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Non-Abelian strings exist in the color-flavor locked phase of dense QCD. We show that kinks appearing

in the world-sheet theory on these strings, in the form of the kink-antikink bound pairs, are the magnetic

monopoles—descendants of the ’t Hooft–Polyakov monopoles surviving in such a special form in dense

QCD. Our consideration is heavily based on analogies and inspiration coming from certain super-

symmetric non-Abelian theories. This is the first ever analytic demonstration that objects unambiguously

identifiable as the magnetic monopoles are native to non-Abelian Yang–Mills theories (albeit our analysis

extends only to the phase of the monopole confinement and has nothing to say about their condensation).

Technically, our demonstration becomes possible due to the fact that low-energy dynamics of the

non-Abelian strings in dense QCD is that of the orientational zero modes. It is described by an effective

two-dimensional CPð2Þ model on the string world sheet. The kinks in this model representing confined

magnetic monopoles are in a highly quantum regime.
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I. INTRODUCTION

Despite a huge number of works attempting to treat
the monopole condensation in Yang–Mills theories as the
quark confinement mechanism, the very notion of the
magnetic monopoles remains obscure in QCD: a clear-
cut gauge invariant framework for their description and
analysis is still absent. This is in contradistinction with a
remarkable progress in supersymmetric Yang–Mills theo-
ries where, in 1994, Seiberg and Witten analytically
proved, for the first time ever, that the dual Meissner
effect does take place in a certain model, chromoelectric
flux tubes do form, and quark confinement ensues [1].
Further explorations in this area led people to such finds
as the non-Abelian flux tubes [2,3] and confined magnetic
monopoles [4,5] in a well-defined and fully controllable
setting.

In this paper we demonstrate that confined non-Abelian
magnetic monopoles can be identified in a well-defined
manner in high-density QCD. The very issue of flux tubes
in high-density QCD [6–9] is the result of crossbreeding of
two recent developments: the discovery of non-Abelian
flux tubes in supersymmetric gauge theories [2–5] (for a
review see [10–13]) and the color-flavor locked (CFL)
phases in QCD with a nonvanishing chemical potential �
[14,15]. In principle, non-Abelian flux tubes in dense QCD
can show up either in quark-gluon plasma or neutron stars.
Leaving aside experimental identification issues, we argue
that sufficiently long flux tubes (strings) of this type sup-
port kink-antikink pairs in stable ‘‘mesonic’’ states. The
kinks, in their turn, can be shown to represent the magnetic
monopoles in the confined phase. By the confined phase we
mean that (i) the monopoles cannot be disassociated from

the strings attached to them; and (ii) the monopole-
antimonopole pairs are confined along the string, while
the parent QCD per se is in the CFL phase. It is not ruled
out that dualizing this picture á la [16] we could arrive at a
description of condensed dyons or monopoles. This latter
aspect is left for a separate study.
Large-� QCD exhibits a rich phase structure of quark-

gluon matter at weak coupling. With high enough chemical
potential � � �, the theory supports color superconduc-
tivity due to the Cooper pair condensation of diquarks with
the vanishing orbital momentum (for reviews see [14,15]).
Several superconducting phases are known which differ by
the residual symmetry as well as the structure of the con-
densates. For instance, in the so-called 2SC phase, in which
only u and d quarks of two colors pair up [17], the strange
quark density plays no role, while at larger values of � the
color-flavor locked (CFL) phase is realized in which all
three quark flavors condense, implying the complete break-
ing of the non-Abelian global flavor group [18]. In addi-
tion, all eight gauge bosons are Higgsed. At the same time,
a diagonal global SU(3) survives.
It is the CFL phase of dense QCD which is the subject of

our studies. Magnetic monopoles in this environment have
been already mentioned (in the negative sense) in [7].
However, our conclusion—the presence of well-defined
states of magnetic monopoles in the CFL phase of dense
QCD—is opposite to what was advocated in [7]. The
crucial additional element of our analysis which was ab-
sent in [7] is the existence of kinks on the world sheet of the
non-Abelian strings that form in dense QCD.
The paper is organized as follows. We briefly review the

CFL phase of dense QCD (Sec. II) and the emergence of
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non-Abelian strings in this phase (Sec. IV), formulate an
effective Ginzburg–Landau description (Sec. III), and then
proceed to the demonstration that kinks supported by the
Ginzburg–Landau model are in fact distorted magnetic
monopoles—descendants of the ’t Hooft–Polyakov mono-
poles surviving in such a special form in the environment
of dense QCD (Secs. V, VI, and VII). Sec. VIII is devoted
to perfecting the simplified Ginzburg–Landau model of
Sec. III to make it more realistic. In particular, in this
section we introduce a nonvanishing mass for the strange
quark. Sec. IX describes possible effects due to the � term.
Finally, Sec. X briefly summarizes our results.

II. COLOR-FLAVOR-LOCKED PHASE

To begin with, we briefly outline the structure of the
CFL phase in dense QCD. The one-gluon exchange inter-
action results in nontrivial diquark condensates of the
Cooper type

hXkCi / �kC � 0; hYCki / �kC � 0;

XkC ¼ qiA� qjB�"ijk"ABC; YCk ¼ ~qiA�~q
�
jB"

ijk"ABC;
(2.1)

where the small and capital Latin letters mark color and
flavor, respectively; q� and ~q� are left-handed spinors; the
first one is in the triplet representation of the color and
flavor SU(3) groups, while the second one is in the anti-
triplet representation. The Dirac spinor of each flavor is
composed of a pair ðq�; �~q _�Þ. Needless to say, the complex-
conjugate condensates hXyi, hYyi do not vanish as well. In
the chiral limit, when mu;d;s ¼ 0, the QCD Lagrangian is

globally invariant under two chiral SU(3) symmetries. In
addition, it is invariant under Uð1ÞB and Uð1ÞA where B
marks the baryon number and A stands for axial. Uð1ÞA is
anomalous; however, at large � the impact of anomaly is
small and can be treated as a correction.

The X condensate transforms under SUð3ÞC � SUð3ÞL
while the Yy condensate under SUð3ÞC � SUð3ÞR where
SUð3ÞL;R are the global chiral groups associated with flavor.

The condensates (2.1) break all three groups; however, the
diagonal vectorial SUð3ÞCþF obviously survives. In addi-
tion, the X and Y condensates spontaneously break Uð1ÞB
and Uð1ÞA. Altogether we have 8þ 8þ 2 Goldstone bo-
sons in the limitmu;d;s ¼ 0. The boson coupled to Uð1ÞA is,

in fact, a quasi-Goldstone. Since the vectorial flavor SU(3)
is unbroken, all Goldstones fall into representations of
SU(3): two octets and two singlets. Dynamics in the
CFL phase enjoy the properties of systems with super-
conductivity and superfluidity (due to the broken Uð1ÞB
symmetry).

Out of 18 Goldstone bosons, 8 degrees of freedom cor-
responding to the vectorlike fluctuations are eaten by gluons
via the Higgs mechanism. Hence we end up with two
Goldstone mesons corresponding to the broken Abelian
symmetries (Uð1ÞB and Uð1ÞA) and eight pseudoscalar

Goldstones coupled to the axial SU(3) currents.1 It is useful
to introduce a gauge invariant order parameter

� ¼ YX; (2.2)

which has the chiral transformation properties similar to
those of the ordinary chiral condensate in QCD. The order
parameter � transforms nontrivially under action the axial
singlet Uð1ÞA charge. The eight mesons parameterizing the
‘‘phases’’ of the matrix � are

� ¼ j�j exp
�
2i
Ta�a

F�

�
; (2.3)

where Ta are the SU(3) generators and F� is the ‘‘pion’’
constant. As for the absolute value of �,

j�j / �4�2
0

g2
; (2.4)

where �0 is the superconducting gap at zero temperature

�0 / �ðgð�ÞÞ�5 expðc=gð�ÞÞ; (2.5)

and g is the QCD coupling constant. Numerically, � is
assumed to lie in the ballpark

�� 1 GeV

considered to be large in the scale

�QCD � 200 MeV:

The value of the gap parameter �0 is

�0 � 10 MeV:

The CFL mesons have to be considered as four-quark
states contrary to conventional two-quark Goldstone states
in zero-density QCD. However, let us emphasize that the
Goldstone mesons in the CFL phase have exactly the same
quantum numbers as the Goldstone mesons in QCD at at
� ¼ 0. The coupling constant F� in (2.3) is proportional
[19] to �, though.
The electromagneticUð1ÞQ is broken by the condensates

(2.1). A closer look at these condensates shows, however,
that a linear combination of the photon A� and A3

�, A
8
�

gluons

~A� /
�
A� � e

g

�
A3
� þ 1ffiffiffi

3
p A8

�

��
(2.6)

remains massless (the corresponding charge is unbroken).
Instead ofUð1ÞQ, one can consider the charges with respect
to Uð1Þ ~Q. In the CFL phase the mixing angle � between the

photon and the gluon component is obviously small.
Therefore, the massless gauge field is dominated by the
original photon. Note that the off-diagonal gluons are
charged with respect to the Uð1Þ ~Q charge.

1In supersymmetric theories all would-be Goldstones are eaten
up by the Higgs mechanism [4,12].
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When we switch on nonvanishing quark masses, strictly
massless excitations disappear, of course. A number of
observables develop a rather contrived mass hierarchy.
Our initial consideration will refer to a model which is
semirealistic, at best. However, it explains our basic ob-
servation in the most transparent way. We will change
some details later to make our model more realistic.

In the spirit of the Ginzburg–Landau theory of super-
conductivity, we will represent the diquark order parame-
ters by a 3� 3 matrix of scalar fields �kA, where k and A
are the color and flavor indices, respectively.

III. GINZBURG–LANDAU EFFECTIVE
DESCRIPTION

If the value of the chemical potential � is large, QCD is
in the CFL phase. The order parameter which develops a
vacuum expectation value (VEV) is the diquark condensate

�kC � "ijk"ABCðqiA� qjB� þ �~qiA _� �~qjB_� Þ; (3.1)

cf. Equation (2.1), where q� and ~q� are left-handed spin-
ors; the first one is in the triplet representation of the color
and flavor SU(3) groups, while the second one is in the
antitriplet representation. The Dirac spinor of each flavor is
composed from a pair ðq�; �~q _�Þ.

At first, we consider dense QCD in the chiral limit, i.e.
assume that quark masses all vanish,

mu ¼ md ¼ ms ¼ 0: (3.2)

Later (Sect. VIII) wewill be able to relax this condition and
switch on a nonvanishing strange quark mass. With the
vanishing quark masses the symmetry group is

SU ð3ÞC � SUð3ÞL � SUð3ÞR � Uð1ÞB (3.3)

where SUð3ÞL;R are the global chiral groups associated

with three flavors, Uð1ÞB is the global rotation associated
with the baryon number, while SUð3ÞC is the gauge group.

At small temperatures, the gap (the diquark condensate)
is large, while the light degrees of freedom are the
Goldstone modes associated with the chiral rotations.
These Goldstone modes are quite similar to ordinary pions
of zero-� QCD. The effective Lagrangian is a chiral
Lagrangian for these pions; see [15] for a review.

At temperatures approaching (from below) the critical
temperature Tc, the gap becomes small, and its fluctuations
become exceedingly more important. It is assumed in what
follows that the chiral fluctuations are small (and can be
ignored) compared to the nonchiral gap fluctuations and
those of the gauge fields.2 This regime can be described in
terms of a Ginzburg–Landau (GL) effective theory of a

complex matrix scalar field �kA defined in (3.1). The
Ginzburg–Landau action has the form [7,20]3

S ¼
Z

d4x

�
1

4g2
ðFa

��Þ2 þ 3TrðD0�ÞyðD0�Þ

þ TrðDi�ÞyðDi�Þ þ Vð�Þ
�

(3.4)

with the potential

Vð�Þ ¼ �m2
0Trð�y�Þ þ �ð½Trð�y�Þ�2 þ Tr½ð�y�Þ2�Þ;

(3.5)

where

D �� � ð@� � iAa
�T

aÞ�; (3.6)

and Ta stands for the SUð3Þgauge generator, while g2 is the
QCD coupling constant. The global flavor SU(3) trans-
formations are similar, with Ta acting on� from the right.
Various parameters in (3.5) are defined as follows:

m2
0 ¼

48�2

7�ð3ÞTcðTc � TÞ; � ¼ 18�2

7�ð3Þ
T2
c

Nð�Þ ; (3.7)

while Nð�Þ ¼ �2=ð2�2Þ is the density of states on the
Fermi surface. Note that our field � in (3.4) is rescaled
as compared to that in [7,20]: its kinetic energy is canoni-
cally normalized.
The critical temperature Tc is much smaller than �,

Tc � �

ðgð�ÞÞ5 expð� 3�2ffiffiffi
2

p
gð�ÞÞ � �: (3.8)

implying

m2
0 � TcðTc � TÞ; �� T2

c

�2
� 1; (3.9)

Minimizing (3.5), we find the � field VEV,

�vac ¼ vdiagf1; 1; 1g; (3.10)

where the value of the parameter v is given by4

v2 ¼ m2
0

8�
¼ 4�2

3

Tc � T

Tc

�2: (3.11)

The diagonal form (3.10) of the vacuum � matrix,
of the Bardakci–Halpern type [21], expresses the phe-
nomenon of the color-flavor locking. The gauge symmetry
of the Lagrangian is SU(3) while its flavor symmetry is
SUð3Þ � Uð1Þ, see (3.3). The symmetry of the vacuum state
is the diagonal SUð3ÞCF,

2Strictly speaking, at zero quark masses chiral fluctuations
(’’pions’’) are massless and should be included in the low-energy
effective theory. We discuss their impact in Sec. VIII C.

3Here and below we use a formally Euclidean notation, e.g.
F2
�� ¼ 2F2

0i þ F2
ij, ð@�aÞ2 ¼ ð@0aÞ2 þ ð@iaÞ2, etc. This is appro-

priate, since we are going to study static (time-independent) field
configurations, and A0 ¼ 0. Then the Euclidean action is nothing
but the energy functional.

4Because of the � field rescaling in (3.4) our VEV v�� is
different from the standard definition of the gap which is�� Tc.
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SU ð3ÞC � SUð3ÞF � Uð1ÞB ! SUð3ÞCF: (3.12)

Nine symmetries are spontaneously broken. Out of nine
Goldstone modes in this model, eight are eaten up by the
gauge bosons, which are fully Higgsed, while one—a
common phase of the matrix �—survives as a massless
excitation. It is associated with broken global baryon
symmetry Uð1ÞB.

The spectrum of massive excitations around this vacuum
can be read off [7] from the GL model Lagrangian (3.4).
The Higgsed gluons acquire masses

mg ¼ gv� g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

Tc

s
; (3.13)

while nine remaining scalars of the complexmatrix�kA fill
singlet and octet representations of the unbroken SUð3ÞCF.
Their masses are

m1 ¼ 2m8 ¼
ffiffiffi
2

p
m0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðTc � TÞ

q
: (3.14)

Since mg � m0, as a consequence of the condition

Tc � �, we deal here with the extreme type I supercon-
ductivity [22].

The GL model (3.4) is in the weak coupling regime if we
assume that

mg � �QCD: (3.15)

IV. NON-ABELIAN STRINGS IN THE CFL PHASE

The model (3.4) we use for our analysis is similar to that
in which the non-Abelian strings were first considered in
the nonsupersymmetric setting [23]. Compared to the
original version [23], we discard the U(1) gauge bosons,
since in high-density QCD only the non-Abelian color
SU(3) is gauged. The baryon current is not gauged, while
the photon interaction with the electromagnetic current can
be neglected for the time being due to its weakness com-
pared to the quark-gluon interactions (see, however,
Sec. VIII). This means that the vortices we will deal with
are not fully local. In their U(1) part they are global. This
would make their tension infinite if the perpendicular
dimensions were infinite too. In the context of dense
QCD, with finite-size samples, this is not a problem: the
logarithmic divergence of the tension will be cut off by the
sample size.

The existence of non-Abelian strings, with the tension
3 times smaller than that of the U(1) global string, is due to
the fact that the Z3 center elements of SUð3Þgauge simulta-

neously belong to the global U(1). Everybody knows that
�1ðSUð3ÞÞ is trivial. In arranging a topologically nontrivial
winding of the scalar fields on the large circle encompass-
ing the Z3 string axis, one can do the following. The needed
2� winding will be split in two parts (there are three
possible options): �2�=3 will come from U(1) while the

remainder will come from rotations in the Cartan subgroup
of SU(3) (in other words, rotations around the third and the
eighth axes, with the generators T3;8); for instance,

�ðr ! 1; �Þ ¼ vdiagðei�; 1; 1Þ;

Aiðr ! 1Þ ¼ "ijx
j

r2
diag

�
� 2

3
;
1

3
;
1

3

�
;

(4.1)

where i, j ¼ 1, 2 are the directions perpendicular to the
string axis and � is the polar angle in the 12 plane.
The topological stability of the straight Z3 strings is due
to the fact that

�1

�
SUð3ÞCF � Uð1ÞF

ðZ3ÞCF
�

is nontrivial. There are three distinct Z3 strings.
Assembling all three such strings in one straight line, one
obtains a string with triple tension topologically equivalent
to the global U(1) string.
It is rather obvious that on each of the Z3 strings the

diagonal SU(3) symmetry is further broken down to
SUð2Þ � Uð1Þ. Now, one can construct non-Abelian strings
out of the Z3 strings. To this end, one must rotate the given
Z3 solution inside the unbroken diagonal SUð3ÞCF. This
costs no energy; therefore orientational moduli associated
with these rotations appear. Since the symmetry breaking
pattern is

SU ð3ÞCF ! SUð2Þ � Uð1Þ;
one has four moduli fields on the string world sheet, with
the CPð2Þ target space. We refer the reader to the reviews
[10–13] for a detailed discussion.
The string solution involves the global U(1); hence, it

contains a power tail from the uneaten Goldstone boson.
This tail results in the logarithmic divergence of the string
tension which is well familiar to the global strings explor-
ers. We have already mentioned this circumstance above.
More specifically, following the general procedure (see

[23] or the review paper [12]), we parametrize the solution
for one of the Z3 strings, say, that in (4.1), as follows:

�ðr; �Þ ¼ diagðei�	1; 	2; 	2Þ;

AiðrÞ ¼
"ijx

j

r2
ð1� fÞdiag

�
� 2

3
;
1

3
;
1

3

�
;

(4.2)

where 	1ðrÞ, 	2ðrÞ, and fðrÞ are scalar and gauge profile
functions of the string, respectively. They satisfy the ob-
vious boundary conditions

	1ð0Þ ¼ 0; fð0Þ ¼ 1; (4.3)

at r ¼ 0, and

	1ð1Þ ¼ v; 	2ð1Þ ¼ v; fð1Þ ¼ 0; (4.4)

at r ¼ 1. Then the solution for the non-Abelian string can
be written as [12,23]
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� ¼ ei�=3
1

3
½2	2 þ	1� þ ei�=3ð	1 �	2Þ

�
n 	 �n� 1

3

�
;

Ai ¼
�
n 	 �n� 1

3

�
"ij

xj

r2
fðrÞ; (4.5)

where nA (A ¼ 1, 2, 3) are complex orientational moduli5

of the string parameterizing the CPð2Þ moduli space,
jnAj2 ¼ 1. The profile functions of the non-Abelian strings
satisfy the second order equations of motion,

f00 � f0

r
� g2

3
ð1þ 2fÞ	2

1 þ
g2

3
ð1� fÞ	2

2 ¼ 0;

	00
1 þ

	0
1

r
� 1

9

ð1þ 2fÞ2
r2

	1 � 1

2

@V

@	1

¼ 0;

	00
2 þ

	0
2

r
� 1

9

ð1� fÞ2
r2

	2 � 1

4

@V

@	2

¼ 0;

(4.6)

where primes denote differentiations with respect to r.
Here V is given by (3.5), and we note that @V=@	1;2 �
m2

0ð	1;2 � vÞ are rather small due to the smallness of m0.

These equations were studied in [24]. A feature of the
non-Abelian string in the CFL phase is the power falloff of
the singlet scalar profile function at spatial infinity due to
the presence of the corresponding massless Goldstone.
From (4.6) we find that at r ! 1 (r � 1=m0) the profile
functions behave as [24]

	1 �	2 � v

�
1� 1

3m2
1r

2
þ . . .

�
;

ð	1 �	2Þ � ve�m0r;

f� e�m0r:

(4.7)

In [24], solutions to Eq. (4.6) were found numerically.
Here, to study these equations analytically, we will apply
the method used for the Abelian strings in the extreme type
I superconductors [25]. At distances r & 1=m0, the string
profile functions in fact have a two-scale structure due to
smallness of the ratio of the scalar to gluon mass. At
1=mg � r � 1=m0, the gluons can be considered as

heavy, and we can neglect the gauge kinetic term. This
boils down to dropping two first terms in the first equation
in (4.6). Then, this equation becomes algebraic and yields

f 
 	2
2 �	2

1

	2
2 þ 2	2

1

: (4.8)

Substituting this result in the two last equations in (4.6), we
find the approximate solution in a simple form

	1 
 bvðm0rÞþ . . . ; 	2 
 v½1þOððm0rÞ4Þ�;
f
 1� 3b2ðm0rÞ2 þ . . . ; 1=mg � r� 1=m0;

(4.9)

where the expansion goes in powers of ðm0rÞ2, while b is a
number, b� 1. Here we use the fact that both the singlet

and octet scalar masses are of the same order �m0, much
less then the gluon mass mg; see (3.13) and (3.14).

Properties of the Z3 strings in application to the CFL
phase of dense QCD were also considered in [8,9,26–28].

V. ON THE STRING WORLD SHEET

The low-energy description of massless excitations on
the string world sheet includes two decoupled sectors: the
two translational moduli and four orientational. The trans-
lational moduli are described by the Nambu–Goto action
with the constant T, which logarithmically diverges,

SNG ¼ T0

Z
d4xLNG; T0 ¼ 2�v2 lnðLm0Þ; (5.1)

where L is a typical size of the color-flavor locked medium.
This part is well known and will be of no concern to us
here.
The orientational moduli’s interaction is governed by

CPðN � 1Þ (with N ¼ 3 in the case at hand). In the non-
supersymmetric setting, this model was shown to appear on
the world sheet of a non-Abelian string in [23]. For non-
Abelian strings in the model (3.4), the effective world-sheet
theory was obtained in [29]. In the gauged formulation, the
CPð2Þ model takes the form

SCPð2Þ ¼ 2

Z

dtdx3f3jD0n
Aj2 þ jD3n

Aj2g; (5.2)

where
 is the CPð2Þ coupling constant, while the complex
fields nA (A ¼ 1, 2, 3) are orientational moduli of the string
promoted to world-sheet fields; see (4.5). They transform
in the fundamental representation of SU(3). These fields
are subject to the constraint

�n An
A ¼ 1: (5.3)

The n fields have a U(1) charge which is gauged,

D �n
A � ð@� � iA�ÞnA: (5.4)

The two-dimensional photon field A� has no kinetic term

in the Lagrangian (5.2) and can be viewed as auxiliary,

A� ¼ i

2
ð �nA@

$
�n

AÞ: (5.5)

It does acquire a kinetic term in the solution of the model,
however, which plays an important dynamical role.
The coupling constant 
 is determined by substituting

the solution for the non-Abelian string (4.5) in the kinetic
terms of the bulk action (3.4) and assuming that the moduli
nA has a slow adiabatic dependence on the the world-sheet
coordinates t and x3. We also use the following expressions
for the A0 and A3 components of the gauge potential
[12,23]:

A�¼�i½@�n 	 �n�n 	@� �n�2n 	 �nð �n@�nÞ��ðrÞ; �¼ 0;3;

(5.6)

5Ai is a matrix; correspondingly, n 	 �n should be understood as
ni �nj. The bar stands for the complex conjugation.
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where we introduce a new profile function �ðrÞ with the
boundary conditions

�ð1Þ ¼ 0; �ð0Þ ¼ 1: (5.7)

The function �ðrÞ in Eq. (5.6) is determined through a
minimization procedure [3,4,12,23] which generates �’s
own equation of motion.

This procedure leads us to the CPð2Þ model (5.2), where
coupling constant 
 is determined by the integral


 ¼ 2�

g2

Z 1

0
rdr

��
d

dr
�ðrÞ

�
2 þ 1

r2
f2ð1� �Þ2

þ g2
�
�2

2
ð	2

1 þ	2
2Þ þ ð1� �Þð	2 �	1Þ2

��
: (5.8)

Then the equation for the profile function � is

� d2

dr2
�� 1

r

d

dr
�� 1

r2
f2ð1� �Þ þ g2

2
ð	2

1 þ	2
2Þ�

� g2

2
ð	1 �	2Þ2 ¼ 0: (5.9)

In Ref. [29] it was shown that, despite of the presence of
the power falloff of the string solution, the coupling 
 is
finite, i.e. the orientational modes of non-Abelian string are
normalizable. The reason for this is that the only profile
function with the power falloff is that of the singlet com-
ponent of the scalar field [24], see also (4.7). On the other
hand, the coupling 
 is associated with dynamics of the
string orientational moduli and, therefore, is determined by
the octet component of the scalar field and the gauge
profile functions, which have the exponential falloff. In
particular, at r ! 1, the function � behaves as

�� e�2m0r:

The main contribution to the integral in (5.8) comes
from the region of intermediate r,

1=mg � r & 1=m0:

In this domain we can neglect, as previously, the kinetic
term of the gauge field. This leaves us with only two last
terms in Eq. (5.9). The equation becomes algebraic, and we
can write

� 
 ð	2 �	1Þ2
	2

1 þ	2
2

: (5.10)

Substituting here the expansions (4.7) and (4.9) we get an
estimate for the coupling 
,


 
 �
Z 1

0
rdr

ð	2
2 �	2

1Þ2
	2

1 þ	2
2

¼ c
v2

m2
0

��2

T2
c

� 1: (5.11)

Unfortunately, we cannot calculate the constant c from the
expansions (4.7) and (4.9); we only know that c� 1.
Numerically, 
 was calculated in [29] for different values

of the masses mg, m1 and m8. On the other hand, our

estimate has all virtues of the analytic expression.
We see that 
 is rather large. The reason for this is that

the falloff of the string solution is controlled by the small
scalar mass m0.
In quantum theory, the coupling constant of the CPð2Þ

model runs. The CPðN � 1Þ models are asymptotically
free and generate their own scale �CP. The estimate
(5.11) is classical and refers to the scale which determines
the inverse thickness of the string [12] given bym0. This is
because the CPð2Þ model (5.2) is an effective low-energy
theory on the string world sheet. Its physical ultraviolet
cutoff is given by the inverse thickness of the string. This
implies

4�
ðm0Þ ¼ N ln
m0

�CP

; N ¼ 3; (5.12)

an equation determining the scale �CP of the effective
world-sheet theory for the non-Abelian string. From
(5.12) we get

�CP ¼ m0 exp

�
� 4�c

N

v2

m2
0

�
� m0; N ¼ 3: (5.13)

We see that �CP is exponentially small. Note that for the
BPS-saturated strings inN ¼ 2 supersymmetric QCD, the
relevant parameter�CP turns out to be equal to the scale �
of the bulk theory. This feature is specific for N ¼ 2
supersymmetry. In the CFL phase of dense QCD, such an
equality does not hold. The reason is that we deal with the
extreme type I superconductivity in the case at hand.

VI. KINK-ANTIKINK MESONS AT LARGE N

The CPðN � 1Þ model at large N was solved in [30,31]
and the qualitative features of this solution are known to
stay valid down to N ¼ 3 and even N ¼ 2. Below we will
outline the features which are important for our purposes.
In the CPðN � 1Þ model, the genuine vacuum state is

unique. However, there are of order N quasivacua [32]
(local minima of the ‘‘potential’’), which lie higher in
energy than the genuine one. (Figure 1).

Vacuum energy

k0−1−2 1 2

FIG. 1. The vacuum structure of the CPðN � 1Þ model with
the vanishing vacuum angle. The genuine vacuum is labeled by
k ¼ 0. All minima with k � 0 are quasivacua.
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A family of quasivacua have energies

Ek�N�2
CP

�
1þconst

�
2�k

N

�
2
�
; k¼0.. . ;N�1: (6.1)

The energy split between two neighboring (quasi)vacua is
Oð1=NÞ. In fact, the fields n and �n represent kinks and
antikinks interpolating between the genuine vacuum and its
neighbors. Since their energies are nondegenerate, neither
kinks nor antikinks can exist on the string in isolation. Only
the kink-antikink pairs—mesons—are allowed.

A kink-antikink configuration on the flux tube is shown
in Fig. 2. It is pretty obvious that the energy of this
configuration linearly depends on the distance between n
and �n, so that these kinks are confined along the string and
form a meson.

We see that the splitting at large N is �2
CP=N, while the

mass of an individual kink is of the order of �CP,

mkink ��CP: (6.2)

Thus, the distance between kinks in the meson is�N=�CP,
i.e. much larger than the size of the individual kink
(� 1=�CP). Hence, the kink and antikink are well sepa-
rated inside the bound state, the meson. Since the n kinks
are in the fundamental representation of the global
SUðNÞCF symmetry [31,33], the mesons can be of two
types: SUðNÞCF singlets or adjoints. Mesons with the quan-
tum numbers of the adjoint representation cannot decay
because the global SUðNÞCF is unbroken and this global
quantum number is conserved. Given that kink and anti-
kink are well separated inside such a meson (provided the
string is sufficiently long, which we assume, of course), it
is clear that the kink-antikink mesons are in fact the lightest
adjoint states and are stable. This conclusion is supported
by the exact solution of the CPð1Þ model [34] demonstrat-
ing stability of the kink-antikink mesons even at N ¼ 2.

VII. CONFINEDMONOPOLES IN THE CFL PHASE

What is the bulk interpretation of kinks interpolating
between the neighboring (quasi)vacua of world-sheet
CPðN � 1Þ model? This problem was studied in detail in

supersymmetric gauge theories [2,4,5,12], and the answer
is known.
The non-Abelian strings were first found in N ¼ 2

supersymmetric QCD with the gauge group UðNÞ and
Nf ¼ N, where Nf is the number of the quark flavors.

The scalar quarks (squarks) develop condensate of the
color-flavor locked form, which leads to formation of the
non-Abelian strings. N ¼ 2 supersymmetric QCD have
adjoint scalar fields along with the gauge fields form the
N ¼ 2 vector supermultiplet. These adjoint scalars de-
velop VEVs as well, Higgsing the gauge UðNÞ group down
to its maximal Abelian subgroup, which ensures existence
of the conventional ’t Hooft-Polyakov monopoles in the
theory. The squark condensates then break the gauge UðNÞ
group completely, Higgsing all gauge bosons. Since the
gauge group is fully Higgsed, the ’t Hooft-Polyakov mono-
poles are confined. As we know, in the Higgsed UðNÞ
gauge theories the magnetic monopoles show up only as
junctions of two distinct elementary non-Abelian strings
[4,5,35].
Now, let us verify that the confined magnetic monopole

in the case at hand, CFL phase of dense QCD, is a junction
of two strings seen in the two-dimensional CPðN � 1Þ
model at N ¼ 3. Consider the junction of two Z3 strings
given by (4.5). Three distinct Z3 strings mentioned above
correspond to three choices of the orientation vector nA,

nA ¼ ð1; 0; 0Þ; nA ¼ ð0; 1; 0Þ; and nA ¼ ð0; 0; 1Þ;
see (4.2). The magnetic flux of the junction of say, nA ¼
ð1; 0; 0Þ and nA ¼ ð0; 1; 0Þ strings is given by the difference
of the fluxes of these two strings. Using (4.5), we get that
the flux emanating from the junction is

4�� diag
1

2
f1;�1; 0g: (7.1)

This is exactly the flux of the ’t Hooft–Polyakov monopole
with the magnetic charge

ðn3; n8Þ ¼ ð1; 0Þ; (7.2)

where ðn3; n8Þ are the magnetic charges with respect to T3

and T8 generators of SUð3Þgauge, respectively.
Similarly, two other string junctions, namely nA ¼

ð0; 1; 0Þ, nA ¼ ð0; 0; 1Þ and nA ¼ ð0; 0; 1Þ, nA ¼ ð1; 0; 0Þ,
have the magnetic fluxes equal to the fluxes of two other
elementary monopoles in SU(3) (i.e. given by two other
roots of SU(3) algebra), namely,

ðn3;n8Þ¼
�
�1

2
;

ffiffiffi
3

p
2

�
; ðn3;n8Þ¼

�
�1

2
;�

ffiffiffi
3

p
2

�
: (7.3)

How is this picture seen in the effective world-sheet
theory on the non-Abelian string? For N ¼ 2 supersym-
metric bulk theory, the world sheet CPðN � 1Þ model is
also supersymmetric and has N degenerate vacua. The
elementary non-Abelian strings are in fact represented by
N distinct vacuum states in the effective world-sheet

vac 2

vac 1

1 cav1 cav

density

energy

(b)

(a)

nonsupersymmetric

supersymmetric

vac 2 vac 1

n

n

n

n

FIG. 2. A kink-antikink state in the CPðN � 1Þ model. In the
nonsupersymmetric version, the vacuum 2 is a quasivacuum
whose energy density is higher than that of the genuine vacuum
1 by ��CP=N.
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CPðN � 1Þ model, while the confined monopoles are the
kinks interpolating between these distinct vacua [4,5,35].

Now, we can add a mass madjoint to the adjoint scalars,

increase it eventually tending to infinity and decoupling
these adjoint scalars from the bulk theory (this breaks
supersymmetry in the bulk down to N ¼ 1). What hap-
pens to the confined monopoles? The orientational moduli
of the non-Abelian fluctuate, with their fluctuations be-
coming exceedingly stronger as madjoint grows. When

madjoint � � strings’ fluxes no longer have particular di-

rections. Fluxes are smeared over the whole group space.
Since the adjoint scalars are no longer present in the theory,
naively it seems that there are no ’t Hooft-Polyakov mono-
poles. At least they are not seen in the quasiclassical
approximation.

In the world-sheet theory this corresponds to a highly
quantum, strong coupling regime. However, we know that
in this regime still there are N degenerate vacua in the
world-sheet CPðN � 1Þmodel [12,36,37]. Moreover, there
are kinks interpolating between these vacua. They are
stabilized by quantum effects and have a nonzero mass
(of order �CP) and finite-size (of the order of ��1

CP). It is

clear that these kinks correspond to confined monopoles of
the bulk theory in the highly quantum regime. More ex-
actly, we should say that they represent what becomes of
the confined ’t Hooft–Polyakov monopoles deep in the
quantum non-Abelian regime when they cannot be seen
in the quasiclassical approximation.

If we break supersymmetry in the bulk even further,
down to nothing, the vacuum energies of the CPðN � 1Þ
model split, as was explained in the previous section [23].
Kinks and antikinks are confined along the string and form
kink-antikink mesons. The kink confinement in the two-
dimensional CP model can be interpreted [23] as the
following phenomenon: the non-Abelian monopoles, in
addition to the four-dimensional confinement (which en-
sures that the monopoles are attached to the strings) ac-
quire a two-dimensional confinement along the string: a
monopole–antimonopole pair forms a mesonlike configu-
ration, with necessity.

Moreover, as was shown in [31,33] for the CPðN � 1Þ
model, the kinks belong to the fundamental representation
of the global group SUðNÞCF. Therefore, the monopole-
antimonopole mesons which belong to the adjoint repre-
sentation with respect to this group are stable.

What lessons can we learn from this ‘‘supersymmetry
saga’’ for dense QCD?Wemight think that there is a certain
deformation of the GL model (3.4) which includes adjoint
scalar fields. If these fields develop VEVs, the conventional
’t Hooft-Polyakov monopoles are formed. If, in addition,
the diquark condensate that develops in the color-flavor
locked phase produces non-Abelian strings which confine
these monopoles attaching them to the strings. These con-
fined monopoles are seen as loosely bound kinks in the
CPðN � 1Þ model on the string world sheet.

Now we give a mass to the adjoint scalars and eventually
decouple them in the bulk theory, ending up with our GL
model (3.4). No monopoles can now be found in the
quasiclassical approximation. However, we are aware of
their presence: they manifest themselves as confined
monopoles seen as kinks on the non-Abelian strings.
Because of the quantum splitting of the string tensions

(the vacuum energies in CPðN � 1Þmodel split; see (6.1)),
the magnetic monopoles cannot move freely along the
string. Monopoles are bound with antimonopoles in the
monopole-antimonopole mesons on the string. However,
as long as the string is very long and the splitting is small,
the monopole and antimonopole in the pair are well-
separated inside the meson, and our conclusion of the
presence of the confined monopoles in the CFL phase of
QCD stays intact.
It is plausible to suggest that these monopoles become

unconfined as we reduce � and cross the phase transition
line into the normal phase of QCD at smaller temperatures
and chemical potentials. This is a pure speculation, of
course, but, if so, they might condense in this phase,
triggering the quark confinement.

VIII. TOWARDS A MORE REALISTIC SETTING

Now we will try to work out a more realistic setup, to
make details of our analysis more closely related to actual
dense QCD, with three flavors of unequal mass.

A. N ¼ 3

In the real world, N is not so large, N ¼ 3. Therefore,
strictly speaking, the large-N solution of the CPðN � 1Þ
model [31] briefly reviewed in Sec. VI does not apply.
However, as was mentioned in Sec. VI, the qualitative
features of this solution are valid for not-so-large N such
asN ¼ 3 and evenN ¼ 2. Indeed, atN ¼ 2 the model was
solved exactly [34]. The Zamolodchikovs found that the
spectrum of the Oð3Þ model (equivalent to the CPð1Þ
model) consists of a triplet of degenerate states (with
mass��CP). AtN ¼ 2 the action (5.2) is built of doublets.
In this sense, one can say that the Zamolodchikovs’ solu-
tion exhibits confinement of doublets. This is in qualitative
accord with the large-N solution [31].
In our case (N ¼ 3), we have two quasivacua, in addi-

tion to the lowest-energy state, the vacuum, and a triplet of
kinks which, because of their linear attraction, are confined
and form singlet and octet mesons on the string.
The question we address here is: given a state belonging

to the adjoint representation of SUð3ÞCF, can we say
whether this state is a ‘‘perturbative’’ Higgsed gauge bo-
son, or a kink-antikink meson? In other words, if the kink
comes too close to antikink, can they annihilate into the
perturbative state with the same SU(3) global charge?
Here the analogy with the supersymmetric setting is

useful (although the string vacua are not split in super-
symmetric CPðN � 1Þ models). In the quasiclassical
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regime, outside the so-called curves of the marginal stabil-
ity (CMS), perturbative states are present in the spectrum
of the CPðN � 1Þ model, while inside CMS, in the strong
coupling domain, they just do not exist as stable states.
They decay into the kink-antikink pairs [38–40]. In the
nonsupersymmetric CPðN � 1Þ models we do not have
that degree of control over the spectrum, while the curves
of the marginal stability are replaced by the phase transi-
tion lines. However, qualitatively, the analogy with super-
symmetric case is instructive. Because of string vacua
splitting the kink and antikink cannot fly apart along the
string. If N is large, we have well-separated monopole and
antimonopole in such a meson, as was explained in
Sec. VI. Even if N is not large, say, N ¼ 2, it is almost
impossible to think that the Zamolodchikov triplet is any-
thing other than a kink-antikink bound state. This is in line
with the supersymmetric case which shows that there are
no perturbative stable states inside CMS in the strong
coupling domain.

Now, let us translate this two-dimensional picture in
terms of strings and monopoles of the bulk theory. At large
N, monopoles and antimonopoles are well-separated on the
non-Abelian string at hand, and we can clearly identify
these states in the theory. Moreover, even if N is not that
large, the analogy with the supersymmetric set-up tells us
that the adjoint string-attached mesons are most likely
formed by monopole-antimonopole pairs. This is true as
long as the splitting of non-Abelian strings is a quantum
strong coupling effect determined by the CPðN � 1Þ scale
�CP, see (6.1).

B. Nonzero strange quark mass

Now we will move on towards reality in another direc-
tion, considering the effect of the nonvanishing strange
quark mass ms (we will continue to assume that the u
and d-quarks are strictly massless),

mu ¼ md ¼ 0; ms � 0: (8.1)

For small nonvanishing ms, the GL potential (3.5) acquires
the following correction [41]:

�Vð�Þ ¼ �f�y
u�u þ�y

d�
dg; (8.2)

which affects only quadratic terms in the Lagrangian,
while the corrections to � is negligible. Here the contrac-
tion of color indices is assumed, while the parameter � is

� ¼ 48�2

7�ð3Þ
m2

s

4�2
T2
c ln

�

Tc

: (8.3)

As a result, the VEVs of the diquark fields change, namely,

h�i ¼ diagðvu; vu; vsÞ; (8.4)

where

v2
u ¼ m2

0 � 2�

8�
; v2

s ¼ m2
0 þ 2�

8�
: (8.5)

We see that the us and ds condensates are smaller than the
ud condensate. The nonvanishing difference between vs

and vu ¼ vd breaks the residual global color-flavor sym-
metry,

SU ð3ÞCF ! SUð2ÞCF � Uð1Þ: (8.6)

Only the reduced color-flavor locked SUð2ÞCF survived the
perturbation.
It is worth mentioning that, when we switch on the

strange quark mass perturbation in (8.2), we do not take
into account the effect of the overall charge neutrality. The
latter leads to shifts in the chemical potentials of u, d and s
quarks proportional to the chemical potential of the elec-
trons [41]. These shifts effectively further break SUð2ÞCF,
because the electric charges of the u and d-quarks are
different. For our purposes, it is all right to neglect this
effect, since we do not address in this paper dynamical
processes in the actual neutron stars.
Instead, we consider a gedanken QCD at large chemical

potential�, switching off electromagnetic interactions. No
electrons are present in our system, just the quark-gluon
matter. In this system, the nonvanishing mass of the strange
quark does not break the SUð2ÞCF global symmetry. This is
an important difference between our results concerning the
confined monopoles and those reported in [7];see below.
The degree of relevance of this gedanken dense QCD, and
consequences that ensue, to actual experiments on the
quark-gluon plasma is to be investigated.
The split (8.5) breaks SUð3ÞCF and lifts some of the

orientational modes of the non-Abelian string. This can
be described by a small potential on the modular space of
the string, i.e. a potential term in the model (5.2). In super-
symmetric theories, the scalar potentials in the CPðN � 1Þ
models on the string world sheet induced by the squark
mass differences were calculated in [4,5]. At the same
time, for dense QCD this problem was addressed in [7].
To calculate this potential to the leading order in the

small parameter � in (8.2), we can still use the solution
(4.5), where the profile functions are unchanged. The only
modification is that the common value of the scalar profile
functions at r ! 1 in (4.4) should be modified as

v ! ~v; ~v2 ¼ m2
0 � 2

3 �

8�
; (8.7)

which is the average value for the three VEVs in (8.4).
The potential (V þ �V) gives the tension of the string
2�~v2 lnðLm0Þ plus a finite (nonlogarithmic) contribution,
which depends on the moduli fields nA. It is given by

�

3

Z
d4xTr½�ydiagð1; 1;�2Þ��: (8.8)

Now, substituting here Eq. (4.5), we get the potential in the
deformed CPð2Þ model on the string world sheet, to the
leading order in �=m2

0,
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VCP ¼ !
Z

dtdx3ð3n23 � 1Þ; (8.9)

where

! ¼ 2�

3
�
Z 1

0
rdrð	2

2 �	2
1Þ � �

v2

m2
0

: (8.10)

Here we used the expansions (4.7) and (4.9) to make the
last estimate.

From (8.9), it is clearly seen that, with ms � 0, the
(0, 0, 1) string has a significantly larger tension than the
(1, 0, 0) and (0, 1, 0) strings and is, in fact, classically
unstable. It is not even a local minimum of the potential
(rather, it corresponds to a maximum). Note that the pa-
rameter ! is much larger than the quantum scale �CP of
the CPð2Þ model, a crucial circumstance. Therefore, the
classical splitting by far dominates over the quantum one
in (6.1).

This instability means, in particular, that the monopole-
antimonopole meson formed through the insertion of a
piece of the (0, 0, 1) string in the (1, 0, 0) or (0, 1, 0)
strings (see Fig. 2) is highly unstable and decays into
a perturbative state with the same global (singlet or
adjoint) quantum numbers with respect to the unbroken
SUð2ÞCF � Uð1Þ. This corresponds to the process in which
monopoles with the magnetic charges given in (7.3) are
annihilated with their antimonopole partners inside the
monopole-antimonopole mesons. Correspondingly, the
monopoles with these magnetic charges disappear from
the string.

The potential in (8.9) shows that the n3 field is heavy and
can be integrated out from the CPð2Þ model under consid-
eration. Then we are left with the CPð1Þmodel (5.2) on the
string world sheet, which includes now only the fields n1

and n2, and no potential on the target space. Its global
group SUð2ÞCF remains unbroken.

In the quantum regime, two non-Abelian strings whose
low-energy dynamics is described by this CPð1Þ model
(theCPð1Þ vacua) are split, as was discussed in Sec. VI; see
(6.1). There are mesons on the strings with the lowest
tension which include pieces of the excited string. These
are formed by monopoles and antimonopoles with mag-
netic charges classically given by (7.2). (Remember, in the
quantum non-Abelian regime the magnetic monopole
charge is averaged to zero.) Stable mesons are triplets
with respect to unbroken SUð2ÞCF. Thus, our conclusion
on the presence of the confined non-Abelian monopoles
attached to the non-Abelian strings in dense QCD stays
valid even in a more realistic setting of dense QCD with
N ¼ 3 and nonvanishing strange quark mass.

To conclude this section, let us compare our results with
those obtained in [7]. In [7], a realistic dense matter inside
neutron stars was studied. In particular, the electromag-
netic interactions and the presence of electrons were taken
into account. As was mentioned above, this leads to
the complete breaking of the non-Abelian color-flavor

symmetry SUð3ÞCF ! Uð1Þ3. All three strings are classi-
cally split by the strange quark mass. Two excited strings
become classically unstable, and the monopoles effectively
disappear from the string. They are annihilated by the
would-be antimonopoles.
In our paper, we do not attempt to study realistic neutron

stars. Instead, we focus just on the quark-gluon matter in
dense QCD, and demonstrate that in the CFL phase there
are confined magnetic monopoles attached to the non-
Abelian strings. Whether or not the quark-gluon plasma
can exist in terrestrial experiments sufficiently long allow-
ing for the formation of long non-Abelian strings is a
separate issue left for further studies.

C. Nonzero u and d-quark masses

Now let us introduce nonvanishing u and d quark
masses,

mu ¼ md � ms: (8.11)

We stress that we assume that u and d quarks are strictly
degenerate. This ensures that the color-flavor group (8.6)
remains unbroken. The introduction of the common u and
d quark mass just shifts the parameterm0 (and �) in the GL
model (3.4), leaving our results intact.
Another effect due tomu ¼ md � 0 is that now ‘‘pions’’

become massive. Their masses were estimated (see e.g. the
review [15]),

m� � ffiffiffiffiffiffiffiffiffiffiffiffi
mums

p Tc

�
: (8.12)

For reasonable values of the quark masses, the pion masses
are rather small, �mu;dð6Tc=�Þ. In particular, they are

smaller than the Higgsed gluon mass constrained by the
week coupling condition (3.15). Strictly speaking, this
means that we cannot totally ignore pions in our GL
effective description (3.4) of QCD in the CFL phase.
They should be included in consideration of the low-
energy theory.
The detailed study of the impact of these pions on the

non-Abelian strings is left for a future work. Here we will
make a few qualitative comments. First, they are ‘‘neutral’’
with respect to the gauge fields and, therefore, their pres-
ence in the bulk theory does not affect the classical solution
(4.5) for the non-Abelian strings. However, they will show
up in loops producing, generally speaking, long-range tails
of string profile functions. Effectively, their presence
forces the string to swell in the transverse dimension,
acquiring the transverse size of the order of 1=m�. We
assume, however, that

m� � �CP: (8.13)

This constraint can be easily achieved since �CP is quite
small, see (5.13).
The condition (8.13) ensures that the CPð1Þ model we

arrived at still can be used for the low-energy description of
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dynamics of the orienational zero modes on the non-
Abelian string. It means that the inverse transverse size
of the string (although small) is still much larger than
typical excitation energies on the world sheet, which are
of order of�CP. Higher-derivative corrections to the CPð1Þ
model (see (5.2) with N ¼ 2) run in powers of the ratio of
the typical excitation energies over m� which can be
considered small due to the condition (8.13). Of course,
here we speak only about the rotational moduli fields
which are responsible for nearly degenerate strings and
kinks/monopoles.

To conclude this section, we stress again that, with
mu ¼ md, the color-flavor locked SU(2) stays unbroken.
Therefore, two non-Abelian strings described by CPð1Þ
model are in highly quantum regime which entails with
necessity monopole-antimonopole pairs in the form of
‘‘mesons’’ attached to these strings.

IX. ON THE � DEPENDENCE

In this section, we add the bulk � term and trace its
impact on the non-Abelian strings and monopoles of dense
QCD.

A. � term on the world sheet

In this section, we will make a few comments concern-
ing possible effects due to the � term and axions. In QCD
all quarks are massive, hence the � term effect cannot be
eliminated by chiral rotations. We are interested in whether
or not the � term affects the world-sheet theory on the non-
Abelian string in dense QCD. The nonsupersymmetric
CPð2Þ model allows one to introduce a � term which, as
usual, is coupled to the topological charge,

L � ¼ �

2�
"��@

�A� ¼ �

2�
"��@

�ð �ni@�niÞ: (9.1)

Previously, in the simplest model [23], we demonstrated
that the four-dimensional (bulk) � term penetrates in the
two-dimensional sigma model

�3þ1 ¼ �1þ1; (9.2)

with self-evident notation. The above equality between the
four- and two-dimensional �’s, however, is not a common
property of all non-Abelian strings; see [42] for a counter-
example. To find out what happens in the case at hand, we
can substitute the gauge field from the string solution into
the four-dimensional topological term and integrate over
the transverse directions. As a result, we get that the equal-
ity (9.2) is fulfilled. There are nontrivial phenomena in the
bulk theory at � ¼ � due to vacuum double degeneracy.
On the world sheet as well, something remarkable occurs at
� ¼ �, namely, the deconfinement phenomenon. At this
point the vacua on the world sheet become doubly degen-
erate too, and the single kink-monopole state becomes
liberated and free to move along the string.

It is usually assumed that the � dependence in dense
QCD is negligible since the instanton-induced effects are
exponentially suppressed due to Higgsing and large values
of the diquark condensates. Our discussion implies that the
non-Abelian string provides a nontrivial environment for
the � dependence to show up in full.
Care should be taken of the fermion modes on the string.

If there were fermion zero modes in the world-sheet theory,
the �1þ1 term could be eliminated from physics by chiral
rotations, as happens in the supersymmetric version. If the
bulk quarks are strictly massless, the fermion zero modes
on the string do indeed exist [43]. In this limit, there is no �
dependence on the string. However, if nonzero quark
masses are introduced, the fermion zero modes on the
string are lifted and the fermions become irrelevant.
Let us comment on the interaction of the non-Abelian

string in the CFL phase with the background fields. The
simplest example of the bulk field coupled to the string is
the axion. The string-axion interaction was considered in
[44], where it was argued that a kind of axion halo emerges
around the string, provided the string exists long enough
for the halo to form. For shorter time intervals, the string
with kinks on it acts as an antenna for the axion emission.
Note also that, due to the Witten effect, monopoles

acquire the electric charge if the � term is switched on.
Hence the dyons emerge and the monopole-antimonole
pair gets substituted by the dyon-antidyon state on the
string world sheet.

B. A Holographic viewpoint

Remembering that a holographic representation in the
(nonsupersymmetric) problem at hand can be exploited, if
at all, only for a general guidance, let us have a closer look
at the derivation of the world-sheet � term via holography.
Note that the very idea to look for such holographic real-
ization of the string and confined monopoles is that it could
help in interpretation of their hypothetical counterparts in
different limits of the full QCD phase diagram.
To this end, we first comment on the known dual repre-

sentation of the non-Abelian strings. In supersymmetric
QCD with the Fayet–Iliopoulos term  � 0, the non-
Abelian string is represented by a D2 brane stretched
between two NS5 branes displaced by distance  in some
internal coordinate [2]. Evidently, the tension of the string
in the four-dimensional space-time is proportional to this
distance. Similarly, the monopoles confined on the string
are represented by the D2 branes with two internal world-
volume coordinates [2].
Such non-Abelian strings as the D2 branes have a very

clear-cut counterpart in holographic QCD with vanishing
chemical potential [45,46]. At zero temperature, the dual
geometry has the vanishing circle D2 brane that can wrap
around, which yields a very small tension of the emerging
magnetic string. Above the confinement-deconfinement
phase transition, which corresponds to the Hawking–Page
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transition on the dual side, the magnetic string acquires a
nonvanishing tension, since the relevant vanishing circle
disappears.

From the consideration above, we have learned twowell-
established facts concerning non-Abelian strings in dense
QCD: its tension is proportional to the diquark condensate
squared and it carries a nontrivial � term on theworld sheet.
These features have to be reproduced holographically.
Since we deal with conventional (nonsupersymmetric)
QCD, the best we can do is to work with the Sakai–
Sugimoto model [47], which is a version of the black-
hole background [48] and qualitatively seems to reproduce
basic QCD phenomena. It involves, in the thermal case, two
periodic coordinates x5, tE, radial coordinate U, and the
internal S4 manifold. Below the phase transition, the ðx5; UÞ
coordinates provide the cigarlike geometry, while above Tc

it is the ðtE; UÞ pair that yields this cigarlike geometry.
Let us try to argue that, within the Sakai–Sugimoto type

models, the best candidate for the non-Abelian string is a
wrapped D6 brane in the geometry of the charged black
hole, much in the same spirit as in [42]. The black-hole
charge corresponds to density in the holographic picture.
The D2 realization cannot reproduce the correct string
tension; hence a higher-dimensional D brane has to be
involved. If there are no S2 cycles in the background, there
is no simple possibility to get the correct tension from the
D4 brane. However, we cannot fully exclude the latter
option with a more contrived background.

Consider the candidate D6 brane wrapped around S4 and
extended along x5. The Chern–Simons term on its world-
volume reads as

SCS ¼
Z

d7xC0 ^ F ^ F ^ F (9.3)

and the integral over S4 yields the factor N amounting to

SCS ¼ N
Z

dx5C0

Z
d2xF; (9.4)

where C0 / �3þ1

If we assume that the integration runs over the whole x5
circle, we get a contradiction with the field-theoretical
calculation because of the N factor. To avoid this contra-
diction, we assume that the integration runs over the seg-
ment of the x5 circle between two flavor branes involved in
the diquark condensate, which yields an additional 1

Nf
¼ 1

N

factor. The tension of the string is given by the area of the
corresponding disc, by the same token as in [42]. Hence we
can qualitatively reproduce the required features. However,
since there is no clear-cut holographic representation of the
CFL phase of dense QCD in the Sakai–Sugimotomodel yet,
this D6 interpretation certainly calls for an additional study.

X. CONCLUSIONS

What has been achieved in this work? We started from
the earlier observation of non-Abelian strings in the

color-flavor locked phase of dense QCD below Tc. These
strings develop orientational zero modes, which become
dynamical fields of the CPð2Þ model on the string world
sheet. The above model supports kinks (antikinks) which
are confined to the string, and, moreover, confined into
kink-antikink bound states along the string, albeit the kink
constituents are still identifiable.
The most nontrivial part of our further argument is as

follows. We show that the kinks appearing in the world-
sheet theory on these strings, in the form of the kink-
antikink bound pairs, are, in fact, magnetic monopoles, as
they manage to adapt and survive in such a peculiar form in
dense QCD. The kinks of CPð2Þ are the descendants of
the ’t Hooft–Polyakov monopoles—the latter appear in the
quasiclassical regime while the former are the objects ap-
pearing in the highly quantum regime. Our considerations
are heavily based on analogies and inspiration we abstracted
from certain supersymmetric non-Abelian theories.
This is the first-ever analytic demonstration that the

magnetic monopoles are native to non-Abelian Yang–
Mills theories such as QCD (albeit our analysis extends
only to the phase of the monopole confinement and has
nothing to say about their condensation). Abundant spec-
ulations can be presented here, but we will refrain from
them at this stage in the hope that a solid consideration
allowing one to move towards the monopole condensation
can be worked out later.
In conclusion, let us comment on possible signatures of

the non-Abelian strings in the neutron stars. The baryon
chemical potential in these stars depends on the location of
the domain under consideration, and increases towards the
star center. In other words, the CFL phase can be realized
in a certain domain at a certain distance from the star
center. The non-Abelian strings can be created via rotations
of the neutron star [49].
The key question concerns specific detectable signals

from the non-Abelian strings. Being created by some
mechanism, the non-Abelian string could emit axions
from inside the star. Another question which can be raised
concerns the moving string. Assume that the string moves
towards the boundary of the star from the domain inside the
star with the CFL phase. At a certain distance from the
center, the CFL phase becomes impossible, i.e. the non-
Abelian string solution is no longer supported. This means
that, at this point, the non-Abelian strings have to somehow
join into the Abelian string excitations existing in the
subsequent 2SC phase.
Finally, we would like to mention a very recent paper on

non-Abelian strings in dense QCD [50] where interactions
of string degrees of freedom with light bulk fields are
studied.
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