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We introduce two ansatzs for the 3-form potential of Euclidean 11d supergravity on skew-whiffed

AdS4 � S7 background which results in two scalar modes with m2 ¼ �2 on AdS4. Being conformally

coupled with a quartic interaction, it is possible to find the exact solutions of the scalar equation on this

background. These modes turn out to be invariant under the SUð4Þ subgroup of the SOð8Þ isometry group,

whereas there are no corresponding SUð4Þ singlet Bogomol’nyi-Prasad-Sommerfeld operators of dimen-

sions one or two on the boundary theory constructed by Aharony, Bergman, Jafferis, and Maldacena.

Noticing the interchange of 8s and 8c representations under skew-whiffing in the bulk, we propose the

theory of antimembranes should similarly be obtained from Aharony, Bergman, Jafferis, and Maldacena’s

theory by swapping these representations. In particular, this enables us to identify the dual boundary

operators of the two scalar modes. We deform the boundary theory by the dual operators and examine the

fermionic field equations, and compare the solutions of the deformed theory with those

of the bulk.
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I. INTRODUCTION

Aharony, Bergman, Jafferis, and Maldacena (ABJM)
have recently succeeded in constructing a Chern-Simons-
matter theory, which describes the low energy dynamics of
N M2-branes at the tip of the orbifold C4=Zk [1].
This theory is conjectured to be dual to M-theory on
AdS4 � S7=Zk, where k is the level of Chern-Simons on
the gauge theory side. For large k (k5 � N), the dual
theory is better described in terms of type IIA string theory
on AdS4 � CP3. In this note, though, we are interested in
the k ¼ 1 case where the boundary theory is conjectured to
have an enhanced N ¼ 8 supersymmetry together with a
global SOð8Þ symmetry.

For the supergravity solution of AdS4 � S7, one can flip
the sign of F4 flux (skew-whiffed) and still get a solution
which is maximally supersymmetric. On this background,
we obtain two supergravity modes with a mass squared
m2 ¼ �2 which could couple to operators of dimensions 1
or 2. Further, with our particular ansatzs these modes turn
out to be singlet under SUð4Þ subgroup of SOð8Þ isometry
group of S7, and hence, according to the AdS/CFT duality,
the dual Bogomol’nyi-Prasad-Sommerfeld (BPS) opera-
tors must also be invariant under SUð4Þ. However, in
ABJM boundary theory there are no such BPS operators
of dimension 1 or 2 which are SUð4Þ invariant. A look at
the supergravity side, though, provides a hint: in the skew-
whiffed solution of the bulk, which corresponds to anti-
membranes, one needs to interchange 8s and 8c represen-
tations to get the right amount of supersymmetries upon
compactification on the S1 fiber [2]. Therefore, we propose
the boundary theory of antimembranes should similarly be

related to that of ABJM by swapping these representations.
This change of representations, however, is only possible
when k ¼ 1 or k ¼ 2, where the ABJM Lagrangian has an
enhancedN ¼ 8 supersymmetry with SOð8Þ global sym-
metry. The triality of SOð8Þ then allows one to permute the
three 8-dimensional representations, i.e., 8v, 8c, and 8s,
into one another and get three inequivalent Lagrangians.
Note that from the standpoint of SOð8Þ, these three
Lagrangians are completely equivalent, but they look dif-
ferent under SUð4Þ decomposition.
In ABJM, scalars, fermions and supersymmetry charges

are decomposed under SUð4Þ as
8 v ¼ 4 � �4; 8c ¼ 4 � �4; 8s ¼ 6 � 1 � 1; (1)

respectively. Hence, for antimembranes to conform with
the supergravity side, fermions should decompose as

8 s ¼ 6 � 1 � 1; (2)

then, triality of SOð8Þ implies that for supercharges we
should have

8 c ¼ 4 � �4 (3)

while scalar decomposition is not changed.
Now, we can see how SUð4Þ singlet BPS operators of

dimension 2 can arise. First, note that rank two symmetric
traceless operators of dimension one sit in 35 representa-
tion of SOð8Þ, which under SUð4Þ decomposes as

35 v ¼ 15 � 10 � 10: (4)

Let YA denote four scalar fields in 4 of SUð4Þ; then, the
above decomposition corresponds to having the following
BPS operators of dimension 1:
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OA
B ¼ tr

�
YAYy

B � �A
B

4
ðYCYy

CÞ
�
;

OAB ¼ trðYATyYBÞ;
�OAB ¼ trðYy

ATY
y
BÞ;

where T’s indicate monopole operators (for k ¼ 1 and
k ¼ 2), which are needed to make gauge invariant opera-
tors out of two YA’s [3]. Since for antimembranes, super-
charges QA are in �4 of SUð4Þ, we can get singlet scalar
operators of dimension 2 by acting with supercharges twice
on the above operators:

O1 ¼ fQA; ½ �QB;OA
B�g;

O2 ¼ fQA; ½QB;O
AB�g;

�O2 ¼ f �QA; ½ �QB; �OAB�g:
(5)

These are, in fact, the three singlets in the decomposition
of 35s:

35 s ¼ 20 � 6 � 6 � 1 � 1 � 1: (6)

These three operators have the right symmetry proper-
ties to be identified with the three linearized supergravity
scalar modes that we find in the bulk (note that SUð4Þ
singlet BPS operators of dimension one are still missing,
and therefore, in the following, we are only considering
operators of dimension 2). Moreover, neglecting the back-
reaction, we are able to solve the field equation of F4

exactly. Examining the behavior of the solution near the
boundary, we find that it satisfies a mixed boundary con-
dition. A scalar of m2 ¼ �2 could couple to operators of
dimensions 1 or 2. For a boundary operator with dimension
2, we have to choose the leading term as a source while the
subleading term would correspond to the expectation value
of that operator. The opposite is true for an operator of
dimension one [4]. Following [5], we perturb the boundary
theory by a dual operator corresponding to O1, which has
no Uð1Þb charge. We observe that the new Lagrangian
admits exact solutions with no monopole charge, and
hence they are identified with bulk solutions which are
invariant under SUð4Þ �Uð1Þ.

Another possibility is to decompose eight scalars as
6 � 1 � 1 with fermions and supercharges in 4 � �4. This
time, we obtain three scalar BPS operators of dimension
one, which are invariant under SUð4Þ. In contrast to op-
erators in (4), these operators will be primary. However,
note that in the 11d supergravity the scalars in 8v must
decompose as 4 � �4 to get the 10-dimensional scalars on
right representations upon compactification [2]. Further,
the scalar modes that we find in the bulk are all coming
from the 3-form potential and hence are pseudoscalars,
whereas the above three scalar operators are real scalars.
So, we conclude that this pattern of decomposition cannot
be realized on antimembranes.

In Sec. II, we begin with 11 dimensional skew-whiffed
background ofAdS4 � S7. On this background, we provide
two different ansatzs for the 3-form potential, reducing the
4-form field equation to a 4d scalar equation on AdS4. As
the scalar is conformally coupled with a quartic self-
interaction, we are able to find its exact solutions. In
Sec. III, we examine the behavior of this solution near
the boundary. Taking the leading term as a source, we see
that the dual operator has to have a dimension 2. We
discuss how triality of SOð8Þ allows us to rearrange the
field representations in ABJM theory in order to get the
antimembranes theory. We deform the Lagrangian with a
multitrace operator and examine the fermionic field equa-
tions. We then obtain exact solutions when a fermionic
field and the Uð1Þ gauge fields are turned on. Conclusions
and outlook are brought in Sec. IV.

II. 11d SUPERGRAVITY IN
SKEW-WHIFFED BACKGROUND

Let us start with the 11 dimensional supergravity action

S ¼ �1

2�2
11

Z
d11x

ffiffiffi
g

p
Rþ 1

4�2
11

Z
ðF4 ^ �F4Þ

þ i

12�2
11

Z
A3 ^ F4 ^ F4; (7)

where we have included a factor of i in the Chern-Simons
term as we work in Euclidean space. For the equation of
motion of A3, we have

d � F4 ¼ � i

2
F4 ^ F4: (8)

Let us take the background to be AdS4 � S7=Zk, with
the metric

ds2 ¼ R2

4
ds2AdS4 þ R2ds2

S7=Zk
; (9)

where

ds2
S7=Zk

¼ 1

k2
ðd’þ k!Þ2 þ ds2

CP3 ; (10)

and ! is related to the Kähler form J of CP3 through

J ¼ d!: (11)

This metric describes S7 as a Uð1Þ bundle over CP3. ’
parametrizes theUð1Þ circle with radius R=k, so for large k
the radius of the circle is small and the effective description
will be in terms of 10d type IIA supergravity. For the
background 4-form flux we have

F4 ¼ 3i

8
R3�4; (12)

with an i factor in Euclidean space. The sign of 4-form
background flux is important in getting conformally
coupled scalars in 4 dimensions. In fact, the sign in (12)
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corresponds to skew-whiffed solutions in Minkowskian
signature. To solve the field equations in this background,
in the following, we consider two different ansatzs which
reduce the 4-form field equation to a single scalar equation
in four dimensions.1 Being conformally invariant, we are
able to solve the effective 4d equation exactly by neglect-
ing the backreaction.

Amusingly, the solution will, in fact, have a zero 4d
modified energy momentum tensor, and so it will not
backreact on AdS4 background [7,8]. However, it cannot
be uplifted to an exact solution in 11 dimensions as the
energy momentum tensor does have nonzero components
along S7. On the other hand, as long as one is only
interested in the behavior of the solution near the boundary
and the correlation functions of the dual operators, one can
ignore the backreaction on the metric [9].

A. The first ansatz

To write our first ansatz, we note that there are gauge
(with respect to the Uð1Þ gauge factor of CP3) covariantly
constant spinors �, which could be used to construct
complex charged 3-forms on CP3 [10]:

Kijk ¼ ���ijk� (13)

such that

dK ¼ 4i! ^ K: (14)

Now, if we define

L ¼ e4i’=kK (15)

we have

dL ¼ 4i

�
d’

k
þ!

�
^ L ¼ 4ie7 ^ L: (16)

Further, the Hodge dual of L is

�7 L ¼ ie7 ^ L (17)

so that, together with Eq. (16), this implies that

dL ¼ 4 �7 L: (18)

The above properties of L allow for the appearance of
identical terms on both sides of the equation of motion
(8) so that we can reduce it to a 4-dimensional equation.

So to proceed, we take the following ansatz for F4:

F4 ¼ N�4 þ R9dðf�Þ ¼ N�4 þ R9df ^�þ R9fd�;

(19)

with

� ¼ Lþ �L; (20)

N and f are scalar functions on AdS4, so that dF4 ¼ 0. We
have included an R9 factor to account for the dimension 5
of L. For the Hodge dual, we obtain

�F4¼R3

�
8

3
NJ3^e7�R9

4
�4df^�7�þR9

16
f�4^�7d�

�
;

(21)

where �12345���11 ¼ �1234�5���11, and, hence, the minus sign
in the second term. Note that

�7 � ¼ ie7 ^ ðL� �LÞ; �7d� ¼ �ðdLþ d �LÞ ¼ 4�;

therefore, the equation of motion (8) reads

8

3
dN^J3^e7� iR9

4
d�4df^e7^ðL� �LÞ

þ iR9f�4^e7^ðL� �LÞ
¼�iR6Nf�4^d�� iR15fdf^�^d�

¼4R6Nf�4^e7^ðL� �LÞþ8R15fdf^e7^L^ �L; (22)

where use has been made of

d �7 � ¼ 0; d� ^ d� ¼ 0:

Let us normalize L so that

L ^ �L ¼ � i�

48R10
J3 (23)

for some real dimensionless parameter �. Recalling that L
is a (3,0) form and J� �� ¼ ig� ��, we can see that � must be

positive

� > 0: (24)

Using (23), the equation of motion splits to:

�4 d �4 df� 4f ¼ 16i
N

R3
f; dN ¼ �i

�

32
R5df2:

(25)

The last equation implies

N ¼ �i
�

32
R5f2 þ 3i

8
R3; (26)

here, we have chosen the constant of integration equal to
the background field. Plugging this back into the first
equation of (25), we have

� d � dfþ 2f� �R2

2
f3 ¼ 0; (27)

with � indicating the Hodge dual on AdS4 with a unit
radius. Going back to an AdS4 metric with radius R=2,
we have

1ffiffiffi
g

p @�ð ffiffiffi
g

p
@�fÞ þ 8

R2
f� 2�f3 ¼ 0; (28)

which we solve at the end of this section.1Similar ansatzs have also been independently proposed in [6].
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B. The second ansatz

For the second ansatz, let

F4¼N�4þR4dðf�Þ¼N�4þR4df^�þR4fd�; (29)

where now

� ¼ e7 ^ J; (30)

with

d� ¼ 2 �7 �: (31)

Repeating steps (21) and (26), we get

� d � dfþ 2f� 3R2

2
f3 ¼ 0; (32)

or

1ffiffiffi
g

p @�ð ffiffiffi
g

p
@�fÞ þ 8

R2
f� 6f3 ¼ 0; (33)

for an AdS4 metric with radius R=2. Note that in contrast
with our previous ansatz, where we have an arbitrary
‘‘coupling constant’’ �, here its value gets fixed to
� ¼ 3. Note that, however, instead of (26), we have

N ¼ �3i

16
R5f2 þ 3i

8
R3: (34)

Although, the mass squared m2R2 ¼ �2 is negative but it
is above the lower bound,�9=4, for the stability. Further, it
falls in the range

� 9=4<m2R2 <�5=4; (35)

permitting a quantization with Dirichlet or Neumann
boundary conditions, and hence coupling to operators of
dimension 2 or 1, respectively [4,11].

Note that if we had chosen

N0 ¼ � 3i

8
R3; (36)

in (34) or (26) for the background field (corresponding to
the Euclidean version of ABJM background), we would
have obtained scalars of m2R2 ¼ 10, which are not con-
formally coupled and hence, the 4d equations could not be
solved exactly. We will comment on the dual operators of
these modes in the next section.

To solve Eq. (27) or (32), we note that the mass term in
this equation is such that it permits a conformal trans-
formation to the flat space. To see this, let us write the
metric of AdS4 in Poincare coordinate

ds2 ¼ R2

4z2
ðdz2 þ �ijdx

idxjÞ; i; j ¼ 1; 2; 3 (37)

so that Eq. (28) reads

4z4

R2
@z

�
@zf

z2

�
þ 4z2

R2
@i@

ifþ 8

R2
f� 2�f3 ¼ 0: (38)

Now, let us make the following scaling transformation on f

f ¼ 2z

R
g: (39)

In terms of g, Eq. (38) simply reduces to the equation of a
massless scalar (with the same cubic term) on flat space:

@z@zgþ �ij@
i@jg� 2�g3 ¼ 0; (40)

which is easily solved for

g ¼ 2ffiffiffiffi
�

p
�

b

�b2 þ ðzþ aÞ2 þ ð ~x� ~x0Þ2
�
; (41)

with b a free parameter of the solution. We need to choose
a2 > b2 with a > 0 to have a smooth solution. So, for f we
have

f ¼ 4

R
ffiffiffiffi
�

p
�

bz

�b2 þ ðzþ aÞ2 þ ð ~x� ~x0Þ2
�
: (42)

Similar equations to (27) and (32) have appeared in
[7,8,12]. As we noticed above, these 4-dimensional equa-
tions are conformally coupled in the sense that the action
from which the equations are derived is conformally
invariant.
It is also possible to make a comparison between our

ansatzs and the more general ansatzs that have been inde-
pendently proposed in [6]. First, note that as we have
ignored the backreaction on the metric, we should set
U ¼ V ¼ 0 in Eq. (2.4) of that paper. Further, if we set
H3 ¼ H2 ¼ A1 ¼ h ¼ 0 in Eq. (2.5) of that paper and
define f � 	þ �	, we get our first ansatz (19). On the
other hand, our second ansatz in (29) is obtained by setting
H3 ¼ H2 ¼ A1 ¼ 	 ¼ 0 with f � h in Eq. (2.5). For the
skew-whiffed solution we see that Eq. (B.14) (with U ¼
V ¼ 	 ¼ 0) of that paper reduces to

f ¼ 6ð�1þ h2Þ; (43)

plugging this back into Eq. (B.11) (with H3 ¼ H2 ¼
A1 ¼ 0), we get

d � dhþ 4hðfþ 4Þvol4 ¼ 0; (44)

or

� d � dhþ 8h� 24h3 ¼ 0; (45)

which upon a scaling gives the conformally coupled scalar
equation in (33).

III. DUAL OPERATORS

We would now like to look at the behavior of the
solution near the boundary. As we will be discussing the
second ansatz, let us set � ¼ 3, andR ¼ 1 for convenience.
When z ! 0 for solution (42), we have

fðz; xÞ ! �ðxÞzþ �ðxÞz2; (46)

where
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�ðxÞ ¼ 4ffiffiffi
3

p
�

b

�b2 þ a2 þ ð ~x� ~x0Þ2
�

(47)

and

�ðxÞ ¼ �16abffiffiffi
3

p ð�b2 þ a2 þ ð ~x� ~x0Þ2Þ2
(48)

are taken to be the source and the expectation value of the
dual boundary operator corresponding to the solution (42)
in the bulk. As mentioned in the Introduction, since we are
taking the leading term in (46) as a source, the dual
operator will have dimension 2. On the other hand, for a
bulk mode with m2 ¼ �2, it is also possible to take the
second term as a source, and thus the dual operator would
have dimension one. In the following, we consider the first
possibility, as there is no SUð4Þ invariant BPS operator of
dimension one in antimembranes boundary theory.

We will assume b < 0, and note that � and � are related
through

�ðxÞ ¼ �
�ðxÞ1=2; (49)

where we have defined


 ¼
ffiffiffiffiffiffiffiffiffi
�b

a
ffiffiffi
3

p
s

; (50)

therefore, the solution satisfies a mixed boundary
condition. Following the prescription in [5], the
boundary condition (49) corresponds to deforming the
boundary theory by

W ¼ � 2


3

Z
d3xO1ðxÞ3=2: (51)

This is so because hO1ðxÞi ¼ �ðxÞ; hence, (49) can for-
mally be written as

�ðxÞ ¼ �W

��
: (52)

From (51) we see that 
 is the deformation parameter of
the boundary theory, so that different values of 
 define
different boundary deformations. Hence, for a fix value
of 
, we are left with four moduli parameters for solution
(42). As we will see next, this matches the moduli parame-
ters of the solution in the field theory side.

What are the corresponding dual boundary operators to
the solution (42)? To answer this question, let us consider
S7 as a Uð1Þ bundle over CP3. Now we note that in the first
ansatz, since spinors � are covariantly constant, they are
invariant under SUð4Þ isometry group of CP3 but are
charged under Uð1Þ. This property is inherited by L [10],
and thus from our ansatz for A3 we conclude that the dual
operator should be invariant under SUð4Þ global symmetry
of the field theory. However, as the Uð1Þ isometry of the
bulk is identified with the baryonic number symmetry
Uð1Þb, the dual operator is charged under Uð1Þb and so it
comes with a monopole operator. For the second ansatz, we

note that J, the Kähler form, is invariant under SUð4Þ. It
can also be shown that e7 is invariant under this group.
Further, J and e7 carry no charge under Uð1Þ so the whole
ansatz is invariant under SUð4Þ �Uð1Þ. Therefore, the
dual operator on the boundary must be a singlet under
SUð4Þ �Uð1Þb. As already noted, the scaling behavior of
the bulk solution near the boundary indicates that these
operators must have dimension one or two.
Let us see if we can identify such operators in the ABJM

boundary theory. In this model, a Chern-Simons-matter
theory describes the boundary dynamics, where scalars

XI ¼ ðYA; Yy
AÞ transform as

8 v ¼ 4 � �4 (53)

under SUð4Þ R-symmetry. However, the only singlet scalar
operator of dimension 1 that one can construct is the

Konishi operator, i.e. trðYAYy
A Þ, which as we know is not

a BPS operator. Moreover, the Konishi operator is invariant
under the whole SOð8Þ symmetry group, whereas our
ansatz in the bulk is only invariant under SUð4Þ subgroup.
All these indicate that the dual operator cannot be the
Konishi operator. For dual operators of dimension two,
we note that the fermionic fields are in 8c ¼ 4 � �4, hence

the second descendant of trðXfIXJgÞ (of dimension 2)
contains 35c ¼ 15 � 10 � 10 with no SUð4Þ singlet.
Note that had we chosen the background field as in

ABJM, i.e., (36), with the above ansatz, we obtain scalars
of m2 ¼ 10 (instead of getting m2 ¼ �2 for skew-
whiffed), which are singlets under SUð4Þ. These modes,
however, can be recognized as the sixth descendant of

trðXfIXJXKXLgÞ. They sit in 35s as indicated in Table 1
of [13], and this representation—in the sixth descendant—
contains three SUð4Þ singlets of � ¼ 5, which we identify
with the three scalars with m2 ¼ 10 in the ABJM back-
ground (36). However, if we assume the low energy
dynamics of antimembranes is also given by the ABJM
(Chern-Simons-matter) theory, we run into problems in
identifying the dual operators.
Recall that our solution had a flipped sign of F4, and

hence we should really discuss the theory of antimem-
branes on the boundary. It has been observed that the
spectrum of the Kaluza-Klein modes of the bulk super-
gravity of the two theories are related by interchanging the
two representations 8s and 8c of SOð8Þ [2,14]. In ABJM
theory, supercharges and fermionic matter fields sit in 8s
and 8c, respectively. Therefore, for antimembranes bound-
ary theory we propose fermions to sit in 8s, which under
SUð4Þ decompose as

8 s ¼ 6 � 1 � 1: (54)

Triality of SOð8Þ then implies that the supercharges and
scalars should decompose as

8 ¼ 4 � �4: (55)
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What is the field theory describing the low energy
dynamics of antimembranes? First, note that the skew-
whiffed bulk solution preserves supersymmetry only
when k ¼ 1, i.e., when we have an AdS4 � S7 [14] for
which the boundary theory should have an N ¼ 8 super-
symmetry. On the other hand, ABJM theory has been
conjectured to have an enhanced N ¼ 8 supersymmetry
for k ¼ 1 and k ¼ 2 [1]. This happens because of the
existence of appropriate monopole operators, which allow
to impose reality conditions on dynamical fields. The
enhanced N ¼ 8 supersymmetry of ABJM theory for
k ¼ 1 and k ¼ 2 has further been investigated in
[15–17]. In particular, it has been shown that in these cases
the action has a manifest SOð8Þ symmetry. One can thus
arrange the scalars, fermions, and the supercharges in three
SOð8Þ representations of 8v, 8c, and 8s, respectively.

The antimembranes action (for k ¼ 1) can therefore be
obtained from ABJM action by a parity transformation and
by swapping 8s and 8c representations of SOð8Þ by triality.
The explicit form of the action can be worked out as in
[15], though we do not need it as we will turn on only one
SUð4Þ singlet spinor and the gauge fields. Setting YA’s to
zero, all the interaction terms (including the fermionic
ones) disappear so that we are left with the kinetic term
of the spinor field and the Chern-Simons term. On the other
hand, since we have chosen � in (46) to act as a source for
the operator O1 (of dimension 2), turning on the scalar
mode in the bulk corresponds to addingW term (51) to the
boundary action:

S ! SþW: (56)

Let us call c the singlet spinor field in (54) and see if the
new action admits nontrivial classical solutions when we
turn on only the c field. By looking at the field equations,
however, it is seen that we need also turn on the gauge
fields. In this case, the SUð4Þ singlet operator is

O 1 ¼ trð �c c Þ; (57)

and hence the deformed action, with only c and the gauge
fields turned on, becomes

S ¼
Z

d3xtr

�
i �c 6Dc � ik

4�
���

�
A�@�A þ 2i

3
A�A�A

� Â�@�Â � 2i

3
Â�Â�Â

��
� 2


3

Z
d3xðtrð �c c ÞÞ3=2;

(58)

where we have included an extra i factor in front of the
Chern-Simons term because of Euclidean signature. The
field equations then read

i 6Dc � 
ðtrð �c c ÞÞ1=2c ¼ 0;

ik

4�
���F� þ �c��c ¼ 0;

ik

4�
���F̂� þ �c��c ¼ 0: (59)

To find a solution, we simply set

c a
â ¼

�a
â

N
c ; (60)

which is then equivalent to looking at the two Uð1Þ sectors
of the gauge group. Now we can set the SUðNÞ gauge fields
to zero. For the Uð1Þ part, let A	

� ¼ A� 	 Â�; then

we have

ik

4�
���Fþ

� ¼ �2 �c��c ; F�
� ¼ 0: (61)

So, we can further set A�
� ¼ 0. However, note that the

matter field only couples to A�
� , so setting A� ¼ 0, we

are left with a self-interacting spinor field in the first
equation of (59). As the solutions we found in the bulk
are nonsingular and spherically symmetric near the bound-
ary, to solve the c equation we make the following ansatz,
which is similarly nonsingular and rotationally symmetric:

c ¼ ðcþ iðx� x0Þ���Þ
ðc2 þ ð ~x� ~x0Þ2Þ�

�; (62)

with c a free constant and � an arbitrary constant spinor.
This ansatz has been proposed earlier in solving the
Seiberg-Witten equations on R3 [18], and, interestingly,
the solution we obtain will be identical to theirs up to a
constant. Plugging this ansatz into the field equation of c ,
the normalization constant and � get fixed:

c ¼ 3c
ffiffiffiffi
N

p



ðcþ iðx� x0Þ���Þ
ðc2 þ ð ~x� ~x0Þ2Þ3=2

�
1
0

�
: (63)

Further, let us compute the action of the above solution
(with A� ¼ 0):

S ¼
Z

d3x

�
trði �c 6@c Þ � 2


3
ðtrð �c c ÞÞ3=2

�
: (64)

Using the field equations and plugging (63) into the action,
we obtain

S¼


3

Z
d3xðtrð �c c ÞÞ3=2¼9c3


2

Z d3x

ðc2þð ~x� ~x0Þ2Þ3
¼9�2

4
2
:

(65)

Having a finite action, solution (63) thus represents an
instanton of the deformed boundary theory. For the gauge
field Aþ

� , we plug solution (63) into Eq. (61) and take the

integral I
s
Fþ ¼

I
s
���Fþ

�ds� ¼ 0; (66)
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with s a round sphere at infinity. Therefore, this solution
has no net magnetic charge, and we can consistently iden-
tify it with the solution in the bulk which is invariant under
Uð1Þ isometry group (SUð4Þ �Uð1Þ 
 SOð8Þ).

One can also examine the correlation functions of c ’s in
instanton background (63). In particular, we can obtain the
dominant contribution to the expectation value of O ¼
trð �c c Þ by evaluating it in this background

tr ð �c c Þ ¼ 9c2


2ðc2 þ ð ~x� ~x0Þ2Þ2
: (67)

Moreover, if we set c2 ¼ a2 � b2, this will be proportional
to (48), the expectation value we obtained in the bulk by
analyzing the behavior of solution (42) near the boundary.
So, as expected, the field theory analysis is consistent with
the bulk computations. Also, note that the moduli parame-
ters of the bulk and boundary solutions match.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we provided two ansatzs which reduced the
11d supergravity field equations on the background of
skew-whiffed AdS4 � S7 to a 4d conformally coupled sca-
lar equation. We found the exact solutions and examined
their behavior near the boundary. The scalar modes turned
out to be singlets under SUð4Þ subgroup of SOð8Þ with
m2 ¼ �2. Our main task was to find the dual operators to
these modes. We argued that there are no BPS operators in
the boundary ABJM theory whose quantum numbers could
matchwith those of bulk scalars. Therefore, we inferred that
the boundary theory of antimembranes cannot be identical
with the theory of membranes. A crucial hint came from the
skew-whiffed bulk theory, where one has to swap the s and c

representations for consistency. Hence, we proposed
that the theory of antimembranes should analogously be
obtained from ABJM by interchanging the s and c repre-
sentations. Doing so, we were able to identify the BPS
operators corresponding to the scalar modes that we found
in the bulk. On the field theory side, we deformed the action
by the dual operator and found an exact classical solution
which we identified with the bulk solution invariant under
Uð1Þ � SUð4Þ. Apart from this, there are two more opera-
tors (being complex conjugate of each other) that are in-
variant under SUð4Þ but carry Uð1Þ charge, and so contain
monopole operators. These correspond to bulk solutions
that we found in our first ansatz.
Our analysis of antimembranes theory provides a real-

ization of the boundary toy model discussed in [7,8].
Therefore, it is interesting to study the instability of the
bulk vacuum through the instantons discussed above.
Similarly, the instabilities of the supergravity solutions
that have recently been studied in [19] should be under-
standable in this framework.
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