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We use the boundary effective theory approach to thermal field theory in order to calculate the pressure

of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared

physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free

Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure,

which is in good agreement with recent calculations found in the literature, following a very direct and

compact procedure.
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I. INTRODUCTION

In finite-temperature field theory it is known that a naive
implementation of perturbation theory for the calculation
of Feynman diagrams is ill-defined in the presence of
massless bosons. This is due to the appearance of severe
infrared divergences, brought about by the vanishing bo-
sonic Matsubara mode in thermal propagators. These di-
vergences plague the entire series, which becomes
essentially meaningless [1]. As a result, one is forced to
resort to resummation techniques that reorganize the per-
turbative series, and resum certain classes of diagrams, in
order to extract sensible results. There are several ways of
performing resummations and rewriting the degrees of
freedom more efficiently in terms of quasiparticles; we
refer the reader to the reviews [2–4] and to Ref. [5] for a
discussion and a list of specific references. All such
techniques are designed to partially tame the infrared
divergences, creating a nonzero domain of validity for
weak-coupling expansions. Nevertheless, the zero-mode
problem remains, and the region of validity of resummed
perturbative treatments can not be indefinitely enlarged.

In a recent paper [6], we have proposed an alternative
approach to thermal field theories, denoted by boundary
effective theory (BET). The central idea of the method is to
respect the double integral structure of the partition func-
tion in the functional integral formalism,

Z ¼
Z
½D�0ðxÞ��½�;�0; �0�; (1a)

where

�½�;�0; �0� ¼
Z
�ð0;xÞ¼�ð�;xÞ¼�0ðxÞ

½D�ð�; xÞ�e�S½��

(1b)

is the diagonal element of the functional density matrix and
S½�� is the Euclidean action of the theory. This approach,
based on the calculation of the density matrix, was already
used in [7] to construct dimensionally-reduced effective

actions and in [5] to study the thermodynamics of scalar
fields based on a semiclassical approximation. The func-
tional density matrix formulation of quantum statistics was
discussed in [8].
As it will be clear in the sequence of this article, the

double integration approach is essentially different from the
one where a single functional integration over periodic
configurations �ð�; xÞ is performed. In the BET approach,
the protagonist is the quantity �0ðxÞ—the field eigenvalue
in the functional Schrödinger field-representation:

�̂j�0ðxÞi ¼ �0ðxÞj�0ðxÞi. Indeed, any thermal observable
can be constructed by integrating the appropriate functional
of�0ðxÞ over the fields�0ðxÞ weighted by the correspond-
ing diagonal element of the density matrix. The imaginary
time evolution can be viewed as an intermediate step which
calculates the weights for the effective theory of static �0

fields. That effective theory defines a quantum statistical
problem which encodes all information about thermaliza-
tion; one is led to compute correlations of the field �0ðxÞ,
connecting the theory to physical quantities.
The field �0ðxÞ has still another remarkable property: it

is the zero (static) component of the dynamical field
�ð�; xÞ. Indeed, to each dynamical configuration �ð�; xÞ
there corresponds a static configuration �0ðxÞ ¼
�ð0; xÞ ¼ �ð�; xÞ. We say that �0ðxÞ is the (time) bound-
ary value of �ð�; xÞ. The difference �ð�; xÞ ��0ðxÞ van-
ishes at � ¼ 0, �, and so it can be expanded in a sine-
Fourier series with nonzero frequencies !̂n ¼ n�=�, n ¼
1; 2; . . . . From these considerations, we conclude that the
effective theory encoded in �½�;�0; �0� also contains all
the infrared physics, and the double integral structure of Z
naturally separates the potentially divergent modes.
Themain result of Ref. [6] was the analytic calculation of

the one-loop effective action for the boundary field in a
scalar theory. Following the standard recipe, we used the
saddle-point approximation but in two steps: first, we kept
�0ðxÞ fixed and expanded the action around the classical
configuration �c½�0�,that has �0ðxÞ as its boundary value,
and integrated over quadratic fluctuations vanishing at
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� ¼ 0, �; then, we expanded the resulting expression
around the saddle point �0 ¼ 0, and took into account
quadratic fluctuations of the boundary field. We showed
that the one-loop effective action at finite temperature has
the same expression as at zero temperature if written
in terms of the classical field �c and if we trade free
propagators at zero temperature by their finite temperature
counterparts. Besides, we explained how to obtain a renor-
malized effective action in the case of a ��4=4! theory.

Now we address the problem of computing the pressure
of the single-well quartic theory in the (problematic) mass-
less limit and testing the aforementioned advantages of our
framework. The weak-coupling calculation of the pressure
for the massless hot scalar theory is an enterprise of about
20 years so far [9–13], with recent results to order g8 logg
given in Ref. [14]. Moreover, attempts to reorganize the
perturbative series have followed different paths, generally
introducing one or more variational parameters in the pres-
sure, to be maximized in the end. Among these nonpertur-
bative methods we find screened perturbation theory (SPT),
introduced in thermal field theory in Ref. [15], which can
also be implemented in the framework called optimized
perturbation theory (OPT) presented in Ref. [16], the linear
� expansion (LDE) [17], the so-called 2PI or �-derivable
methods [18], and, more recently, a method based on non-
perturbative renormalization group calculations [19]. All
these methods, when applied to the thermodynamics of the
scalar field, are remarkably more stable than the weak-
coupling expansion (see Refs. [20,21] for results using
SPT, Refs. [22] for LDE, and Refs. [23–26] for 2PI).

Because of the crucial role played by classical solutions
�c½�0� in the present approach (they are supposed to
satisfy the Euler-Lagrange equation for arbitrary values
of the coupling constant), the resulting pressure is essen-
tially nonperturbative. Some technical difficulties arise,
though. Decomposing the field as

�ð�; xÞ ¼ �c½�0�ð�; xÞ þ �ð�; xÞ;

where �ð0; xÞ ¼ �ð�; xÞ ¼ 0, introduces ultraviolet (UV)
divergences in the calculation. In order to obtain a finite
result, we use the renormalized effective action as derived in
Ref. [6]. In addition, spurious UV divergences appear if one
naively performs the saddle-point approximation and
ignores higher order terms in the fluctuation �ð�; xÞ and in
the fluctuations of the boundary field. Afinite expression for
the pressure is obtained by taking into account the first term
in the expansion of the self-interaction. The procedure to
avoid UV divergences can, in principle, be extended, allow-
ing for a systematic calculation of higher order corrections.

One should distinguish the boundary field �0ðxÞ from
the conventional Matsubara zero mode. Indeed, the latter
appears as the static component of a particular expansion,
i.e., the Fourier expansion of the dynamical field in fre-
quencies !n ¼ 2n�=�. The standard dimensionally-
reduced effective theory for that field, a procedure known

in the literature as Dimensional Reduction (DR), is a high-
temperature theory in character (see Refs. [12,27–31]). On
the other hand,�0ðxÞ is the physical field of the theory and,
as such, its effective theory encompasses all the physical
information on the system. Therefore, the procedure that
we built (BET) yields an alternative dimensionally-
reduced effective theory which is essentially different
from DR.
We see that a boundary field rises naturally in the context

of thermal theories. There, the word ‘‘boundary’’ precisely
distinguishes and connects the field�0ðxÞ to the associated
dynamical field �ð�; xÞ, which is the main quantity in
conventional finite-temperature approaches. It should be
clear that the use of that word has no relation to other uses,
often in a topological sense, such as in holographic gauge-
gravity duality, etc.
The structure of the paper is as follows: in Sec. II, we

discuss the saddle-point approximation for the functional
integration with fixed boundary configuration �0ðxÞ and
how to implement corrections to that approximation; be-
sides, we write the partition function in terms of the
effective action for the boundary field; in Sec. III, we
perform the second functional integration using, again,
the saddle-point method, and a renormalized expression
for the pressure is obtained; finally, in Sec. IV, we present
our conclusions.

II. RENORMALIZED PARTITION FUNCTION
IN TERMS OF THE BOUNDARY FIELD

Let us consider the Euclidean action,

S½�� ¼
Z �

0
ðd4xÞE

�
1

2
@	�@	�þm2

0

2
�2 þUð�Þ

�
; (2)

where ðd4xÞE is a shorthand for d�d3x. In this paper,
Uð�Þ ¼ ��4=4! and m0 ¼ 0. For single-well potentials
like Uð�Þ, the unique saddle point of the action S is the
trivial vacuum � ¼ 0. However, in the density matrix
approach, the functional domain of integration is parti-
tioned in classes where all field configurations have the
same time boundary. The restriction of S to one of those
classes (for instance, the one with boundary value �0ðxÞ)
has a nontrivial saddle point �c½�0�, solution of

hE�cðxÞ þm2
0�cðxÞ þU0ð�cðxÞÞ ¼ 0;(3a)

�cð0; xÞ ¼ �cð�; xÞ ¼ �0ðxÞ;(3b)
where hE ¼ �ð@2� þ r2Þ is the Euclidean d’Alembertian
operator and x denotes ð�; xÞ. The first functional integra-
tion, being performed over configurations inside a certain
class, will be dominated by fluctuations in the vicinity of
the saddle point of that class. In particular, the correspon-
dence �0 � �c½�0� is 1:1 for single-well potentials.
Therefore, one obtains an optimized spanning of the do-
main of integration in the calculation of Z by collecting the
contributions from quadratic fluctuations around a line of
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saddle point configurations, as suggested by Fig. 1. One is
naturally led to a two-fold saddle-point approximation. It is
worth remarking that �cð�; xÞ is, in general, a nonperiodic
function of � in the sense that @��cð0; xÞ � @��cð�; xÞ.
One can verify it even in the simple case of a free theory.
This is another important difference between BET and
other methods.

The explicit dependence of �c on �0 is not known,
except in very special cases. In [6], we obtained the follow-
ing recursive relation for the classical solution,

�c½�0�ð�;xÞ¼
Z
d3x0�0ðx0Þ½@�0G0ð�;x;�0;x0Þ��

0¼�
�0¼0

�
Z �

0
d�0

Z
d3x0G0ð�;x;�0;x0ÞU0ð�cð�0;x0ÞÞ;

(4)

where G0 is a Green function of the free operator,

ðhE þm2
0ÞG0ðx; x0Þ ¼ �ð4Þðx� x0Þ (5a)

G0ð�; x; 0; x0Þ ¼ G0ð�; x;�; x0Þ ¼ 0: (5b)

For a fixed boundary configuration, the fluctuations �
around �c vanish at � ¼ 0 and �,

�ð�; xÞ ¼ �cð�; xÞ þ �ð�; xÞ; �ð0; xÞ ¼ �ð�; xÞ ¼ 0:

(6)

In terms of �, the renormalized partition function reads

ZR ¼
Z
½D�0ðxÞ�

Z
�ð0;xÞ¼�ð�;xÞ¼0

½D�ð�; xÞ�e�S½�cþ��þC:T;

(7)

where C.T. are counterterms to be chosen. One can think of
each �c as a background field around which the dynamics
of the fields � takes place.

In the vicinity of �c, the action is approximately
quadratic,

S½�c þ �� ¼ S½�c� þ 1

2

Z
ðd4xÞE�ðxÞ½hE þm2

0

þU00ð�cðxÞÞ��ðxÞ þOð�3Þ: (8)

It is convenient to introduce the Green function:

½hE þm2
0 þU00ð�cðx0ÞÞ�G½�c�ðx; x0Þ ¼ �ð4Þðx� x0Þ (9a)

G½�c�ð�; x; 0; x0Þ ¼ G½�c�ð�; x;�; x0Þ ¼ 0: (9b)

In particular, G½0� ¼ G0, the free propagator defined in
Eq. (5). The Gaussian integration formally yields

ZR½�� �
Z
½D�0ðxÞ�e�S½�c�þC:TðdetG½�c�Þ1=2: (10)

We should mention that the present saddle-point approxi-
mation can be good even in a strong-coupling regime. In
fact, the classical solution is supposed to be exact for
arbitrary values of the coupling constant. Besides, one
can systematically improve the saddle-point approxima-
tion by expanding the cubic and quartic � interactions and
calculating diagrams with lines of G½�c�:

ZR½�� ¼
Z
½D�0ðxÞ�e�S½�c�þC:T:ðdetG½�c�Þ1=2e�A½�c�;

(11)

where

e�A½�c� ¼ 1� �

8

Z
ðd4xÞEG2½�c�ðx; xÞ

þ C1

2

Z
ðd4xÞEG½�c�ðx; xÞ þOð3 loopsÞ; (12)

with C1 being a mass counterterm. The corresponding loop
expansion is often called semiclassical series.
In [6], we have shown that the renormalized 1-loop

effective action for the boundary field �0 is

��R½�0� ¼ S½�c� þ 1

2
Tr logðG�1½�c�Þ

þ 1

2
Tr logðC½�c�Þ � C:T:; (13)

where

C ½�c� ¼ �2S½�c�
��2

0

¼ ½@�@�0G½�c���0 (14)

is the 1-loop contribution from quadratic fluctuations of the
field �0.
Comparing (11) and

e���R½�0� ¼ e�S½�c�þC:T:ðdetG½�c�Þ1=2ðdetC½�c�Þ�1=2;

(15)

one can write

FIG. 1 (color online). Pictorial description of the partition of
the functional domain of integration for Z in the BET approach.
The whole domain is indexed by the zero-mode line. A given
configuration�ð�; xÞ lives on the vertical fiber over the boundary
value �ð0; xÞ ¼ �ð�; xÞ in the bottom. Inside each vertical line,
the Euclidean action is minimized by the saddle-point configu-
ration (bullet). The line of periodic configurations is also shown.
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ZR½�� ¼ ðdetC0Þ1=2
Z
½D�0ðxÞ�e���R½�0�e�SI½�c�; (16)

where C0 ¼ C½0� and

SI½�c� ¼ A½�c� � 1

2
Tr logðC½�c�Þ þ 1

2
Tr logðC0Þ: (17)

In this paper, the terms involving SI and the interacting part
of S½�c� will be dealt with order by order in a loop
expansion that will be discussed in the next section.

III. PRESSURE IN THE BETAPPROACH

Our strategy is to perform the second functional inte-
gration using again the saddle-point approximation. The
saddle point of �R½�0� is the trivial configuration �0 ¼ 0.
Therefore, it is natural to expand �R in terms of the
following n-point functions:

�R½�0�¼
X1
n¼1

1

n!

Z
�ðnÞ
R ðx1;...;xnÞ�0ðx1Þ...�0ðxnÞd3x1 ...d3xn;

(18)

where

�ðnÞ
R ðx1; . . . ; xnÞ ¼ �ðnÞ�R½�0�

��0ðx1Þ . . .��0ðxnÞ
���������0¼0

: (19)

Up to quadratic order in �0, we have (see Ref. [6])

��R½�0����ð0Þ
R þ1

2

Z
��ð2Þ

R ðx1;x2Þ�0ðx1Þ�0ðx2Þd3x1d3x2;
(20)

where �ð0Þ
R ¼ �V�2=ð90�4Þ is essentially minus the pres-

sure of an ideal gas of free massless bosons, V is the
volume, and

�

ð2�Þ3�ðp1 þ p2Þ
�ð2Þ
R ðp1;p2;	Þ

¼ 2jp1j tanh�jp1j
2

þ �m2ðjp1j;�Þ; (21)

with

�m2ðk;�Þ ¼ �

24�

tanh�k=2

�k

�
1þ �k

sinh�k

�
: (22)

The mass counterterm chosen was

C1 ¼ �

2

Z � d4q

ð2�Þ4 �
0
FðqÞ; (23)

where �0
FðqÞ ¼ 1=q2 is the zero-temperature (massless)

free propagator in four-dimensional Euclidean Fourier
space.

Substituting Eq. (20) in (16) with SI ¼ 0, and perform-
ing the quadratic integration over �0, one obtains the
saddle-point approximation for Z,

Zsp½�� ¼ e���ð0Þ
R ðdetC0Þ1=2ðdet��ð2Þ

R Þ�1=2 ¼ e�VPsp : (24)

In Appendix A, we show that

Pspð�Þ ¼ �2

90�4
� 1

2�
lim
�!1

Z � d3k

ð2�Þ3 log

�
1þ �m2ðk;�Þ

� coth�k=2

2k

�
: (25)

The second term on the right hand side (rhs) of Eq. (25)
can be identified with a series of daisy diagrams, where the
petal is given by (22). As one can easily check, the Oð�Þ
term in Psp is UV divergent. The 2-loop diagram carries the

divergence. We will show that such a spurious divergence
is removed when we consistently add the remaining 2-loop
corrections to the saddle-point approximation.
We have to be careful to identify the good propagator to

represent the contraction of two �0 fields. We know that
such a propagator should be calculated at the saddle point
�0 ¼ 0. However, it is not obvious if the interacting mass
should enter or not its definition. We claim that, in order to
be consistent with the one-loop calculation of the effective
action, we must use C0 defined in (14) at �c ¼ 0 as the
propagator.
Notice that all quantities in this calculation depend on

�0 through �c. Therefore, it is convenient to define the
contraction of two fields �c. In [7], it was shown that the

propagator Ĉ0 which is associated with that contraction
satisfies

�F ¼ G0 þ Ĉ0; (26)

where �F is the usual free thermal propagator, and G0 is
defined in Eq. (5). A pragmatic argument in favor of using

lines of C0 (or Ĉ0) to build 2-loop corrections is that it
solves the problem of UV divergences of the saddle-point
approximation, reproducing the correct result for the Oð�Þ
perturbative contribution. We show that in Appendix B.
Finally, the renormalized pressure is given by

PBETð�Þ ¼ �2

90�4
� �

1152�4
� 1

2�
lim
�!1

Z � d3k

ð2�Þ3
�
log

�
1

þ �m2ðk;�Þ
2

coth�k=2

k

�

� �m2ðk;�Þ
2

coth�k=2

k

�
: (27)

Figures 2–4 plot the pressure normalized by the ideal

pressure as a function of g ¼ ffiffiffiffi
�

p
obtained using different

methods. Figure 2 compares the pressure from BET with
that from weak-coupling calculations up to g8 logg, ac-
cording to Ref. [14]. The weak-coupling expansion already
includes resummation from order g3 on. We see that the
BET approach is in good agreement with the most recent
results.
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Figures 3 and 4 compare BET with screening perturba-
tion theory (SPT) calculations at two, three, and four loops
from Ref. [21] over different ranges. In Fig. 3, the coupling
g goes from 0 to 8. It shows a complete mismatch between
BET and the SPT curves for, say, g * 5. However, in that
range the SPT curves are not reliable either.
In Fig. 4, we add the g8 loggweak-coupling curve to the

comparison. Around g ¼ 3, SPT curves present quite a
large oscillation as one goes from two to three and then
to four loops. We conclude that, in the range where SPT
shows convergence, the curve from BET seems to behave
remarkably well.

IV. CONCLUSIONS

The boundary effective theory was introduced as an
alternative approach to quantum statistical mechanics.
One of its main features is providing a natural separation
of the zero-mode (static) sector, leading to the construction
of its effective theory which results from integrating over
all the (imaginary time) dynamical modes. In previous
work, the one-loop effective action for the zero mode had
been calculated. In the present article, we have shown that
BET is also a powerful method to attack a crucial problem
of the thermodynamics of bosonic fields: infrared
divergences.
The different strategies currently known to deal with

such IR problems rely on some sort of resummation of
diagrams of naive perturbation theory. The present calcu-
lation of the pressure using BET has the advantage of
performing a highly nontrivial resummation in the scope
of a natural and systematic procedure. In fact, the effective
theory for the zero mode generated the whole series of
daisy diagrams very naturally. Besides, in contrast with
those built from thermal field theory, the daisy diagrams
built in the context of BET fit quite well recent results in
the literature obtained using rather involved techniques of
screening perturbation theory at 4 loops.
A distinctive feature of BET is the role played by field

configurations which are not strictly periodic in the imagi-
nary time. Indeed, following the double integral scheme for
the partition function, we have shown that there is a line of
saddle-point configurations dominating the functional in-
tegral and all of them, but the trivial one, are nonperiodic.
We saw that the separation of the field in its static and

dynamical parts could lead to problems in the ultraviolet
limit. This technical point has already been addressed in
the calculation of the one-loop effective action. The solu-
tion is to perform a parallel calculation of the two func-
tional integrations in the definition of the partition
function. That led to a prescription for the present calcu-
lation which, we hope, can serve as a guide to extend the
method to higher orders.
An interesting extension of the present work would be

the application of BET to a scalar theory with N field
components. The pressure per degree of freedom in the
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large-N limit is exactly known and coincides with the two-
loop SPT result (see Ref. [23]). In order to calculate the
pressure in that limit using BET, one needs the correspond-
ing renormalized effective action. A preliminary analysis
indicates that the full calculation involves subtle issues
regarding the nontrivial features of the semiclassical
propagator and will be postponed to a future publication.

ACKNOWLEDGMENTS

E. S. F. thanks J. O. Andersen and J. Pawlowski for
fruitful discussions. The authors also thank J. O.
Andersen and L. Kyllingstad for providing tables for their
results for the pressure for comparison. This work was
partially supported by CAPES, CNPq, FAPERJ, FAPESP
and FUJB/UFRJ.

APPENDIX A

In [6], we show that C0ðkÞ ¼ 2k tanhðk�=2Þ. Expressing
log detC0 as Tr logC0, we obtain

log detC0 ¼
Z � d3k

ð2�Þ3 log½2k tanhðk�=2Þ�: (A1)

Analogously, from (21) it follows that

log det��ð2Þ
R ¼

Z � d3k

ð2�Þ3 log½2k tanh�k=2þ �m2ðk;�Þ�:
(A2)

Therefore,

log½ðdetC0Þ1=2ðdet��ð2Þ
R Þ�1=2�

¼ � 1

2

Z � d3k

ð2�Þ3 log

�
1þ �m2ðk;�Þ coth�k=2

2k

�
: (A3)

Using that expression in (24), one obtains (25).

APPENDIX B

We start by expanding the interacting terms directly
in (11):

e�
R
ðd4xÞEUð�ÞþC:T: � 1� �

24

Z
ðd4xÞE�4

cðxÞ

þ C1

2

Z
ðd4xÞE�2

cðxÞ (B1)

and

e�A½�c� � 1� �

8

Z
ðd4xÞEG2

0ðx; xÞ þ
C1

2

Z
ðd4xÞEG0ðx; xÞ:

(B2)

Contracting the fields �c using the proper symmetry
factors, we obtain

ZBET½�� � Zsp½��
�
1� �

8

Z
ðd4xÞEðG2

0ðx; xÞ þ Ĉ20ðx; xÞÞ

þ C1

2

Z
ðd4xÞEðG0ðx; xÞ þ Ĉ0ðx; xÞÞ

�
: (B3)

The 2-loop contribution from Zsp½�� is obtained expanding
(see Ref. [6])

ðdetG½�c�Þ1=2 � ðdetG0Þ�1=2

�
1

� �

4

Z
ðd4xÞEG0ðx; xÞ�2

cðxÞ
�
; (B4)

and contracting the fields �c. Collecting the 2-loop
contributions for PBET ¼ ðlogZBETÞ=�V, we obtain

P2-loop ¼ � �

8�V

Z
ðd4xÞEðG0ðx; xÞ þ Ĉ0ðx; xÞÞ2

þ C1

2�V

Z
ðd4xÞEðG0ðx; xÞ þ Ĉ0ðx; xÞÞ: (B5)

Using (26), we have

P2-loop ¼ � �

8�V

Z
ðd4xÞE

�
�Fðx; xÞ � 2C1

�

�
2 þD;

(B6)

where D is a zero-temperature infinite constant which can
be set to zero. Finally, using (23) and performing the
remaining integration, we obtain that theOð�Þ contribution
to the pressure is finite and reproduces the perturbative
result

P2-loop ¼ � �

1152�4
: (B7)
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