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We construct a free fermion and matrix model representation of refined Bogomol’nyi-Prasad-

Sommerfeld generating functions of D2 and D0 branes bound to a single D6 brane, in a class of toric

manifolds without compact four-cycles. In appropriate limit we obtain a matrix model representation of

refined topological string amplitudes. We consider a few explicit examples which include a matrix model

for the refined resolved conifold, or equivalently five-dimensional Uð1Þ gauge theory, as well as a matrix

representation of the refined MacMahon function. Matrix models which we construct have ordinary

unitary measure, while their potentials are modified to incorporate the effect of the refinement.
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I. INTRODUCTION

The purpose of this paper is to provide a free fermion
and matrix model representation of refined topological
string amplitudes and, more generally, refined
Bogomol’nyi-Prasad-Sommerfeld (BPS) counting func-
tions in a system of D2- and D0-branes bound to a single
D6-brane, in toric Calabi-Yau manifolds without compact
four-cycles. Such a putative free fermion representation is
interesting, as it would extend earlier results on wall-
crossing in the D6-D2-D0 system to the refined case. The
motivation for finding a matrix model representation is as
follows. In the nonrefined case connections between such
systems and matrix models are known from several per-
spectives. General relations between topological strings,
gauge theories, and matrix models were postulated by
Dijkgraaf and Vafa [1], and related to N ¼ 2 theories in
[2]. The Chern-Simons matrix model for the conifold and
generalizations to lens spaces were considered in [3,4].
Explicit representations of partition functions of gauge
theories and topological string theories on corresponding
Calabi-Yau manifolds have been found in [5–7]. A matrix
model representation of partition functions on general toric
manifolds has been found in [8,9]. Matrix models encoding
wall-crossing phenomena for a class of toric manifolds
without compact four-cycles have been constructed in
[10–12]. While partition functions of four-dimensional
gauge theories can be encoded in Hermitian matrix models,
a generalization to five-dimensional theories, and more
generally, topological strings on toric manifolds, amounts
to considering unitary matrix models [4–6,8,10]. All these
relations gained new interest with the formulation of the
general matrix model solution in terms of the topological
recursion [13], and the related remodeling conjecture
postulated in the context of topological string theory
[14]. One might therefore wonder if the relation between
matrix models and topological strings, and more generally

BPS counting, extends to the refined case as well. We also
stress that the world-sheet definition of the refined topo-
logical string theory is still not well understood, and the
hope that matrix model reformulation might give some
hint in this context is also an important motivation for
this work.
Yet another motivation to study refinement from the

matrix model perspective arises from the AGT conjecture
[15]: as proposed in [16], partition functions of four-
dimensional, N ¼ 2 theories can be encoded in so-called
beta-deformed, Hermitian matrix models. Certain aspects
of this statement were tested in [17–27]. In particular,
the appearance of the beta-deformed measure from the
Nekarsov partition functions has been demonstrated also
for both four- and five-dimensional gauge theories and
certain topological string theories in [28], however only
to the leading order. On the other hand, the formalism of
the topological recursion for Hermitian models has been
extended to the beta-deformed case [29]. Therefore, one
might hope that the refined topological string theories
could be encoded in unitary, beta-deformed matrix models.
However, as explained and demonstrated explicitly in
[30,31], this turns out not to be true even in the simple
example of the resolved conifold. Nonetheless, due to deep
consequences of the topological recursion [13], finding
some matrix model representation of refined partition
functions would be quite desirable; such matrix models
would presumably arise as some deformation of a certain
class of already known unitary matrix models. This is the
task we cope with in this paper, not only from the view-
point of topological string amplitudes, but also more gen-
erally in the context of BPS counting and wall-crossing
phenomena. The refined matrix models which we find
involve matrices of infinite size and have ordinary, unitary
measure, while their potentials are modified in a way
which encodes the refinement. We stress this is opposite
to the beta-deformed models, whose measure is modified;
however, potentials are the same in both the refined and
nonrefined cases. One immediate advantage of our result
is the fact that the topological recursion for models with
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undeformed measure [13,14] is much simpler and tractable
than in the beta-deformed case [29], and could be readily
applied to gain more insight into properties of refined
amplitudes.

We recall that there are various definitions of refinement
whose physical equivalence is not quite clear; however,
the agreement of the resulting exact solutions is a strong
argument for an underlying common, general structure. In
all these so-called refined theories a dependence on a single
parameter, such as the string coupling gs or the background
ℏ in gauge theories, is replaced by a dependence on two
parameters, customarily denoted �1 and �2. In the context
of gauge theory, refined amplitudes arose from their for-
mulation in the � background [32]. In the case of topo-
logical strings on noncompact, toric manifolds, refinement
was introduced in terms of refined BPS counting, reformu-
lated combinatorially in terms of the refined topological
vertex [33,34], and shown to agree with gauge theory
results in the� background in [35,36]. From the viewpoint
of the AGT conjecture, refined amplitudes are encoded in
relevant conformal blocks of two-dimensional conformal
field theory, and the corresponding beta-deformed matrix
models are characterized by the Vandermonde determinant
raised to the power � ¼ ��1=�2. In the context of wall-
crossing and BPS counting in a system of D6-D2-D0–
branes on toric manifolds, following and in parallel with
nonrefined developments in [37–44], refined amplitudes
were considered from physical and mathematical perspec-
tives in [45,46]. Among multitude chambers in which
(refined) generating functions of D6-D2-D0 bound states
are known, there is a special chamber in which they agree
with topological string amplitudes on the same Calabi-Yau
manifold, and, in particular, the agreement with the refined
topological vertex calculation was shown in [46]. This is
this last formulation of the refinement on which our deri-
vation is based.

To find refined matrix models we follow a strategy
which extends a nonrefined presentation of [10].1 First,
generalizing the results of [43], we construct a free fermion
representation of crystals representing the refined BPS
states in question. This allows us to write the refined BPS
generating functions Zref

n in a chamber specified by n as

Zref
n ¼ h�refþ j �Wref

n j�ref� i; (1)

where j�ref� i are states representing a manifold in question,
and �Wref

n are wall-crossing operators which determine a
chamber of interest. Then we turn these fermionic corre-
lators into a unitary matrix model form. The refined char-
acter of fermionic correlators results in a modified form of
matrix model potentials. Similar to [5,6,10], our potentials
have nontrivial string coupling dependence to all orders.
While our results are valid in all chambers, in the so-called

commutative chamber we obtain a matrix model represen-
tation of refined topological string amplitudes.
To briefly exemplify our results, we recall first that the

refined topological string amplitude for the resolved coni-
fold with the Kähler parameter Q [or equivalently five-
dimensional, Uð1Þ gauge theory] is given by

Z ref
top ¼ Mðt1; t2Þ

Y1
k;l¼0

ð1�Qtkþ1
1 tl2Þ; (2)

where t1 ¼ e��1 , t2 ¼ e�2 , and Mðt1; t2Þ ¼Q1
k;l¼0ð1� tkþ1

1 tl2Þ�1 is the refined MacMahon function.

To find a matrix model representation of Zref
top, we first

construct a general refined BPS generating function in
the form (1), where in the case of the conifold, n is a single
integer. We then translate such a fermionic correlator into a
matrix model form, and in the n ! 1 limit, which corre-
sponds to the so-called commutative chamber, we find the
matrix model representation (written in terms of eigenval-
ues zk ¼ eiuk) of the refined topological string amplitude

Z ref
top ¼

Z
DU

Y
k

Y1
j¼0

ð1þ zkt
jþ1
1 Þð1þ tj2=zkÞ

ð1þ tj2Q=zkÞ
;

where DU is the ordinary unitary measure [see (18)]. To
the leading order the above integrand gives rise to the
following potential:

Vðu;�Þ ¼ 1
2u

2 � ð1� ��1ÞLi2ð�eiuÞ � Li2ð�Qe�iuÞ
þOðgs; �Þ: (3)

In what follows we also present matrix models associated
with other chambers of the Kähler moduli space. We can
also immediately note that in the limit Q ! 0, the above
result reduces to a matrix model representation of the
refined MacMahon function, with the exact integrand
given by a deformed theta function, which in the genus
expansion gives a � deformation of the Gaussian potential
of the Chern-Simons matrix model [such that both the
dilogarithm term and the Oðgs; �Þ corrections vanish for
� ¼ 1]. In the main text we discuss in more detail other
explicit results for C3, the conifold, or the resolution of
C3=Z2 singularity. Similar to [12] we postulate a relation
of those refined matrix integrands to open BPS amplitudes.
The paper is organized as follows. In Sec. II we recall

definitions and basic properties of refined BPS invariants
and introduce relevant notation. In Sec. III we extend the
formalism of [43] to the refined case and present a fermi-
onic representation of refined generating functions. In
Sec. IV we turn these refined fermionic results into matrix
models and describe their properties. Section V contains a
discussion.

1Our results were obtained independently and before an over-
lapping work [47,48] appeared.
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II. REFINED WALL-CROSSING
IN THE D6-D2-D0 SYSTEM

Refined degeneracies of D2- and D0-branes bound to a
D6-brane on a Calabi-Yau manifold X can be encoded in a
generating function

Zref
n ðq;QÞ ¼ X

�;�

�ref
�;�ðn; yÞq�Q�;

with the D0-brane charge represented by � 2 Z, the
D2-brane charge represented by � 2 H2ðX;ZÞ, and a
chamber in the Kähler moduli space specified by (possibly
a set of parameters) n. LetH �;�ðnÞ denote a space of BPS
states with given charges �, � and asymptotic values of
moduli corresponding to a chamber n; J3 denotes a gen-
erator of the spatial rotation group. For fixed charges �, �
and a choice of chamber n, refined degeneracies

�ref
�;�ðn; yÞ ¼ TrH �;�ðnÞð�yÞ2J3 (4)

are interesting invariants if X does not possess complex
structure deformations, which is the case for noncompact,
toric manifolds which we consider in this paper. These
invariants were argued in [45] to agree with motivic
Donaldson-Thomas invariants of [49], and in the case of
the resolved conifold, the corresponding BPS generating
functions were derived using the refined wall-crossing
formula, and encoded in a refined crystal model. From a
mathematical viewpoint, and in terms of dimer models,
such an analysis was extended to quite a general class of
toric manifolds without compact four-cycles in [46], and
shown therein to agree, in the commutative chamber, with
refined topological vertex computations. For y ¼ 1 all
these invariants reduce to ordinary nonrefined invariants,
whose generating functions were encoded in dimer or
crystal models in [39–41], and represented in the free
fermion formalism in [43,44]. In the next section, based
on definitions of BPS generating functions in terms of
dimers or crystals constructed in [45,46], we will extend
such a free fermion formalism to the refined models.

Before proceeding we present in more detail a class of
manifolds we are interested in. Similar to [10,43], we
consider toric, noncompact Calabi-Yau manifolds without
compact four-cycles, whose toric diagrams arise from a
triangulation of a strip. Such diagrams consist of N þ 1
vertices, and there are N P1’s in the geometry, with
Kähler parameters denoted Qp ¼ e�Tp , p ¼ 1; . . . ; N. To

each vertex in the diagram we associate a type �i ¼ �1. If
the local neighborhood of P1, represented by an interval
between vertices i and iþ 1, is Oð�2Þ �O, then �iþ1 ¼
�i; if this neighborhood is of Oð�1Þ �Oð�1Þ type,
then �iþ1 ¼ ��i. We choose the type of the first vertex
as �1 ¼ þ1.

We also need to introduce relevant notation for refined
quantities. In the nonrefined case the string coupling gs is
related to the D0-brane charge as q ¼ e�gs . The refinement

is encoded in an additional parameter �. Instead of gs and
�, it is more convenient to use a pair of parameters

�1 ¼
ffiffiffiffi
�

p
gs; �2 ¼ � gsffiffiffiffi

�
p ;

so that � ¼ � �1
�2
, �1�2 ¼ �g2s . We often use the exponen-

tiated counterparts

t1 ¼ e��1 ; t2 ¼ e�2 ;

and also introduce

gsB ¼ �1 þ �2 ¼ gs

� ffiffiffiffi
�

p � 1ffiffiffiffi
�

p
�
:

The variable y in (4) can be expressed as y ¼ t1=q ¼ q=t2,
so that y2 ¼ t1=t2 ¼ qB. In this notation the nonrefined
limit y ¼ 1 corresponds to � ¼ 1, for which �1 ¼ ��2 ¼
gs and t1 ¼ t2 ¼ q and B ¼ 0.
With the above notation we can present some explicit

BPS generating functions whose matrix model representa-
tion we are going to find. The simplest manifold one can
consider is C3, for which one gets the refined MacMahon
function [33] (see Fig. 1),

ZC3 ¼ Mðt1; t2Þ ¼
Y1
k;l¼0

1

1� tkþ1
1 tl2

: (5)

In this case there is no Kähler parameter, and therefore
there are no interesting wall-crossing phenomena.
We note that one could consider a more general family

of refinements parametrized by �, such that M�ðt1; t2Þ ¼Q1
k;l¼0ð1� tkþ1þðð��1Þ=2Þ

1 tl�ðð��1Þ=2Þ
2 Þ�1. For simplicity, in

what follows we choose the value � ¼ 1 (note that in
[45] another choice � ¼ 0 was made).
The resolved conifold provides a basic nontrivial ex-

ample of wall-crossing, with a set of chambers parame-
trized by an integer n (in the refined case one might also
consider additional invisible walls, which we do not dis-
cuss here). Corresponding refined generating functions
were computed in [45] using a refined wall-crossing for-
mula, and in the chamber labeled by n� 1, they read

Zconifold
n�1 ¼ Mðt1; t2Þ2

�Y1
k;l¼0

ð1�Qtkþ1
1 tl2Þ

�

�
� Y
k�1;l�0;kþl�n

ð1�Q�1tk1t
l
2Þ
�
: (6)

In the commutative chamber n ! 1 the terms in the last
set of brackets do not contribute anymore and the BPS
generating function is simply related to the refined topo-
logical string amplitude given in (2),

Zconifold1 ¼ Mðt1; t2ÞZref
top:

On the other hand, in the noncommutative chamber n ¼ 0,
the refined generating function is given by the modulus
square of the refined topological string amplitude.
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For a resolution of C3=Z2 singularity there is also a
discrete set of chambers parametrized by an integer n,
and the corresponding BPS generating functions read

ZC3=Z2

n�1 ¼ Mðt1; t2Þ2
�Y1
k;l¼0

ð1�Qtkþ1
1 tl2Þ�1

�

�
� Y
k�1;l�0;kþl�n

ð1�Q�1tk1t
l
2Þ�1

�
: (7)

It is harder to write down generating functions for an
arbitrary chamber of an arbitrary geometry of our interest.
However, this can be done for the noncommutative cham-
ber of arbitrary geometry, where—similar to the nonrefined
case—the BPS generating function is given by the modulus
square of the refined topological string amplitude,

Zref
0 ¼ jZref

topj2 � Zref
topðQiÞZref

topðQ�1
i Þ: (8)

The (instanton part of the) refined topological string am-
plitude is given by [33,35]

Zref
topðQiÞ ¼ Mðt1; t2ÞððNþ1Þ=2Þ Y1

k;l¼0

Y
1�i<j�Nþ1

� ð1� ðQiQiþ1 � � �Qj�1Þtkþ1
1 tl2Þ��i�j ; (9)

with the notation introduced above.

III. REFINED WALL-CROSSING
AND FREE FERMIONS

The problem of counting bound states of D6-D2-D0-
branes for local toric Calabi-Yau manifolds without com-
pact four-cycles has been formulated in the free fermion
formalism in [43,44]. Among many advantages of such
a representation is its immediate relation to melting
crystals, as well as to matrix models, which was exploited
in [10,12]. Here we wish to extend such a free fermion
formalism to capture refined BPS invariants, as defined
in [45,46].

We consider first statistical models of colored pyramids.
In the nonrefined case [43], to a geometry consisting
of N P1’s, one associates a crystal which is sliced into
layers in N þ 1 colors, denoted q0; q1; q2; . . . ; qN. In the
nonrefined case, parameters q1; . . . ; qN encode Kähler pa-
rameters of the geometry Q1; . . . ; QN , while the productQ

N
i¼0 qi is mapped to (possibly the inverse of) q ¼ e�gs . In

the refined case the assignment of colors is more subtle, as
it must take into account a refinement of a single parameter
q into t1 and t2 introduced above. In particular, in the
noncommutative chamber qi�0 are mapped (up to a sign,
as in the nonrefined case) to Qi; however, we will have

to replace q0 by two refined colors qð1Þ0 or qð2Þ0 , so that

ti ¼ qðiÞ0 q1 � � �qN , for i ¼ 1, 2. The simplest case of C3

refined plane partitions, discussed also in [33], is shown in
Fig. 1. For other manifolds, in other chambers we will find
a more complicated assignment of colors.

In [43] the structure and coloring of a given crystal,
corresponding to a particular toric geometry, was encoded
in fermionic states j��i, so that the generating function of
BPS invariants could be written as a superposition of two
such states (with additional insertion of wall-crossing op-
erators in nontrivial chambers). In this section we construct
refined states j�ref� i with similar properties. In the non-
commutative chamber the states which we construct are
such that

Zref
0 ¼ h�refþ j�ref� i: (10)

We also construct a refined version of wall-crossing opera-
tors �Wref

n , such that the BPS generating function in the nth
chamber can be written as

Zref
n ¼ h�refþ j �Wref

n j�ref� i: (11)

In Sec. III A below we construct states j�ref� i for an
arbitrary manifold in a class of our interest. In Sec. III B
we construct states j�ref� i and wall-crossing operators �Wref

n

for all chambers of the resolved conifold and a resolution
of C3=Z2 singularity. We follow the conventions used in
[10,12,43], which are summarized, for convenience, in the
Appendix.

A. Arbitrary geometry—noncommutative chamber

In this section we construct fermionic states j�ref� i,
which allow us to write the BPS generating functions in
the noncommutative chamber as claimed in (10). Similar to
the nonrefined case, the states j�ref� i are constructed from
an interlacing pattern of vertex ��i� and weight operators.
As the refinement does not modify the three-dimensional
shape of the corresponding crystal, the assignment of
vertex operators is the same as in the nonrefined case

FIG. 1 (color online). Refined plane partitions which count
D6-D0 bound states in C3, as seen from the bottom (i.e. a
negative direction of the z axis). Stones in each layer which
intersects a dashed or solid line have weight t1 or t2, respectively.
The resulting generating function is the refined MacMahon
function Mðt1; t2Þ.

PIOTR SUŁKOWSKI PHYSICAL REVIEW D 83, 085021 (2011)

085021-4



[43] and can be similarly read off from the toric diagram.
In particular, to the ith vertex in the toric diagram (of type
�i given above) we associate a vertex operator ��i�ðxÞ,
such that

��i¼þ1
� ðxÞ ¼ ��ðxÞ; ��i¼�1

� ðxÞ ¼ �0�ðxÞ:
Examples of this assignment for C3, the conifold, and a
resolution of C3=Z2 singularity are shown in Fig. 2.

The structure which is modified in the refined case is the
assignment of colors, which are encoded in the weight
operators. A product of N þ 1 such operators ��i�ðxÞ is
interlaced with weight operators in the following way.

We introduce N operators Q̂i representing colors qi, for

i ¼ 1; . . . ; N, and, in addition, two other colors qð1Þ0 and

qð2Þ0 , which are eigenvalues of Q̂ð1Þ
0 and Q̂ð2Þ

0 . Operators

Q̂1; . . . ; Q̂N are associated with P1 in the toric diagram,
and we define

Q̂ ðiÞ ¼ Q̂ðiÞ
0 Q̂1 � � � Q̂N; ti ¼ qðiÞ0 q1 � � �qN; for i¼ 1;2:

(12)

Now we introduce

�AþðxÞ ¼ ��1þðxÞQ̂1�
�2þðxÞQ̂2 � � ���Nþ ðxÞQ̂N�

�Nþ1þ ðxÞQ̂ð1Þ
0 ;

�A�ðxÞ ¼ ��1�ðxÞQ̂1�
�2�ðxÞQ̂2 � � ���N� ðxÞQ̂N�

�Nþ1� ðxÞQ̂ð2Þ
0 :

Commuting all Q̂i’s to the left or right, we also introduce

AþðxÞ¼ ðQ̂ð1ÞÞ�1 �AþðxÞ

¼��1þðxt1Þ��2þ
�
xt1
q1

�
�
�3þ
�
xt1
q1q2

�
� ����Nþ1þ

�
xt1

q1q2 � � �qN
�
;

A�ðxÞ¼ �A�ðxÞðQ̂ð2ÞÞ�1

¼��1�ðxÞ��2�ðxq1Þ��3�ðxq1q2Þ� � ���Nþ1� ðxq1q2 . . .qNÞ:
When the argument of any of these operators is x ¼ 1, we
often use a simplified notation

�A� � �A�ð1Þ; A� � A�ð1Þ:
Finally, we can associate to a given toric manifold
two states

h�refþ j ¼ h0j . . . �Aþð1Þ �Aþð1Þ �Aþð1Þ
¼ h0j . . .Aþðt21ÞAþðt1ÞAþð1Þ;

j�ref� i ¼ �A�ð1Þ �A�ð1Þ �A�ð1Þ . . . j0i
¼ A�ð1ÞA�ðt2ÞA�ðt22Þ . . . j0i;

where j0i is the fermionic Fock vacuum.
Our first claim is that the refined BPS generating func-

tion can be written as

Zref
0 ¼ h�refþ j�ref� i � ZtopðQiÞZtopðQ�1

i Þ; (13)

with ZtopðQiÞ given in (9), and under the following iden-

tification between qi parameters which enter a definition of
j�ref� i and string parameters Qi ¼ e�Ti (for i ¼ 1; . . . ; N),

qi ¼ ð�i�iþ1ÞQi;

and with refined parameters t1;2 identified as in (12). This

result, in the special case of C3, conifold, and C3=Z2

geometries, reproduces formulas (5)–(7).
To prove (13) for general geometry, we first note that

commuting operators AþðxÞ with A�ðyÞ,
AþðxÞA�ðyÞ ¼ A�ðyÞAþðxÞCðx; yÞ;

gives rise to a factor

Cðx; yÞ ¼ 1

ð1� t1xyÞNþ1

Y
1�i<j�Nþ1

�
�
ð1� ð�i�jÞxyt1ðqiqiþ1 . . . qj�1ÞÞ

�
�
1� ð�i�jÞxyt1

qiqiþ1 . . . qj�1

����i�j
:

Now we write the states j�ref� i in terms of A� operators,
and commute �� within each pair of Aþ and A� separately,

Zref
0 ¼ h�refþ j�ref� i ¼ h0j

�Y1
i¼0

Aþðti1Þ
��Y1

j¼0

A�ðtj2Þ
�
j0i

¼ Y1
i;j¼0

Cðti1; tj2Þ:

This last product reproduces the modulus square of the
refined topological string partition function in (13) and
therefore proves the claim (10).

FIG. 2. Toric diagrams and assignment of vertex operators in the case of C3 (left diagram), the conifold (middle diagram), and a
resolution of C3=Z2 singularity (right diagram). A sign � or 	 in each vertex denotes a corresponding type �i ¼ �1.
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B. Conifold and C3=Z2—all chambers

A fermionic representation can also be extended to non-
trivial chambers. Even though this can be done for general
geometry without compact four-cycles, for simplicity we
restrict our considerations to the case of a conifold and a
resolution of C3=Z2 singularity, which involve just one
Kähler parameter Q1 � Q. In those cases, in a chamber
labeled by n� 1, we find the following representation of
the BPS generating function,

Zref
n�1 ¼ h�refþ j �Wref

n�1j�ref� i; (14)

where �Wref
n�1 represents the appropriate wall-crossing op-

erator. In both these cases the toric diagram has two
vertices, the first one of type �1 ¼ 1 and the second one
now denoted � � �2 and � ¼ 
1, respectively, for the
conifold and C3=Z2. A crystal associated with the expres-
sion (14) has n stones in the top row and can be sliced into
interlacing single-colored layers. The assignment of colors
is analogous to the pyramid model discussed in [45,46]
(however, our convention is slightly different, and corre-
sponds to integer and nonsymmetric, rather than half-
integer and symmetric, powers of t1;2 in [45]). The pyramid

crystal for the conifold is shown in Fig. 3. The coloring and
weights for C3=Z2 are the same as for the conifold, even
though the plane-partition shape of the C3=Z2 crystal is
different than (though very analogous to) the pyramidlike
conifold crystal; see Fig. 4. Using the notation introduced
above, the assignment of colors is determined as follows.

All stones on one side of the crystal are encoded in the
state

h�refþ j ¼ h0j . . . ð�þð1ÞQ̂1�
�þð1ÞQ̂0Þð�þð1ÞQ̂1�

�þð1ÞQ̂0Þ:
The Kähler parameter Q, as well as the parameter t1, are
determined as

q1 ¼ �Qt1�n
1 ; q0 ¼ �

tn1
Q
; so that q0q1 ¼ t1:

Then the extended crystal, which has n� 1 additional
stones in the top row, is constructed by an insertion of the
operator

�Wref
n�1 ¼

�
��ð1ÞQ̂1�

�þð1ÞQ̂0
dq�B

�

�
�
��ð1ÞQ̂1

cqB��þð1ÞQ̂0
dq�2B

�
� � � � � �

�
�
��ð1ÞQ̂1

dqðn�2ÞB��þð1ÞQ̂0
dqð1�nÞB

�
:

This operator consists of n� 1 terms of the form

ð��ð1ÞQ̂1
cqiB��þð1ÞQ̂0

dq�ðiþ1ÞBÞ for i ¼ 0; . . . ; n� 2,
where in each consecutive dark or light slice of stones

we insert one additional operator dq�B, which changes the
weight of each stone in this slice by q�B ¼ ðt1=t2Þ�1

(with respect to the previous slice of the same light or
dark color).
Finally, all stones on the right side of the crystal have,

again, the same light or dark color, and the corresponding
state reads

j�ref� i ¼
�
��ð1ÞQ̂1

dqðn�1ÞB���ð1ÞQ̂0
dq�nB

�

�
�
��ð1ÞQ̂1

dqðn�1ÞB���ð1ÞQ̂0
dq�nB

�
. . . j0i:

FIG. 3 (color online). Refined pyramid crystal for the conifold,
in the chamber corresponding to n stones in the top row. Along
each slice (as indicated by broken or solid lines) all stones have
the same color, assigned as follows. On the left side (along
broken lines), each light (yellow) and dark (red) slice has color
denoted q0 and q1, respectively. Moving to the right, in the
intermediate region (along solid lines), a color of each new light
or dark slice is modified by, respectively, a q
B factor (with
respect to the previous light or dark slice). On the right side
(again along broken lines), each light or dark slice has again the
same color, respectively, q0q

�Bn or q1q
Bðn�1Þ. The assignment of

colors in the intermediate region (along solid lines) interpolates
between constant assignments on the left and right sides of the
pyramid.

FIG. 4 (color online). Refined pyramid crystal for the resolu-
tion of C3=Z2 singularity, in the chamber corresponding to n
stones in the top row, as seen from the bottom (i.e. a negative
direction of the z axis). Even though the three-dimensional shape
of the crystal is different than in the conifold case, the assign-
ment of colors is the same; see Fig. 3.
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Therefore, the varying weights in the middle range (along
solid lines in Figs. 3 and 4) interpolate between fixed
weights of light and dark stones on two external sides of
a crystal.

We can now commute away all weight operators in the
above expressions, using relations from the Appendix. This
leads to the representation

Zref
n�1 ¼ h0j

�Y1
k¼1

�þðtk1Þ��þðtk1=q1Þ
��Yn�2

i¼0

��ðti2Þ��þðq�1
1 t�i

1 Þ
�

�
�Y1
k¼0

��ðtn�1þk
2 Þ���ðtQtk2Þ

�
j0i:

Finally, commuting all vertex operators, we find

Zref
n�1 ¼ Mðt1; t2Þ2

Y1
k¼1;l¼0

ð1�Qtk1t
l
2Þ��

Y1
k�1;l�0;kþl�n

� ð1�Q�1tk1t
l
2Þ��; (15)

where � ¼ 
1, respectively, for the conifold and C3=Z2.
This indeed reproduces (6) and (7), and agrees (up to the
half-integer convention of t1;2) with the results of [45].

IV. MATRIX MODELS FROM FERMIONS

Once the generating function of Donaldson-Thomas
invariants is written in the fermionic formalism, it can be
turned into the matrix model form upon inserting an ap-
propriately chosen identity operator in the correlator (14),

Zref
n�1 ¼ h�refþ jI �Wref

n�1j�ref� i: (16)

The identity operator I is represented by the complete set of
states jRihRj (representing two-dimensional partitions).
We can use orthogonality relations of Uð1Þ characters
�R, and the representation of these characters in terms of
Schur functions �R ¼ sRð~zÞ for ~z ¼ ðz1; z2; z3; . . .Þ, to write
I ¼ X

R

jRihRj ¼ X
P;R

�PtRt jPihRj

¼
Z

DU
X
P;R

sPtð ~zÞsRtð~zÞjPihRj

¼
Z

DU

�Y
k

�0�ðzkÞj0i
��
h0jY

k

�0þðz�1
k Þ

�
;

(17)

where DU denotes the unitary measure written in terms
of eigenvalues,

DU ¼ Y
k

duk
Y
k<j

jzk � zjj2; zk ¼ eiuk : (18)

The identity operator in the above form can be inserted
into (16), which results in an expression involving only

vertex operators �ð�1Þ
� . Then we can commute vertex op-

erators away, again using relations from the Appendix,
which leads to a matrix model with the unitary measure
DU. In the noncommutative chamber all factors arising

from commuting these �ð�1Þ
� operators depend on zk and

contribute just to the matrix model potentials. In other
chambers additional factors may arise which are indepen-
dent of zk, and which, in a chamber labeled by n, contribute
to some overall factor fn. Thus, in general, we write the
Donaldson-Thomas generating function as a matrix model
in the form

Zref
n ¼ fn

Z
DU

Y
k

e�ð
ffiffiffi
�

p
=gsÞVðzk;�Þ; (19)

and it is convenient to introduce a factor
ffiffiffiffi
�

p
in front of

the potential Vðz;�Þ, or work with a rescaled coupling

gs�
�1=2.

In (16) the identity operator has been inserted in a
specific location. In fact, there is large freedom of where
this insertion should be chosen, which leads to various
forms of a matrix integrand. In [12] it has been shown
that those various integrands can be identified with open
BPS generating functions in various open chambers. We
will also comment on a possible similar interpretation of
refined integrands in what follows. However, let us first
restrict ourselves to a specific choice (16) and discuss
resulting matrix models. We use the following notation
for a deformation of a theta function,

�ðz; t1; t2Þ ¼
Y1
j¼0

ð1þ ztjþ1
1 Þð1þ tj2=zÞ;

to express certain integrands of matrix models that we
come across.

A. Arbitrary geometry—noncommutative chamber

As the first explicit example, we find a matrix model
representation of the refined BPS generating function in
the noncommutative chamber. We start with the expression

(16) with no �Wref
n�1 insertion, and use the form of j�ref

� i
derived in Sec. III A. Performing the computation de-
scribed above we get, in the noncommutative chamber
for general geometry, the following matrix model:

Zref
0 ¼

Z
DU

Y
k

YN
l¼0

�

�
�lþ1zk
q1 � � � ql ; t1; t2

�
�lþ1

;

i.e. we identify e�
ffiffi
�

p
gs
Vðz;�Þ �QN

l¼0 �ð�lþ1zðq1 � � � qlÞ�1; t1; t2Þ�lþ1 . The product over l
runs over all vertices, and in this chamber we
identify Kähler parameters Qp with weights qp via qp ¼
ð�p�pþ1ÞQp.

Some special cases of the above result include the
following:
(i) For C3 the generating function Zref ¼ Mðt1; t2Þ is

given by the refined MacMahon function (5), and we
find that the corresponding potential is a refined theta
function,
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e�ð
ffiffiffi
�

p
=gsÞVðz;�Þ ¼ Y1

j¼0

ð1þ ztjþ1
1 Þð1þ tj2=zÞ

¼ �ðz; t1; t2Þ: (20)

(ii) For the conifold the noncommutative generating
function Zconifold

0 determined from (6) gives rise to

a matrix model with the following potential term,

e�ð
ffiffiffi
�

p
=gsÞVðz;�Þ ¼ Y1

j¼0

ð1þ ztjþ1
1 Þð1þ tj2=zÞ

ð1þ ztjþ1
1 =QÞð1þ Qtj

2

z Þ

¼ �ðz; t1; t2Þ
�ðz=Q; t1; t2Þ :

(iii) For C3=Z2 the noncommutative generating func-

tion ZC3=Z2

0 determined from (7) gives rise to a

matrix model with the following potential term,

e�ð
ffiffiffi
�

p
=gsÞVðz;�Þ ¼ Y1

j¼0

ð1þ ztjþ1
1 Þð1þ tj2=zÞ

� ð1þ ztjþ1
1 =QÞ

�
1þQtj2

z

�
¼ �ðz; t1; t2Þ�ðz=Q; t1; t2Þ:

B. C3 matrix model

Let us consider the simplest refined matrix model, cor-
responding to C3 geometry, with the exact potential given
in (20). Similar to [5,50], one might expect that its behavior
is governed by the leading order term in the potential.
Using the asymptotics

log
Y1
i¼1

ð1� zqiÞ ¼ � 1

gs

X1
m¼0

Li2�mðzÞBmg
m
s

m!

this leading behavior reads

e�ð
ffiffiffi
�

p
=gsÞVðz;�Þ ¼e�ð

ffiffiffi
�

p
=gsÞ½�ð1=2ÞðlogzÞ2�ð1���1ÞLi2ð�zÞþOðgs;�Þ�:

(21)

The first, quadratic term in the potential is the same
as in the nonrefined case. The terms involving Li2ð�zÞ,
as well as all higher order terms Oðgs; �Þ, vanish for
� ¼ 1. Therefore, for � ¼ 1, we obtain a Chern-Simons
matrix model which indeed is known to give rise to the
MacMahon function in the N ! 1 limit [4,10]. For gen-
eral �, a resolvent !ðpÞ for a unitary model with the
above potential can be found using the Migdal integral,
as discussed in detail in [10,51]. This requires bringing
the measure into a Hermitian Vandermonde form, which
introduces an additional T logz term in the matrix poten-

tial, with the ’t Hooft parameter T ¼ ðgs��1=2ÞN. For the

lowest order terms of the potential arising from (21), this
leads to

@zVðz;�Þ ¼ T � logz� ð1� ��1Þ logðzþ 1Þ
z

: (22)

Assuming a one-cut solution of the matrix model, and in

terms of the rescaled coupling gs�
�1=2, the Migdal resol-

vent is then given by2

!ðpÞ ¼ 1

2T

I dz

2�i

@zVðzÞ
p� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� a�Þðp� aþÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� a�Þðz� aþÞ

p ;

so that the endpoints of the cuts a� and aþ are encircled
counterclockwise by the integration contour. Moreover,
one has to impose the following consistency condition on
the resolvent,

lim
p!1!ðpÞ ¼ 1

p
;

which imposes certain conditions on the endpoints of the
cut a�. We find that for the potential (22) these conditions
take the form

2ffiffiffiffiffiffi
a�

p þ ffiffiffiffiffiffi
aþ

p
�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� þ 1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ þ 1

p
�ð1���1Þ ¼ eT=2;

(23)

ffiffiffiffiffiffi
a�

p þ ffiffiffiffiffiffi
aþ

pffiffiffiffiffiffiffiffiffiffiffiffi
a�aþ

p
� ffiffiffiffiffiffi

a�
p þ ffiffiffiffiffiffi

aþ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� þ 1Þaþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ þ 1Þa�
p �ð1���1Þ

¼ 2e�T=2: (24)

For the nonrefined case � ¼ 1 these equations simplify
and can be exactly solved [10]. For arbitrary � the cut
endpoints found in [10] get corrections in ð1� ��1Þ,
a� ¼ �1þ 2e�T � 2ie�T=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�T

p
þOð1� ��1Þ;

which leads to a �-deformed spectral curve. To find these
corrections Oð1� ��1Þ in the exact form does not appear
to be easy, and it would be interesting to compare the
resulting curve with the quantum curve of the beta-
deformed formalism of [29]. In particular, they both give
rise to the same result in the four-dimensional limit [31], so
understanding a discrepancy of the five-dimensional re-
sults is an important issue. It would also be interesting to
find the partition function for the above model with the

2A useful result [10] in such computations is 1
2T

H dz
2�i

logðzþcÞ
zðp�zÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp�aÞðp�bÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz�aÞðz�bÞ
p ¼ � 1

2pT logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþcÞðb�pÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþcÞða�pÞ

p
ðpþcÞð

ffiffiffiffiffiffiffiffi
b�p

p
� ffiffiffiffiffiffiffiffi

a�p
p Þ Þ2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp�aÞðp�bÞ
p

2pT
ffiffiffiffi
ab

p logð
ffiffiffiffiffiffiffiffiffiffiffi
ðaþcÞb

p
�

ffiffiffiffiffiffiffiffiffiffiffi
ðbþcÞa

p
cð ffiffi

a
p � ffiffi

b
p Þ Þ2. This arises from contour in-

tegrals around poles z ¼ 0 and z ¼ p, as well as along the
branch cut of the logarithm ð�1;�cÞ which is found usingR

dx

ðx�pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�aÞðx�bÞ

p ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�aÞðp�bÞ

p log
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�aÞðb�pÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�bÞða�pÞ

p
Þ2

ðp�xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�aÞðp�bÞ

p .
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finite ’t Hooft coupling T, and verify if it is related to the
refined conifold topological string amplitude, as is indeed
the case in the nonrefined case.

As already mentioned before, we can also obtain more
general matrix models by inserting the identity operator in
various places in the fermionic representation of the BPS
function. In particular, inserting it at position k in a string
of �A� operators in (13) in C3 case, we get the following
representation,

Zref
k ¼ fk

Z
DU

Y1
j¼0

ð1þ ztjþ1
1 Þð1þ tk1t

j
2=zÞ;

with the prefactor fk ¼ Mðt1; t2ÞQ1
j¼k

Q1
i¼0ð1� tj1t

i
2Þ. In

the nonrefined case in [12], the above integrand with
identification t1 ¼ t2 ¼ q was related to an open BPS
generating function in an open chamber labeled by k.
It would be interesting to extend such an interpretation to
the refined case, too. In particular, we note that in the limit
k ! 1, which should correspond to the ordinary open
topological string amplitude, the above integrand indeed
reduces to one particular form of a refined brane partition
function in C3 computed in [33].

C. Conifold—all chambers

Using the representation (16) and fermionic results
found in Sec. III B, we find the following matrix model
for the conifold in the nth chamber [corresponding to a
pyramid with ðnþ 1Þ stones on top],

Zref
n ¼Mðt1; t2Þ2

Y1
k¼1;l¼0

ð1�Qtk1t
l
2Þ

Y1
k�1;l�0;kþl�nþ1

�ð1�Q�1tk1t
l
2Þ

¼fnðq;QÞ
Z
DU

Y
k

Y1
j¼0

ð1þzkt
jþ1
1 Þð1þ tj2=zkÞ

ð1þzkt
jþnþ1
1 =QÞð1þ tj2Q=zkÞ

;

where

fnðq;QÞ ¼
�Yn
i¼1

Y1
k¼0

1

1� ti1t
k
2

��Yn
i¼1

Y1
j¼nþ1�i

ð1� ti1t
j
2=QÞ

�
:

We can again write equations for the cut endpoints,
analogous to (23) and (24), which would lead to a �
deformation of the general solution found in [10]; we defer
solving these equations to a future work. We also note that
in the limit of the commutative chamber, n ! 1, we get
f1 ¼ Mðt1; t2Þ. Therefore, in the commutative chamber
we get a matrix model representation of the refined topo-
logical string conifold amplitude

Z ref
top ¼ Mðt1; t2Þ

Y1
k;l¼0

ð1�Qtkþ1
1 tl2Þ

¼
Z

DU
Y
k

Y1
j¼0

ð1þ zkt
jþ1
1 Þð1þ tj2=zkÞ

ð1þ tj2Q=zkÞ
:

In this case the lowest order potential is a modification of
the C3 potential (21) by a Q-dependent dilogarithm term

Vðz;�Þ ¼ �1
2ðlogzÞ2 � ð1� ��1ÞLi2ð�zÞ � Li2ð�Q=zÞ

þOðgs; �Þ; (25)

as already advocated in (3). In the limit Q ! 0 the above
topological string partition function becomes just the re-
fined MacMahon function, and the matrix integral consis-
tently reproduces the C3 result (20).
We can again obtain the whole family of matrix models

by inserting the identity operator in various locations.
Inserting it at position k in a string of �A� operators in
(13), we get a matrix representation

Zref
n;k ¼ fn;kðq;QÞ

Z
DU

Y
l

Y1
j¼0

� ð1þ zlt
jþ1
1 Þð1þ tj2t

k
1=zlÞ

ð1þ zlt
jþnþ1
1 =QÞð1þ tj2Qtk=zlÞ

(26)

with a more complicated prefactor fn;kðq;QÞ. It would be

interesting, generalizing the results of [12], to relate the
above integrand to the refined open BPS states.

D. C3=Z2—all chambers

The results for C3=Z2 arise similarly as those for the
conifold. Using the representation (16) and fermionic con-
struction from Sec. III B, we find

Zn ¼ Mðt1; t2Þ2
Y1

k¼1;l¼0

ð1�Qtk1t
l
2Þ�1

Y1
k�1;l�0;kþl�n

� ð1�Q�1tk1t
l
2Þ�1

¼ fnðq;QÞ
Z

DU
Y
k

Y1
j¼0

ð1þ zkt
jþ1
1 Þð1þ tj2=zkÞ

� ð1þ zkt
jþnþ1
1 =QÞð1þ tj2Q=zkÞ;

where

fnðq;QÞ ¼
�Yn
i¼1

Y1
k¼0

1

1� ti1t
k
2

��Yn
i¼1

Y1
j¼nþ1�i

1

1� ti1t
j
2=Q

�
:

In particular, in the commutative chamber n ! 1 we
get again f1 ¼ Mðt1; t2Þ. Therefore, in the commutative
chamber we get a matrix model representation of the
refined topological string amplitude
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Z ref
top ¼Mðt1; t2Þ

Y1
k¼1;l¼0

1

1�Qtk1t
l
2

¼
Z

DU
Y
k

Y1
j¼0

ð1þ zkt
jþ1
1 Þð1þ tj2=zkÞð1þ tj2Q=zkÞ:

In the limit Q ! 0 we again recover the refined
MacMahon function, as well as the expected integrand
of the C3 matrix model (20). In this case it is also straight-
forward to find more general matrix models, analogous to
(26), which would presumably be related to refined open
amplitudes.

V. DISCUSSION

In this paper we have found a free fermion, as well as a
unitary matrix model representation of refined BPS gen-
erating functions of D0- and D2-branes bound to a single
D6-brane, and, in particular, topological string amplitudes,
in toric Calabi-Yau manifolds without compact four-
cycles. We mainly considered explicit examples of C3,
conifold, and C3=Z2 geometries, as well as an arbitrary
geometry in the noncommutative chamber; however, gen-
eralization to other chambers for manifolds in this class is
straightforward. A general consequence of our results is
the fact that refined generating functions, at least for the
class of manifolds which we considered, have nice prop-
erties of ordinary matrix model expressions [13,14], such
as integrability, symplectic invariance of associated free-
energy coefficients Fg, automatic appearance of the whole

family of differentials Wg
n , etc. One advantage of our

representation is that these properties are much better
understood for ordinary matrix models, rather than for
matrix models for beta ensembles [29], which in fact are
known not to reproduce the refined topological string
amplitudes [30,31]. It is also important to understand a
difference between these two beta deformations. As fol-
lows from the results of [31], in the case of the conifold
[or five-dimensional Uð1Þ gauge theory], the four-
dimensional gauge theory limits of both deformations
agree. Understanding the origin of a discrepancy in five-
dimensional deformation should lead to interesting new
insights.

There are many other questions which require further
investigation. First, a nontrivial task is to find spectral
curves of our models. As we discussed, these would be �
deformation of curves found in a nonrefined case in [10].
Having known such curves would allow us to apply the
topological recursion to recover quantities Wg

n and Fg

explicitly from the matrix model perspective. This appears
nontrivial, in particular, due to all order gs corrections to
our potentials. However, these corrections arise from
terms involving quantum dilogarithms. Potentials which
involve quantum dilogarithms were considered also in
[5,50], where it was shown that higher gs essentially do
not modify resulting invariants, and one can effectively

consider a leading order contribution to the potential,
similar to (21) and (25) in our case. It would be interesting
to confirm if an analogous phenomenon takes place for the
potentials which we consider.
Furthermore, it would be interesting to extend our dis-

cussion to the open string case, on one hand refining the
discussion in [12] and providing an M-theory derivation of
putative open BPS generating functions, and on the other,
relating Wg

n to brane amplitudes in matrix models in the
topological string limit. In particular, this should provide a
deeper understanding of nontrivial prefactors in intermedi-
ate chambers.
It would of course be interesting to extend our results to

toric manifolds with compact four-cycles, in particular,
those related by geometric engineering to gauge theories.
This might be possible by considering more involved
crystal models, such as those in [52].
Among other questions, it is interesting what our

matrix models compute for the finite size of matrices N.
It was shown in [10] that in the nonrefined case finite N
engineers more complicated toric manifolds with an addi-
tional two-cycle (as is already the case in the Chern-
Simons matrix models [4], where a finite ’t Hooft coupling
encodes the size of the single P1 of the resolved conifold).
In particular, it is tempting to speculate whether the matrix
model (20) with finite N would also provide the refined
conifold topological string partition function.
It would also be interesting to understand the issues of

holomorphic anomaly and modularity and make contact
with discussions in [30,53,54], and more generally with the
extensive literature on refined invariants.
We hope that continuing this line of research would be a

rewarding experience.
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APPENDIX: FREE FERMION FORMALISM

In this appendix we summarize the free fermion formal-
ism used in [10,12,43]. We consider the Heisenberg alge-
bra ½�m;��n� ¼ n�m;n and define the vertex operators

��ðxÞ ¼ e

P
n>0

ðxn=nÞ��n

; �0�ðxÞ ¼ e

P
n>0

ðð�1Þn�1xn=nÞ��n

;

which satisfy the commutation relations

PIOTR SUŁKOWSKI PHYSICAL REVIEW D 83, 085021 (2011)

085021-10



�þðxÞ��ðyÞ ¼ 1

1� xy
��ðyÞ�þðxÞ;

�0þðxÞ�0�ðyÞ ¼ 1

1� xy
�0�ðyÞ�0þðxÞ;

�0þðxÞ��ðyÞ ¼ ð1þ xyÞ��ðyÞ�0þðxÞ;
�þðxÞ�0�ðyÞ ¼ ð1þ xyÞ�0�ðyÞ�þðxÞ:

These operators act on fermionic states j	i, corresponding
to two-dimensional partitions 	, as

��ðxÞj	i ¼ X

�	

xj
j�j	jj
i;

�þðxÞj	i ¼ X

	

xj	j�j
jj
i;
(A1)

�0�ðxÞj	i ¼ X

t�	t

xj
j�j	jj
i;

�0þðxÞj	i ¼ X

t	t

xj	j�j
jj
i;
(A2)

where  is the interlacing relation. We also consider vari-

ous weight operators Q̂g, with eigenvalues representing

colors and denoted qg, such that

Q̂ gj
i ¼ qj
jg j
i;

and their commutation relations with vertex operators read

�þðxÞQ̂g ¼ Q̂g�þðxqgÞ; �0þðxÞQ̂g ¼ Q̂g�
0þðxqgÞ;

(A3)

Q̂ g��ðxÞ ¼ ��ðxqgÞQ̂g; Q̂g�
0�ðxÞ ¼ �0�ðxqgÞQ̂g:

(A4)
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