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A single quantum system, such as the Unruh-DeWitt detector, can be used to determine absolute

acceleration by local measurements on a quantum field. To show this, we consider two kinematically

indistinguishable scenarios: an inertial observer, Bob, measuring the field of a uniformly accelerated

cavity, and his noninertial twin, Rob, accelerating and making measurements in a stationary cavity. We

find that these scenarios can be distinguished in the nonrelativistic regime only by measurements on

highly excited massive fields, allowing one to detect the noninertialness of the reference frame.
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A possible way to determine whether a given frame of
reference is inertial or not is by using two stationary and
initially synchronized ideal clocks at a fixed distance from
each other. If the clocks desynchronize—the frame is
inevitably noninertial [1]. In this paper we show that it is
possible to distinguish whether a reference frame is inertial
or not using a single pointlike quantum system which
measures the states of a quantum field locally. The mea-
surement outcome determines the system’s absolute
acceleration.

It is well known that uniformly accelerated observers
moving in a Minkowski vacuum perceive a thermal bath
with a temperature proportional to their acceleration [2].
However, the observation of the thermal bath is not enough
to claim that the frame of reference in which the observa-
tions are carried out is noninertial. Detection of thermal
particles could equally well indicate that the frame is
inertial, but the space is filled with thermal radiation.
Even when the accelerated Rob detects thermal radiation
and his inertial twin, Bob, claims that the field is in the
vacuum state, it is not enough to ensure that Rob is indeed
accelerated. In order to claim so, one has to consider as
well the opposite situation. The state of the field from
Bob’s perspective must be determined, when Rob claims
that the field is in the vacuum state. Only when a difference
appears between these scenarios it is possible to construct a
quantum accelerometer.

In this paper we analyze and compare both situations
considering real Klein-Gordon massive fields confined in
finite cavities and being measured by single pointlike
Unruh-DeWitt detectors [2–4]. Similar settings have been
recently considered to generate maximum entanglement
between cavity field modes [5]. The scenarios we consider
are carefully constructed in such a way that they are

possibly indistinguishable from a kinematical point of
view. We consider inertial Bob moving through Rob’s
cavity in uniform acceleration while accelerated Rob
moves through Bob’s stationary cavity, see Fig. 1. We
compare the probability of detector excitation in both
scenarios. When the probabilities differ, it is possible to
not only determine who is noninertial but also to estimate
the absolute acceleration.
In [6] the entanglement generated between two pointlike

detectors is used to distinguish between an expanding
(de Sitter) spacetime and a flat spacetime. In this scheme,
a single detector is not capable of distinguishing in which
spacetime the motion takes place. The reason for this is
that the response of the detector in the de Sitter vacuum is
identical to the response of the detector in a thermal
ensemble of fields in flat spacetime [6,7]. Interestingly,
we show that a single pointlike detector can be used to
determine whether its trajectory in flat spacetime is inertial
or not. It is not necessary to use nonlocal quantum prop-
erties, such as entanglement, to make this distinction. A
local measurement on the field is shown to be enough.
Let us consider an Unruh-DeWitt detector whose

Hamiltonian

Ĥ Ið�Þ / �ð�Þ�̂½xð�Þ�ðd̂e�i!� þ d̂yei!�Þ (1)

describes the interaction between a real scalar field �̂ of
mass m and a pointlike particle (detector) characterized

by an annihilation operator d̂. xð�Þ is the trajectory of
the detector as a function of its proper time �, ! is the
frequency between the detector’s ground and excited
states, and the window function �ð�Þ turns the
Hamiltonian on and off [8]. The field operator in

Minkowski coordinates �̂ðt; xÞ is given by

�̂ðt; xÞ ¼ X1
k¼1

FkðxÞðe�i!ktâk þ ei!ktâyk Þ; (2)
*Previously known as Fuentes-Guridi and Fuentes-Schuller.
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where FkðxÞ are normalized modes of the real massive
Klein-Gordon equation satisfying appropriate boundary
conditions, and âk are associated annihilation operators.
We consider the detector to be initially in the ground state
jgi and the field in the Fock state jn1i of the lowest-energy
mode. To first order in a perturbative expansion, the proba-
bility amplitude for the atom to undergo a transition to the
excited state jei and the field to jump to an arbitrary state
jc i, is given by

A c ¼ �i
Z 1

�1
d�hejhc jĤIð�Þjgijn1i: (3)

Therefore, the probability P ¼ P
c jAc j2 for the detector

to click yields

P / X1
k¼1
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: (4)

In the case where the cavity is stationary and the
field vanishes at x ¼ � L

2 , the normalized field modes are

given by

FkðxÞ ¼ 1ffiffiffiffiffiffiffi
k�

p sin

�
k�

xþ L=2

L

�
(5)

with corresponding frequencies !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�L Þ2 þm2

q
. We

consider Rob and his detector moving along an uniformly
accelerated trajectory xð�Þ ¼ �a�1½coshða�Þ � 1�, so that
the relation between Bob’s time t and Rob’s proper time �
is given by tð�Þ ¼ a�1 sinhða�Þ. We also choose �ð�Þ such
that the interaction is on, � ¼ 1, only while the atom is
inside the cavity, otherwise � ¼ 0. In this case, the total
probability P Rob for Rob’s detector transition (4) involves
the following limits of integration: � c

a arccoshð1þ aL
2c2
Þ.

We have numerically studied the probability P Rob as a
function of the acceleration for various settings, letting
L ¼ 1. The case when the cavity is in the vacuum state
(n1 ¼ 0) and the field mass is small (m ¼ 0:2) is repre-
sented by a solid line in Fig. 2(a). For practical purposes, it
was sufficient to truncate the series involved in calculating
(4) at a finite k, in this case being 15. When the mode of the
cavity is strongly occupied, n1 � 1, one can neglect the
contribution from the first term in the series (4) and con-
sider only the last two terms. In this case, the probability
P Rob changes its behavior, as shown with solid lines in
Fig. 2(b) for m ¼ 0:2 and Fig. 2(c) for m ¼ 2.
In the second scenario the cavity is uniformly acceler-

ated and Bob and his detector are moving freely through
the cavity. The coordinate transformation to the cavity’s
rest frame is given by the Rindler transformation

� ¼ a�1atanh
t

x
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

p
: (6)

In these coordinates the field vanishes again at the bounda-

ries of the cavity at �1;2 ¼ c2

a � L
2 and the Klein-Gordon

equation has the form

�
1

a2�2

@2

@�2
� @2

@�2
� 1

�

@

@�
þm2

�
�̂ ¼ 0: (7)

In this case the cavity modes in the coordinates ð�; �Þ are
given by

Fkð�Þ ¼ Nk½I�i�k
ðm�1ÞIi�k

ðm�Þ � Ii�k
ðm�1ÞI�i�k

ðm�Þ�;
where I�ðzÞ is the modified Bessel function of the first
kind, �k are frequencies such that the expression in the
square brackets for � ¼ �2 vanishes, and Nk are normal-
ization constants. In the massless case, the Klein-Gordon
equation is conformally invariant and the field modes in the
accelerated frame have the same form as the inertial
modes. Bob’s free trajectory according to Rob accelerating

with the cavity is given by �ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 � t2

p
for t < a�1,

i.e., before the detector falls onto Rob’s event horizon, and
relation between the Rob Rindler’s time � and Bob
Minkowski’s time t from Rob’s perspective is given by
�ðtÞ ¼ a�1atanhðatÞ. We obviously assume that the whole
cavity is above the event horizon, which boils down to the
assumption that L < 2a�1. If we choose �ðtÞ again such
that the interaction is on when Bob’s detector is inside the
cavity, the limits of integration in the equation (4) defining

FIG. 1. Inertial Bob moving through an accelerated Rob’s
cavity (dashed lines) and noninertial Rob accelerating through
stationary Bob’s cavity (solid lines) are shown.
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the probability P Bob of Bob’s detector to click effectively

become �a�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aLð1� aL=4Þp

.
In order to study the probability P Bob of Bob’s detector

to click, we have numerically evaluated the frequencies
�k and normalization constants Nk as functions of accel-
eration a. The case in which the field is in the vacuum
(n1 ¼ 0) and the mass is small (m ¼ 0:2) in this scenario is
represented by a dashed line in Fig. 2(a). We see that the
probability of detector excitation as a function of the

acceleration differs in both scenarios only in the limit of
relativistic accelerations, a� L�1. This is exactly what
should be expected in the limit of m � 1, when the
Klein-Gordon equation becomes conformally invariant.
In this case, the field operator in the coordinates ð�; �Þ,
where � ¼ a�1 loga�, takes exactly the same form as in
the coordinates ðt; xÞ, and the interaction Hamiltonian (1)
coincides in the two scenarios up to the kinematical dif-
ference between the trajectories xð�Þ, and �ðtÞ. The dis-
crepancy is related to an asymmetry of Rob’s and Bob’s
observations of the mutual trajectories when the velocities
become relativistic. We conclude from the previous analy-
sis that is not possible to determine in our scenario if a
reference frame is inertial or not using local measurements
on the field if the field is massless or, in the massive case, if
the field is in the vacuum state.
The same argument can be used to explain the similarity

between the plots of P Bob (dashed line) and P Rob (solid
line) in Fig. 2(b) drawn for small mass m ¼ 0:2 and high
excitation of the cavity field n1 � 1. Again, approximate
conformal invariance suppresses all the differences for
small accelerations. Surprisingly, the situation is radically
different when considering massive fields in highly popu-
lated field mode states. Interesting effects arise when we
depart from the regime of small mass. The analysis carried
out for m ¼ 2 shows that the two scenarios can be distin-
guished even for small accelerations, as shown in the
Fig. 2(c). The fact that in the case of high mass and no
cavity excitations there are no observable differences be-
tween P Bob and P Rob in the limit of small accelerations,
suggests that the presence of massive particles in the
system plays a crucial role in the local detection of absolute
acceleration.
Pointlike quantum systems moving in spacetime can be

used as accelerometers determining if a reference frame is
inertial or not. To demonstrate this, we propose a scheme
which involves an Unruh-DeWitt detector making mea-
surements on a cavity field. We find that it is not possible to
measure absolute acceleration in the case where the cavity
field is massless. However, the presence of the field mass
allows for the measurement of the absolute acceleration.
It is the fact that the mass breaks the conformal invariance
of the field equation that makes our scheme possible.
Interestingly, the presence of gravitational mass always
leads to spacetime curvature and consequently to the im-
possibility of defining a globally inertial frame. Therefore,
it has been interesting to find that the presence of mass is
also necessary to detect locally the absolute acceleration,
within the quantum picture.
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FIG. 2. The probability of a transition of Bob’s detector
(dashed line) and Rob’s detector (solid line) as a function of
acceleration is shown: (a) for the vacuum state of the field of the
mass m ¼ 0:2; (b) for a highly populated ground state of the
cavity and mass m ¼ 0:2; (c) for a highly populated ground state
of the cavity and mass m ¼ 2.
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