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The Skyrme-Faddeev model is a (3þ 1)-dimensional model which has knotted, stringlike, soliton

solutions. In this paper we investigate a Skyrme-Faddeev model with an SOð3Þ symmetry breaking

potential. We then rescale this model and take the mass to infinity. This infinite mass model is found to

have compact knotted solutions. In all of the investigated massive models we find similar charged

solutions as in the usual m ¼ 0, model. We also find that their energies follow a similar E�Q3=4 power

growth as the m ¼ 0 model.
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I. INTRODUCTION

The Skyrme-Faddeev model is a (3þ 1)-dimension
modified Oð3Þ-sigma model [1]. This theory has finite-
energy stringlike solutions and has a potential application
as a low-energy effective theory of QCD [2]. The theory
usually has two components, a sigma term which is a
quadratic of derivatives and a Skyrme term which is quartic
in derivatives. These are the minimum terms required to
provide a scale for Derrick’s theorem [3], in (3þ 1)-
dimensional flat space. The theory is described by the
Lagrangian

L ¼ 1

32�2
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� ð@��� @��Þ � 2m2Vðj�jÞ
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where � is a three-component unit vector, � ¼
ð�1; �2; �3Þ. At fixed time � is the map �: R3 ! S2. A
condition for finite-energy solutions of (1.1) is that the field
must tend to a constant value at spatial infinity, which we
select to be �ðt; r ¼ 1Þ ¼ ð0; 0; 1Þ ¼ e3 for all time, t.
This allows a one-point compactification of the domain,
R3 [ f0g � S3. So static, finite-energy, solutions are a map

� : S3 ! S2: (1.2)

This map (1.2), belongs to an equivalence class character-
ized by the homotopy group �3ðS2Þ ¼ Z. This shows that
there is an integer topological invariant associated with �,
known as the Hopf invariant. In this case we will refer to
the Hopf invariant as the topological charge Q. The topo-
logical charge can be found by firstly defining an area form
! on S2. Then we can define g ¼ ��!, which is the
pullback of ! by �. Because of the second cohomology
group of the three sphere being trivial, H2ðS3Þ ¼ 0, all
closed forms on S3 are exact forms. Therefore, we can
now redefine the exact form g by the 1-form a as g ¼ da.
Therefore we can express the topological charge, Q, as

Q ¼ 1

4�

Z
S3
g ^ a: (1.3)

This nonlocal definition of the topological charge, (1.3), is
not particularly useful in this context. Instead the topologi-
cal charge of (1.2) can be found as the linking number of
loops in the domain. These loops are formed as preimages
of two distinct points on the target space; for example, if
we define the two curves Cp andCq as the preimages of the

points p and q. If we then choose a smooth surfaceD, with
a boundary Cp, the linking is defined as

link ðCp; CqÞ ¼
X
D\Cq

� 1;

where the� refers to the relative orientations ofD and Cq.

This definition of the topological invariant can be shown to
be the same as (1.3), [4]. There is a well-known lower
bound on the energy, [5–8], which is based on an involved
argument using Sobolev-type inequalities,

E � cQ3=4 where c ¼
�
3

16

�
3=8

: (1.4)

The fractional power of (1.4) is proven to be optimal, but
the value of c might not be. Ward [6] was motivated by his
study of the Skyrme-Faddeev theory on a unit three-sphere
to propose that c ¼ 1 might be a more optimal value.
The Hopfion location is commonly defined as the curve

C ¼ ��1ð0; 0;�1Þ � ��1e�3, which is the antipodal
value to the boundary vacuum value.
For m ¼ 0 there have been many extensive and detailed

investigations into the static minimum-energy solutions of
(1.1), [1,9–13]. For charges one to seven it is believed their
respective global minimum-energy solutions have all been
identified. It is known [14] for topological charges one to
three that the minimum-energy solutions have a planar
loop location curve. Topological charges five and six
have the minimum-energy solutions of two linked
Hopfions [14]. For topological charge seven the
minimum-energy location curve is a trefoil knot [14]. In
[14] Sutcliffe devised a new knotted rational map ansatz as
initial conditions. These initial conditions were then*email:dfoster@stp.dias.ie
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energetically minimized to give new minimum-energy
solution candidates for a large class of topological charges.
We shall describe and make use of this technique later.

II. m > 0

The actual model of interest here is a modification of the
usual Skyrme-Faddeev model. It is modified by an addi-
tional potential term, so m> 0 in (1.1) and

Vð�Þ ¼ ð1��3Þ: (2.1)

This choice of potential, (2.1), is not general but is one of
the simplest choices. A potential term, which breaks global
SOð3Þ symmetry, is also generated on derivation of the
theory (1.1) as an infrared limit of (3þ 1)-dimensional
SUð2Þ Yang-Mills theory [15]. If we restrict ourselves to
the plane, this model reduces to the old Baby Skyrmion
model. Also this potential, (2.1), meets the finite-energy
criteria for the chosen boundary condition, where the
single vacuum of Vð�Þ is also the chosen boundary value.
There has been previous analysis of this model [8], but this
was restricted by axial symmetry. The potential, (2.1),
increases the energy density along the location of the
Hopfion. This is because the location curve, C ¼
�ð0; 0;�1Þ � 1, corresponds to the maximum of the po-
tential (2.1). Therefore, we expect the Hopfion location
curve to become smaller in length for increasing m. We
also expect the Hopfion string to become finer with in-
creasing m; as it is analogous with the Baby Skyrmion
model. This is best understood by an asymptotic analysis
where we approximate the field for large r as

� ¼ ð�1; �2; 1� �21 � �22Þ þOð�3aÞ;
where a 2 ð0; 1Þ. For large r we know that, due to finite-
energy criteria, j@i�aj< 1 therefore the energy density
associated with (1.1) becomes

E ¼ ð@i�aÞ2 þ 2m2�2a þOðð@i�aÞ4Þ:
Where �a is a solution of the partial differential equation

ð�� 2m2Þ�a ¼ 0: (2.2)

Separating �a into radial and angular components as �a ¼
r�ð1=2ÞRaðrÞ�að�; c Þ. Where RaðrÞ is a purely radial func-
tion,�a is a spherical harmonic ðrs2�a ¼ ��ð�þ 1Þ�aÞ
and ðr; �; c Þ are the usual spherical polar coordinates.
Then solving (2.2) we gain an asymptotic approximation
for Raðr 	 1Þ,

Raðr 	 1Þ � Ca
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Where Ca is a constant of integration. This shows that
Hopfions become increasingly exponentially located as m
increases. Hence the Hopfions in this massive theory will
have Yukawa type asymptotic tails.

III. INITIAL CONDITIONS

It is already well known that charged Hopfions can
be knotted objects [1,9–14]. One of the most effective
ways to create nontrivial knotted initial conditions, to
be minimized, is to use the rational map ansatz technique
described in [14]. Here the author used a degree one
spherically equivariant map to compactifiy R3 ! S3Z1;Z0



C2 by

ðZ1; Z0Þ ¼
�ðx1 þ ix2Þ

r
sinf; cosfþ ix3

r
sinf

�
; (3.1)

where fð0Þ ¼ �, fð1Þ ¼ 0 and

S3Z1;Z0
ffi fðZ1; Z0Þ 2 C2 j jZ1j2 þ jZ0j2 ¼ 1g: (3.2)

Using these complex coordinates an ða; bÞ-torus knot can
be described as the intersection of a complex curve
qðZ1; Z0Þ with a unit three-sphere [16]. Hence we can
formulate the rational map ansatz

W ¼ �1 þ i�2

1þ�3

¼ lðZ1; Z0Þ
qðZ1; Z0Þ : (3.3)

The inverse stereographic projection of the curve q ¼ 0
produces a �3 ¼ �1 closed curve in R3. The asymptotic
value of lðZ1; Z0Þ in the rational map ansatz (3.3) is used to
fix the boundary conditions of �. Therefore, we need
lðrÞjr!1 ¼ 0 so the inverse stereographic projection gives
� ¼ ð0; 0; 1Þ at the spacial boundary of R3.
We can now formulate an axially symmetric Hopfion

initial condition as

W ¼ Zn
1

Zp
1

; (3.4)

which has charge Q ¼ np. These types of unlinked
Hopfion are labeled An;p. Also a Hopfion, with a position

curve of an ða; bÞ-torus knot, can be formed by the rational
map ansatz

W ¼ Z1
�Z0

	

Z1
a þ Z0

b
(3.5)

where � 2 fx > 0jx 2 Zg and 	 2 fx � 0jx 2 Zg. This
gives a closed curve that wraps a and b times about the two
circumferences of a torus [16], and has topological charge
Q ¼ �bþ 	a [14]. These torus knot configurations are
labeled Ka;b. A torus knot with a reducible denominator

can produce linked Hopfions. For example a rational map

W ¼ Znþ1
1

Z2
1 � Z2

0

¼ Zn
1

2ðZ1 � Z0Þ þ
Zn
1

2ðZ1 þ Z0Þ ; (3.6)

forms two charged n Hopfions linked once. We label this

type of configuration as L1;1
n;n.

This approach not only produces a nontrivial knotted
location curve with an analytically known topological
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charge, it also gives a smooth field with the correct bound-

ary conditions. To find static Hopf solitons we set _� ¼ 0 in
the Skyrme term of (1.1). This gives a nonrelativistic
theory which has the same static equations of motion as
those derived from (1.1). This greatly simplifies the corre-
sponding equations of motion by removing a numerically
cumbersome matrix inversion. It also still facilitates time
evolution by the second-order dynamics derived from the
sigma term. The nonrelativistic equation of motion can
then be numerically evolved on a discrete lattice using a
fourth-order derivative approximation. We also need an
additional Lagrangian multiplier, �, to constrain � to
take its value on S2. If we periodically remove kinetic
energy the potential energy will also become minimized;
this will yield minimum-energy static solutions. This mini-
mization technique produces static solutions and uses
much less CPU time when compared to other similar
minimization algorithms. A numerical grid of 250�
250� 250 points, with �x ¼ 0:08, was found to be large
enough to contain the exponentially located Hopfion. On
this lattice the Hopfion can smoothly attain the vacuum
value at the boundary without a noticeable expense of
energy. This lattice is also fine enough not to lose the
fundamental topology. The definition of the position of a
Hopf soliton is sensible, but not useful for display pur-
poses. Therefore, all the images of Hopf solitons in this
paper are plots of an isosurface of the preimage of the
curve�3 ¼ �0:85 in the domain. This gives a surface that
is a fine tube in the physical space and produces much
clearer images. To show the linking number we also need
to plot the preimage of a second loop, but there is no unique
loop to choose. In all the plots shown we generate general

loops on the target space by choosing a point, g ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

; 0; �Þ, on S2. We then find the distance on the
surface of S2 between g and �. This distance is then
normalized by the distance between g and the south pole
of S2, e�3, as

dist ðg;�Þ ¼ cos�1ðg ��Þ
cos�1ðg � e�3Þ

:

This gives many loops of constant radius on S2. The
preimages of these loops are tubes of varying thickness
in the domain. Also, an isosurface of unitary value is

known to intersect with the position curve of a Hopf
soliton. Throughout this paper we choose � ¼ �0:9,
which is an arbitrary choice for aesthetics.

IV. Q � 4 TRIVIAL KNOTS

A Hopfion initial condition, where the position curve is
contained completely on a plane, can be formed by the
rational map ansatz (3.4). So if we set n ¼ p ¼ 1 in (3.4)
this gives the initial condition of a topological charge one
Hopf soliton which is located along a planar loop. Using
this initial condition, and the above minimization proce-
dure, we can find the minimum-energy configurations for
m ¼ ð0; 1; 2; 4; 5Þ, as shown in Fig. 1, with the minimum
energies shown in Table I.
Figure 1 shows as expected that the larger m is the

smaller the Hopfion is. This is due to the potential term
creating an energy penalty where � ¼ ð0; 0;�1Þ, which
corresponds to the maximum value for the potential. Thus
the minimum-energy Hopfion location loop becomes
smaller with growing m. The energy for m ¼ 0 is 1.236,
this is within 2% of the previously accepted result [14].
This similarity is a nice validation of our numerical proce-
dure and the small difference can be attributed to the
different choice of lattice spacing. As shown in Fig. 2 for
larger values of mass the field �3 is increasingly symmet-
ric about the Hopfion location. Because of this we have
decided to perform the remaining analysis with the rela-
tively large m ¼ 5. This choice of mass is arbitrary; we
could have chosen m> 5, but this choice gives sharply
located Hopfions which are still large enough so the topol-
ogy is not lost by the numerical lattice. We find the
minimum-energy Q ¼ 1 Hopfion to be E1 ¼ 2:17. Using
(3.4) with ðn;pÞ¼ ð2;1Þ this again gives a planar loop
Hopfion location, but with topological chargeQ¼2. Mini-
mizing this configuration, we find the minimum-energy
E2¼3:45, with a planar Hopfion location curve. We can
construct a Q ¼ 3 Hopfion by setting (n ¼ 3, p ¼ 1) in
(3.4) or (� ¼ 	 ¼ b ¼ 1, a ¼ 2) in (3.5). The latter con-
figuration produces a Hopfion which is located along an
unknotted twisted loop. Minimization of these two con-
figurations produces similar configurations with similar
energy, E3 ¼ 4:74, located on a twisted unknotted loop.
A topological charge Q¼4 Hopfion initial condi-

tion can be made using (3.5) with either (� ¼ a ¼ 2,

FIG. 1 (color online). Minimum energy topological charge one Hopfions, all on the same scale.
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	¼b¼1) or (� ¼ a ¼ 4, b ¼ 1, 	 ¼ 0). This gives
Hopfion location curves K2;1 and K4;1 respectively.

Minimizing both of these configurations give a ~A4;1

(twisted A4;1) Hopfion location curve, with energy

E4 ¼ 6:051. We can also generate Q ¼ 4 axial initial
conditions using (3.4) with (n ¼ p ¼ 2) and (n ¼ 4,
p ¼ 1). This gives A2;2 and A4;1 planar curves, respec-

tively. Minimization of the A2;2 configuration remains as

an A2;2, with an energy �0:6% larger than the ~A4;1. This is

within numerical accuracy of our minimization scheme.
Therefore we are not able to define which of these two
configuration is the lower energy. The A4;1 configuration

also minimizes to a planar curve described by A4;1. This

seems to show that twisting the loop slightly reduces the
energy. The Q ¼ 4 planar loops are most likely long lived
saddle point solutions, preserved by symmetry. The posi-
tion curves for Q ¼ 1; 2; 3; 4 are shown in Fig 3.

V. Q � 5 KNOTTED/LINKED HOPFIONS

For a select few simulations, Figs. 4 and 5 show a plot of
minimum-energy Hopfion locations. Also, Figs. 4 and 5
show the linking of the initial rational map ansatz and the
linking of the corresponding minimum-energy Hopfion
curve. Their respective minimum energies and change in
linking forms are shown in Table II. For topological
charges Q � 4, both in the massive case and in the normal

massless case, the Hopfion location curves are all found to
be unknotted solutions. For topological charges Q � 5 we
find the minimum-energy Hopfions have either a linked or
knotted location curves, as shown in Fig. 5. The minimum-
energy solutions presented have very similar qualitative
features with the massless model [14]. The minimum-
energy Hopfion location curves for each charge sector
have comparable linking form hence, due to the computa-
tional intensity, we have restricted our analysis to the
presented charges.
One main difference between our results and those of

[14] is that we are presenting potentially new energetic

FIG. 3 (color online). Minimum energies for m ¼ 5, Hopfions.

FIG. 4 (color online). Position curves for m ¼ 5 Hopfions of
charge 5 � Q � 7, showing their charge and linking form.
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FIG. 2 (color online). �3 for masses m ¼ 0, 1, 2, 4, 5.

TABLE I. Minimum energies for m ¼ ð0; 1; 2; 4; 5Þ topologi-
cal charge one Hopfions.

Mass, m E

0 1.236

1 1.421

2 1.668

4 2.017

5 2.170
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local minimum or saddle point solutions. As shown in
Fig. 5, we have new linked topological charges Q ¼
8; 12; 15 excited solutions.

Also, our topological charge eight and six minimum-
energy solutions seem to have similar linking structure as
in the m ¼ 0 case. But in the m ¼ 5 case the links seem to
be almost on top of each other. The minimum-energy
location curve of the topological charge 15 Hopfion is
topologically similar to that found in [14], but it is quali-
tatively different. Figure 7 shows that the energy, as a
function of topological charge, has a similar growth to
the m ¼ 0 case [14].

VI. INFINITE MASS, m ! 1
Rescaling the Lagrangian density (1.1) by x �

ffiffiffiffi
m

p
x

gives

Lð ffiffiffiffi
m

p
xÞffiffiffiffi

m
p ¼ L2

m
þL4 þL0;

where La refers to the ath-order derivative in the
Lagrangian density. We can then define

L m!1 ¼ lim
m!1

Lð ffiffiffiffi
m

p
xÞffiffiffiffi

m
p ¼ L4 þL0: (6.1)

A model comprising only a Skyrme term and a potential
term has been addressed before [17]. In [17], this model

was derived by setting a constant to zero. This effectively
removes the sigma term in the Skyrme-Faddeev with
a potential model. Soliton solutions of this model
are commonly referred to as compactons [17]. This is
because they reach their vacuum value in finite distance
and therefore have no asymptotic tails. Hence they are
effectively Bogomol’nyi-Prasad-Sommerfield bound (non-
interacting) for large separation. In order to numerically
find minimum-energy solutions of (6.1), it is computation-
ally easier to work with a modified model of the form

FIG. 5 (color online). Position curves for m ¼ 5 Hopfions of
charge Q ¼ ð8; 12; 15; 16Þ, showing their charge and linking
form.

TABLE II. m ¼ 5 Hopfions initial and final configurations,
with their respective energies.

E E=Q3=4

Q ¼ 4

K2;1 ! ~A4;1 6.05 2.14

K4;1 ! ~A4;1 6.05 2.14

A4;1 ! A4;1 6.07 2.15

A2;2 ! A2;2 6.09 2.15

L1;1
1;1 ! L1;1

1;1 7.17 2.53

Q ¼ 5

L1;1
2;1 ! L1;1

1;2 6.23 1.86

K3;2 ! L1;1
1;2 7.17 2.14

K4;1 ! A5;1 7.43 2.22

Q ¼ 6

K3;2 ! A3;2 8.01 2.09

K2;2 ! L1;1
2;2 8.19 2.14

L1;1
3;1 ! L1;1

3;1 8.41 2.19

K5;1 ! K5;1 8.60 2.24

K4;2 ! L2;2
1;1 9.07 2.37

Q ¼ 7

K5;2 ! K3;2 9.19 2.14

K3;2 ! K3;2 9.20 2.14

K4;3 ! K2;3 9.64 2.24

A7;1 ! A7;1 10.18 2.37

Q ¼ 8

L2;2
2;2 ! ~A4;2 9.86 2.07

K3;2 ! A4;2 9.88 2.08

K3;4 ! ~A4;2 9.88 2.08

K5;2 ! A4;2 9.97 2.10

L1;1
3;3 ! L1;1

3;3 10.45 2.20

Q ¼ 12

K4;3 ! L2;2;2
2;2;2 13.77 2.16

K5;3 ! L2;2;2
2;2;2 13.77 2.16

L1;1
5;5 ! L1;1

5;5 15.30 2.37

Q ¼ 15

K5;3 ! L6;3
4;2 16.17 2.12

K4;3 ! K4;3 16.56 2.17

K3;2 ! L3;3
7;2 17.11 2.25

Q ¼ 16

L3;3;3;3
1;1;1;1 ! ~K4;3 17.07 2.13

K4;3 ! K4;3 17.12 2.14

K3;2 ! K4;3 17.25 2.17
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LModified ¼ @0� � @0�
32�2

ffiffiffi
2

p þLm!1j@t�¼0: (6.2)

This modified model can be simulated by a trivial exten-
sion of the previous Skyrme-Faddeev model. The equation
of motion and the energy density of (6.2) will converge
with the infinite mass case (6.1) in the static limit. This
model (6.2) also allows for time evolution by the second-
order dynamics of the purely kinetic sigma term. Again we
use the rational map ansatz (3.5) to give nontrivial knotted
initial conditions. For this infinite mass compacton model,
(6.1), we find the topological charge-specific minimum-
energy candidates in Table III. The numerical scheme is
fundamentally the same as the one used in the finite mass
case. But now, due to this model having a different scale,
we found �x ¼ 0:1 to be a suitable lattice spacing. The
results and initial conditions of this investigation are shown
in Table III. Also, for topological charge 1 � Q � 5, the
Hopfion location curves are shown in Fig. 6. We found that
the minimum-energy solutions for 1 � Q � 5 are similar
to the m ¼ 5 and m ¼ 0 models. The compact nature of
this model can be seen in Fig. 8; which shows �3 along a
radius that is in the same plane as the planar Q ¼ 1
Hopfion. This shows how the compact Hopfion field attains
the vacuum value in finite distance. This shows that in the
m ¼ 1 model two well-separated static Hopfions do not
attract or repel each other. This is due to there being no
overlap of the Hopfion tails. Therefore, the string self-
interaction of this m ¼ 1 model is much less than in the
finite mass model. Also the shape of �3, in Fig. 8, is more
symmetric about its minimum than the plots of �3 in the
finite mass model, Fig. 2. This shows that in the m ¼ 1

limit the string cross section is much more symmetric.
Again, in this infinite mass case, we have found new local
minimum-energy solutions for Q ¼ 4, both of which have
location curves described as a very twisted A4;1. A point

TABLE III. Infinite mass Hopfion initial and final configura-
tions, with their respective energies.

E E=Q3=4

Q ¼ 1
A1;1 ! A1;1 0.86 0.86

Q ¼ 2
A2;1 ! A2;1 1.37 0.82

Q ¼ 3
K2;1 ! ~A3;1 1.90 0.83

A3;1 ! A3;1 2.02 0.90

Q ¼ 4
A2;2 ! A2;2 2.50 0.88

A4;1 ! A4;1 2.56 0.91

K2;1 ! ~A4;1 3.19 1.13

L1;1
1;1 ! L1;1

1;1 3.38 1.20 (not shown)

K4;1 ! A4;1 4.22 1.50

Q ¼ 5
L1;1
2;1 ! L1;1

2;1 3.00 0.90

A5;1 ! A5;1, 3.23 0.97

K3;2 ! K3;2 3.88 1.16

Q ¼ 7
k3;2 ! K3;2 3.97 0.92

FIG. 6 (color online). Position curves for m ¼ 1 Hopfions of
charge 1 � Q � 5, showing their charge and linking form.
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FIG. 7 (color online). The ratio of the energy to the topological
charge one Hopfion, as a function of topological chargeQ for the
three models.
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worth noting is that for these solutions the boundary of the
numerical lattice is very far from the Hopfion.

Table III shows that in this m ¼ 1 model the initial and
final minimized location curves rarely differ. A good ex-
ample of this is the Q ¼ 5 K3;2 trefoil knot which under

minimization remains as a K3;2 trefoil knot, but in the

m ¼ 5 and m ¼ 0 models minimizes to a L1;1
2;1. The

Q ¼ 5, L1;1
2;1 is also a lower-energy solution for this

m ¼ 1 model. This reluctance to deform from one loca-
tion curve to another is due to the reduced self-interaction
of this compact Hopfion model.

We have also found a topological charge seven trefoil
knot in the m ¼ 1 model, which is shown in Fig. 9. For

the range of topological charges we have investigated, in
this m ¼ 1 model, we have found that the charge-specific
lowest-energy solutions are similar to the m ¼ 0 and
m ¼ 5 models. But as in the m ¼ 5 model we have dis-
covered more local minima or saddle point solutions.
Again, as shown in Fig. 7, the energy per-unit charge scales

with a similar E�Q3=4 grows as the m ¼ 0 [14] and
m ¼ 5 models.

VII. CONCLUDING REMARKS

We have explored the Skyrme-Faddeev model with a
potential term included. We found that including a poten-
tial in the model makes the Hopf solitons exponentially
decay to their vacuum value. Increasing the mass
makes the Hopf solitons string cross section increasingly
exponentially localized. We found for m ¼ 5 the
minimum-energy solutions are described by similar link-
ing curves as the m ¼ 0 Skyrme-Faddeev model [14].
Using a spatial rescaling, we were able to formulate an

infinite mass model. This infinite mass model is known to
yield compact Hopfions [17]. For this infinite mass com-
pact model we have presented a number of topologically
charged solutions. We showed that the minimum-energy
compact solutions have similar location curves as in the
usual m ¼ 0 Skyrme-Faddeev model and the m ¼ 5 mas-
sive model. In both the m ¼ 5 and m ¼ 1 models we
found new local minimum, or stationary-point, energetic
solutions. The increasing localization of the strings in the
two massive models reduces the string self-interaction.
Therefore, it is not surprising that these models possess
solutions stabilized by symmetry.
In Fig. 7 we showed that the m ¼ 5 and the m ¼ 1

models charge-specific energies seem to grow with a simi-

lar E�Q3=4 trend as the m ¼ 0 case. Therefore, approx-
imating Hopfions as Kirchhoff rods [18] could also be
successful in the massive model.
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