-tensor or
Einstein frame form. In this case, one can present the

Jordan frame action of modified gravity of Eq. (2.1) by
introducing a scalar field which couples to the curvature.
Of course, this is not exactly a physically-equivalent for-
mulation, as explained in Ref. [26]. However, the Einstein
frame formulation may be used for getting some of the
intermediate results in a simpler form (especially, when
matter is not accounted for).
Let us introduce the field A into Eq. (2.1):

IJF ¼ 1

2�2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
½F0ðAÞðR� AÞ þ FðAÞ�d4x: (A1)

Here ‘‘JF’’ means ‘‘Jordan frame’’. By making the varia-
tion of the action with respect to A, we have A ¼ R. The
scalar field 
 is defined as


 ¼ � ln½F0ðAÞ�: (A2)

Consider now the following conformal transformation of
the metric:

~g �� ¼ e
g��; (A3)

for which Eq. (A1) is invariant. By using Eq. (A3), we get
the Einstein frame (EF) action of the scalar field 
:

IEF ¼ 1

2�2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q �
R� 3

2
g��@�
@�
� Vð
Þ

�
d4x;

(A4)

where

Vð
Þ ¼ e
hðe�
Þ � e2
F½hðe�
Þ�: (A5)

hðe�
Þ is the solution of Eq. (A2):

hðe�
Þ ¼ A: (A6)

In order to pass to the scalar-tensor theory, we need the
explicit form of the potential Vð
Þ. In principle, the result
of Eq. (A6) will be in the form of a complicated tran-
scendental function. However, in exponential gravity the
calculation simplifies a lot.
Thus, for the one-step model in Eq. (4.1) with � ¼ R0,

Eq. (A6) leads to

hðe�
Þ ¼ lnð1� e�
Þ�1=R0 ; (A7)

and Eq. (A5) is a simple transcendental equation which
yields the nice result

Vð
Þ ¼ � 1

R0

e
ð1� e
Þ lnð1� e�
Þ þ 2�e
ð2R0�1Þ=R0 :

(A8)
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