
Fermionic condensate in a conical space with a circular boundary and magnetic flux

S. Bellucci,1,* E. R. Bezerra de Mello,2,† and A.A. Saharian3,‡

1INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
2Departamento de Fı́sica, Universidade Federal da Paraı́ba 58.059-970, Caixa Postal 5.008, João Pessoa, PB, Brazil

3Department of Physics, Yerevan State University, Alex Manoogian Street, 0025 Yerevan, Armenia
(Received 26 January 2011; published 14 April 2011)

The fermionic condensate is investigated in a (2þ 1)-dimensional conical spacetime in the presence of

a circular boundary and a magnetic flux. It is assumed that on the boundary the fermionic field obeys the

MIT bag boundary condition. For irregular modes, we consider a special case of boundary conditions at

the cone apex, when the MIT bag boundary condition is imposed at a finite radius, which is then taken to

zero. The fermionic condensate is a periodic function of the magnetic flux with the period equal to the flux

quantum. For both exterior and interior regions, the fermionic condensate is decomposed into boundary-

free and boundary-induced parts. Two integral representations are given for the boundary-free part for

arbitrary values of the opening angle of the cone and magnetic flux. At distances from the boundary larger

than the Compton wavelength of the fermion particle, the condensate decays exponentially, with the decay

rate depending on the opening angle of the cone. If the ratio of the magnetic flux to the flux quantum is not

a half-integer number for a massless field the boundary-free part in the fermionic condensate vanishes,

whereas the boundary-induced part is negative. For half-integer values of the ratio of the magnetic flux to

the flux quantum, the irregular mode gives a nonzero contribution to the fermionic condensate in the

boundary-free conical space.
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I. INTRODUCTION

Field theoretical models in 2þ 1 dimensions exhibit a
number of interesting effects, such as parity violation,
flavor symmetry breaking, and fractionalization of quan-
tum numbers (see Refs. [1–7]). An important aspect is the
possibility of giving a topological mass to the gauge bosons
without breaking gauge invariance. Field theories in 2þ 1
dimensions provide simple models in particle physics, and
related theories also arise in the long-wavelength descrip-
tion of certain planar condensed matter systems, including
models of high-temperature superconductivity. An inter-
esting application of Dirac theory in 2þ 1 dimensions
recently appeared in nanophysics. In a sheet of hexagons
from the graphite structure, known as graphene, the long-
wavelength description of the electronic states can be
formulated in terms of the Dirac-like theory of massless
spinors in (2þ 1)-dimensional spacetime with the Fermi
velocity playing the role of the speed of light (for a review
see Ref. [8]). One-loop quantum effects induced by the
nontrivial topology of graphene made cylindrical and to-
roidal nanotubes have been recently considered in Ref. [9].
The vacuum polarization in graphene with a topological
defect is investigated in Ref. [10] within the framework of
a long-wavelength continuum model.

The interaction of a magnetic flux tube with a fermionic
field gives rise to a number of interesting phenomena, such

as the Aharonov-Bohm effect, parity anomalies, formation
of a condensate, and generation of exotic quantumnumbers.
For background Minkowski spacetime, the combined ef-
fects of the magnetic flux and boundaries on the vacuum
energy have been studied in Refs. [11,12]. In Ref. [13], we
have investigated the vacuum expectation value of the
fermionic current induced by the vortex configuration of a
gauge field in a (2þ 1)-dimensional conical space with a
circular boundary. On the boundary the fermionic field
obeys the MIT bag boundary condition. Continuing in this
line of investigation, in the present paper we evaluate the
fermionic condensate for the same bulk and boundary ge-
ometries. The fermionic condensate is among the most
important quantities that characterize the properties of the
quantum vacuum. Although the corresponding operator is
local, due to the global nature of the vacuum, this quantity
carries important information about the global properties of
the background spacetime. The fermionic condensate plays
an important role in the models of dynamical breaking of
chiral symmetry (see Ref. [14] for the chiral symmetry
breaking in Nambu-Jona-Lasino and Gross-Neveu models
on background of a curved spacetime with nontrivial topol-
ogy). Note that the combined effects of the topology and
boundaries on the polarization of the vacuum were studied
in Refs. [15–18] for the cases of scalar, electromagnetic and
fermionic fields. In these papers, a cylindrical boundary is
considered in the geometry of a cosmic string, assuming
that the boundary is coaxial with the string. The case of a
scalar field was considered in an arbitrary number of space-
time dimensions, whereas the problems for the electromag-
netic and fermionic fields were studied in four dimensional
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spacetime. The fermionic condensate in de Sitter spacetime
with toroidally compactified spatial dimensions has been
recently investigated in Refs. [19].

From the point of view of the physics in the region
outside the conical defect core, the geometry considered
in the present paper can be viewed as a simplified model for
the nontrivial core. This model presents a framework in
which the influence of the finite core effects on physical
processes in the vicinity of the conical defect can be
investigated. In particular, it enables us to specify condi-
tions under which the idealized model with the core of zero
thickness can be used. The corresponding results may shed
light upon features of finite core effects in more realistic
models, including those used for defects in crystals and
superfluid helium. In addition, the problem considered here
is of interest as an example with combined topological and
boundary-induced quantum effects, in which the vacuum
characteristics can be found in closed analytic form.

The results obtained in the present paper can be applied
for the evaluation of the fermionic condensate in graphitic
cones. Graphitic cones are obtained from the graphene
sheet if one or more sectors are excised. The opening angle
of the cone is related to the number of sectors removed,Nc,
by the formula 2�ð1� Nc=6Þ, with Nc ¼ 1; 2; . . . ; 5 (for
the electronic properties of graphitic cones see, e.g., [20]
and references therein). All these angles have been
observed in experiments [21]. Note that the fermionic
condensate in cylindrical and toroidal carbon nanotubes
has been investigated in Ref. [9] within the framework of
the Dirac-like theory for the electronic states in graphene
sheet.

The organization of the paper is as follows. In the next
section, we evaluate the fermionic condensate (FC) in a
boundary-free conical space with an infinitesimally thin
magnetic flux placed at the apex of the cone. A special case
of boundary conditions at the cone apex is considered,
when the MIT bag boundary condition is imposed at a
finite radius, which is then taken to zero. Two integral
representations are provided for the renormalized FC. A
simple expression is found for the special case of the
magnetic flux. In Sec. III, we consider the FC in the region
inside a circular boundary with the MIT bag boundary
condition. The condensate is decomposed into boundary-
free and boundary-induced parts. A rapidly convergent
integral representation for the latter is obtained. A similar
investigation for the region outside a circular boundary is
presented in Sec. IV. A special case with half-integer
values of the ratio of the magnetic flux to the quantum
one is discussed in Sec. V. The main results are summa-
rized in Sec. VI.

II. FERMIONIC CONDENSATE IN THE
BOUNDARY-FREE GEOMETRY

Let us consider a two-component spinor field c on
the background of a (2þ 1)-dimensional conical

spacetime. The corresponding line element is given by
the expression

ds2 ¼ g��dx
�dx� ¼ dt2 � dr2 � r2d�2; (2.1)

where r � 0, 0 � � � �0, and the points ðr;�Þ and
(r, �þ�0) are to be identified. In the discussion below,
in addition to �0, we use the notation

q ¼ 2�=�0: (2.2)

In the presence of the external electromagnetic field with
the vector potential A�, the dynamics of the field is gov-

erned by the Dirac equation

i��ðr�þ ieA�Þc �mc ¼0; r�¼@�þ��; (2.3)

where �� ¼ e�ðaÞ�
ðaÞ are the 2� 2 Dirac matrices in polar

coordinates and e
�
ðaÞ, a ¼ 0, 1, 2, is the basis tetrad. The

operator of the covariant derivative in Eq. (2.3) is defined
by the relation

r� ¼ @� þ 1

4
�ðaÞ�ðbÞe�ðaÞeðbÞ�;�; (2.4)

where ‘‘;’’ means the standard covariant derivative for
vector fields. In (2þ 1)-dimensional spacetime there are
two inequivalent irreducible representations of the Clifford
algebra. Here we choose the flat space Dirac matrices in the

form �ð0Þ ¼ �3, �ð1Þ ¼ i�1, �ð2Þ ¼ i�2, with �l being
Pauli matrices. In the second representation the gamma

matrices can be taken as �ð0Þ ¼ ��3, �
ð1Þ ¼ �i�1, �

ð2Þ ¼
�i�2. The corresponding results for the second represen-
tation are obtained by changing the sign of the mass,
m! �m. Note that there is no other 2� 2 matrix which

anticommutes with all �ðaÞ, and, hence, we have no chiral
symmetry that would be broken by a mass term in two-
dimensional representation.
Our interest in the present paper is the FC, h0j �c c j0i ¼

h �c c i, with j0i being the vacuum state, in the conical space
with a circular boundary. Here and in what follows �c ¼
c y�0 is the Dirac adjoint and the dagger denotes
Hermitian conjugation. We assume the magnetic field con-
figuration corresponding to a infinitely thin magnetic flux
located at the apex of the cone. This will be implemented
by considering the vector potential A� ¼ ð0; 0; AÞ for

r > 0. The quantity A is related to the magnetic flux �
by the formula A ¼ ��=�0.
First, we consider the FC in a boundary-free conical

space. It can be evaluated by using the mode-sum formula

h �c c i ¼X
�

�c ð�Þ� c ð�Þ� ; (2.5)

where fc ðþÞ� ; c ð�Þ� g is a complete set of positive and nega-
tive energy solutions to the Dirac equation specified by
quantum numbers �. As it is well known, the theory of
von Neumann deficiency indices leads to a one-parameter
family of allowed boundary conditions in the background
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of an Aharonov-Bohm gauge field [22]. Here we consider a
special case of boundary conditions at the cone apex, when
the MIT bag boundary condition is imposed at a finite
radius, which is then taken to zero. The FC for other
boundary conditions on the cone apex are evaluated in a
way similar to that described below. The contribution of
the regular modes is the same for all boundary conditions
and the results differ by the parts related to the irregular
modes.

In the boundary-free conical space the eigenspinors are
specified by the set � ¼ ð�; jÞ of quantum numbers with
0 � � <1 and j ¼ �1=2;�3=2; . . . . For j � �e�=2�,
the corresponding normalized negative-energy eigenspi-
nors have the form [13]

c ð�Þð0Þ�j ¼
�
�
Eþm

2�0E

�
1=2

e�iqj�þiEt
��je

�iq�=2

Eþm J�jþ�jð�rÞ
J�j
ð�rÞeiq�=2

0
@

1
A;

(2.6)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
, J�ðxÞ is the Bessel function.

The order of the Bessel function in (2.6) is given by the
expression

�j ¼ qjjþ 	j � �j=2; q ¼ 2�=�0; (2.7)

with

	 ¼ eA=q ¼ �e�=2�; (2.8)

and we have defined

�j ¼
�
1; j >�	
�1; j <�	 : (2.9)

The expression for the positive energy eigenspinor is found

from (2.6) by using the relation c ðþÞ�j ¼ �1c
ð�Þ�
�j , where

the asterisk means complex conjugate. Here we assume
that the parameter 	 is not a half integer. The special case
of half integer 	 will be considered separately in Sec. V.

Substituting the eigenspinors (2.6) into the mode-sum
(2.5), for the FC in a boundary-free conical space one finds

h �c c i0 ¼ q

4�

X
j

Z 1
0

d�
�

E
½ðE�mÞJ2�jþ�jð�rÞ

� ðEþmÞJ2�j
ð�rÞ�; (2.10)

where
P

j means the summation over j ¼ �1=2;
�3=2; . . . . Of course, the expression on the right-hand
side of this formula is divergent and needs to be regular-

ized. We introduce a cutoff function e�s�2
with the cutoff

parameter s > 0. At the end of calculations the limit s! 0
is taken. The corresponding regularized expectation value
is presented in the form

h �c c i0;reg ¼ q

4�

X
j

Z 1
0

d��e�s�2½J2�jþ�jð�rÞ � J2�j
ð�rÞ�

� qm

4�

X
j

Z 1
0

d�
�e�s�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p ½J2�jþ�jð�rÞ

þ J2�j
ð�rÞ�: (2.11)

The � integral in the first term on the right-hand side is
expressed in terms of the modified Bessel function I�ðxÞ. In
the second term we use the relation

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p ¼ 2ffiffiffiffi
�
p

Z 1
0

dte�ð�2þm2Þt2 (2.12)

and change the order of integrations. After the evaluation
of the � integral, the regularized FC is presented in the
form

h �c c i0;reg ¼ qe�r2=2s

8�s

X
j

½I�jþ�jðr2=2sÞ � I�j
ðr2=2sÞ�

� qmem
2s

2ð2�Þ3=2
X
j

Z r2=2s

0
dx

x�1=2e�m2r2=2x�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2xs
p

� ½I�jþ�jðxÞ þ I�j
ðxÞ�: (2.13)

Before further considering the FC for the general case of
the parameters characterizing the conical structure and the
magnetic flux, we study a special case, which allows us to
obtain a simple expression.

A. Special case

In the special case with q being an integer and

	 ¼ 1=2q� 1=2; (2.14)

the orders of the modified Bessel functions in Eq. (2.13)
become integer numbers: �j ¼ qjnj, j ¼ nþ 1=2.

The series over n is summarized explicitly by using the
formula [23]

X1
n¼0

0
IqnðxÞ ¼ 1

2q

Xq�1
k¼0

ex cosð2�k=qÞ; (2.15)

where the prime means that the term n ¼ 0 should be
halved. For the regularized FC we find the expression1

1Under the condition (2.14), the induced fermionic current in a
higher-dimensional cosmic string spacetime has been analyzed
in [24].
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h �c c i0;reg ¼ � 1

4�s

Xq�1
k¼1

sin2ð�k=qÞe�2ðr2=2sÞsin2ð�k=qÞ

� mem
2s

ð2�Þ3=2
Xq�1
k¼0

cos2ð�k=qÞ

�
Z r2=2s

0
dx

x�1=2e�m2r2=2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2xs
p e�2xsin2ð�k=qÞ:

(2.16)

The first term on the right-hand side of this formula van-
ishes in the limit s! 0. In the second term, the only
divergent contribution in the limit s! 0 comes from the
k ¼ 0 term. This term coincides with the regularized FC in
the Minkowski spacetime, in the absence of the magnetic
flux. Subtracting this contribution and taking the limit
s! 0, for the renormalized FC, we find

h �c c i0;ren¼� m

4�r

Xq�1
k¼1

cos2ð�k=qÞ
sinð�k=qÞ e

�2mrsinð�k=qÞ: (2.17)

Note that the renormalized FC vanishes for a massless
field and for a massive field in a conical space with
q ¼ 2. For other cases the FC is negative. As expected,
it decays exponentially at distances larger than the
Compton wavelength of the fermionic particle. In Fig. 1,
the FC is plotted versus mr for different values of q. The
corresponding values of the parameter 	 are found from
Eq. (2.14).

B. General case

For the general case of the parameters q and 	, as it is
seen from (2.13), the regularized FC is expressed in terms
of the series

I ðq;	; zÞ ¼X
j

I�j
ðzÞ: (2.18)

We present the parameter	, related to the magnetic flux by
Eq. (2.8), in the form

	 ¼ 	0 þ n0; j	0j< 1=2; (2.19)

with being n0 an integer number. Now, Eq. (2.18) is written
as

I ðq; 	; zÞ ¼ X1
n¼0
½Iqðnþ	0þ1=2Þ�1=2ðzÞ

þ Iqðn�	0þ1=2Þþ1=2ðzÞ�; (2.20)

which explicitly shows the independence of the series on
n0. Note that, for the second series appearing in the ex-
pression of the FC, we haveX

j

I�jþ�jðzÞ ¼ Iðq;�	0; zÞ: (2.21)

From these relations we conclude that the FC depends on
	0 alone, and, hence, it is a periodic function of 	 with
period 1.
In terms of the function (2.18), the expression (2.13) for

the regularized FC is written as

h �c c i0;reg¼�qe�r2=2s

8�s

X

¼�1


Iðq;
	0;r
2=2sÞ� qmem

2s

2ð2�Þ3=2

�
Z r2=2s

0
dx

x�1=2e�m2r2=2x�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�2xs
p X


¼�1
Iðq;
	0;xÞ:

(2.22)

For 2p < q < 2pþ 2, with p being an integer, we use the
representation [13]

I ðq; 	0; zÞ ¼ ez

q
þ J ðq;	0; zÞ; (2.23)

with the notation

J ðq;	0;zÞ¼� 1

�

Z 1
0
dy

e�zcoshyfðq;	0;yÞ
coshðqyÞ�cosðq�Þ

þ2

q

Xp
l¼1
ð�1Þlcos½2�lð	0�1=2qÞ�ezcosð2�l=qÞ:

(2.24)

The function in the integrand is defined by the expression

fðq; 	0; yÞ ¼ cos½q�ð1=2� 	0Þ� cosh½ðq	0 þ q=2

� 1=2Þy� � cos½q�ð1=2þ 	0Þ�
� cosh½ðq	0 � q=2� 1=2Þy�: (2.25)

In the case q ¼ 2p, the term

� ð�1Þq=2 e
�z

q
sinðq�	0Þ (2.26)

q 9

6

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.4

0.3

0.2

0.1

0.0

mr

m
2

0,
re

n

FIG. 1. The fermionic condensate in a boundary-free conical
space, as a function of mr, for the special case of integer values
of q, with the magnetic flux defined by Eq. (2.14).
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should be added to the right-hand side of Eq. (2.24). For
1 � q < 2, the last term on the right-hand side of
Eq. (2.24) is absent.

In the limit s! 0, the only divergent contributions to

the functions e�r2=2sIðq;�	0; r
2=2sÞ=s come from the

first term in the right-hand side of Eq. (2.23). The contri-
bution of this term to the FC does not depend on 	0, and,
consequently, the divergences are cancelled in the evalu-
ation of the first term in the right-hand side of (2.22). This
term vanishes in the limit s! 0, and, hence, it does not
contribute to the renormalized FC. Substituting (2.23) into
the second term in the right-hand side of Eq. (2.22), we see
that the only divergent contribution comes from the term
ez=q. This contribution does not depend on the opening
angle of the cone and on the magnetic flux. It coincides
with the corresponding quantity in the Minkowski space-
time, in the absence of the magnetic flux. Subtracting the
Minkowskian part and taking the limit s! 0 for the re-
normalized FC, we find

h �c c i0;ren ¼ � qm

2ð2�Þ3=2r
Z 1
0

dxx�1=2e�m2r2=2x�x

� X

¼�1

J ðq; 
	0; xÞ: (2.27)

Note that in the case q ¼ 2p the contribution of the addi-
tional term (2.26) to the renormalized FC vanishes.

By taking into account Eq. (2.24), the integration over x
in Eq. (2.27) is performed explicitly and one finds the
following formula

h �c c i0;ren¼ m

2�r

8<
:�X

p

l¼1
ð�1Þl cotð�l=qÞ

e2mrsinð�l=qÞ cosð2�l	0Þ

þ q

4�

Z 1
0
dy

e�2mrcoshðy=2Þ

coshðy=2Þ

P

¼�1

fðq;
	0;yÞ
coshðqyÞ�cosðq�Þ

9=
;;

(2.28)

where p is an integer defined by 2p � q < 2pþ 2. Note
that the sum in the integrand may be written in the formX


¼�1
fðq; 
	0; yÞ

¼ �2 sinhðy=2Þ X

¼�1

cos½q�ð1=2þ 
	0Þ�

� sinh½qð1=2� 
	0Þy�: (2.29)

For integer q and for the parameter 	 given by the special
value (2.14), from (2.28) we obtain the result (2.17). At
distances larger than the Compton wavelength of the spinor
particle, mr� 1, the FC is suppressed by the factor e�2mr

for 1 � q � 2 and by the factor e�2mr sinð�=qÞ for q > 2. In
the latter case, the main contribution comes from the first
term in the figure braces of the right-hand side in Eq. (2.28):

h �c c i0;ren	mcosð2�	0Þ
2�r

cotð�=qÞ
e2mrsinð�=qÞ ; mr�1: (2.30)

In the special case when the magnetic flux is absent, we
have 	0 ¼ 0 and the general formula (2.28) simplifies to

h �c c i0;ren ¼ � m

2�r

�Xp
l¼1
ð�1Þl cotð�l=qÞ

e2mr sinð�l=qÞ

þ 2q

�
cosðq�=2Þ

�
Z 1
0

dx
sinhðqxÞ tanhðxÞe�2mr coshx

coshð2qxÞ � cosðq�Þ
�
: (2.31)

In this case the FC is only a consequence of the conical
structure of the space. For odd values of the parameter q
the second term in the figure braces vanishes and for the FC
we have the simple formula

h0j �c c j0i0;ren ¼ � m

2�r

Xðq�1Þ=2
l¼1
ð�1Þl cotð�l=qÞ

e2mr sinð�l=qÞ : (2.32)

Another limiting case corresponds to the magnetic flux in
background of Minkowski spacetime. In this case, taking
q ¼ 1, from Eq. (2.28) we find

h �c c i0;ren ¼ �m sinð�	0Þ
2�2r

Z 1
0

dx
sinhx

cosh2x

sinhð2	0xÞ
e2mr coshx

;

(2.33)

and the FC is negative for 	0 � 0.
In Fig. 2, the fermionic condensate is plotted as a

function of the magnetic flux for a massive fermionic field
in conical spaces with �0 ¼ � (left plot) and �0 ¼ �=2
(right plot). Note that for q ¼ 2 the first term in figure
braces of (2.28) vanishes and the second term contains the
factor cosð2�	0Þ. Consequently, in this case the FC van-
ishes at 	0 ¼ �=4.
An alternative expression for the FC is obtained by using

the formula [13]

Iðq; 	0; xÞ ¼ Aðq; 	0; xÞ þ 2

q

Z 1
0

dzIzðxÞ

� 4

�q

Z 1
0

dzRe

�
sinhðz�ÞKizðxÞ

e2�ðzþijq	0�1=2jÞ=q þ 1

�
;

(2.34)

with Aðq; 	0; xÞ ¼ 0 for j	0 � 1=2qj � 1=2, and

Aðq; 	0; xÞ ¼ 2

�
sin½�ðjq	0 � 1=2j � q=2Þ�

� Kjq	0�1=2j�q=2ðxÞ (2.35)

for 1=2< j	0 � 1=2qj< 1. Substituting the representa-
tion (2.34) into the expression (2.22) for the regularized
FC, we see that the part with the second term on the right-
hand side of (2.34) does not depend on the opening angle of
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the cone and on the magnetic flux. It is the same as in the
Minkowski bulk in the absence of the magnetic flux, and,
hence, it should be subtracted in the renormalization pro-
cedure. Subtracting the part corresponding to q ¼ 1 and
	0 ¼ 0, in the remaining part the limit s! 0 can be taken
directly. The first term on the right-hand side of Eq. (2.22)
vanishes in this limit, and for the renormalized FC we find
the representation

h �c c i0;ren ¼ � 2m

ð2�Þ5=2r
Z 1
0

dxx�1=2e�m2r2=2x�x

� ½qBðqðj	0j � 1=2Þ þ 1=2; xÞ
� 2

Z 1
0

dzKizðxÞhðq; 	0; zÞ�: (2.36)

In this formula we have used the notations

hðq;	0;zÞ¼
X


¼�1
Re

�
sinhðz�Þ

e2�ðzþijq
	0�1=2jÞ=qþ1
þsinhðz�Þ

e2�z�1

�
(2.37)

and

Bðy; xÞ ¼
�
0; y � 0;
sinð�yÞKyðxÞ y > 0:

(2.38)

The representation (2.36) is valid for conical spaces with
q < 4. For special values q ¼ 2 and 	0 ¼ 1=4, by taking
into account that hð2; 1=4; zÞ ¼ 0, we see that the FC
defined by (2.36) vanishes.

In the case of a magnetic flux in the background of the
Minkowski spacetime (q ¼ 1), we find

h �c c i0;ren ¼ � 2m sinð�j	0jÞ
ð2�Þ5=2r

Z 1
0

dxx�1=2e�m2r2=2x�x

�
�
K	0
ðxÞ � 4 sinð�j	0jÞ

�
Z 1
0

dz
KizðxÞ coshð�zÞ

coshð2�zÞ � cosð2�	0Þ
�
:

(2.39)

For a conical space in the absence of the magnetic flux the
general formula reduces to

h �c c i0;ren¼ 4m

ð2�Þ5=2r
Z 1
0
dxx�1=2e�m2r2=2x�xZ 1

0
dzKizðxÞ

�coshð�zÞcosð�=qÞþcosh½�zð2=q�1Þ�
coshð2�z=qÞþcosð�=qÞ :

(2.40)

For q ¼ 2 the integral over z is evaluated explicitly (see,
for instance, [23]), and we get a simple expression
h �c c i0;ren ¼ ðm=�Þ2 R11 dtK1ð2mrtÞ=t. Recall that for

odd values of q we have the simple formula (2.32). For
the second representation of the Clifford algebra the re-
normalized FC in a boundary-free conical space changes
the sign.
We can generalize the results given above for a more

general situation where the spinor field c obeys quasiperi-
odic boundary condition along the azimuthal direction

c ðt; r; �þ�0Þ ¼ e2�i�c ðt; r; �Þ; (2.41)

with a constant parameter �, j�j � 1=2. With this condi-
tion, the exponential factor in the expression for the

eigenspinors (2.6) has the form e�iqðnþ�Þ�þiEt. The corre-
sponding expression for the eigenfunctions is obtained
from that given above with the parameter 	 defined by

	 ¼ �� e�=2�: (2.42)

mr 1

1.5

2

q 2

0.4 0.2 0.0 0.2 0.4
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FIG. 2. The FC as a function of the magnetic flux for a massive fermionic field in boundary-free conical spaces with q ¼ 2 (left plot)
and q ¼ 4 (right plot).
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The same replacement generalizes the expression of the FC
for the case of a field with periodicity condition (2.41).

In general, the fermionic modes in the background of the
magnetic vortex are divided into two classes, regular and
irregular (square integrable) ones. In the problem under
consideration, for given q and 	, the irregular mode cor-
responds to the value of j for which qjjþ 	j< 1=2. If we
present the parameter 	 in the form (2.19), then the irregu-
lar mode is present if j	0j> ð1� 1=qÞ=2. This mode
corresponds to j ¼ �n0 � sgnð	0Þ=2. Note that, in a coni-
cal space, under the condition j	0j � ð1� 1=qÞ=2, there
are no square integrable irregular modes. As we have
already mentioned, there is a one-parameter family of
allowed boundary conditions for irregular modes. These
modes are parametrized by the angle �, 0 � � < 2� (see
Ref. [22]). For j	0j< 1=2, the boundary condition, used in
deriving eigenspinors (2.6), corresponds to � ¼ 3�=2. If 	
is a half integer, the irregular mode corresponds to j ¼ �	
and for the corresponding boundary condition one has
� ¼ 0. Note that in both cases there are no bound states.

III. FERMIONIC CONDENSATE INSIDE A
CIRCULAR BOUNDARY

In this section, we consider the change in the FC induced
by a circular boundary concentric with the apex of the
cone. We assume that the field obeys the MIT bag bound-
ary condition on the circle with radius a:

ð1þ in��
�Þc jr¼a ¼ 0; (3.1)

where n� is the outward oriented normal (with respect to

the region under consideration) to the boundary. For the
interior region, n� ¼ 
1

�. In this region, the negative-

energy eigenspinors are given by the expression [13]

c ð�Þ�j ¼ ’0e
�iqj�þiEt

�j�e
�iq�=2

Eþm J�jþ�jð�rÞ
eiq�=2J�j

ð�rÞ

0
@

1
A; (3.2)

with the same notations as in Eq. (2.6). From the boundary
condition at r ¼ a, we find that the eigenvalues of � are
solutions of the equation

J�j
ð�aÞ � ��jJ�jþ�jð�aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þm2
p þm

¼ 0: (3.3)

For a given �j, Eq. (3.3) has an infinite number of

solutions, which we denote by �a ¼ ��j;l, l ¼ 1; 2; . . . .

The normalization coefficient in Eq. (3.2) is given by the
expression

’2
0 ¼

yT�j
ðyÞ

2�0a
2

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

p ; (3.4)

with the notations � ¼ ma and

T�j
ðyÞ ¼ y

J2�j
ðyÞ

�
y2 þ ð�� �j�jÞ

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

q �

� y2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

p ��1
: (3.5)

Substituting the eigenspinors (3.2) into the mode-sum
formula

h �c c i ¼X
j

X1
l¼1

�c ð�Þ�j c
ð�Þ
�j ; (3.6)

for the FC we find

h �c c i¼ q

4�a2
X
j

X1
l¼1

yT�j
ðyÞ
��

1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þ�2

p �
J2�jþ�jðyr=aÞ

�
�
1þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2þ�2
p �

J2�j
ðyr=aÞ

�
; (3.7)

with y ¼ ��j;l. Here we assume that a cutoff function is

introduced without explicitly writing it. The specific form
of this function is not important for the discussion below.
For the summation of the series over l in Eq. (3.7), we

use the summation formula (see [25,26])

X1
l¼1

fð��j;lÞT�ð��j;lÞ

¼
Z 1
0

dxfðxÞ � 1

�

Z 1
0

dx

�
e��j�ifðxe�i=2Þ

�
KðþÞ�j
ðxÞ

IðþÞ�j
ðxÞ þ e�j�ifðxe��i=2Þ

KðþÞ��j
ðxÞ

IðþÞ��j
ðxÞ

�
; (3.8)

where the asterisk means complex conjugate. In this for-
mula, for a given function FðxÞ, we use the notation

FðþÞðxÞ¼
8><
>:
xF0ðxÞþ

�
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�x2
p ��j�j

�
FðxÞ; x<�;

xF0ðxÞþ
�
�þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2��2

p ��j�j

�
FðxÞ; x��:

(3.9)

Note that for x < � one has FðþÞ�ðxÞ ¼ FðþÞðxÞ. The ratio
of the combinations of the modified Bessel functions in
Eq. (3.8) may be presented in the form

KðþÞ�j
ðxÞ

IðþÞ�j
ðxÞ ¼

WðþÞ�j;�jþ�jðxÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=x2

p
x½I2�j

ðxÞ þ I2�jþ�jðxÞ� þ 2�I�j
ðxÞI�jþ�jðxÞ

;

(3.10)

with the notation defined by
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Wð�Þ�j;�jþ�jðxÞ ¼ x½I�j
ðxÞK�j

ðxÞ � I�jþ�jðxÞK�jþ�jðxÞ�
��½I�jþ�jðxÞK�j

ðxÞ � I�j
ðxÞK�jþ�jðxÞ�:

(3.11)

The notation with the lower sign will be used below.
Applying to the series over l in Eq. (3.7) the summation

formula and comparing with Eq. (2.10), we see that the
term in the FC corresponding to the first integral in the
right-hand side of Eq. (3.8) coincides with the condensate
in a boundary-free conical space. As a result, the FC is
presented in the decomposed form

h �c c i ¼ h �c c i0;ren þ h �c c ib; (3.12)

where h �c c ib is the part induced by the circular boundary.
For the function fðxÞ corresponding to Eq. (3.7), in the
second term on the right-hand side of Eq. (3.8), the part of
the integral over the region ð0; �Þ vanishes. Consequently,
the boundary-induced contribution for the FC in the region
inside the circle is given by the expression

h �c c ib ¼ q

2�2

X
j

Z 1
m

dxx

8<
:mI2�j

ðxrÞ � I2�jþ�jðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2
p

� Re½KðþÞ�j
ðxaÞ=IðþÞ�j

ðxaÞ� � ½I2�j
ðxrÞ

þ I2�jþ�jðxrÞ� Im½KðþÞ�j
ðxaÞ=IðþÞ�j

ðxaÞ�
9=
;: (3.13)

The real and imaginary parts appearing in this equation are
easily obtained from Eq. (3.10). Note that under the change
	! �	, j! �j, we have�j ! �j þ �j,�j þ �j ! �j.

From here it follows that the real/imaginary part in
Eq. (3.13) is an odd/even function under this change.
Now, from Eq. (3.13), we see that the boundary-induced
part in the FC is an even function of 	. For points away
from the circular boundary and the cone apex, the
boundary-induced contribution is finite and the renormal-
ization is reduced to that for the boundary-free geometry.
This contribution is a periodic function of the parameter 	
with the period equal to 1. So, if we present this parameter
in the form (2.19) with n0 being an integer, then the FC
depends on 	0 alone.

In the case of a massless field, the expressions for the
boundary-induced part in the FC takes the form

h �c c ib ¼ � q

2�2a2

X
j

Z 1
0

dz
I2�j
ðzr=aÞ þ I2�jþ�jðzr=aÞ
I2�j
ðzÞ þ I2�jþ�jðzÞ

:

(3.14)

As it is seen, this part is always negative. We would like to
point out that the boundary-induced FC does not vanish for
a massless filed. The corresponding boundary-free part
vanishes, and, hence, for a massless field h �c c i ¼ h �c c ib.

Various special cases of the general formula (3.13) can
be considered. In the absence of the magnetic flux one has

	 ¼ 0 and the contributions of the negative and positive
values of j to the FC coincide. The corresponding formulas
are obtained from (3.13) and (3.14), making the replace-
ments X

j

! 2
X

j¼1=2;3=2;...
;

�j ! qj� 1=2; �j þ �j ! qjþ 1=2:

(3.15)

In the case q ¼ 1, we obtain the FC induced by the
magnetic flux and a circular boundary in the Minkowski
spacetime. And finally, in the simplest case 	 ¼ 0 and
q ¼ 1 one has h �c c i0;ren ¼ 0, and the expression (3.13)

gives the FC induced by a circular boundary in the
Minkowski bulk:

h �c c i¼ 1

�2a2
X1
n¼0

Z 1
�

dx

I2nðxÞþI2nþ1ðxÞþ2�InðxÞInþ1ðxÞ=x

�
8<
:�WðþÞn;nþ1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2��2
p ½I2nðxr=aÞ�I2nþ1ðxr=aÞ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=x2

q
½I2nðxr=aÞþI2nþ1ðxr=aÞ�

9=
;; (3.16)

where the function WðþÞn;nþ1ðxÞ is defined by Eq. (3.10).

Now we turn to the investigation of the FC in asymptotic
regions of the parameters. For large values of the circle
radius, we replace the modified Bessel functions in
Eq. (3.13) with xa in their arguments, by asymptotic ex-
pansions for large values of the argument. In the case of a
massive field, the dominant contribution to the integral
comes from the integration range near the lower limit. In
the leading order, one has

h �c c ib 	 qm2e�2ma

8
ffiffiffiffi
�
p ðmaÞ3=2

X
j

�j½�jI
2
�jþ�jðmrÞ

� ð�j þ �jÞI2�j
ðmrÞ�; (3.17)

and for a fixed value of the radial coordinate, the boundary-
induced FC is exponentially small.
For a massless field, assuming r=a
 1, we expand the

modified Bessel function in the numerator of the integrand
in Eq. (3.14) in powers of r=a. The dominant contribution
comes from the term j ¼ 1=2 for	0 < 0 and from the term
j ¼ �1=2 for 	0 > 0. To the leading order we find

h �c c ib 	 � q

2�2a2
ðr=2aÞ2q	�1
�2ðq	 þ 1=2Þ

�
Z 1
0

dz
z2q	�1

I2q	þ1=2ðzÞ þ I2q	�1=2ðzÞ
; (3.18)

where q	 is defined by the relation
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q	 ¼ qð1=2� j	0jÞ: (3.19)

Hence, for a massless field the FC decays as a�ð2q	þ1Þ.
For points near the apex of the cone, r! 0, we use the

expansion of the modified Bessel function for small values
of the argument. The leading term in the boundary-induced
FC takes the form

h �c c ib
	 q

2�2a2
ðr=2aÞ2q	�1
�2ðq	þ1=2Þ

Z 1
�
dz

z2q	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2��2

p
� �WðþÞq	�1=2;q	þ1=2ðzÞ�ðz2��2Þ=z
z½I2q	�1=2ðzÞþI2q	þ1=2ðzÞ�þ2�Iq	�1=2ðzÞIq	þ1=2ðzÞ

:

(3.20)

Note that for a massless field this expression reduces to
Eq. (3.18). As it is seen, in the limit r! 0 the boundary-
induced part vanishes when j	0j< 1=2� 1=ð2qÞ and di-
verges for j	0j> 1=2� 1=ð2qÞ. Notice that in the former
case the irregular mode is absent and the divergence in the
latter case comes from the irregular mode. For the mag-
netic vortex in the background Minkowski spacetime, the

boundary-induced contribution diverges as r�2j	0j. In the
case j	0j ¼ 1=2� 1=ð2qÞ, corresponding to q	 ¼ 1=2,
the boundary-induced FC tends to a finite limiting value.

The boundary-induced part in the FC diverges on the
circle. For points near the circle the main contribution to
Eq. (3.14) comes from large values of j. Introducing a new
integration variable y ¼ z=�j, we use the uniform asymp-

totic expansion for the modified Bessel function for large
values of the order. To the leading order in the expansion
over ð1� r=aÞ one finds the behavior

h �c c ib 	 � 1

8�ða� rÞ2 : (3.21)

This leading term does not depend on the opening angle of
the cone and on the magnetic flux. It coincides with the
corresponding term for the FC in the geometry of a circle in
(2þ 1)-dimensional Minkowski spacetime. This asymp-
totic behavior is well seen in Fig. 3, where the dependence
of the FC on the radial coordinate is presented for a
massless fermionic field for various values of the parame-
ter q. The left/right plot corresponds to the value of the
parameter	0 ¼ 0=	0 ¼ 0:4. Note that, in accordance with
the asymptotic analysis given above, for 	0 ¼ 0:4 the FC
diverges at the cone apex for q < 5, vanishes for q > 5, and
takes a finite value for q ¼ 5. In particular, for q ¼ 10 one
has h �c c i / r in the limit r! 0. These properties are well
seen from the right plot of Fig. 3.
In Fig. 4, we present the condensate for a massless

fermionic field inside a circular boundary as a function
of the magnetic flux. The graphs are plotted for r=a ¼ 0:5
and for several values of the opening angle of the conical
space. Recall that for a massless field the boundary-free
part in the FC vanishes.
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FIG. 3. The FC inside a circular boundary as a function of the radial coordinate for a massless fermionic field.
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FIG. 4. The FC for a massless field inside a circular boundary
as a function of 	0.
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IV. FERMIONIC CONDENSATE IN THE
EXTERIOR REGION

In the region outside a circular boundary the negative-
energy eigenspinors, obeying the boundary condition (3.1)
with n� ¼ �
1

�, have the form [13]

c ð�Þ�j ðxÞ¼c0e
�iqj�þiEt

��je
�iq�=2

Eþm g�j;�jþ�jð�a;�rÞ
g�j;�j

ð�a;�rÞeiq�=2

0
@

1
A; (4.1)

with the function

g�;ðx; yÞ ¼ �Yð�Þ� ðxÞJðyÞ � �Jð�Þ� ðxÞYðyÞ; (4.2)

and Y�ðxÞ being the Neumann function. The barred nota-
tion in Eq. (4.2) is defined by the relation

�Fð�Þ�j
ðzÞ¼��jzF�jþ�jðzÞ�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ�2

q
þ�

�
F�j
ðzÞ; (4.3)

with F ¼ J; Y and � ¼ ma. The normalization coefficient
is given by the expression

c20 ¼
2E�

�0ðEþmÞ ½
�Jð�Þ2�j
ð�aÞ þ �Yð�Þ2�j

ð�aÞ��1: (4.4)

The positive-energy eigenspinors are found with the help

of the relation c ðþÞ�n ¼ �1c
ð�Þ�
�n . Note that for the region

under consideration the conical singularity is excluded by
the boundary and all modes described by eigenspinors (4.1)
are regular.

Substituting the eigenspinors into the mode-sum for-
mula (2.5), the FC is written in the form

h �c c i
¼ q

4�

X
j

Z 1
0
d�

�

E

�
ðE�mÞg2�j;�jþ�jð�a;�rÞ�ðEþmÞg2�j;�j

ð�a;�rÞ
�Jð�Þ2�j
ð�aÞþ �Yð�Þ2�j

ð�aÞ :

(4.5)

As before, we assume the presence of a cutoff function
which makes the expression on the right-hand side of
Eq. (4.5) finite. Similar to the interior region, the FC out-
side a circular boundary may be written in the decomposed
form (3.12).

In order to find an explicit expression for the boundary-
induced part, we note that the boundary-free part is given
by Eq. (2.10). For the evaluation of the difference between
the total FC and the boundary-free part, we use the identity

g2�j;�
ðx; yÞ

�Jð�Þ2�j
ðxÞ þ �Yð�Þ2�j

ðxÞ � J2�ðyÞ ¼ �
1

2

X
l¼1;2

�Jð�Þ�j
ðxÞ

�Hð�;lÞ�j
ðxÞH

ðlÞ2
� ðyÞ;

(4.6)

with � ¼ �j, �j þ �j, and with HðlÞ� ðxÞ being the Hankel

function. For the boundary-induced part in the FC, we find
the expression

h �c c ib ¼ � q

8�

X
j

X
l¼1;2

Z 1
0

d�
�

E

�Jð�Þ�j
ð�aÞ

�Hð�;lÞ�j
ð�aÞ

� ½ðE�mÞHðlÞ2�jþ�jð�rÞ � ðEþmÞHðlÞ2�j
ð�rÞ�:

(4.7)

In the complex plane �, the integrand of the term with
l ¼ 1 (l ¼ 2) decays exponentially in the limit Imð�Þ ! 1
[Imð�Þ ! �1] for r > a. By using these properties, we
rotate the integration contour in the complex plane � by the
angle �=2 for the term with l ¼ 1 and by the angle ��=2
for the term with l ¼ 2. The integrals over the segments
ð0; imÞ and ð0;�imÞ of the imaginary axis cancel each
other. Introducing the modified Bessel functions, the
boundary-induced part in the FC is presented in the form

h �c c ib ¼ q

2�2

X
j

Z 1
m

dzz

8<
:mK2

�j
ðzrÞ � K2

�jþ�jðzrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

p
� Re½Ið�Þ�j

ðzaÞ=Kð�Þ�j
ðzaÞ� � ½K2

�j
ðzrÞ

þ K2
�jþ�jðzrÞ� Im½Ið�Þ�j

ðzaÞ=Kð�Þ�j
ðzaÞ�

9=
;; (4.8)

where

Fð�ÞðzÞ¼ zF0ðzÞ�
�
�þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2��2

q
þ�j�j

�
FðzÞ: (4.9)

By using the definition (4.9), the ratio in the integrand of
Eq. (4.8) can be written in the form

Ið�Þ�j
ðxÞ

Kð�Þ�j
ðxÞ ¼

Wð�Þ�j;�jþ�jðxÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=x2

p
x½K2

�j
ðxÞ þ K2

�jþ�jðxÞ� þ 2�K�j
ðxÞK�jþ�jðxÞ

;

(4.10)

with the notation Wð�Þ�j;�jþ�jðxÞ defined by Eq. (3.11). Now

the real and imaginary parts appearing in Eq. (4.8) are
easily obtained from Eq. (4.10). By taking into account
that under the change 	! �	, j! �j, one has �j !
�j þ �j, �j þ �j ! �j, we conclude that the real/imagi-

nary part in Eq. (4.10) is an odd/even function under this
change. Now, from Eq. (4.8) it follows that the boundary-
induced part in the FC is an even function of 	. This
function is periodic with the period equal to 1.
For a massless field the expression for the boundary-

induced part in the FC simplifies to

h �c c ib ¼ � q

2�2a2
X
j

Z 1
0

dz
K2

�j
ðzr=aÞ þ K2

�jþ�jðzr=aÞ
K2

�j
ðzÞ þ K2

�jþ�jðzÞ
:

(4.11)
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As in the case of the interior region, the boundary-induced
FC does not vanish for a massless field. The corresponding
boundary-free part vanishes, and, hence, in this case we
have h �c c i ¼ h �c c ib. When the magnetic flux is absent,
	 ¼ 0, the corresponding expression for the boundary-
induced part is obtained from Eq. (4.8) by the replacements
(3.15). In particular, for the circle in the Minkowski bulk
the formula for the fermionic condensate is obtained from

Eq. (3.16) by the interchange I! K, replacingWðþÞn;nþ1ðxÞ !
Wð�Þn;nþ1ðxÞ.

Now let us consider the behavior of the boundary-
induced part in the FC in the asymptotic regions of the
parameters. First, we consider the limit a! 0 for fixed
values of r. By taking into account the asymptotics of the
modified Bessel functions for small values of the argu-
ments, to the leading order we find the expression

h �c c ib 	 qða=2rÞ2q	
�2r2�2ðq	 þ 1=2Þ

Z 1
mr

dz
z2q	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 �m2r2
p

� ½ð2m2r2 � z2ÞK2
q	�1=2ðzÞ � z2K2

q	þ1=2ðzÞ�;
(4.12)

with the notation (3.19). For a massless field the integral in
(4.12) is evaluated in terms of the gamma function, and one
has

h �c c ib 	 � q�ðq	 þ 1Þ�ð2q	 þ 1=2Þ
2�r2�3ðq	 þ 1=2Þ

�
a

2r

�
2q	

: (4.13)

Hence, in the limit a! 0 and for fixed values of r, the
boundary-induced part in FC vanishes as a2q	 .

For a massive field, at large distances from the boundary,
under the condition mr� 1, the main contribution to the
integral in Eq. (4.8) comes from the region near the lower
limit of the integration. In the leading order we find

h �c c ib 	 �qe�2mr

4�r2
X
j

Im½IðþÞ�j
ðmaÞ=KðþÞ�j

ðmaÞ�; (4.14)

and the boundary-induced FC is exponentially suppressed.
For a massless field, the asymptotic at large distances is
given by Eq. (4.13) and the boundary-induced condensate
decays as r�2q	�2. For points near the circle, the main
contribution to (4.11) comes from large values of j. By
using the uniform asymptotic expansion for the Macdonald
function for large values of the order, to the leading order
one finds h �c c ib 	 �½8�ðr� aÞ2��1. The leading term in
the asymptotic expansion does not depend on the opening
angle of the cone and on the magnetic flux. The depen-
dence of the FC outside a circular boundary on the radial
coordinate is presented in Fig. 5 for a massless field for
various values of the parameter q. The left/right plot cor-
responds to the value of the parameter 	0 ¼ 0=	0 ¼ 0:4.
In Fig. 6, the fermionic condensate is plotted for a

massless field outside a circular boundary as a function
of the magnetic flux. The graphs are plotted for r=a ¼ 1:5
and for several values of the opening angle of the conical
space. For the exterior region there are no irregular modes
and the FC is a continuous function of 	 at half-integer
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FIG. 5. The FC outside a circular boundary as a function on the radial coordinate for a massless fermionic field.
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FIG. 6. The FC outside a circular boundary as a function of the
magnetic flux.
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values. In particular, its derivative vanishes at these points.
Note that this is not the case for the interior region.

V. HALF-INTEGER VALUES OF THE
PARAMETER �

In this section, we consider the FC for half-integer
values of the parameter 	. In this case, for the boundary-
free geometry the eigenspinors with j � �	 are still given
by Eqs. (2.6). For the eigenspinor corresponding to the
special mode with j ¼ �	 one has [13]

c ð�Þð0Þ�;�	ðxÞ¼
�
Eþm

��0rE

�
1=2

eiq	�þiEt
�e�iq�=2

Eþm sinð�r��0Þ
eiq�=2 cosð�r��0Þ

 !
;

(5.1)

where �0 ¼ arccos½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�mÞ=2Ep �. As we have noted, for
half-integer values of 	 the mode with j ¼ �	 corre-
sponds to the irregular mode. The contribution of the
modes with j � �	 to the FC is the same as before.
Special consideration is needed for the mode with j ¼
�	 only. For the contribution of this mode to the FC one
has

h �c c i0;j¼�	 ¼
Z 1
0

d� �c ð�Þð0Þ�;�	c
ð�Þ
ð0Þ�;�	 ¼ �

q

2�2r

�
Z 1
0

d�
mþ � sinð2�rÞ �m cosð2�rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þm2
p :

(5.2)

The part with the last term in the numerator is finite,
whereas the part with the first two terms is divergent. As
before, in order to deal with this divergence, we introduce

the cutoff function e�s�2
. The integral in the right-hand

side of Eq. (5.2) is expressed in terms of the Macdonald
function.

For half-integer values of 	, it can be easily seen that for
the series in the contribution of the modes with j � �	
one hasX

j��	
I�j
ðxÞ ¼ X

j��	
I�jþ�jðxÞ

¼ X1
n¼1
½Iqn�1=2ðxÞ þ Iqnþ1=2ðxÞ�: (5.3)

Summing the contributions from the mode with j ¼ �	
and from the modes j � �	, for the regularized FC we
find the expression

h �c c i0;reg ¼ �qmem
2s

ð2�Þ3=2
X1
n¼1

Z r2=2s

0
dx

x�1=2e�m2r2=2x�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2xs
p

� ½Iqn�1=2ðxÞ þ Iqnþ1=2ðxÞ�
� qm

4�2r
½em2s=2K0ðm2s=2Þ þ 2K1ð2mrÞ

� 2K0ð2mrÞ�: (5.4)

After the summation over n by using the formula given in
Sec. II, we find the following representation

h �c c i0;reg¼� m

2�

8<
:em

2sffiffiffiffiffiffiffi
2�
p

Z r2=2s

0
dx

x�1=2e�m2r2=2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�2xs
p

þ1

r

Xp
l¼1

cotð�l=qÞ
e2mrsinð�l=qÞþ

q

2�r

�
Z 1
0
dy

sinhðy=2ÞsinhðqyÞ
coshðqyÞ�cosðq�Þ

e�2mrcoshðy=2Þ

coshðy=2Þ

9=
;

� qm

2�2r
½K1ð2mrÞ�K0ð2mrÞ�þoðsÞ; (5.5)

where 2p � q < 2pþ 2. The first term in the figure braces
of this expression corresponds to the contribution coming
from the Minkowski spacetime part. It is subtracted in the
renormalization procedure, and for the renormalized FC in
a boundary-free conical space one finds

h �c c i0;ren ¼ � qm

4�2r

Z 1
0

dy
sinhðy=2Þ sinhðqyÞ
coshðqyÞ � cosðq�Þ

� e�2mr coshðy=2Þ

coshðy=2Þ �
m

2�r

�Xp
l¼1

cosð�l=qÞ
sinð�l=qÞ e

�2mr sinð�l=qÞ

� qm

2�2r
½K1ð2mrÞ � K0ð2mrÞ�: (5.6)

As before, the FC is a periodic function of 	 with the
period 1. Note that, in the case under consideration, the
renormalized FC in a boundary-free conical space does not
vanish for a massless field:

h �c c i0;ren ¼ � q

4�2r2
; m ¼ 0: (5.7)

This corresponds to the contribution of the irregular mode.
Now we consider the region inside a circle with radius a.

The contribution of the modes with j � �	 is given by
Eq. (3.13), where now the summation goes over j � �	.
For the evaluation of the contribution coming from the
mode with j ¼ �	, we note that the negative-energy
eigenspinor for this mode has the form [13]

c ð�Þ�;�	ðxÞ¼ b0ffiffiffi
r
p eiq	�þiEt

�e�iq�=2

Eþm sinð�r��0Þ
eiq�=2 cosð�r��0Þ

 !
; (5.8)

where �0 is defined after Eq. (5.1). From boundary condi-
tion (3.1) it follows that the eigenvalues of � are solutions
of the equation

m sinð�aÞ þ � cosð�aÞ ¼ 0: (5.9)

We denote the positive roots of this equation by �l ¼ �a,
l ¼ 1; 2; . . . . From the normalization condition, for the
coefficient in Eq. (5.8) one has
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b20 ¼
Eþm

aE�0

½1� sinð2�aÞ=ð2�aÞ��1: (5.10)

Using Eq. (5.8), for the contribution of the mode under
consideration to the FC we find

h �c c ij¼�	 ¼ � 1

a�0r

�X1
l¼1

�þ �l sinð2�lr=aÞ �� cosð2�lr=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
l þ�2

q
½1� sinð2�lÞ=ð2�lÞ�

;

(5.11)

where � ¼ ma and the presence of a cutoff function is
assumed. For the summation of the series in Eq. (5.11), we
use the Abel-Plana-type formula

X1
l¼1

�fð�lÞ
1� sinð2�lÞ=ð2�lÞ ¼ �

�fð0Þ=2
1=�þ 1

þ
Z 1
0

dzfðzÞ

� i
Z 1
0

dz
fðizÞ � fð�izÞ

zþ�
z�� e

2z þ 1
:

(5.12)

The latter is obtained from the summation formula given in
[27] (see also [26]) taking b1 ¼ 0 and b2 ¼ �1=�. For
the functions fðzÞ corresponding to Eq. (5.11) one has
fð0Þ ¼ 0. The second term on the right-hand side of
(5.12) gives the part corresponding to the boundary-free
geometry. As a result, the FC is presented in the form

h �c c ij¼�	 ¼ h �c c i0;j¼�	 þ h �c c ib;j¼�	; (5.13)

where the boundary-induced part is given by the expression

h �c c ib;j¼�	 ¼ q

�2r

�
Z 1
m

dx
m� x sinhð2xrÞ �m coshð2xrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p

ðxþmx�m e
2ax þ 1Þ :

(5.14)

The contribution of the modes j � �	 remains the same
and is obtained from the corresponding expressions given
above for non-half-integer values of 	 by the direct sub-
stitution 	 ¼ 1=2.

Expression (5.14) for the boundary-induced part is sim-
plified for a massless field

h �c c ib;j¼�	 ¼ � q

4�2r2

�
�r=a

sinð�r=aÞ � 1

�
: (5.15)

Note that this part is finite at the circle center. By taking
into account Eq. (5.7) and adding the contribution coming
from the modes with j � �	, for the total FC one finds

h �c c i ¼ � q

4�ar sinð�r=aÞ �
q

�2a2

� X1
n¼1

Z 1
0

dz
I2qn�1=2ðzr=aÞ þ I2qnþ1=2ðzr=aÞ

I2qn�1=2ðzÞ þ I2qnþ1=2ðzÞ
:

(5.16)

The expression on the right-hand side is always negative.
The first term dominates near the cone apex. Near the
boundary this term behaves as ð1� r=aÞ�1, whereas the
second term behaves like ð1� r=aÞ�2. Hence, the latter
dominates near the circle.
In the region outside a circular boundary there are no

irregular modes and the FC is a continuous function of the
parameter 	 at half-integer values. The corresponding
expression is obtained taking the limit 	0 ! 1=2: h �c c i ¼
lim	0!1=2½h �c c i0;ren þ h �c c ib�, where the separate terms

are given by expressions (2.28) and (4.8). However, note
that the limiting values of the separate terms h �c c i0;ren and
h �c c ib, defined by these expressions, do not coincide with
the boundary-free and boundary-induced parts of the FC at
half-integer values of 	.

VI. CONCLUSION

In this paper, we have investigated the FC in a
(2þ 1)-dimensional conical spacetime with a circular
boundary in the presence of a magnetic flux. The case of
a massive fermionic field is considered with the MIT bag
boundary condition on the circle. As the first step, we have
considered a conical space without boundaries and with a
special case of boundary conditions at the cone apex, when
the MIT bag boundary condition is imposed at a finite
radius, which is then taken to zero. For the evaluation of
the FC the direct summation over the modes is used
with the spinorial eigenfunctions (2.6). If the ratio of the
magnetic flux to the flux quantum is not a half-integer
number, the regularized FC with the exponential cutoff
function is given by expression (2.13). A simple expression
for the renormalized FC, Eq. (2.17), is obtained in the
special case when the parameter q is an integer and is
related to the parameter 	 by Eq. (2.14). In this special
case, the renormalized FC vanishes for a massless field and
for a massive field in a conical space with q ¼ 2 and is
negative for other cases.
For the general case of the parameters q and 	, a

convenient expression for the regularized FC is obtained
by using the integral representation (2.23) for the series
involving the modified Bessel function. This formula al-
lows us to extract explicitly the part in FC corresponding to
the Minkowski spacetime in the absence of the magnetic
flux. Subtracting this part, for the renormalized FC we
derived formula (2.28). At distances larger than the
Compton wavelength of the spinor particle, mr� 1,
the FC is suppressed by the factor e�2mr for 1 � q < 2

and by the factor e�2mr sinð�=qÞ for q � 2. In the special case
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when the magnetic flux is absent, the general formula
simplifies to Eq. (2.31). Another limiting case corresponds
to the magnetic flux in the background of the Minkowski
spacetime with the renormalized FC given by Eq. (2.33).
An alternative expression for the FC is obtained by using
the integral representation (2.34) for the series involving
the modified Bessel function. This leads to the expression
(2.36) for the renormalized FC. In the special cases of a
magnetic flux in the background of the Minkowski space-
time and for a conical space in the absence of the magnetic
flux, the general formula reduces to Eqs. (2.39) and (2.40),
respectively.

In Sec. III, we have considered the FC inside a circular
boundary concentric with the apex of the cone. The corre-
sponding eigenspinors are given by the expression (3.2)
and the eigenvalues of the quantum number � are solutions
of Eq. (3.3). The mode sum for the FC contains a series
over these solutions. For the summation of this series we
have used the Abel-Plana-type formula (3.8). This allows
us to decompose the FC into the boundary-free and
boundary-induced parts, Eq. (3.12), with the boundary-
induced part given by Eq. (3.13). The asymptotic near
the cone apex is given by Eq. (3.20). In this limit the
boundary-induced part vanishes when j	0j< 1=2�
1=ð2qÞ and diverges for j	0j> 1=2� 1=ð2qÞ. In the for-
mer case the irregular mode is absent, and the divergence
in the latter case comes from the irregular mode.
The boundary-induced FC diverges on the circle. The
leading term in the asymptotic expansion over the distance
from the boundary is given by Eq. (3.21). This term
does not depend on the opening angle of the cone and
on the magnetic flux and coincides with the corresponding
term for the FC in the geometry of a circle in
(2þ 1)-dimensional Minkowski spacetime.

The region outside a circular boundary is considered in
Sec. IV. The boundary-induced part of the FC in this region
is given by Eq. (4.8). This expression is obtained from
the corresponding formula for the interior region by the

interchange of the modified Bessel functions I andK. For a
massless field, the general formula is simplified to
Eq. (4.11) and the boundary-induced part is negative. In
the limit when the circle radius tends to zero, a! 0, and
for a fixed value of r, the boundary-induced part in FC
vanishes as a2q	 . At large distances from the boundary, for
a massive field, the asymptotic behavior is given by
Eq. (4.14) and the boundary-induced FC is exponentially
suppressed. For a massless field, the asymptotic at large
distances is given by Eq. (4.13) and the boundary-induced
condensate decays as r�2q	�2.
The special case of the magnetic flux corresponding to

half-integer values of the parameter 	 is discussed in
Sec. V. For this case, the contribution of the mode with
j ¼ �	 should be considered separately. The renormal-
ized FC in the boundary-free geometry is given by Eq. (5.6)
and does not vanish in the massless limit. In the region
inside a circular boundary, the contribution of the special
mode with j ¼ �	 to the FC is given by Eq. (5.14) and is
finite at the circle center. For a massless fermionic field, the
total FC inside a circular boundary is given by Eq. (5.16)
and is negative. In the region outside a circular boundary,
the FC is a continuous function of the parameter 	 at
half-integer values and the corresponding expression is
obtained from that in Sec. IV taking the limit 	0 ! 1=2.
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