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We numerically construct a family of five-dimensional black holes exhibiting a line of first-order phase

transitions terminating at a critical point at finite chemical potential and temperature. These black holes

are constructed so that the equation of state and baryon susceptibilities approximately match QCD lattice

data at vanishing chemical potential. The critical end point in the particular model we consider has

temperature 143 MeVand chemical potential 783 MeV. Critical exponents are calculated, with results that

are consistent with mean-field scaling relations.
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I. INTRODUCTION

At zero chemical potential � for baryon number, quan-
tum chromodynamics (QCD) appears to have a smooth but
rapid crossover at a temperature Tc whose value is within
about 10% of 175 MeV. It is believed that this crossover
sharpens into a line of first-order phase transitions at finite
�. The position of the critical point that terminates this line
is of considerable experimental interest, but it is hard to
determine theoretically due to being in a region of strong
coupling, and also because lattice techniques are not well
adapted to finite real �. A theory review can be found
in [1]. Recent lattice results can be found in, for example,
[2–4]. The aims of the recently initiated beam-energy scan
at RHIC are laid out in [5] and the fixed-target Compressed
Baryonic Matter (CBM) project at FAIR is discussed in [6].

It was shown in [7,8] that simple gravitational theories
in five dimensions are capable of producing black holes
which approximately reproduce the equation of state of
QCD, including the crossover, at vanishing chemical po-
tential; see also [9–13] and the review in [14]. The gravi-
tational theories include just two fields: the spacetime
metric, and a real scalar field whose profile breaks confor-
mal invariance and can be understood roughly as the
running coupling of QCD. A natural generalization of
such models is to include a chemical potential for baryon
number as well. Adding a single additional field, a Uð1Þ
gauge field dual to the baryon number current, one may
generate a chemical potential by turning on an appropriate
electric field in the black hole geometry.

In this paper, we study the coupled metric-scalar-gauge
field system and numerically obtain solutions for charged
black holes filling out the T �� phase diagram of the field
theory dual. The minimal Lagrangian for these theories
contains some freedom, encoded in the choice of scalar
potential and gauge kinetic function. We elect to fix both
these functions by matching to lattice results for QCD at
zero chemical potential. The scalar potential is fixed by
demanding a QCD-like equation of state that captures the
chiral symmetry breaking crossover, as in [7,8]. We show

how the gauge kinetic function can be determined by
similarly matching quark susceptibilities, in principle re-
moving all freedom from the construction.
We then investigate how black holes behave at finite

chemical potential. We find that, just as is expected for
QCD, at finite� the crossover turns into a line of true first-
order phase transitions ending in a critical point. We locate
the first-order line by looking for characteristic thermody-
namically unstable solutions, and identify the critical point
as the end of this line; the location of the critical point is at
physically reasonable values of T and �.
We then turn to a study of the critical exponents of this

point. We find a set of exponents that are nontrivially self-
consistent due to satisfying two scaling relations. Thus, our
black holes built from just three fields reproduce a realistic
phase diagram near the critical end point for a QCD-like
theory. In QCD, the critical point is expected to lie in the
same universality class as the 3D Ising model and the fluid
liquid/gas transition. The critical exponents we obtain are
consistent with mean-field scaling. This is reasonable since
our black hole constructions are classical, corresponding
to an implicit large N limit on the field theory side that
suppresses quantum corrections. Further realism lies, pre-
sumably, in the inclusion of 1=N corrections.
The organization of the rest of this paper is as follows. In

Sec. II we describe our gravity theory and summarize our
results for the location of the critical point in the T ��
plane and the values of its critical exponents. In Sec. III we
provide a self-contained summary of the aspects of ther-
modynamics which we will require in the rest of the paper,
as well as brief remarks on the phase structure of QCD.
Experts will have no reason to read this section, which
contains no new results. In Sec. IV we analyze the equa-
tions of motion following from our gravity theory, explain
how to extract thermodynamic quantities from the black
hole solutions, and summarize our numerical strategy. In
Sec. V we will explain how the gauge kinetic function can
be chosen to match lattice data for the baryon susceptibility
at � ¼ 0. In Sec. VI we describe locating the critical point
on the phase diagram, and in Sec. VII we analyze its
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properties, calculating the critical exponents and finding
them consistent with mean-field scaling. In Sec. VIII we
compare our result for the location of the critical point to
others in the literature, and conclude with some discussion.

II. GRAVITY THEORYAND SUMMARY
OF RESULTS

Our model falls in a class of five-dimensional gravita-
tional theories including a real scalar � and an Abelian
gauge field A� along with the spacetime metric, defined by

the Lagrangian

L ¼ 1

2�2

�
R� fð�Þ

4
F2
�� � 1

2
ð@�Þ2 � Vð�Þ

�
; (1)

where we use mostly plus conventions. With energy di-
mensions assigned so that ½�� ¼ �3=2, ½g��� ¼ ½A�� ¼
½�� ¼ 0, one finds that (1) is almost1 the most general
action using this field content one can have with at most
two derivatives. Arbitrary functions of � multiplying the
Einstein-Hilbert and scalar kinetic terms can be removed
by conformal transformations of the metric and reparamet-
rizations of �, respectively.

The black hole geometries consist of metrics taking
the form

ds2 ¼ e2AðrÞ½�hðrÞdt2 þ d~x2� þ e2BðrÞ

hðrÞ dr
2; (2)

along with an ansatz for the scalar field and electrostatic
potential depending only on the radial coordinate r:

� ¼ �ðrÞ; A�dx
� ¼ �ðrÞdt: (3)

The coordinates ðt; ~xÞ cover Minkowski space, R3;1,
while the radial coordinate r represents the holographic
direction.

As explained in [7] in the case of vanishing gauge field, a
choice of the scalar potential Vð�Þ can be translated into a
dependence of the entropy on temperature T. ([7] chooses
to work equivalently with the speed of sound c2s ¼
d logT=d logs.) In fact, if a desired dependence sðTÞ is
specified, then—within certain limits—one can find the
Vð�Þ that leads to it. A reasonable fit, not too far from
Tc, to lattice results for sðTÞ, is achieved with the simple
choice2 [8]

Vð�Þ ¼ �12 cosh��þ b�2

L2
with

� ¼ 0:606 and b ¼ 2:057; (4)

and L a constant related to the number of degrees of
freedom.
The black holes describing matter at finite chemical

potential include a nonzero gauge field as well. This in-
troduces the problem of specifying the gauge kinetic func-
tion fð�Þ. We can always use the freedom to rescale A� to

set fð0Þ ¼ 1. The matching of the speed of sound described
in the last paragraph is completely insensitive to the choice
of fð�Þ. However, fð�Þ can be fixed if one knows the
baryon number susceptibility at � ¼ 0. This susceptibility
is in fact fairly well known from the lattice [2]. In this
paper, we will not be systematic in finding Vð�Þ and fð�Þ
through a fit. Instead, we will focus on the above choice of
Vð�Þ and a similarly simple form for fð�Þ, namely

fð�Þ ¼ sech½65 ð�� 2Þ�
sech 12

5

; (5)

which as we will discuss in Sec. V leads to susceptibilities
in good agreement with lattice results.
It is probably impossible to find a string theory construc-

tion that leads precisely to the potential (4) and gauge
kinetic function (5). Thus, we cannot claim that the theory
(1) is dual to a specific known field theory. However, string
theory constructions do typically lead to potentials which
include sums of exponentials of canonically normalized
scalars. Thus, these functions are at least in the ballpark
of expressions that can be derived from string theory,
and it is reasonable to place the dual to our model
in the broad class of strongly coupled, large-N gauge
theories.
Having fit Vð�Þ and fð�Þ to lattice quantities at � ¼ 0,

we are able to use black hole constructions to extrapolate
outward into the T �� plane, where we indeed find a
critical end point. Through methods explained in Secs. V
and VI, we estimate the location of this critical point to be

Tc ¼ 143 MeV �c ¼ 783 MeV: (6)

We will compare this result to other estimates in the
literature in the conclusions.
Because we have not made a systematic study of the

forms of Vð�Þ and fð�Þ that approximately match lattice
data at � ¼ 0, we are not in a position to provide theoreti-
cal error bars for the result (6). It is best to view this result
as a proof of principle that you can get a critical end point
in the T �� plane using AdS/CFT methods, and that the
values (6) are within the theoretical error bars. It is also
noteworthy that we ignore fluctuations in our analysis: the
black holes we construct are fixed, classical geometries.
This means that we are not capturing all the physics that is
expected to go into the critical end point.
Analyzing the thermodynamics near the critical point

and performing linear regression fits to the data, we obtain
results for four critical exponents,

�¼0; ��0:482; ��0:942; ��3:035: (7)

1The exception is that one could add a Chern-Simons term A ^
F ^ F, but this term has no effect on the classical equations of
motion, which are what we will study; in addition it vanishes for
the solutions we are going to consider, because they have only
electric charge, not magnetic. Thus, we neglect it.

2The constant � in (4) is unrelated to the critical exponent
which will appear later in the paper.
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These results are, as we shall discuss, nontrivially consis-
tent with scaling relations, and consistent also with the
mean-field exponents � ¼ 0, � ¼ 1=2, � ¼ 1, � ¼ 3.

III. THERMODYNAMICS WITH A FINITE
CHEMICAL POTENTIAL

Before discussing the solution of the equations of mo-
tion in the gravity system (1) and the exploration of the
phase diagram, in this section we review a few essential
aspects of thermodynamics and critical phenomena.

A. Thermodynamics of a fluid

A fluid is characterized by the extensive quantities of
entropy S, volume V, and particle number (or net charge)
N, and their conjugate intensive variables temperature T,
pressure p, and chemical potential �. The internal energy
U ¼ UðS; V; NÞ depends on the extensive variables, which
can be thought of as characterizing the system itself, with
small changes described by the first law,

dU ¼ TdS� pdV þ�dN: (8)

The intensive variables, sometimes called ‘‘fields,’’ can be
thought of as properties imposed on the system by contact
with a reservoir.

For systems like the quark-gluon plasma, we are not
interested in a fixed volume, but instead in volume den-
sities for the extensive quantities. Define the energy density
	, entropy density s, and number density 
,

	 � U=V; s � S=V; 
 � N=V: (9)

Then, using the thermodynamic relation,

U ¼ TS� pV þ�N; (10)

one can show that the first law of thermodynamics (8)
rewritten in terms of densities becomes

d	 ¼ Tdsþ�d
; (11)

naturally reducing the system to a two-variable problem. It
is useful to define the corresponding free energy density
fðT;�Þ depending on the field variables T and � using the
usual Legendre transformation,3

fðT;�Þ � 	� sT ��
; (12)

which obeys

df ¼ �sdT � 
d�: (13)

Furthermore, it is easy to see the thermodynamic relation
(10) implies that the pressure reappears in the analysis as
just minus the free energy,

p ¼ �f: (14)

The phase diagram is the plot of ‘‘field’’ variables T and�.
At each point on the phase diagram, a physical phase
corresponds to values of the extensive variables (or den-
sities of extensive variables in our case, s and 
) which
extremize the free energy. In general, it is possible for more
than one extremum to exist at a given point on the diagram,
corresponding to the existence of multiple phases. The
preferred phase is the one minimizing the free energy f;
this is the condition of global stability and ultimately stems
from the second law of thermodynamics.
In addition to global stability, one must consider local

stability, which is characterized by stability under small
fluctuations. This is equivalent to the statement of positive-
definiteness of the matrix of susceptibilities:

S � � @2f
@T2 � @2f

@�@T

� @2f
@T@� � @2f

@�2

0
@

1
A ¼

@s
@T

@s
@�

@

@T

@

@�

 !
; (15)

where all derivatives of T or � are taken with the other
fixed. We note that the upper-left diagonal element is
related to the specific heat at constant chemical
potential C�:

C� � T

�
@s

@T

�
�
¼ �T

�
@2f

@T2

�
�
; (16)

while the lower-right diagonal quantity is related to the
isothermal compressibility,

�T � 1


2

�
@


@�

�
T
: (17)

In QCD, one usually considers in place of �T the quark
susceptibility,

�2 �
�
@


@�

�
T
¼ �

�
@2f

@�2

�
T
¼ 
2�T: (18)

The statement that the matrix of susceptibilities is positive
definite is equivalent to requiring

C
 > 0; �2 > 0; (19)

where C
 is the specific heat at constant volume,

C
 � T

�
@s

@T

�


¼ �T

�
@2f

@T2
� ð@2f=@T@�Þ2

ð@2f=@�2Þ
�
: (20)

In the last expression all T and� derivatives are taken with
the other fixed. Note that the Jacobian of the susceptibility
matrix is simply

detS ¼ 1

T
�2C
: (21)

Generally speaking, local stability (i.e., positive definite S)
is a requirement in order for a configuration to be consid-
ered a well-defined phase of the system.
When two phases have equal free energies at a given

ðT;�Þ, a first-order phase transition occurs at that point;

3The free energy density should not be confused with the
function fð�Þ in the gravity Lagrangian.
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typically the locus of first-order transitions has codimen-
sion one and so describes a line. On one side of the line one
phase is favored, while on the other the other is favored;
at the first-order line, a discontinuity exists in the densities,
�s and�
, as the system jumps from one phase to another.
The discontinuity in the entropy gives rise to the latent
heat L ¼ T�S.

A first-order line may terminate on a second-order point,
also called a critical point. Here the two distinct phases
merge into one; consequently, the discontinuities in the
densities approach zero as one moves along the first-order
line to the critical point. However, although these first
derivatives of the free energy become well-behaved, the
second derivatives—that is, the susceptibilities—may di-
verge at the critical point. The nature of these divergences
characterize some of the critical exponents associated to
the critical point, as we will describe momentarily. Critical
points in different systems with different variables may
share the same critical exponents, a phenomenon called
‘‘universality’’; the systems are said to lie in the same
universality class. Beyond the critical end point on the
phase diagram there is no discontinuous behavior, but the
densities may change rapidly along the extension of what
would have been the first-order line. This behavior is called
a crossover.

B. Phase diagram for QCD

A great deal of work has gone into predicting the phase
structure of QCD, and it is believed to be quite rich;
for reviews, see [15–17]. At small values of the baryon
chemical potential, the QCD phase diagram is dominated
by the chiral symmetry breaking transition, and this will be
our focus.

When all quarks are assumed to be massless, chiral
symmetry is an exact symmetry of the QCD Lagrangian,
and the broken symmetry phase at low T and � and the
restored symmetry phase at high T and/or � are distinct
and must be separated by a line of true phase transitions.
Near the � axis, the transition is expected to be first-order.
Near the T axis, the order of the transition depends on the
number of massless quarks. For two massless quarks, the
transition on the T axis is second-order and in the univer-
sality class of theOð4Þmodel; this transition is expected to
be the end of a line of second-order transitions extending
into the T-� plane and meeting the first-order line rising
from the � axis at a tricritical point. For three massless
quarks, on the other hand, the transition on the T axis is
expected to be first-order.

In the real world, quarks are massive and chiral symme-
try is not an exact symmetry of QCD. On the T axis, the
transition is known from lattice studies not to be a sharp
transition but instead a crossover. It is widely expected that
at sufficiently large chemical potential � the first-order
line returns; it then terminates at a critical end point at
some ðTc;�cÞ. This is displayed in Fig. 1.

The critical end point is an object of substantial interest
and speculation. It is difficult to explore it theoretically, as
the theory is strongly coupled and lattice calculations are
difficult at finite �. A number of models have been con-
structed to analyze its properties. It is expected to lie in the
universality class of the 3D Ising model, like the standard
liquid/gas transition of fluids. It is anticipated that depend-
ing on its location on the phase diagram, future heavy ion
experiments such as those at RHIC, LHC, or FAIR may
produce a quark-gluon plasma lying close to the critical
point at freeze-out, which could lead to information about
its properties (see, for example, [5,6,18].)
Other phases of QCD are anticipated to exist, in particu-

lar, regions at large � characterized by color superconduc-
tivity. We will have little to say about these phases in this
paper other than a brief speculation in Sec. VI B.

C. Critical behavior

Near the critical point, various first and second deriva-
tives of the free energy go to zero or diverge as power laws,
and it is the ‘‘critical exponents’’ associated with these
power laws that are universal—meaning they may take the
same values from one physical system to another, even
among systems with quite different microscopic proper-
ties. Describing them is at the heart of the study of critical
phenomena.
We will calculate four standard thermodynamic critical

exponents: �, �, �, and �.4 In calculating the exponents, it
is vital to specify whether one is approaching the critical
point along the axis defined by the first-order line, or by
another direction. The exponent � is defined by the power

FIG. 1 (color online). The expected phase diagram of QCD.
The line ending in a star is the first-order chiral transition and
its critical end point, which we focus on. Below is the nuclear
matter transition. At lower right are color superconducting
phases, color-flavor–locked and otherwise.

4Two other commonly used critical exponents, � and �,
require knowledge of the spatial distribution of correlation
functions and will not be calculated here.
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law behavior of the specific heat at constant 
 as the
critical point is approached along the axis defined by the
first-order line:

C
 � jT � Tcj��; along first-order axis: (22)

The exponent � comes from the discontinuity of 
 across
the first-order line. �
 is finite at a generic point on the
first-order line, and goes to zero as one approaches the
critical point along the line:

�
� ðTc � TÞ�; along first-order line: (23)

The exponent � is analogous to �, but instead of C
, it is

�2 that is tracked along the first-order axis:

�2 � jT � Tcj��; along first-order axis: (24)

Finally, � is defined at the critical isotherm T ¼ Tc by the
relation between 
� 
c and ���c:


� 
c � j���cj1=�; for T ¼ Tc: (25)

The same power law will manifest for any approach not
parallel to the first-order line. The paths through the phase
diagram associated to the four exponents are summarized
in Fig. 2.

The four thermodynamic exponents are not all indepen-
dent; in general they obey so-called scaling relations,
which follow from the scaling behavior of the free energy
at the critical point, determining two exponents in terms of
the other two. One has

�þ 2�þ � ¼ 2; �þ �ð1þ �Þ ¼ 2: (26)

Different critical exponents are characteristic of distinct
universality classes. Calculations in Landau-Ginzburg, or
mean-field, theory capture the tree-level values of the
critical exponents; in general this neglects quantum cor-
rections, which can be captured by the more sophisticated
techniques of the renormalization group. The critical point

of QCD is expected to lie in the universality class of the 3D
Ising model, as does the standard liquid/gas transition. The
results from mean-field (van der Waals) theory, the full
quantum 3D Ising model, and experiments in non-QCD
fluids are summarized in the table [19]:

Mean field 3D Ising Experiment

� 0 0.110(5) 0.110–0.116

� 1=2 0:325� 0:0015 0.316–0.327

� 1 1:2405� 0:0015 1.23–1.25

� 3 4.82(4) 4.6–4.9

These are the results we will compare our holographic
system to.

IV. BLACK HOLE SOLUTIONS

We now turn to an analysis of the equations of motion
for the gravity system. From the action (1) one can derive
four second-order equations of motion and a zero-energy
constraint. The second-order equations (simplified slightly
using the zero-energy constraint) are

A00 � A0B0 þ 1

6
�02 ¼ 0

h00 þ ð4A0 � B0Þh0 � e�2Afð�Þ�02 ¼ 0

�00 þ ð2A0 � B0Þ�0 þ d logf

d�
�0�0 ¼ 0

�00 þ
�
4A0 � B0 þ h0

h

�
�0 � e2B

h

@Veff

@�
¼ 0;

(27)

where

Veffð�; rÞ � Vð�Þ � 1

2
e�2A�2Bfð�Þ�02: (28)

The zero-energy constraint is

hð24A02��02Þþ6A0h0þ2e2BVð�Þþe�2Afð�Þ�02¼0:

(29)

The equation of motion for � can be integrated once to
show the conservation of the Gauss chargeQG for theUð1Þ
gauge field:

dQG

dr
¼ 0 where QG ¼ fð�Þe2A�B�0: (30)

One other conserved quantity can be guessed from scaling
symmetries, as in [7]:

dQN

dr
¼0 whereQN ¼e2A�B½e2Ah0 �fð�Þ��0�: (31)

A. Near-horizon asymptotics

Let us assume that h has a simple zero at rH and that
it has no additional zeroes between rH and the boundary.
Then rH is the location of a regular black hole horizon.

FIG. 2 (color online). A cartoon of the first-order line termi-
nating at the critical point (star) with the directions of approach
of the various critical exponents indicated.
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A series solution to the Eqs. (27) and (29) can be developed
simply by expanding

XðrÞ ¼ X0 þ X1ðr� rHÞ þ X2ðr� rHÞ2 þ . . . ; (32)

where X is any of A, B, h, �, and �. BðrÞ may be fixed to
be anything by a choice of the coordinate r, so all the Bn

are arbitrary. All but finitely many of the other coefficients,
however, are determined in terms of the first few. To be
more precise: h0 ¼ 0 by assumption; A0 ¼ 0 can be ar-
ranged by rescaling t and ~x by a common factor; h1 ¼ 1=L
can be arranged by rescaling only t; �0 ¼ 0 is a choice
one must make in order for �dt to be well-defined
at the horizon; and all other coefficients are determined
once one chooses �0 and �1. In other words, the
solutions to (27) and (29) may be parametrized by
ð�0;�1Þ. It helps our intuition to recall that �0 is the
value of the scalar field at the horizon, while �1 is essen-
tially the electric field in the radial direction, also evaluated
at the horizon. Given the assumptions just stated, it is easy
to show that

QG ¼ e�B0fð�0Þ�1 QN ¼ 1

L
e�B0 : (33)

It does not seem to be practical to find solutions
of the equations of motion through high-order series
expansions, because the expressions for high-order coef-
ficients quickly become quite complicated. In practice we
stopped at fourth order. The resulting expansions are suit-
able for providing initial values for numerical integration
of the differential Eqs. (27) at a radius slightly outside the
horizon.

B. Far-region asymptotics

To discuss asymptotic behavior far from the horizon it
helps to pick a gauge, so we fix B ¼ 0. We can write the
potential Vð�Þ as

Vð�Þ ¼ � 12

L2
þ 1

2
m2

��
2 þOð�3Þ; (34)

demonstrating L is the radius of curvature of the asymp-
totic AdS5 geometry, and we can define ��, the ultraviolet

dimension of the operator dual to �, according to

m2
�L

2 � ��ð�� � 4Þ: (35)

Following [8], we have assumed that this operator is es-
sentially trF2 and that the ultraviolet limit is to be matched
to QCD at a scale significantly above Tc but not parametri-
cally large. Thus �� should be only slightly less than 4,

and in our potential �� � 3:93.

One can then straightforwardly show that

AðrÞ ¼ �ðrÞ þ Afar
2�e

�2��ðrÞ þ . . .

hðrÞ ¼ hfar0 þ hfar4 e�4�ðrÞ þ hfar4þ2�e
�ð4þ2�Þ�ðrÞ þ . . .

�ðrÞ ¼ �far
0 þ�far

2 e�2�ðrÞ þ�far
2þ�e

�ð2þ�Þ�ðrÞ þ . . .

�ðrÞ ¼ �Ae
���ðrÞð1þ a�e

���ðrÞ þ a2�e
�2��ðrÞ þ . . .Þ

þ�Be
����ðrÞ þ . . . ; (36)

where

�ðrÞ � Afar
�1

r

L
þ Afar

0 (37)

and

� � 4���: (38)

The zero-energy constraint (29) implies

Afar
�1 ¼

1ffiffiffiffiffiffiffi
hfar0

q : (39)

Given (36), it is straightforward to show that the conserved
charges in terms of the far-region quantities evaluate to

QG¼� 2

L
Afar�1�

far
2 QN ¼ 2

L
Afar�1ð�2hfar4 þ�far

0 �far
2 Þ: (40)

Thus Afar
�1, h

far
4 , and �far

2 can be determined in terms of hfar0

and �far
0 once QG and QN are known. It is notable that in

the absence of a scalar (or if for some reason � ! 0 at the

boundary faster than e�2�ðrÞ) then the next correction to

hðrÞ after hfar4 e�4�ðrÞ is hfar6 e�6�ðrÞ, and the equation of

motion for h can be used to show that

hfar6 ¼ 1

3
ð�far

2 Þ2: (41)

However, for the solutions we will study numerically, the

scalar does not vanish fast enough for the hfar6 e�6�ðrÞ term
to be interesting.
Evidently, the expansions (36) are qualitatively more

intricate than the Taylor expansions (32) around the hori-

zon because the powers of e��ðrÞ are not (for practical
purposes) commensurate, owing to � � 0:07 not being
the ratio of small integers. The fact that � � 1 also leads
to some difficulties in finding robust numerical solutions to
the equations of motion. We will discuss these issues at
greater length in Sec. IVD.
The expansion of�ðrÞ in (36) is split into the part dual to

a deformation (proportional to �A) and the part dual to an
expectation value (proportional to �B). Each solution car-
ries a series of corrections, which we have shown only for
the solution proportional to �A. The correction term

a�e
���ðrÞ is present only when V 000ð0Þ � 0, so for even

potentials like (4) the leading correction is a2�e
�2��ðrÞ.

For small enough �, this correction, and even higher
corrections proportional to �A, dominate over the
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�Be
����ðrÞ term. Thus the terms not shown explicitly in

the expansion for �ðrÞ are subleading either to �Ae
���ðrÞ

or to �Be
����ðrÞ—or to both. In all the other expansions

in (36), the omitted terms are all subleading to the terms
shown explicitly.

C. Thermodynamic quantities

The solutions we are interested in have�A � 0, because
they are to be understood as renormalization group flows
triggered by deformation of a very slightly relevant opera-
tor. This is not exactly how QCD works, but it is suffi-
ciently close to be an interesting approximation. In order to
compare solutions meaningfully, one should ideally
arrange for �A always to be the same. This can be accom-
plished through a coordinate transformation, provided
�ðrÞ always has the same sign at the boundary.5 More
specifically, suppose we obtain a solution numerically
which has some positive value of �A. Then we wish to
perform a coordinate transformation on this solution to
bring it into the form

d~s2 ¼ e2
~Að~rÞð�~hð~rÞd~t2 þ d~~x2Þ þ d~r2

~hð~rÞ
~A�d~x

� ¼ ~�ð~rÞd~t ~� ¼ ~�ð~rÞ;
(42)

where

~Að~rÞ ¼ ~r

L
þOðe�2�~r=LÞ

~hð~rÞ ¼ 1þ ~hfar4 e�4~r=L þOðe�ð4þ2�Þ~r=LÞ
~�ð~rÞ ¼ ~�far

0 þ ~�far
2 e�2~r=L þOðe�ð2þ�Þ~r=LÞ

~�ð~rÞ ¼ e��~r=L þOðe�2�~r=LÞ:

(43)

Setting ds2 ¼ d~s2, A�dx
� ¼ ~A�d~x

�, and �ðrÞ ¼ ~�ð~rÞ,
one finds immediately that

~t ¼ �1=�
A

ffiffiffiffiffiffiffi
hfar0

q
t ~~x ¼ �1=�

A ~x

~r

L
¼ �ðrÞ � logð�1=�

A Þ ¼ Afar
�1

r

L
þ Afar

0 � logð�1=�
A Þ

(44)

and

~Að~rÞ ¼ AðrÞ � logð�1=�
A Þ

~hð~rÞ ¼ 1

hfar0

hðrÞ

~�ð~rÞ ¼ 1

�1=�
A

ffiffiffiffiffiffiffi
hfar0

q �ðrÞ;

(45)

which implies

~�far
0 ¼ �far

0

�1=�
A

ffiffiffiffiffiffiffi
hfar0

q
~�far
2 ¼ �far

2

�3=�
A

ffiffiffiffiffiffiffi
hfar0

q
~hfar4 ¼ hfar4

�4=�
A hfar0

:

(46)

Intensive thermodynamic quantities can now be readily
extracted using these relations along with standard expres-

sions in the ð~t; ~~x; ~rÞ coordinate system and the assumptions
stated following (32):

T ¼ e
~Að~rHÞ

4

�
d~h

d~r

�
~r¼~rH

¼ 1

4

1

L�1=�
A

ffiffiffiffiffiffiffi
hfar0

q
� ¼

~�far
0

L
¼ �far

0

L�1=�
A

ffiffiffiffiffiffiffi
hfar0

q :
(47)

Densities of extensive thermodynamic quantities can like-
wise be computed:

s ¼ 2

�2
e3

~Að~rHÞ ¼ 2

�2

1

�3=�
A


 ¼ �
~�far
2

�2
¼ � �far

2

�2�3=�
A

ffiffiffiffiffiffiffi
hfar0

q :
(48)

Thus, knowledge of the four asymptotic scaling parameters
�A, h

far
0 , �far

0 , and �far
2 determines the standard thermody-

namic variables T, �, s, and 
. Subleading parameters in
the field expansions will depend on these in general. For
example, using the constancy of the Noether charge (31)
and its asymptotic expressions (33) and (40), for hfar4 one
can show

hfar4

�4=�
A hfar0

¼ ~hfar4 ¼��2L

2
ðsTþ�
Þ¼��2L

2
ð	þpÞ; (49)

where in the last step we used the thermodynamic relation
(10) to express the result in terms of the sum of the
pressure and energy density. Note that this is the only
combination of 	 and p we have access to from these
calculations. The pressure by itself is equivalent to the
free energy density (14), which to calculate we would
need to evaluate the full renormalized action including
counterterms to cancel divergences. It is possible to get
the results we are interested in—in particular, the position
of the critical point and the values of its critical expo-
nents—with just T, �, s, and 
.
We can also use the Gauss charge to relate a certain

combination of the near-horizon parameters ð�0;�1Þ to
the asymptotic parameters, and thus the thermodynamics.

5If �ðrÞ becomes negative at the boundary, the following
expressions for far-zone coefficients and thermodynamic quan-
tities can still be used if j�Aj is substituted for �A.
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One finds that the Gauss charge is proportional to the
inverse of the entropy per baryon:

QG ¼ fð�0Þ�1 ¼ 4

L




s
: (50)

This is the only analytic relation between the initial con-
ditions at the horizon and the thermodynamic parameters.

D. Numerical strategy

It is straightforward in principle to obtain a numerical
black hole solution by integrating the second-order equa-
tions of motion (27) starting at some point slightly outside
the horizon with the functions and their derivatives initial-
ized from the horizon series expansions described in
Sec. IVA, with initial conditions ð�0;�1Þ. Then a fit can
be performed of the numerically known functions AðrÞ,
hðrÞ,�ðrÞ, and�ðrÞ to the asymptotic forms (36) to extract
the quantities hfar0 , �far

0 , �far
2 , and �A in terms of which T,

�, s, and 
 can be determined. Thus, for each input value
of ð�0;�1Þ, we obtain a black hole characterized by
thermodynamic quantities ðT;�; s; 
Þ. Certain values of
ð�0;�1Þ may lead to a solution that does not converge to
an asymptotically AdS5 solution. Typically, these space-
times are singular. They are not of the class we are inter-
ested in, so they are discarded.

Numerical integrations can be made vastly more effi-
cient by noting that hðrÞ and �ðrÞ converge much faster to
their asymptotic values than �ðrÞ and A0ðrÞ. A good strat-
egy, then, is to figure out the value r ¼ r� beyond which
the nonconstant corrections to hðrÞ and�ðrÞ have no more
influence on the equations of motion for A and � than
round-off errors do; then, join a solution of the full equa-
tions of motion from a point just outside the horizon to
r ¼ r� to a solution to simplified equations of motion,
obtained by replacing h by hfar0 and � by �far

0 , from

r ¼ r� to a value of r large enough to reliably compute
�A. As discussed following (40), �far

2 can be determined
once hfar0 and �far

0 are known. Thus, in order to extract T,
�, s, and 
 using (47) and (48), the only quantities one
needs from numerics are hfar0 , �far

0 , and �A. We imple-

mented the strategy described here in MATHEMATICA,
where the basic ODE’s (27) are solved using NDSolve.

V. QUARK SUSCEPTIBILITYAT ZERO
CHEMICAL POTENTIAL

Because lattice calculations at finite chemical potential
are problematic, it has been difficult to make precise
predictions for the behavior of QCD off the T axis.
However, at � ¼ 0, lattice studies have been carried out
extensively. The potential Vð�Þ from [7,8] was engineered
to reproduce the equation of state sðTÞ known from lattice
simulations.

We would like to also constrain the gauge kinetic func-
tion fð�Þ using known lattice results at � ¼ 0. The ex-
trapolation to finite � is then completely determined by

known physics at � ¼ 0, and represents the unique
prediction for the phase diagram of the large-N gauge
theory defined to emulate the thermodynamics of QCD
on the T axis.
The gravity calculation of sðTÞ at � ¼ 0 is completely

insensitive to fð�Þ, since the gauge field is zero in these
solutions. Instead we may examine the quark susceptibility
(18) at vanishing� as a function of temperature, as this has
also been calculated extensively on the lattice and as we
will see, depends on the choice of fð�Þ. In Sec. VAwe find
a gravity formula for the quark susceptibility at zero
chemical potential, and in Sec. VB we use this to justify
our choice of fð�Þ.

A. A formula for quark susceptibility

The black holes with � ¼ 0 have vanishing gauge
field A�, and 
 ¼ 0 as well. To calculate the quark sus-

ceptibility (18), we make use of the key observation that
the gauge field equation of motion in (27) is linear and
homogeneous in �, while � appears only quadratically in
the remaining equations in (27). We thus proceed by treat-
ing � as a linear perturbation, solving the gauge field
equation in the fixed background of the � ¼ 0 black
hole, and then determine �2 by noting that on the T axis,
its definition (18) becomes

�2ð� ¼ 0Þ ¼ lim
�!0


ð�Þ
�

: (51)

Moreover, in the linearized approximation, the overall
normalization of � is arbitrary as far as the equations of
motion are concerned and will cancel out of (51), so we can
set it to �1 ¼ 1=L.
We can in fact obtain a formula for (51) that reduces to

quantities only involving the metric and scalar, which are
unchanged in the linearized approximation and thus can
be taken from the solution for the background � ¼ 0
black hole. Since it is common in the literature to plot �2

normalized by T2, which approaches a constant at large T,
we will find a formula for �̂2 � �2=T

2. Using Eqs. (47)
and (48), we have

�̂ 2ð� ¼ 0Þ ¼ 


�T2
¼ �ð4Þ2L3

�2

�far
2 hfar0

�far
0

; (52)

and making use of the expression (40) for the Gauss charge
QG, we may simplify (52) to

�̂ 2ð� ¼ 0Þ ¼ 82L4

�2
ðhfar0 Þ3=2 QG

�far
0

: (53)

Now, recall that � ! 0 at the horizon r ¼ rH. As a result,

�far
0 ¼

Z 1

rH

dr�0 ¼ QG

Z 1

rH

dre�2Afð�Þ�1; (54)

where in the second step we have employed the definition
(30) of the Gauss charge. Plugging (54) into (53) results in
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�̂ 2ð� ¼ 0Þ ¼ 82L4

�2

ðhfar0 Þ3=2R1
rH
dre�2Afð�Þ�1

: (55)

Note at this point that all explicit dependence on the gauge
field� has dropped out. One can illuminate this further by
noting that

s

T3 ¼ 1284L3

�2
ðhfar0 Þ3=2; (56)

so that finally

�̂ 2ð� ¼ 0Þ ¼ L

162

s

T3

1R1
rH
dre�2Afð�Þ�1

: (57)

This expression may now be evaluated on � ¼ 0 black
holes directly, without having to solve the linearized �
equation explicitly.

Our final expression (57) is suggestive because in lattice
simulations, s=T3 and �̂2 � �2=T

2 have qualitatively simi-
lar behavior as functions of temperature at � ¼ 0: both
start near zero for low temperatures, then rapidly cross over
to a large value in the region of Tc, and asymptote to a finite
value at large T. Hence, from (57) we come to expect the
realistic behavior of �̂2 will to some extent be inherited
from the analogous behavior of s=T3.

The effects of the integral in the denominator of (57) do
play an important role, however. This integral introduces a
dependence of the quark susceptibility on the function
fð�Þ, which s=T3 alone was insensitive to. Thus differ-
ences between the functional forms of �̂2 and s=T

3 are due
entirely to the effects of fð�Þ.

B. Matching to lattice data at zero chemical potential

We now discuss the matching of lattice data to black
hole results at � ¼ 0 and justify our choice (5) for fð�Þ.
Since the precise field theory dual of our model is un-
known, we will not try to translate the quantities �, L into
field theory language. Instead, we will make the arbitrary

choice � ¼ L ¼ 1 and parametrize our ignorance by al-
lowing separate overall constant rescalings between the
lattice quantities and the black hole quantities:

½s�lattice ¼ �s½s�BH; ½T�lattice ¼ �T½T�BH;
½
�lattice ¼ �
½
�BH; ½��lattice ¼ ��½��BH:

(58)

As described previously, to compute the entropy density at
� ¼ 0 one does not need any information about fð�Þ at
all. In Fig. 3(a) we show how the entropy density compares
between lattice and black holes based on the potential (4).
For lattice data we used the right-hand plot in Fig. 3
of [2],6 with points from asqtad N� ¼ 6 simulations from
T ¼ 150 MeV out to T ¼ 382 MeV, and then points from
p4 N� ¼ 6 simulations out to T ¼ 720 MeV. We deter-
mined Tc � 191 MeV as the temperature at which s=T3

reaches 1=e of its largest value as obtained from the highest
temperature data point.7 For black hole data, we con-
structed black holes starting with our standard choice (4)
of scalar potential, and for�0 ranging from 1.5 to 7.5 in 20
steps, uniform on a log scale.
Our conventions are for all lattice quantities to have

units which are powers of MeV, while with � ¼ L ¼ 1,
all black hole quantities are dimensionless. Thus �s and �T

have units which are also powers of MeV. We found a good
fit between lattice data and black holes with

�s ¼ ð121 MeVÞ3; �T ¼ 252 MeV: (59)

Lattice Karsch '07

Black hole fit

200 300 400 500 600 700

T MeV

5

10

15

20
s

T
3

150 200 250 300 350 400 450

T MeV

0.0

0.1

0.2

0.3

0.4

2

N 6 Light 1 6

N 4 Light 1 6

N 6 Strange 1 3

N 4 Strange 1 3

N 4 Baryon

Black hole fit

FIG. 3 (color online). The normalized entropy s=T3 and quark susceptibility �̂2 � �2=T
2 at � ¼ 0, computed on the lattice and fit

by black holes in the gravity theory defined by our choices of Vð�Þ and fð�Þ [Eqs. (4) and (5)]. Lattice data are taken from [2].

6We chose [2] to have a definite lattice result to compare to,
but there is still disagreement in the literature; for another
determination of the equation of state, see [4]. We expect small
changes to our model could accommodate variations in the
lattice results.

7Tc � 191 MeV is somewhat larger than the value Tc �
175 MeV mentioned in Sec. I; however it is in line with
estimates of [20]. Lower values for Tc are favored, for example,
in [21–23]. We do not aim here to probe the apparent discrep-
ancy; instead we are largely opting for the higher values because
all the lattice data we use directly is from [2].
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Turning to the quark susceptibility, in Fig. 3(b) we show
how susceptibilities computed starting from the choice (5)
for fð�Þ compare with lattice data. For lattice data we used
the same reference as for the entropy [2], with light quark
results from the left-hand plot in Fig. 5, and strange quark
and total baryon number results from the two sides of
Fig. 6; we scaled the light quark and strange quark curves
appropriately to asymptote to the same value as that of the
baryon number, �̂2 ¼ 1=3, at high temperatures. For black
hole data we used the same black holes as in the entropy
plot, and we employed (57) with L ¼ 1 (and implicitly
also � ¼ 1 as before). We used the value of �T in (59) to
rescale the temperature axis, and we adjusted the overall
scale of �̂2 arbitrarily to optimize the fit to lattice over the
range shown in Fig. 3(b). The rescaling of the susceptibil-
ity is thus

½�2�BH �
�
@


@�

�
BH

¼ ��

�


½�2�lattice: (60)

Thus, knowing ½�2�BH and ½�2�lattice at the same tempera-
ture tells us ��=�
. In order to find �� and �
 separately,

we must recall that the relation for the free energy (12)

holds equally in lattice units and in the black hole setup.
Thus,

�T�s ¼ ���
 ¼ �	 ¼ �f: (61)

Putting (60) and (61) together, we find

½�̂2�BH �
�
1

T2

@


@�

�
¼ 1

�2
T

�2
�

�
��

½�̂2�lattice

¼ �T�
2
�

�s

½�̂2�lattice; (62)

which can be recast as

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s

�T

½�̂2�BH
½�̂2�lattice

s
: (63)

Let us now describe how we arrived at the choice (5) for
functional form for the gauge kinetic function. The value of
fð�Þ near the horizon is particularly important, because the
factor e�2A in the integral (57) puts significant weight on
the near-horizon region. In particular, if fð�Þ is large at the
horizon, the integral will be relatively small compared to
when fð�Þ is small at the horizon. Since �̂2 stays close to

FIG. 4 (color online). Numerically generated black holes. Each dot represents a numerically generated solution. If the Jacobian J
defined in (67) is positive for this solution, then the dot is red. If J < 0, it is green. The bold black circle is the critical end point.

FIG. 5 (color online). The baryon density 
 as a function of chemical potential � for several values of T near the critical point. For
T > Tc, 
ð�Þ is single-valued (left), while for T < Tc it is multivalued (right). At T ¼ Tc the slope is infinite (middle).
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its high-temperature value down to a lower temperature
than s=T3 before plunging rapidly to small values, a rea-
sonable conjecture is that as � goes from 0 to positive
values, one needs fð�Þ first to increase as a function of �,
then to decrease rapidly. The functional form (5) was
chosen with these desired features in mind, and also with
the thought that asymptotically exponential behavior at
large � is typical of supergravity theories.

Operationally, the way we determined �� was to use the

correct Stefan-Boltzmann value �̂2 ¼ 1=3 for baryon num-
ber as the value for ½�̂2�lattice, and to evaluate ½�̂2�BH at
T ¼ 460 MeV. This is a reasonable approach because the
lattice data converges quickly to the Stefan-Boltzmann
value at high temperature. The result is

�� ¼ 972 MeV; �
 ¼ ð77 MeVÞ3: (64)

Again it should be emphasized that our choice (5) of fð�Þ
is to a degree ad hoc, and it should be understood as
providing a proof of principle that an approximate fit to
�2 can go with a critical end point in the T �� plane
based on AdS/CFT techniques.

VI. SEARCHING FOR THE CRITICAL POINT

Having settled on a functional form for Vð�Þ and fð�Þ
by matching to lattice thermodynamics at � ¼ 0, our
Lagrangian is now completely determined. We can next
turn to numerically solving for a set of black holes to fill in
the phase diagram. An expectation is that the crossover
that takes place on the T axis is sharpened into a first-order
line lying out in the T-� plane, and that this first-order line
ends at a critical point somewhere in the vicinity of the
crossover. Our first task, therefore, is to search for this
critical point.

A. Scanning the thermodynamics of black holes

For a first pass at mapping out the thermodynamic
behavior of black holes across the T �� plane, we gen-
erated approximately 2500 numeric solutions to Eqs. (27)
and (29), seeded by initial conditions near the horizon as
described in Sec. IVA. Each solution is specified by the
value of ð�0;�1Þ that was used to generate the near-
horizon asymptotics. We remind the reader that �0 is the
value of the scalar field at the horizon, which we took
always to be positive, and �1 is essentially the electric
field at the horizon pointing upward in the fifth dimension.
We worked exclusively in the gauge B ¼ 0.
To choose a suitable range for�0, we note first of all that

the fits discussed in the previous section involved values of
�0 no larger than 7.5. We went from�0 ¼ 1 to�0 ¼ 15 in
order to obtain the best global picture of the thermody-
namics that we could, but any features seen at �0 signifi-
cantly larger than 7.5 should be regarded with some degree
of skepticism, since in principle one could adjust Vð�Þ
and/or fð�Þ for �> 7:5 to make any desired phenomenon
occur in that region.8 It is notable, however, that both Vð�Þ
and fð�Þ are fairly featureless for � * 4, both being close
to a simple exponential function over that domain.
To choose a suitable range for �1, we demonstrate that

there is an upper bound on possible�1 values leading to an
asymptotically AdS black hole. To see this, first note that
the first equation of (27) with B ¼ 0 shows that A is
concave down as a function of r. But it must be increasing
at large r in order for the spacetime to be asymptotically
AdS5. Therefore, A must be increasing at the horizon,
which is to say A1 > 0. Using the zero-energy constraint
(29), A1 can be reexpressed as

A1 ¼ �L

6
½2Vð�0Þ þ fð�0Þ�2

1�: (65)

Because Vð�0Þ< 0 and fð�0Þ> 0, this puts an upper
bound on �1:

j�1j<�1;max �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2Vð�0Þ

fð�0Þ

s
: (66)

In practice we scanned black hole solutions from �1 just
slightly greater than 0 up to 0:9�1;max.

Figure 4 shows the results of our numerical scan of the
T �� plane. We examined 61 values of�0 between 1 and
15, uniformly spaced on a log scale. For each value of �0

so obtained, we examined 41 evenly spaced values of
�1=�1;max. A small fraction of the values so chosen failed

to produce good black hole solutions, generally because A
failed to be monotonically increasing, and are simply
omitted from the plots.

FIG. 6 (color online). Cartoon of 
ð�Þ for an isotherm with
Tf < Tc, showing multivaluedness near the first-order line. At

the location of the line � ¼ �f the true minimum of the free

energy jumps from the lower to the upper branch and 
 is
discontinuous.

8In fact, constraints on fð�Þ come from a narrower range of�,
extending only up to �0 ¼ 5. Thus, baryon-specific physics is
most reliably studied in our model at values of �0 no greater
than 5.
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B. Locating the critical point

To locate the critical point, we must think a little about
what we expect to find in the vicinity of the first-order line.
When there are competing phases in a thermodynamic
system, only the one minimizing the free energy is the
true ground state. However, there is no reason to think our
black hole solution-generating method will discover only
the true ground state solutions. Because of chiral symmetry
not being exact and the presence of the crossover, there is
no invariant distinction between the two sides of the first-
order line that could correspond to a difference in topology
or other invariant distinction between the phases on the
gravity side; the distinct phases will be continuously con-
nected in the space of solutions. Since we are just solving
the equations of motion, we expect to find all extrema of
the free energy.

In general, extrema of the free energy include not just
locally stable minima, but also any thermodynamically
unstable saddle points or maxima. Far from the first-order
line on the T �� plane we expect only one solution to the
equations of motion; in the vicinity of the first-order line,
however, we expect to find 
 and s to be multivalued. Note
that this will be true not only on top of the first-order line,
but also merely near it, as the free-energetically unfavored
phase will persist for some distance on the phase diagram
before ceasing to exist as a solution. The first-order line
ends precisely at the ðTc;�cÞ where this multivalued be-
havior ceases; this is the critical point.

Thus, if we consider a constant-T slice of the phase
diagram with T > Tc and vary �, this isotherm will miss
the first-order line and the functions 
ð�Þ and sð�Þ will be
single-valued (although for T close to Tc they will display
crossover-type behavior). But for T < Tc, the isotherm will
intersect the first-order line and we expect 
ð�Þ and sð�Þ
to be multivalued near �c. The simplest behavior that still
increases at both large and small � is an ‘‘S’’-shape, and
this is what we observe; see Fig. 5. For such behavior there
are three solutions at a given�. Since the slope of the curve
is just the quark susceptibility (18), we see that two of the
solutions have �2 > 0 and thus may be thermodynamically
stable (19); these are the candidate phases. The middle
solutions, however, have �2 < 0 and must be thermody-
namically unstable.9 Precisely for T ¼ Tc the curve will
cease to be multivalued, as the three solutions coalesce into
one; the curve 
ð�Þwill have an infinite slope, indicating a
divergence in the quark susceptibility at the critical point.

We will locate the critical point by looking for the
thermodynamically unstable solutions that characterize
the vicinity of the first-order line. We can identify the

unstable solutions by calculating the Jacobian of the sus-
ceptibility matrix (15):

J � detS ¼ @ðs; 
Þ=@ðT;�Þ: (67)

For a thermodynamically stable black hole, Eq. (19) is
satisfied and the Jacobian (21) is manifestly positive. If it
flips sign to J < 0, we have necessarily found a thermody-
namically unstable branch. Once we find the thermody-
namically unstable black holes, we look to see whether
they map to a narrow linelike region on the T �� plane;
the critical point is then the values ðTc;�cÞ where this line
ends. We should also be able to see the two stable phases
mapping to the same locus on the phase diagram from
elsewhere in ð�0;�1Þ.
We can calculate the Jacobian J by finite differences.

Since the black holes were scanned on a rectangular grid,
we can label them with indices ij, where i determines the
value of �0 and j determines the value of �1=�1;max. In

order to compute J for the black hole labeled ij, we first
computed

JT�ij � det
Tiþ1;j � Ti;j Ti;jþ1 � Ti;j

�iþ1;j ��i;j �i;jþ1 ��i;j

 !

Js
ij � det
siþ1;j � si;j si;jþ1 � si;j


iþ1;j � 
i;j 
i;jþ1 � 
i;j

 !
:

(68)

Then, J
s

ij =J

T�
ij is the finite difference approximation to the

Jacobian J in (67). The results are shown in Fig. 4.
It is clear from Fig. 4(a) that there is a region of unstable

black holes stretching down to �1 � 0:4�1;max. It is this

region which we are most interested in, because when
mapped to the T �� plane it becomes a narrow region
that ends in a cusp. Moreover, we do indeed find two other
sets of black holes with J > 0 mapped to the same locus,
and hence we identify it as the first-order line. The point of
this cusp is then the critical end point, which we show as a
bold black circle. It occurs at the values

ðTc;�cÞ � ð143 MeV; 783 MeVÞ: (69)

We have used the multipliers �T and �� from (59) and (64)

to express T and � in units of MeV. Points at the critical
point come from initial conditions in the vicinity of

ð�0;�1=�1;maxÞ � ð4:84; 0:40Þ: (70)

Note that the value for�0 is within the range probed by the
� ¼ 0 solutions described in Sec. VB—though not by
much, if one goes by the values of � over which fð�Þ is
meaningfully constrained by lattice data.
In summary, we have identified a candidate critical point

and first-order line. As we study it in more detail in the next
section, examining the behavior of densities and suscepti-
bilities, this identification will be amply confirmed.
Before moving on, let us consider the other thermody-

namically unstable black holes found in our scan. The
unstable black holes described so far are associated with

9According to the correlated stability conjecture (CSC)
[24,25], such black hole solutions will also have dynamical
instabilities, corresponding to the black hole gaining total en-
tropy by locally redistributing charge and energy subject to
global conservation of these quantities. In the black hole litera-
ture this is known as the Gregory-Laflamme instability [26,27].
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a failure of the map ð�0;�1Þ ! ðT;�Þ to be invertible,

which is to say a sign change in JT�ij . Only with such

multiple covering can you jump abruptly from one solution
to another at the same ðT;�Þ but different ðs; 
Þ: the sine
qua non of first-order phase transitions. As one proceeds
further to the right in the T �� plane, one encounters a
broader region of unstable black holes immediately
above the multiply covered region. This region is unstable
due to a change of sign in Js
ij , meaning it is the map

of ð�0;�1Þ ! ðs; 
Þ that is not invertible. This sign
change causes black hole instabilities, presumably of the
Gregory-Laflamme type [26,27], but no first-order line.
Correspondingly, there are no stable black holes in this
region of the phase diagram.10

The absence of stable black holes in our model at large
� (roughly, larger than� ¼ 1100 MeV) and T not too big
is actually a good thing. It is in approximately this region
that one might reasonably expect color superconductivity
and/or related phenomena to set in: see, for example,
Fig. 7 of [28] and Fig. 1 of [5]. Black holes based on
the Lagrangian (1) are not likely to capture such phe-
nomena. However, it is comforting to note that in cases
where black hole superconductivity is understood (where
the condensate breaks a Uð1Þ gauge symmetry in the
bulk), the superconducting instability competes against
Gregory-Laflamme instabilities, and one generally must
pass beyond minimal supergravity Lagrangians to
see the superconducting instabilities: see, for example,
[29,30]. Thus, all our findings are at least qualitatively
consistent with consensus expectations for the QCD
phase diagram.

VII. ANALYSIS OF THE CRITICAL POINT

Having found the critical point, our final task is to
determine its critical exponents. To achieve this, we first
construct a large data set which densely populates the
critical region. This collection of about 120 000 black holes
is generically described by solutions with �0 2 ½4:25; 5:5�
and �1=�1;max 2 ½0:35; 0:43�.

Using these near-critical black holes, we can systemati-
cally study the approach of various thermodynamic quan-
tities to criticality. Since the behavior of these quantities is
typically expected to be power law in the vicinity of the
second-order point, it is natural to study them on log-log
plots on which critical exponents are trivially related to the
slope of the best fit to the data. In practice, we extract this
slope by performing a linear regression via a least squares
fit. All reported critical exponents in this section have been
obtained in this way.

A. First-order line and critical density

Despite knowing the location ðTc;�cÞ of the critical
point, it remains a challenge to identify the critical density

c.

11 Because of the infinite slope of the curve 
ð�Þ on the
critical isotherm, a large number of black holes with very
different values of 
 sit very close to the critical point (see
the middle plot in Fig. 5).
We can calculate the critical density in the process of

determining the exponent � which measures the rate that
the discontinuity �
 across the first-order line goes to zero
as the critical point is approached:

�
� ðTc � TÞ�; along first-order line: (71)

In order to determine the discontinuity in 
 for a given
Tf < Tc, we must identify the �f at which the true ground

state of the system jumps from the lower branch to the
upper branch; this is the�f for which the free energy is the

same for the two branches. However, we have not calcu-
lated the free energy, so we cannot identify �f in this way.

Equivalently, one can use Maxwell’s equal-area construc-
tion, which states that �f should be placed such that the

closed regions bounded by the isotherm on either side of
the � ¼ �f line are of equal area.

We chose a computationally easier procedure which is
asymptotically equivalent to the equal-area law as one
approaches the critical point. Namely, at a fixed tempera-
ture T ¼ Tf, we define �< and �> to be the locations of

the local minimum and maximum of the isotherm 
ð�Þ,
and we define�f to be the midpoint between them. This in

turn determines the mixed-phase densities 
< and 
> for
the point ðTf;�fÞ along the first-order line. This procedure
is illustrated in Fig. 6. For points we checked near the
critical point, this procedure agrees with the equal-area
rule to within a fraction of a percent.

6.5 6.0 5.5 5.0 4.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ln t

L
n

FIG. 7 (color online). The discontinuity in the baryon density
as the critical point is approached on a log-log plot. The slope of
a best-fit line through the data gives us a value � ¼ 0:482.

10It is interesting to note that J
s

ij tends to change sign close to

�1=�1;max � 0:6 for a fairly wide range of other choices for
fð�Þ that we examined numerically. 11Remarks about 
 in this section apply equally well to s.
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The critical density 
c is then most easily obtained as the
limit that both 
< and 
> approach as we near the critical
point. The result is


c ¼ 9:9022: (72)

Plotting �
 � 
> � 
< in a log-log plot with
t � ðT � TcÞ=Tc, we obtain (see Fig. 7):

� � 0:482: (73)

In comparison, the exponent in the mean-field case is
�MF ¼ 1=2, and so we have found a result very close to
the mean-field value.

B. Critical isotherm

As discussed in the previous section, the critical
isotherm at T ¼ Tc is the curve marking the boundary
between single-valued and multivalued behavior, and cor-
respondingly it has a diverging slope for 
 and s precisely
at � ¼ �c. Using the behavior of 
 on the critical iso-
therm, we can determine the critical exponent �, defined as


� 
c � j���cj1=�; for T ¼ Tc: (74)

Now that we have 
c in hand, we plot a number of black
holes on a log-log plot near the critical point with �>�c

in Fig. 8. The points are fit well by a straight line with
slope giving � ¼ 3:03476. We note that the mean-field
value is � ¼ 3.

C. First-order axis and susceptibilities

Susceptibilities in general diverge near a critical point.
However, it is not required that all possible susceptibilities
are divergent. Indeed, we find this is the case for �, which
is the power law exponent for the specific heatC
 along the

axis defined by the first-order line:

C
 � jT � Tcj��; along first-order axis: (75)

To avoid the complications of the first-order line itself, we
perform this approach from the other side, with�<�c. A
calculational advantage is that the line of constant 
 comes
very close to the first-order axis [31], so we can simply
generate a set of black holes filling out that line, and define
C
 in terms of finite differences of nearest neighbors.

The result is that C
 does not diverge at all along this

line, but instead is smooth at values near C
 � 10:5. This

corresponds to a vanishing � (see Fig. 9):

� ¼ 0: (76)

In a sense this is the most robust of all our results, since
even a weak divergence looks completely different from a
lack of divergence; it suggests that the result (76) is exact.
Moreover, this is again the mean-field result; for example,
in the van der Waals theory of a fluid one has C
 ¼ 3n=2

with n the number density.12

Although we find C
 to have no divergence, other

quantities do show the expected divergences. The final
thermodynamic exponent, �, is defined by the approach
of �2 along the same axis,

�2 � jT � Tcj��; along first-order axis: (77)

This exponent is the most difficult to calculate. The quan-
tity involves a derivative in the � direction, so to calculate
the finite difference we must obtain pairs of points with the
same T to within a very small tolerance �T, which are
separated by a larger but still small amount ��; we then
need a sequence of pairs of such points moving along the
first-order axis, a direction unrelated to the derivative. To
find black holes near the axis, we again imposed constant

. We then looked for pairs of points with��< 0:001 and
kept those with �T=��< 0:002.
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3.03476

FIG. 8 (color online). The rate at which 
 approaches 
c as �
approaches �c on the critical isotherm on a log-log plot. The
slope gives us a value � ¼ 3:034 76.
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FIG. 9 (color online). The specific heat C
 near the critical
point along a line of constant 
, along the first-order axis. There
is no divergence, giving � ¼ 0.

12Certain systems contain a discontinuity or logarithmic diver-
gence for C
, and are also grouped as � ¼ 0; ours is truly
smooth, as with the van der Waals field.
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The result is shown in Fig. 10. The black holes for
T � Tc > 0:004 form a smooth, single-valued curve,
but near the critical point numerical errors grow larger
and the curve is no longer single-valued. Fitting just the
single-valued region, we produce the log-log plot in
Fig. 11. The resulting exponent is � ¼ 0:942, while the
mean-field value of � is �MF ¼ 1. Once again our result is
consistent with mean field.

D. Summary and scaling

In conclusion, we have measured the critical exponents
�, �, �, and � and found them to be consistent with the
mean-field values. Since the mean-field values are them-
selves consistent with scaling (26), it is clear that our
results pass this self-consistency check as well.

As an idea of the size of the errors in our measurements,
we can choose two exponents, use the scaling laws
(26) to calculate predictions for the other two, and

compare these predictions to our actual results. It is
natural to use � ¼ 0 as an input, since we obtain it as an
apparently exact result. Also inputting � ¼ 3:035 gives us
the results:

Exponent � � � �

Calculated value 0 0.482 0.942 3.035

Scaling prediction from � and � 0 0.496 1.009 3.035

% diff. . . . 3% 7% . . .

Thus, our deviations from scaling are in the 3%–7% range,
giving an idea of the size of the errors in our method.

E. Other models

We also carried through an analysis of the model with
the same potential (4) and the gauge kinetic function

fð�Þ ¼ e��: (78)

The phase diagram obtained from this model shares all
relevant properties to the one presented here: a first-order
line ending in a critical point, and critical exponents
consistent with mean field. We omit the details since they
are virtually identical to those just discussed. This expo-
nential model has substantially poorer fit to lattice data
at � ¼ 0.

VIII. CONCLUSIONS

A number of techniques have been employed to predict
the location of the QCD critical point. These include lattice
calculations that attempt to circumvent the problems of
finite� by a number of different means, including taking a
Taylor series expansion around � ¼ 0, reweighting the
contributions to the path integral, or analytically continu-
ing from imaginary chemical potential. There are also
calculations in a variety of Nambu–Jona-Lasinio models,
along with a number of other methods.
In Fig. 12, we show the location of a number of different

calculations of the location of the critical point, along with
our result, presented as BH10. A key to the various abbre-
viations and references is given in the table; for more
information see [28,32]. The variation in prior results is
considerable, and our result lies within the parameter space
defined by the others. Also included in this plot is an
estimate for the chemical freeze-out line [5].

Label Method Reference

HB Hadronic bootstrap [33]

LTE Lattice Taylor expansion [34]

LR Lattice reweighting [35,36]

RM Random matrix [37]

NJL Nambu–Jona-Lasinio [38–40]

CJT Effective potential [41]

LSM Linear sigma model [39]

CO Composite operator [42,43]
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FIG. 10 (color online). The susceptibility �2 near the critical
point along a line of constant 
.
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FIG. 11 (color online). The baryon susceptibility �2 compared
to t � ðT � TcÞ=Tc as the critical point is approached on a log-
log plot. The slope gives us a value � ¼ 0:942.
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In general, as heavy ion collisions gain center-of-mass
energy, the produced medium is characterized by higher T
and lower �. This leads to several issues with the possi-
bility of exploring the region near our prediction, where �
is relatively large. First, assuming the heavy ion collisions
attain thermodynamic equilibrium, the value of T that can
be reached may be too small by the time one has reached
sufficiently large �. Moreover, at some large � the center-
of-mass energy will become too low to actually thermalize
the colliding ions, making a thermodynamic interpretation
no longer appropriate. Collisions at RHIC have a minimum
energy of 5–7 GeV [5], too high to reach our value of �c;
LHC is even worse. A more promising possibility is
the CBM experiment at the future accelerator center
FAIR at GSI, a fixed-target experiment whose intended
region of exploration includes the location of our critical
point [6].

That said, as we have emphasized our result should be
regarded primarily as a proof of principle: it is possible to
extract QCD-like phase diagrams from relatively simple
holographic duals. This result has substantial promise,
precisely because finite chemical potential calculations
are so difficult on the lattice; in gravity duals, finite chemi-
cal potential simply involves introducing a new field, and
possesses no additional qualitative complexity. Of course,
holographic duals introduce other complications—large N
and the fact that they are not precisely QCD, only QCD-
like—that must in turn be dealt with.
We have discovered a first-order line and a critical end

point with mean-field critical exponents. A number of
ways to generalize these results are evident. Most obvi-
ously, one can study the fluctuations around our classical
backgrounds, thereby learning about spectra, transport, and
the true free energy function. An equally obvious, though
potentially difficult, further step is to add 1=N corrections
to the geometries, hopefully moving the critical point away
from mean field. One can also consider studying a larger
theory. In particular, the introduction of chiral symmetry in
addition to baryon number is straightforward in principle,
if more intricate in practice. By enlarging the theory one
could also hope to study the color superconducting phases
at large �. We hope to examine these issues in the future.
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