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We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac

operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral

Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator

as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is

shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-

momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the

Wilson Dirac operator. The low-energy constants of Wilson chiral perturbation theory are shown to be

constrained by the Hermiticity properties of the Wilson Dirac operator.
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I. INTRODUCTION

In the continuum, low-lying spectra of the Dirac opera-
tor for theories with spontaneous chiral symmetry breaking
have two equivalent descriptions. One is in terms of chiral
random matrix theory [1–4], and the other one is in terms
of a chiral Lagrangian [5–7]. It is by now well-established
how the two formulations are in one-to-one correspon-
dence [6,8,9], and that this is valid for all spectral correla-
tion functions of the Dirac operator. Even single eigenvalue
distributions can be derived in both formalisms, and have
been shown to be equivalent [10]. The equivalence is valid
to leading order in a chiral counting scheme known as the �
regime or, in randommatrix theory terminology, the micro-
scopic domain.

Apart from its conceptual value, the theory of low-lying
Dirac operator spectra has been of quite practical use in
lattice gauge theory. In fact, it serves multiple purposes, all
relying on a QCD partition function that is formulated from
the outset at finite four-volume V: (1) it can be used to
establish spontaneous chiral symmetry breaking in a clean
way, (2) it provides precise nonperturbative analytical
predictions that can be used to test the chiral limit, and
(3) it allows for a determination of low-energy constants by
means of finite-volume scaling. So far these uses have been
limited by the fact that violations due to finite lattice
spacings, a, have been ignored. Such lattice artifacts evi-
dently depend on the particular lattice discretization
chosen. Following Symanzik’s program, corrections due

to finite lattice spacings can, when they are sufficiently
small, be analyzed in a continuum field theory language
through the introduction of higher-dimensional operators
in the Lagrangian. The corrections to the chiral Lagrangian
that arise up to and including order a2 effects for Wilson
fermions have been analyzed in a series of papers [11–16].
For comprehensive reviews of effective field theory meth-
ods at finite lattice spacings, see, e.g., Refs. [17,18].
It is then an obvious problem to investigate the effect of

lattice-induced scaling violations on the spectral properties
of the Wilson Dirac operator DW [19]. In a recent letter
[20], three of the present authors have taken up this issue
and shown how the microscopic scaling regime can be
phrased both in terms of the (graded) chiral Lagrangian
and a modified chiral random matrix theory that incorpo-
rates finite lattice spacing effects of Wilson fermions.
Although the Wilson Dirac operator is not Hermitian,

the operator D5 � �5ðDW þmÞ is Hermitian, and much
more convenient to work with in lattice QCD simulations.
In this paper we analyze the microscopic spectrum of
this operator. Contrary to the lattice QCD Dirac operator
at a ¼ 0, its eigenvalues �5

kðmÞ are not paired and are

nontrivial functions of the quark mass.
There is a deep relation between the topology of gauge

field configurations and the spectrum of the Dirac operator.
Not only is the number of zero eigenvalues equal to the
difference of the number of right-handed and left-handed
zero modes, because of level repulsion the Dirac spectrum
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near zero is affected in a universal way by the topological
charge. As can be shown from spectral flow arguments
(see, e.g., [21–27]), the eigenvalues corresponding to the
chiral modes at zero lattice spacing (when the Dirac op-
erator is anti-Hermitian) correspond to exactly real eigen-
values at nonzero lattice spacing. Additional pairs of real
modes appear for increasing lattice spacing. However, the
number of spectral flow lines, �5

kðmÞ, with an odd number

of real zeros remains the same.Wewill identify the number
of such flow lines as the index of the Dirac operator and
study Dirac spectra for a fixed index. In the continuum
limit this index, by the Atiyah-Singer index theorem be-
comes equal to the topological charge of the gauge field
configurations. In random matrix theory, this index is
determined by the block structure of the Dirac matrix.
All results in this paper are derived for a fixed index of
the Dirac operator. It is of course also possible to sum over
all sectors with a given index.

In this paper we elaborate on and provide detailed
derivations of results announced in the letter [20] and the
proceedings [28]. One of the simplifying features of that
paper was that double-trace terms in the chiral Lagrangian
were ignored (which can be justified based on large-Nc

arguments [29]). Here we compute their contribution to the
microscopic spectrum directly from the chiral Lagrangian.
We also show how double-trace terms can be included in
the Wilson chiral random matrix theory. We study in detail
the a ! 0 and four-volume V ! 1 limits of the analytical
results. Furthermore, it is shown that the low-energy con-
stants of Wilson chiral perturbation theory are constrained
by a QCD inequality which follows from the Hermiticity
properties of the Wilson Dirac operator. This constraint
coincides precisely with the requirement of preservation of
the Hermiticity properties of the Wilson Dirac operator.
The constraints found are consistent with the existence of
an Aoki phase. One important message from the calcula-
tions presented here is that the values of the low-energy
constants of Wilson chiral perturbation theory can be
accurately determined by matching the predictions for
the eigenvalue distributions to lattice data. Furthermore,
our results describe analytically the eigenvalues that may
cause numerical instabilities [30] when approaching the
chiral limit at finite lattice spacing with Wilson fermions.

The analysis of the letter [20] has been extended in
various other directions. We have obtained the distribution
of the chirality over the real eigenvalues of the Wilson
Dirac operator which is a lower bound for the distribution
of the real eigenvalues. We also have obtained an upper
bound which converges to the lower bound for small a. In
the same limit the expressions for the microscopic spectral
density of D5 simplify and can be generalized to a nonzero
number of flavors. We discuss the distribution of the tail
states in the gap as well as a comparison with the scaling
properties of such states as found in lattice simulations. We
also perform a saddle point analysis of our analytical result

and obtain a simple explicit expression for the gap of the
Dirac spectrum.
The paper is organized as follows. After a brief review of

relevant properties of the Wilson Dirac operator given in
Sec. II we define Wilson chiral perturbation theory at a
fixed index of the Wilson Dirac operator in Sec. III. The
derivation of the microscopic spectrum is given in Sec. IV.
It is followed by a discussion of various limits in Sec. V.
A chiral random matrix theory for Wilson fermions is
shown to reproduce Wilson chiral perturbation theory in
the microscopic limit in Sec. VI. Finally, before conclud-
ing, we discuss the relation between the low-energy
constants of the Wilson chiral perturbation theory and the
Hermiticity properties of the Wilson Dirac operator. Some
technical details are referred to Appendix A, Appendix B
and Appendix C.

II. EIGENVALUES OF THE WILSON
DIRAC OPERATOR

We start with a discussion of general properties of
the Wilson Dirac operator. Some of these results have
been discussed extensively in the literature (see, e.g.,
Refs. [19,22–24,26,27]), but are included here to make
this paper self-contained.
The Wilson Dirac operator will be denoted by D ¼

DW þm. The lowest order a correction was introduced
by Wilson,

DW ¼ 1

2
��ðr� þr�

�Þ � 1

2
ar�

�r�: (1)

It is written in terms of forward (r�) and backward (r�
�)

covariant derivatives, and m is the quark mass.
The Wilson Dirac operator, DW , is not anti-Hermitian at

nonzero lattice spacing. It retains only �5 Hermiticity:

Dy
W ¼ �5DW�5: (2)

The eigenvalues, �W
k , ofDW then either are real or occur in

complex conjugate pairs. The �5 Hermiticity of DW im-
plies that the operator

D5 � �5ðDW þmÞ (3)

is Hermitian. Since at nonzero lattice spacings a the axial
symmetry is lost (fDW; �5g � 0), the eigenvalues of D5 do
not occur in pairs of opposite sign.
The eigenvalues, �5

kðmÞ, of D5 are nontrivial functions

of m. If �5
kðmcÞ ¼ 0, then

�5ðDW þmcÞ� ¼ 0 ) DW� ¼ �mc�; (4)

so that the real eigenvalues ofDW can be obtained from the
zeros of �5

kðmÞ with the corresponding eigenfunctions of

D5 andDW being identical atm ¼ mc. If we act withD5 on
the normalized eigenfunctions �j � jji of DW we obtain

D5�j ¼ �5ðDW þmÞ�j ¼ ð�mc þmÞ�5�j: (5)
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For m close to mc

�5�j ¼ hjj�5jji�j þ ��; (6)

with h��jji ¼ 0 and ���Oðm�mcÞ. Therefore to
Oðm�mcÞ

�5
j ðmÞ ¼ ðm�mcÞhjj�5jji: (7)

We thus find [22]

d�5
j

dm
¼ hjj�5jji þOðm�mcÞ: (8)

When evaluated at m ¼ mc, i.e., at �
5
j ¼ 0, the slope is

thus exactly given by the chirality

d�5
j

dm

��������m¼mc

¼ hjj�5jji: (9)

Furthermore, it can be shown [22] that the chirality of the
eigenfunctions

�j � hjj�5jji (10)

vanishes for complex eigenvalues of DW but is generally
nonzero for real eigenvalues.

To compute the spectral density �5 ofD5 we introduce a
source z that couples to �c�5c . The operator entering in
the fermion determinant is then given by

�5ðDW þmÞ þ z ¼ D5 þ z; (11)

and the resolvent of D5 is defined by

GðzÞ �
�
Tr

�
1

D5 þ z� i�

��
¼
�X

k

1

�5
k þ z� i�

�
; (12)

where �5
k are the eigenvalues of D5. The density of eigen-

values of D5 then follows from

�5ð�5; m;aÞ ¼
�X

k

�ð�5
k � �5Þ

�
¼ 1

	
Im½Gð��5Þ��!0:

(13)

The resolvent (12) is a partially quenched chiral con-
densate. We will compute it by means of the graded
technique, where the unphysical ‘‘valence’’ determinant
is canceled by an inverse determinant after differentiation
with respect to the source [31]. In order to be able to write
the inverse determinant as a bosonic integral, it is essential
that an infinitesimal increment is added to a Hermitian
operator [16].

We also consider the chiral condensate corresponding to
the regularization introduced in Eq. (12):

�ðmÞ �
�
Tr

1

DW þm� i��5

�
: (14)

Care has to be taken in order to relate�ðmÞ to the spectrum
of DW . The discontinuity of �ðmÞ across the real axis is
given by

��ðmÞ � 1

2	i

�
Tr

�
1

ðDW þmÞ � i��5

� 1

ðDW þmÞ þ i��5

�
�!0

�

¼ 1

2	i

�
Tr

�
�5

�5ðDW þmÞ � i�

� �5

�5ðDW þmÞ þ i�

�
�!0

�
: (15)

This expression can be rewritten in terms of eigenvalues
and the normalized eigenfunctions jki ofD5 (recall that for
�5
k ¼ 0 the eigenfunctions ofD5 merge with that belonging

to a real mode of DW),

��ðmÞ ¼ 1

	

�X
k

�hkj�5jki
ð�5

kðmÞÞ2 þ �2

���������!0

�

¼
�X

k

�ð�5
kðmÞÞhkj�5jki

�

¼
� X
�W
k
2R

1

jd�5
k=dmj�ð�

W
k þmÞhkj�5jki

�
; (16)

where �W
k are the eigenvalues ofDW . Using Eq. (9) this can

be written as

��ð�WÞ ¼
� X
�W
k
2R

�ð�W
k þ �WÞsignðhkj�5jkiÞ

�
: (17)

This shows that �� is the distribution of the chiralities over

the real eigenvalues ofDW . Integrating this expression over
�W we obtainZ

��ð�WÞd�W ¼
� X
�W
k
2R

signðhkj�5jkiÞ
�
: (18)

This is the average index of the Dirac operator. The index
for a given gauge field configuration is defined by


 ¼ X
�W
k
2R

signðhkj�5jkiÞ: (19)

Since the real modes of DW correspond to the vanishing
eigenvalues of D5 we also consider �5ð�5 ¼ 0; mÞ.
A similar calculation as above results in

�5ð�5 ¼ 0; m;aÞ ¼
� X
�W
k
2R

�ð�W
k þmÞ

jhkj�5jkij
�
: (20)

Because jhkj�5jkij � 1 we have the inequality (also valid
for fixed index)

��ð�WÞ � �realð�WÞ � �5ð�5 ¼ 0; m ¼ �W ; aÞ; (21)

where

�realð�WÞ �
� X
�W
k
2R

�ð�W
k þ �WÞ

�
: (22)
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As a special case the average number, hnreali, of real
eigenvalues of DW for gauge field configurations with
index 
 is bounded by

Z
d�W�


�ð�WÞ¼
�hnreali�
Z
dm�


5ð�5¼0;mÞ: (23)

III. WILSON CHIRAL PERTURBATION THEORY

The operators contributing to Wilson chiral perturbation
theory have been considered in a series of papers
[11–13]. It is constructed in terms of a double expansion
in both the usual parameters of continuum chiral
perturbation theory and the lattice spacing a. Depending
on which counting scheme one uses, various terms
contribute to a given order [32–34]. We concentrate on
the microscopic limit, the � regime, in which the
combinations

mV; zV; a2V (24)

are kept fixed in the infinite-volume limit V ! 1. To
leading order in these quantities, the low-energy partition
function for lattice QCD with Wilson fermions then
reduces to a unitary matrix integral. Up to the infinite-
volume chiral condensate � and three low-energy
constants determined by the discretization errors of
Wilson lattice QCD, this integral is completely determined
by symmetry arguments.

Since we are computing quantities up to and including
Oða2Þ effects, it is important that all effects to this order are
contained in the on-shell effective Symanzik action includ-
ing Oða2Þ terms. This problem has been analyzed in
detail by Sharpe for the p-counting-scheme [19]. Here
we reconsider the argument for the � regime. One correc-
tion to relevant continuum operators corresponds to
a2 �c ðxÞ�5r2

�c ðxÞ [19]. In the � regime, such terms are

suppressed by 1=
ffiffiffiffi
V

p
with respect to the leading terms and

need to be considered only at higher orders in the expan-
sion. Additional lattice artifacts of potential Oða2Þ in the
form of contact terms have been analyzed in Ref. [19], and
they are similarly suppressed.

As stressed by Leutwyler and Smilga [5], the topological
charge of gauge field configurations plays an important
role in the microscopic spectrum of the continuum theory.
The 
 zero modes of the Dirac operator distort the eigen-
value spectrum of the nonzero modes and lead to distinct
predictions in sectors of fixed 
. Likewise it is natural to
study the microscopic spectral density of the Wilson Dirac
operator for fixed index 
. At the level of the chiral
Lagrangian it is a priori far from obvious how to imple-
ment the projection onto sectors corresponding to a fixed
index of DW . Quite remarkably, such a projection can be
achieved through a Fourier transform [20]: We decompose
the partition function as

ZNf
ðm; z; aÞ ¼ X




Z

Nf
ðm; z;aÞ (25)

with

Z

Nf
ðm; z; aÞ ¼

Z
UðNfÞ

dUdet
UeVLðUÞ: (26)

The Lagrangian LðUÞ is defined by

LðUÞ ¼ 1

2
ðmþ zÞ�TrUþ 1

2
ðm� zÞ�TrUy

� a2W6½TrðUþUyÞ�2 � a2W7½TrðU�UyÞ�2
� a2W8TrðU2 þUy2Þ: (27)

Below we will demonstrate that in the microscopic
domain this corresponds to an ensemble of gauge field
configurations for which the index of DW as defined by
Eq. (19) is equal to 
. The partitioning into sectors of fixed

 corresponds at the level of the unitary group integral to
writing an SUðNfÞ integral as an infinite sum of UðNfÞ
integrals.
In the Lagrangian (27), � is the usual infinite-volume

chiral condensate while W6, W7 and W8 are low-energy
constants that quantitatively determine the discretization
errors of Wilson fermions. The terms proportional
to W6 and W7 are believed to be suppressed in the
large Nc limit [29], and they were not included in
Ref. [20]. Here we include the effect of these terms ex-
plicitly. To lighten the notation, we introduce the scaling
variables

m̂ � m�V; ẑ � z�V; â2i � a2WiV (28)

with i ¼ 6, 7, 8.

IV. GRADED GENERATING FUNCTION

To obtain the distribution, �

�, of the chirality over the

real eigenvalues of DW and �

5 at fixed index 
 we will use

the graded method. The generating function in this case
takes the form

Z

Nfþ1j1ðm;m0;z;z0;aÞ¼

Z
ðdA�Þ
detðDWþmÞNf

� detðDWþmþ�5zÞ
detðDWþm0þ�5ðz0�i�ÞÞe

�SYM ;

(29)

and we have two spectral resolvents

�
ðm;aÞ ¼ � lim
m0!m

d

dm0 Z


Nfþ1j1ðm;m0; z ¼ 0; z0 ¼ 0; aÞ;

(30)

and
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G
ðz; m;aÞ ¼ �lim
z0!z

d

dz0
Z


Nfþ1j1ðm;m; z; z0;aÞ: (31)

Note that the Nf physical quark flavors are not coupled to

the source z.

The presence of fermionic as well as bosonic quarks
in this generating function gives rise to a graded
structure (‘‘supersymmetry’’) of the corresponding chiral
Lagrangian

Z

Nfþ1j1ðM;Z; âiÞ ¼

Z
dUS detðUÞ
eið1=2ÞSTrðM½U�U�1�Þþið1=2ÞSTrðZ½UþU�1�Þþâ2

6
½STrðU�U�1Þ�2þâ27½STrðUþU�1Þ�2þâ28STrðU2þU�2Þ;

(32)

where M � diagðm̂ . . . m̂; m̂; m̂0Þ and Z �
diagð0 . . . 0; ẑ; ẑ0Þ, with Imðẑ0Þ< 0. The integration is
over the maximum Riemannian graded submanifold of
GlðNf þ 1j1Þ [6] (see [6,35] for notation and more on
the graded method). For Nf ¼ 0 we will use the parame-
trization

U ¼ ei� 0
0 es

� �
exp

0 �

 0

� �
: (33)

If we could derive this partition function directly from
the microscopic theory we would end up with convergent
integrals. Relying only on symmetry arguments is not
sufficient to obtain the partition function, and it can only
be equivalent to the microscopic partition function if the
integrations are convergent. For fermionic integrals con-
vergence is not an issue, but bosonic integrals necessarily
have to be convergent.

In [6] the graded partition function was evaluated for the
anti-Hermitian Dirac operator with positive mass and
âi ¼ 0 and ẑ ¼ 0. The term relevant for the convergence
of the integral was expð�m̂ coshsÞ so that the generating
function is defined for m̂ on the imaginary axis with a
positive real infinitesimal increment, and can be used to
calculate the spectral density localized on the imaginary
axis. We could also have calculated the spectrum of �5D
by including the source term ẑ�5. This would have resulted
in the bosonic integrand exp½�m̂ coshs� ẑ sinhs�. The
corresponding integral can be continued analytically to

the entire real ẑ axis by shifting the s integration by s !
s� 	i=2with the sign determined by the imaginary part of
ẑ. This transformation can be accomplished byU ! iU for
ImðẑÞ< 0 and byU ! �iU for ImðẑÞ> 0. The expression
(32) is thus valid for ImðẑÞ< 0.
Next we consider the partition function with â2i � 0. Let

us first consider the case that â6 ¼ â7 ¼ 0, and we con-
sider the partition function as an analytical function of â28.
The partition function (32) is analytic in â28 for Reâ

2
8 > 0,

whereas the partition function of Ref. [6] can only be
continued to Reâ28 < 0. Depending on whether we consider
the spectrum of DW or �5DW the partition function can be
analytically continued to a different part of the complex â28
plane. Below we will argue that the physically interesting
parameter domain is Reâ28 > 0, which is accessible for the

integration contours of Eq. (32) valid for the evaluation of
the spectrum of D5. Given this parametrization, the
partition function is defined in only a subset of the complex
â6 and â7 plane. For real constants the condition is that
â28 � â27 � â26 > 0. Notice that in order to correspond to the
QCD partition function, the limit âk ! 0 should be regular.
We will now explicitly work out the generating function

(32) in the quenched case where Nf ¼ 0. In order to do so

we will use the parametrization Eq. (33) which has a flat
measure [6]. In this representation the generating function
with m̂ > 0 and Imðẑ0Þ< 0 becomes (after � and 
 are
integrated out)

Z

1j1ðm̂; m̂0; ẑ; ẑ0; âiÞ ¼

Z 1

�1
ds
Z 	

�	

d�

2	
eði��sÞ
 exp½�m̂ sinð�Þ � im̂0 sinhðsÞ þ iẑ cosð�Þ � iẑ0 coshðsÞ

þ 4â26ð�i sinð�Þ þ sinhðsÞÞ2 þ 4â27ðcosð�Þ � coshðsÞÞ2 þ 2â28ðcosð2�Þ � coshð2sÞÞ�

�
�
� m̂

2
sinð�Þ þ i

m̂0

2
sinhðsÞ þ i

ẑ

2
cosð�Þ þ i

ẑ0

2
coshðsÞ � 4ðâ26 þ â27Þðsin2ð�Þ þ sinh2ðsÞÞ

þ 2â28ðcosð2�Þ þ coshð2sÞ þ ei�þs þ e�i��sÞ
�
: (34)

The s integral is convergent for â28 � â26 � â27 > 0. In
this case it is easily checked numerically that
Z1j1ðm̂; m̂; ẑ; ẑ; âÞ ¼ 1, as required by the definition of the
generating function. We discuss the convergence criterion
in detail in Sec. VII B below.

A. The microscopic distribution of the chirality
over the real eigenvalues of DW

In this section we show that the parameter 
 in the
chiral Lagrangian is the index of the Dirac operator
DW . Since we already have computed the generating
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function (32) the condensate defined in Eq. (14) can be
expressed as

�
ðm̂; âiÞ � � lim
m̂0!m̂

d

dm̂0 Z


1j1ðm̂; m̂0; ẑ ¼ 0; ẑ0 ¼ �i�; âiÞ:

(35)

This corresponds to a resolvent regulated with i��5 instead
of i�, and as was discussed in Sec. II, it has quite different
properties with a discontinuity that does not give the
spectral density but rather the distribution �


� of the chi-

rality over the real eigenvalues of DW given in Eq. (17).
It follows from (34) that for Imðẑ0 ¼ ẑÞ< 0

�
ðm̂; âiÞ ¼ �
Z 1

�1
ds
Z 	

�	

d�

2	
sinð�Þeði��sÞ
 exp½�m̂ sinð�Þ � im̂ sinhðsÞ � � coshsþ 4â26ð�i sinð�Þ þ sinhðsÞÞ2

þ 4â27ðcosð�Þ � coshðsÞÞ2 þ 2â28ðcosð2�Þ � coshð2sÞÞ�
�
� m̂

2
sinð�Þ þ i

m̂

2
sinhðsÞ � 4ðâ26 þ â27Þðsin2ð�Þ

þ sinh2ðsÞÞ þ 2â28ðcosð2�Þ þ coshð2sÞ þ ei�þs þ e�i��sÞ þ 1

2

�
: (36)

The discontinuity of this resolvent is equal to microscopic
limit of the distribution of the chirality over the real
eigenvalues of DW defined in Eq. (17),

�

�ð�W ; âiÞ ¼

� X
�W
k
2R

�ð�W
k þ �WÞsign½hkj�5jki�

�

¼ 1

	
Im½�
ðm̂ ¼ �W ; âiÞ�: (37)

It can be verified numerically that with the resolvent (36)

Z
�

�ð�W ; âiÞd�W ¼ 
: (38)

This demonstrates that the sectors introduced in Eq. (26)
correspond to a Dirac operatorDW with index 
, as defined
in (19).

In Fig. 1 we plot the distribution of the chiralities over
the real eigenvalues of DW , �



�ð�W; âiÞ, for 
 ¼ 1, 2, 3 for

â28 ¼ 0:2 and â6 ¼ â7 ¼ 0. For this value of â8 additional
pairs of real eigenvalues appear only rarely and �


�ð�W; âiÞ
is a good approximation to the density of the real modes of
DW . Indeed, the presence of 
 real eigenvalues is clearly
visible. As we will show below, we can make an even more
precise description of this in the limit of very small â8. In
that limit we have 
 real modes which turn out to be
described by the j
j � j
j Gaussian unitary ensemble of
random matrix theory.

B. The microscopic spectrum of D5

In the continuum (a ¼ 0) the eigenvalues i�k ofDW and
eigenvalues xk of D5 are related to each other through
ð�W

k Þ2 ¼ ð�5
kÞ2 �m2. In this case, the microscopic eigen-

value density of D5,

�

5ð�5 > m̂; m̂; âi ¼ 0Þ ¼ �5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�5Þ2 � m̂2

p �


� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�5Þ2 � m̂2

q �
;

(39)

follows from that of DW . In the quenched case we
have [2,6]

�
ð�Þ ¼ �

2
½J
ð�Þ2 � J
þ1ð�ÞJ
�1ð�Þ�: (40)

To obtain the eigenvalue density, �

5 , of the Hermitian

Wilson Dirac operator D5 for nonzero values of â we first
evaluate the resolvent

G
ðẑ; m̂; âiÞ � �lim
ẑ0!ẑ

d

dẑ0
Z

1j1ðm̂; m̂; ẑ; ẑ0 � i�; âiÞ (41)

to find

-3 -2 -1 0 1 2 3

λWΣV

0

0.2

0.4

0.6

0.8

1

ρν χ(λ
W

;a
)

FIG. 1. The quenched distribution of the chirality over the real
modes of DW plotted for 
 ¼ 1, 2 and 3 with â8 ¼ 0:2. For the
plot we have chosen â6 ¼ â7 ¼ 0. The real modes repel each
other, making the preferred locations of the eigenvalues clearly
visible.

G. AKEMANN et al. PHYSICAL REVIEW D 83, 085014 (2011)

085014-6



G
ðẑ; m̂; âiÞ ¼
Z 1

�1
ds
Z 	

�	

d�

2	
i cosð�Þeði��sÞ
 exp½�m̂ sinð�Þ � im̂ sinhðsÞ þ iẑ cosð�Þ � iðẑ� i�Þ coshðsÞ

þ 4â26ð�i sinð�Þ þ sinhðsÞÞ2 þ 4â27ðcosð�Þ � coshðsÞÞ2 þ 2â28ðcosð2�Þ � coshð2sÞÞ�
�
�
� m̂

2
sinð�Þ þ i

m̂

2
sinhðsÞ þ i

ẑ

2
cosð�Þ þ i

ẑ

2
coshðsÞ � 4ðâ26 þ â27Þðsin2ð�Þ þ sinh2ðsÞÞ

þ 2â28ðcosð2�Þ þ coshð2sÞ þ ei�þs þ e�i��sÞ þ 1

2

�
: (42)

The microscopic spectral density of D5 ¼ �5ðDW þmÞ in
the quenched limit can then be expressed in terms of the
imaginary part

�

5ð�5; m̂; âiÞ ¼ 1

	
ImG
ð��5; m̂; âiÞ: (43)

In Fig. 2 this density is plotted for four values of 
 for
fixed â and m̂. The similarity of �


�ð�WÞ and �

5ð�5Þ for

�W � �5 � m̂ (see Fig. 4 for a direct comparison) is not
accidental: As we show in Sec. V, for â8 	 1 the 
 real
modes of DW are mapped directly to 
 modes in the
vicinity of m̂ [see Eq. (59)].

It is of course also possible to sum over all sectors
with a given index (for an example see the right-hand
panel of 2).

In Sec. II we discussed the mass dependence of
�

5ð�5 ¼ 0; m̂; âiÞ. The density of the real eigenvalues of

DW satisfies the inequality (21). In Fig. 3 we plot both sides
of this inequality as a function of �W .

C. The effect of W6 and W7

In the derivation above we have explicitly included the
effect ofW6 andW7 in the Lagrangian and then performed

the relevant supertraces and fermionic integrations. Here
we point out an alternative way to compute the effect ofW6

and W7. Not only will this give us a direct way to quantify
the effect of W6 and W7 on the spectrum of the Dirac
operator, it also provides a simple way to include the
effects of these terms in the chiral random matrix theory
discussed below.
SinceW6 andW7 are coupling constants of double-trace

terms, we can reexpress the microscopic partition function
(26) as

Z

Nf
ðm̂; ẑ; â6; â7; â8Þ

¼ 1

16	â6â7

Z 1

�1
dy6dy7e

�y2
6
=ð16jâ2

6
jÞ�y27=ð16jâ27jÞ

� Z

Nf
ðm̂� y6; ẑ� y7; 0; 0; â8Þ: (44)

Here we have written the expression valid for negative
valuesW6 andW7. IfW6 > 0 the shift of m̂ is instead along
the imaginary axis, m̂� iy6. For W7 > 0 we analogously
shift ẑ along the imaginary axis, ẑ� iy7.
Since exactly the same rewriting is valid for the gener-

ating function (32) also the quenched spectral density at

-10 -8 -6 -4 -2 0 2 4 6 8 10

λ5ΣV

0

0.2

0.4
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0.8

1

ρν 5(λ
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FIG. 2 (color online). Left: The microscopic spectral density of D5 for 
 ¼ 0, 1, 2 and 3 with m̂ ¼ 3, â8 ¼ 0:2 and â6 ¼ â7 ¼ 0. At
nonzero value of the lattice spacing the zero modes spread out into a region around x̂ ¼ m̂. For negative values of 
 the spectral density
is reflected at the origin. Right: After summation over 
 with a Gaussian weight and integrating from �5 ¼ 0 up to �5 ¼ x. That is, the
average number of eigenvalues below x. For the plot we have chosen h
2i ¼ 1. The values of m̂ and âi are as in the left figure. Compare
with Fig. 1 of [52].
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nonzero values of W6 and W7 follows from that with W8

alone:

�

5ð�5; m̂; â6; â7; â8Þ
¼ 1

16	â6â7

Z 1

�1
dy6dy7e

�y2
6
=ð16jâ2

6
jÞ�y27=ð16jâ27jÞ

� �

5ð�5 � y7; m̂� y6; 0; 0; â8Þ: (45)

Interestingly, for W6 < 0 the quenched spectral density of
D5 is a Gaussian average of spectra with a smooth distri-
bution of quark masses. The integrals over y6 and y7 in (44)
and (45) can only be interchanged with the noncompact
integral in the partition function if the inequality â28 �
â26 � â27 > 0 is satisfied. Furthermore, the shift must be

along the real axis in order that the discontinuity across
the real axis remains linked to the eigenvalue density.

V. LIMITING CASES

In this section we discuss various limiting cases of the
spectral density ofD5 andDW . Since the Dirac spectrum at

W6;7 � 0 is given by a Gaussian integral over the Dirac

spectrum for W6 ¼ W7 ¼ 0, only the dependence on W8

will be analyzed in this section.

A. Small â8 limit for ẑ� m̂ fixed

We first show explicitly that in the limit â8 ! 0
the microscopic resolvent (42) reduces to the known ana-
lytical result of the continuum limit. To derive the
â8 ! 0 limit of the microscopic spectral density, we use
the integralsZ 	

�	

d�

2	
ei
�e�m̂ sin�þiẑ cos�

¼
�
ẑ� m̂

ẑþ m̂

�

=2

I


�
isignðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 � m̂2

p �
; (46)

lim
â8!0

Z 1

�1
dse�
se�im̂ sinhðsÞ�iðẑ�i�Þ coshðsÞ�2â28 coshð2sÞ

¼ 2

�
ẑ� i�� m̂

ẑ� i�þ m̂

��
=2
K


�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðẑ� i�Þ2 � m̂2

q �
; (47)

valid at fixed jm̂� ẑj � 0, and obtain

lim
â8!0

G
ðẑ;m̂; â8Þ¼�1

4
K
ð�Þ½ðẑþm̂Þð
2I
þ2ð�ÞþI
ð�ÞÞþðẑ�m̂Þð
�2I
�2ð�ÞþI
ð�ÞÞ�

�1

4
½
I
þ1ð�Þþ
�1I
�1ð�Þ�½ðẑþm̂Þ
K
�1ð�Þþðẑ�m̂Þ
�1K
þ1ð�Þ�

þ i

2
K
ð�Þ½
I
þ1ð�Þþ
�1I
�1ð�Þ�; (48)
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FIG. 4 (color online). The microscopic spectral density
of D5 for 
 ¼ 3 with m̂ ¼ 3 and â8 ¼ 0:1 and â6 ¼ â7 ¼ 0.
Also plotted is the distribution of the chirality over the real
modes of DW shifted by the mass, that is, �


�ð�5 � m̂; â8Þ. Since
the real modes are almost chiral for small â8 the two distribu-
tions merge.

FIG. 3 (color online). The distribution of the chirality over
the real eigenvalues of DW �
¼3

� ð�W ; âiÞ (solid curves) and

�
¼3
5 ð�5 ¼ 0; m̂ ¼ �W ; âiÞ as a function of �W . The values of

â8 (here denoted by a) are given in the legend of the
figure (â6 ¼ â7 ¼ 0 here). The density of the real eigenvalues
of DW is bounded between the solid and the dashed curve.
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with

� ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 � m̂2

p
; 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ� m̂

ẑþ m̂

s
: (49)

We now use the recursion relations

I
þ2ð�Þ ¼ I
ð�Þ � 2ð
þ 1Þ
�

I
þ1ð�Þ;

I
�2ð�Þ ¼ I
ð�Þ þ 2ð
� 1Þ
�

I
�1ð�Þ;

K
þ1ð�Þ ¼ K
�1ð�Þ þ 2


�
K
ð�Þ;

(50)

and the Wronskian identity to obtain the resolvent of D5 in
the limit â8 ! 0 for ẑ� m̂ fixed

G
ðẑ; m̂Þ ¼ �zðI
ð�ÞK
ð�Þ þ I
þ1ð�ÞK
�1ð�ÞÞ
þ 


ẑ� m̂
: (51)

As we will now demonstrate, this is the resolvent of D5 for
a ¼ 0. The resolvent of DW at a ¼ 0 can be expressed as�

Tr
1

DW þ z

�
¼
� X
�W
k
>0

2z

ð�W
k Þ2 þ z2

�
þ 


z
: (52)

The eigenvalues of D5 are �5
k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�W

k Þ2 þm2
q

for
â8 ¼ 0 resulting in the resolvent�
Tr

1

D5 þ z

�
¼
� X
�W
k
>0

2z

z2 �ð�W
k Þ2 �m2

�
þ 


z�m

¼�
� X
�W
k
>0

2z

ð�W
k Þ2 þm2 � z2

�
þ 


z�m

¼�z
�


�W
k
>0
ðxÞ

x

��������x¼i
ffiffiffiffiffiffiffiffiffiffiffi
z2�m2

p þ 


z�m
: (53)

Inserting the â8 ¼ 0 result for �
 [see, e.g., Eq. (45) of
[6] ] we consistently find (51) above. We conclude
that in the limit â8 ! 0 the eigenvalue density
�

5ð�5; m̂; â8Þ is given by the standard â8 ¼ 0 result (39)

as long as jð�5 � m̂Þj=â8 
 1.

B. Small â8 limit for ðẑ� m̂Þ=â8 fixed

As we have just seen, for a ¼ 0 the contribution of the
zero modes of DW to the resolvent of D5 is given by




ẑ� m̂
: (54)

For a � 0 the zero modes are smeared out so that the
singularity in the resolvent is smoothened, and we expect
the imaginary part of the resolvent to behave as

Im ½G
ðẑ; m̂Þ� � 1

â8
Fðẑ� m̂Þ; (55)

with F a peaked function. In Appendix A we extract the
analytical expression for F from the small â8 limit of the
microscopic result for the resolvent given in Eq. (42).
Amazingly, the result is given by the eigenvalue density
of a j
j � j
j Hermitian random matrix theory

�

5ð�5;m̂; â8	1Þ¼ 1

4â8
expð�u2ÞX
�1

k¼0

HkðuÞHkðuÞ
2kk!

ffiffiffiffi
	

p

¼ 1

4â8

e�u2

2
ð
�1Þ! ffiffiffiffi
	

p

�½H2

ðuÞ�H
þ1ðuÞH
�1ðuÞ�; (56)

with

u ¼ �5 � m̂

4â8
: (57)

This is the familiar spectral density of the 
� 
 Gaussian
unitary ensemble shifted by m̂ and rescaled by 1=4â8. For

 ¼ 1 the result is a simple Gaussian.
For the normalization of the Hermite polynomials we

used the conventionZ 1

�1
dxHjðxÞHkðxÞe�x2 ¼ �jk2

kk!
ffiffiffiffi
	

p
: (58)

The 1=â8 contribution to the spectral density is therefore
normalized to 
. For 
 ¼ 0 the leading small-â8 correc-
tions are Oðlogðâ8ÞÞ (see Appendix A for details) and will
not be considered to the order we are working.

C. For small â8 the distribution ��
� is given by ��

5

The distribution of the chirality over the real eigenvalues
of DW , �


�ð�W ; â8Þ, is obtained from the resolvent

of D5 [Eq. (42)] by replacing the preexponential factor
i cos� ! � sin� and putting z ! 0. As discussed in
Sec. IVA, to leading order in â8, this is equal the spectral
density of the real eigenvalues of DW . For small â8 the
width of the spectrum �â8 and we can thus consider the
limit of small â8 with m̂=â8 fixed. This is exactly the limit
that was considered in previous section.
To leading order, only the negative exponent of � sin�

has to be taken into account (which, up to a minus sign, is
the same as the negative exponent of i cos�). We thus find

�

realð�5 � m̂; â8Þ ¼ �


5ð�5; m̂; â8Þ for â8 ! 0 and

ðm̂� �5Þ=â8 fixed: (59)

This fact is also demonstrated graphically in Fig. 4. The
two distributions merge because the real modes are almost
chiral. To see this we start with a real mode of DW [22]:

DW�j ¼ �W
j �j: (60)

It follows that

D5�j ¼ �5ðDW þmÞ�j ¼ ð�W
j þmÞ�5�j: (61)
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Now if the real modes of DW are chiral �5�j ¼ ��j then

the 
 real eigenvalues of DW are mapped onto 
 eigenval-
ues of D5 with a trivial shift by m. More precisely,

�5�j ¼ hjj�5jji�j þ �� with hjj��i ¼ 0 and

���OðaÞ; (62)

so that

D5�j ¼ ðmþ �W
j Þhjj�5jji�j þOðaÞ: (63)

Since the distributions of the two merge in the small â8
limit [see Eq. (59)], this explicitly confirms that the chi-
rality of the real modes is unity to leading order in â8.

D. Scaling of smallest eigenvalue

For 
 ¼ 1 and â8 	 1 the distribution of the single real
eigenvalue of DW takes the Gaussian form

�
¼1
real ð�W ; â8 	 1Þ ¼ 1

4â8
ffiffiffiffi
	

p exp

�
�ð�WÞ2

16â28

�
: (64)

In physical units the width of the distribution is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a2W8

p
�

ffiffiffiffi
V

p : (65)

This is also the width parameter of the Gaussian tail of the
spectral density of D5 inside the gap. In lattice simulations
of the Wilson Dirac operator, a scaling of the width of the

distributions of the smallest eigenvalue �a=
ffiffiffiffi
V

p
has been

reported [30] for Nf ¼ 2 simulations.

It is also instructive to consider the ratio of the width
parameter and the average spacing �� ¼ 	=�V of the
Dirac eigenvalues at a ¼ 0,

�

��
¼ ð8a2W8VÞ1=2 1	 ¼ â8

ffiffiffi
8

p
	

: (66)

This gives an intuitive interpretation of the dimensionless
low-energy constant â8.

E. Mean field limit

For large m̂, ẑ, and â2i the graded generating function can
be evaluated by a saddle point approximation. This limit
corresponds to the lowest nontrivial order in the usual
perturbative expansion (p regime) as considered in [19].
We will focus, in particular, on the behavior of the spectral
density �5 near the edge of the spectrum. At mean field
level the dependence on the index of the Dirac operator is
suppressed and we will therefore start from the 
 ¼ 0
expression and drop the index 
 below. Since the Dirac
spectrum at W6;7 � 0 is given by a Gaussian integral over

the Dirac spectrum forW6 ¼ W7 ¼ 0, only the dependence
on W8 will be taken into account in this section.

The expression for the spectral density can be written as

�
¼0
5 ðm̂; ẑ; â8Þ ¼ 1

	
Im

Z 1

�1
ds
Z 	

�	

d�

2	
eSfðm̂;ẑ;â8Þ

� d

dz0
eSbðm̂;ẑ0;â8ÞPðm̂; ẑ; ẑ0; â8Þjẑ0¼ẑ; (67)

where Sf, Sb and P can be read off from Eqs. (41) and (42).

By shifting integration contours according to

� ¼ i

�
�rþ i	

2

�
; s ¼ t� 	i

2
; (68)

the fermionic and bosonic exponents become real and
equal up to a sign

~SfðrÞ ¼ m̂ coshrþ ẑ sinhr� 2â28 cosh2r;

~SbðtÞ ¼ �m̂ cosht� ẑ sinhtþ 2â28 cosh2t:
(69)

Also the prefactor in terms of these variables

Pðs; rÞ ¼ � i

2
½m̂ coshrþ ẑ sinhrþ m̂ coshtþ ẑ sinht

� 2â28ððer þ etÞ2 þ ðe�r þ e�tÞ2Þ� (70)

becomes real (an overall factor of i is included in the
fermionic integration).
For large m̂ and ẑ the integrals can be evaluated by a

saddle point approximation. It is convenient to introduce
u ¼ sinhs as new variable so that the potential (69) is
given by

SbðuÞ ¼ �m̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�ẑuþ 2â28ð2u2 þ 1Þ: (71)

The edge of the spectrum is the point where two real saddle
points coalesce and move into the complex plane. At this
point

S0bðugÞ ¼ 0; and S00bðugÞ ¼ 0; (72)

where SbðuÞ is given in Eq. (71). The second equation
results into

u2g ¼
�
m̂

8â28

�
2=3 � 1; (73)

which combined with the vanishing first derivative leads to
the mean field result for the gap

ẑg ¼ m̂

�
1�

�
8â28
m̂

�
2=3
�
3=2

: (74)

The mean field spectrum is symmetric around the origin
and above we displayed the positive solution for the gap.
Depending on the position of �5 with respect to the

position of the gap ẑg we can distinguish three parameter

domains:
(i) j�5j< zg, then all saddle points in terms of the r and

t variables are real. The leading saddle point deter-
mines the fermionic integral but does not contribute
to the imaginary part of the bosonic integral (which
gives the imaginary part of the resolvent). The
imaginary part is given by a subleading saddle point
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and when combined with the fermionic contribution
gives an exponentially suppressed tail. Combining
this with the fermionic integral gives the spectral
density. In the small â8 limit, when coshs � sinhs
at the saddle point, the bosonic integral becomes
Gaussian resulting in the Gaussian tail

�5ð�5; m̂; â8Þ � exp

�
m̂� m̂2

2ðm̂� 8â28Þ
� ðm̂� �5Þ2

16â28

�
:

(75)

(ii) j�5j> zg, then a pair of real saddle points has

turned into a pair of complex conjugate saddle
points. Only one of the saddle points can be
accessed by the bosonic integration contour, but
they both contribute to the fermionic integral.
When the saddle points of the bosonic and fermi-
onic integrals are the same, the exponents cancel
resulting in a smooth contribution to the spectral
density. When they are different, they result in an
oscillatory exponent which is subleading because of
the prefactor. It is instructive to work out the case
â8 ¼ 0 which is done in Appendix B. Also the
nonzero â8 case is discussed in this appendix.

(iii) �5 � zg, then two saddle points are close and

the exponents can be approximated by a cubic
polynomial. This is the scaling domain where

Vðz� zgÞ3=2 is kept fixed in the thermodynamic

limit for fixed m and a. In principle, the exact
generating function can be evaluated in this limit,
and according to universality arguments it should
give a spectral density that can be expressed in
terms of Airy functions as [see Eq. (B27) for the
definition of �]

�5ðxÞ ¼ 1

�
ðAi0ðxÞ2 � xAi2ðxÞÞ; with

x ¼ ðzg � zÞ=�: (76)

The leading order asymptotic behavior of the Airy
function on both sides of zg follows from a saddle

point approximation of the generating function in
this domain. This is shown in Appendix B.

F. Edge scaling

As discussed in previous section, the supersymmetric
generating function can be evaluated in a counting scheme

where m̂ 
 1, â28 
 1 and ðẑ� ẑgÞ3=2 
 1 are all of the

same order. This is a universal scaling domain where the
average spectral density is given by the expression in terms
of Airy functions [see Eq. (76)]. We illustrate this in Fig. 5
for m̂ ¼ 30 and â8 ¼ 1.

The distribution, pmin, of the smallest positive eigen-
value for the corresponding density Eq. (76) is also known.
It is given by the Tracy-Widom distribution [36–38] for

 ¼ 2,

pminðzÞ ¼ d

dz
F2ððz� zgÞ=�Þ; (77)

F2ðxÞ ¼ e�
R

x

�1ðx�yÞq2ðyÞdy; (78)

where qðxÞ is the solution of

q00ðxÞ ¼ �xqðxÞ þ 2q3ðxÞ (79)

with boundary condition that qðxÞ ! Aið�xÞ for x ! �1.

VI. RANDOM MATRIX THEORY FOR THE
WILSON DIRAC OPERATOR

A chiral random matrix theory for lattice QCD with
Wilson fermions is constructed from the most general
�5-Hermitian matrix. This random matrix Wilson Dirac
operator has the block structure

~DW ¼ ~aA iW

iWy ~aB

 !
; (80)

where

A ¼ Ay and By ¼ B (81)

are ðnþ 
Þ � ðnþ 
Þ and n� n complex matrices, re-
spectively, and W is an arbitrary complex ðnþ 
Þ � n
matrix. In Eq. (80) and below we use tildes to indicate
quantities in the randommatrix theory which are analogues
of those in the quantum field theory. We relate the two sets
in Eq. (88).
We take the matrix elements to be distributed with

Gaussian weight

P ðA; B;WÞ � e�ðN=4Þ Tr½A2þB2��ðN=2Þ Tr½WWy�; (82)

where N ¼ 2nþ 
. Because of universality, results in the
microscopic domain should not depend on the details of the
probability distribution [4], but for simplicity we take a
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FIG. 5 (color online). The Airy behavior of �

5 ð�5; ẑÞ dots for

m̂ ¼ 30, â8 ¼ 1 and �5 close to zg vs Eq. (76).
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Gaussian distribution. The partition function of the Wilson
chiral random matrix theory is then defined as

~Z

Nf

¼
Z

dAdBdW
YNf

f¼1

detð ~DW þ ~mf þ ~zf ~�5Þ

� P ðA; B;WÞ: (83)

The matrix integrals are over the complex Haar measure
and ~�5 ¼ diagð1; � � � ; 1;�1; � � � ;�1Þ is a diagonal matrix
with nþ 
 diagonal matrix elements equal to 1 and n
diagonal matrix elements equal to �1.

For large quark mass the matrix ~D5 � �5ð ~DW þmÞ has
nþ 
 positive eigenvalues and n negative eigenvalues,
whereas for large negative mass ~D5 has nþ 
 negative
eigenvalues and n positive eigenvalues. Therefore at least
j
j spectral flow curves of ~D5 have to cross zero at least
once. Since each crossing corresponds to a real eigenvalue
of ~DW we conclude that ~DW has at least j
j real eigenval-
ues. The block structure of the matrix (80) guarantees that
the random matrix Dirac operator has index 
.

A chiral random matrix theory for staggered fermions at
finite lattice spacings was introduced in [39].

A. From Wilson chiral random matrix theory to
Wilson chiral perturbation theory

We now consider the microscopic limit of the chiral
random matrix theory for Wilson fermions in which

~m� N�1; ~z� N�1; ~a� N�1=2: (84)

We have studied numerically the quenched eigenvalue
spectrum of the random matrix Wilson Dirac operator,
~DW , in this scaling regime. We find that the number of
real eigenvalues of ~DW is equal to 
þOð~a4Þ for 
 � 0 and

þOð~a2Þ for 
 ¼ 0, while the remaining eigenvalues
come in complex conjugate pairs (see Fig. 6). Moreover,
we have found perfect agreement with the analytical pre-
dictions for �


� in Eq. (37) and �

5 in Eq. (43); this is

illustrated by Fig. 7. This agreement strongly suggests
that the chiral random matrix theory for Wilson fermions
introduced above is in the same spectral universality class
as the leading term of Wilson chiral perturbation theory in
the �-counting scheme.

To demonstrate this universality we will now show that
the Wilson chiral random matrix theory partition function
reduces to that of Wilson chiral perturbation theory to
leading order in the �-counting scheme. The explicit cal-
culation will allow us to identify the low-energy constant
W8 in terms of the parameters of the random matrix theory.
Inclusion in the random matrix theory of the two other
terms in the chiral Lagrangian to this order that couple with
W6 and W7 will be discussed in the next subsection. For
notational simplicity we keep the quark flavors degenerate.

The first step is to express the determinants in Eq. (83) as
Grassmann integrals. Then the average over the matrix
elements of W can be performed by completing squares

(see [1,3] for details). The four-fermion terms can be
decoupled by means of a Hubbard-Stratonovitch transfor-
mation, leading to the partition function

~Z

Nf
ð ~m;~z; ~aÞ

¼
Z
dQ1dQ2dTdT

ydetN=2þ
ði~aQ1þTþ ~mþ~zÞ
�detN=2ði~aQ2þTyþ ~m�~zÞ
�e�ðN=2ÞTrTTy�ðN=4ÞTr½Q2

1
þQ2

2
�: (85)

Here, Q1 and Q2 are Hermitian Nf � Nf matrices and T is

an arbitrary complex Nf � Nf matrix.
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FIG. 6 (color online). Scatter plot of the eigenvalues of ~DW

with 
 ¼ 5 as obtained from Wilson chiral random matrix
theory. The real eigenmodes (black dots) are clearly visible.
The width of the strip of complex eigenvalues in the thermody-
namic limit equals jReðzÞj< 8a2W8=�, as also follows from the
chiral Lagrangian. See Eq. (88) for the match between the
parameters of Wilson chiral random matrix theory and those
of the chiral Lagrangian.
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FIG. 7. The average spectral density of the Hermitian random
matrix Dirac operator ~D5 with n ¼ 50 and 
 ¼ 1 over an
ensemble of 100 000 matrices (marked by crosses) and the
prediction from Wilson chiral perturbation theory.
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Up to now this is an exact reformulation of the partition
function (83). In the limit of large matrices valid for the
scaling (84) the integrals can be evaluated by a saddle point
approximation. The saddle point manifold is given by

T ¼ UV�1: (86)

After absorbing V�1 in U and expanding the exponent to
order ~m, ~z and ~a2 we obtain

~Z

Nf
ð ~m; ~z; ~aÞ ¼

Z
UðNfÞ

dU
Z

dQ1dQ2det

ðUÞeðN=2Þð ~mþ~zÞ TrUþN

2ð ~m�~zÞ TrUy

� eðN=2Þi~a TrðQ1UþQ2U
�1ÞþðN=4Þ~a2 Tr½Q1U

�1Q1U
�1þQ2UQ2U��ðN=4Þ TrðQ2

1
þQ2

2
Þ:

The integrals over Q1 and Q2 are Gaussian and are local-
ized on the saddle point. The term ofOð~a2Þ in the exponent
results in higher order contributions and they can be omit-
ted here. We thus obtain the partition function

~Z

Nf
ð ~m; ~z; ~aÞ

¼
Z
UðNfÞ

dUdet
ðUÞ

� eðN=2Þð ~mþ~zÞ TrUþðN=2Þð ~m�~zÞ TrUy�ðN~a2=4Þ TrðU2þUy2Þ: (87)

This shows that the Wilson chiral random matrix theory
partition function (85) reproduces the three leading terms
in the � expansion. The corresponding low-energy con-
stants are identified as

N ~m¼m�V; N~z¼ z�V;
N~a2

4
¼a2W8V: (88)

As discussed in Sec. VII C this identification requires that
W8 > 0.

B. Double-trace terms

The double-trace terms of Wilson chiral perturbation
theory are not generated by the Wilson random matrix
theory defined in Eq. (83). Although such terms have
been argued to be suppressed in large-Nc counting [29],
we would nevertheless like to be able to include them.
As we will now show, this can easily be done.

Let the random matrix theory partition function be ex-
tended to

~Z

Nf
ð ~m; ~z; ~a6; ~a7; ~a8Þ

� 1

16	~a6~a7

Z 1

�1
dy6dy7e

�y2
6
=ð16j~a2

6
jÞ�y27=ð16j~a27jÞ

� ~Z

Nf
ð ~m� y6; ~z� y7; ~a8Þ; (89)

where the partition function inside the integral is given in
(83). It follows from the discussion of Sec. IVC that then
also the trace-squared terms of Wilson chiral perturbation
theory are reproduced by the random matrix theory in the
scaling limit (84). The partition functions (89) lead to
negative values of W6 and W7. Positive values of these
constants can be obtained from fluctuations of the mass in
the imaginary direction.

VII. HERMITICITY PROPERTIES
AND THE SIGN OF W8

The sign and magnitude of the low-energy constantsW6,
W7 and W8 are essential for numerical simulations of
lattice QCD with Wilson fermions. In particular the sign
of W8 has been debated in the literature [19,32,40]. The
sign is important for understanding whether or not lattice
QCD with Wilson fermions enters an Aoki phase with
spontaneously broken parity [41,42]. In this section we
provide several arguments for why Hermiticity properties
put constraints on the these low-energy parameters. To
simplify the discussion, we restrict ourselves to the case
where both W6 and W7 vanish.

A. AWilson lattice QCD inequality and the sign of W8

With two degenerate flavors the determinant of the
Wilson Dirac operator is positive definite and it is possible
to formulate rigorous QCD inequalities. Based on such an
inequality we argue here that for W6 ¼ W7 ¼ 0 one must
have W8 
 0 in the Nf ¼ 2 theory. Since the Wilson

fermion determinant in lattice QCD is real, the measure
with two degenerate flavors is real and positive

det 2ðDW þmÞ> 0: (90)

As this is true for any gauge field configuration, indepen-
dent of the number of real eigenvalues of DW , it follows
that the two-flavor partition function, Z


Nf¼2, of lattice

QCD with Wilson fermions in a sector with fixed number
of real modes of DW is real and positive for all real values
of m

Z 

Nf¼2ðm; z ¼ 0; aÞ> 0: (91)

The overall sign of the partition function can of course be
changed by introducing a multiplicative constant. What the
inequality states is that the partition function cannot
change sign as a function of a real valued quark mass.
The partition function in the � regime must necessarily

satisfy the same positivity bound. We note, however, that
its sign depends on the index 
 of the chiral Lagrangian:

Z

Nf¼2ðm̂; ẑ;�â28Þ ¼ ð�1Þ
Z


Nf¼2ðiẑ; im̂; â28Þ: (92)
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For odd 
 the partition functions with positive and negative
â28 have opposite signs at m ¼ z ¼ 0, and since for

sufficiently large m̂ both partition functions have the
same sign, it is not possible that they both satisfy
the inequality for real m̂ and ẑ. As the plot in Fig. 8
demonstrates, the sign of W8 dictated by the inequality is
positive.

This can also be obtained analytically from the chiral
Lagrangian. The partition function with degenerate masses
(27) can be expressed in terms of the eigenvalues of U.
This allows us to rewrite the mass-degenerate partition
function in the simplified form

Z

Nf
ðm̂; ẑ; â8Þ ¼ det½Z
þi�j

Nf¼1 ðm̂; ẑ; â8Þ�i;j¼1...Nf
(93)

where the one-flavor partition function is

Z

Nf¼1ðm̂; ẑ; â8Þ ¼

Z 	

�	

d�

2	
ei�
em̂ cosð�Þþiẑ sinð�Þ�2â28 cosð2�Þ:

(94)

In Appendix C we show that for odd values of 
 the two-
flavor partition function with W8 > 0 (W8 < 0) is positive
(negative) for m̂ ¼ 0 and that for both signs of W8 the
curvature at zero mass is positive.

Below we discuss the sign ofW8 from the perspective of
the graded generating function and from Wilson chiral
random matrix theory. In both instances we find W8 
 0,
independent of the number of flavors.

B. Convergence and �5 Hermiticity

The issue of the sign of the constants of Wilson chiral
perturbation theory manifests itself also in the convergence
properties of the graded generating functional. For W6 ¼
W7 ¼ 0 the integrals in (32) are divergent if W8 < 0.
However, the alternative graded generating function

Z

1j1ðM;Z; â28 < 0Þ
¼
Z

dUSdetðUÞ


� eð1=2ÞSTrðM½UþU�1�Þþð1=2ÞSTrðZ½U�U�1�Þ�â2
8
STrðU2þU�2Þ

(95)

is now convergent. This integral seems to provide a
bona fide generating function for Wilson fermions with
W8 < 0. In fact, it agrees precisely with the generating
function suggested for p regime calculations in Ref. [19].
Nevertheless, the sign issue has not disappeared; it has only
resurfaced in disguise. To see this, we can compute the
resolvent for the real eigenvalues of DW with the alterna-
tive graded generating function

d

dm
Z

1j1ðM;Z ¼ 0; â28 < 0Þjm0¼m: (96)

By comparison with Eqs. (32) and (95), it follows that

d

dm
Z

1j1ðM;Z ¼ 0; â28 < 0Þjm0¼m

¼ �i
d

dz
Z

1j1ðM ¼ 0;Z; â28 > 0Þjz0¼z¼im: (97)

Since the right-hand side is continuous when m crosses
the real axis we conclude that for W8 < 0 the density of
real eigenvalues vanishes. This is because the graded
partition function, (95), valid forW8 < 0, is the generating
functional of an anti-Hermitian operator with a spectral
density on the imaginary axis. This would be an acceptable
eigenvalue density if DW was anti-Hermitian, but this is
only the case for a ¼ 0. Away from a ¼ 0 the operator is
only �5 Hermitian. So from the convergence of the graded
generating function and the requirement of �5 Hermiticity
of DW it follows that W8 > 0.
The possibility of a link between the integration domain

of the graded generating functional in chiral perturbation
theory and the Hermiticity properties of the Dirac operator
is not new. In continuum QCD at nonzero quark chemical
potential the Dirac operator is non-Hermitian for real
values of the chemical potential and anti-Hermitian for
imaginary values. Correspondingly, the graded generating
functional has two branches which differ by a transforma-
tion of the super Goldstone field [43,44]. One is convergent
for real values of the chemical potential while the other is
convergent for imaginary values of the chemical potential
[45,46].

C. The sign of W8 and Wilson chiral
random matrix theory

In this section we discuss the constraints on the con-
stants in Wilson chiral perturbation theory due to �5

Hermiticity from the point of view of chiral random matrix
theory.
In Eq. (88) the coefficients of Wilson chiral perturbation

theory were expressed in terms of the parameters of the
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FIG. 8 (color online). The two-flavor microscopic partition
function for â28 ¼ 1 (W8 
 0) and â28 ¼ �1 (W8 � 0) plotted

as a function of the mass for ẑ ¼ 0. Only the partition function
with W8 
 0 satisfies the QCD inequality.
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chiral random matrix theory, and it was found thatW8 > 0.
A chiral random matrix theory where the sign of W8 is
negative can be obtained by including an additional
imaginary unit i in front of the chiral symmetry violating
pieces of ~DW in (80), that is,

~DW8<0 ¼
iaA iW

iWy iaB

 !
: (98)

With this change, the random matrix Wilson Dirac
operator, however, becomes anti-Hermitian rather than
�5 Hermitian. We stress that this observation is in perfect
agreement with the conclusion obtained from the conver-
gence requirement of the graded generating function
above: the spectral density of the anti-Hermitian random
matrix (98) matches that generated by the graded partition
function (95) which is convergent for W8 < 0. This has
been verified numerically to high accuracy. Because ~DW8<0

is anti-Hermitian, the determinant detð ~DW8<0 þmÞ2 has a
definite sign for imaginary m in agreement with the chiral
Lagrangian for W8 < 0 and imaginary m.

From the point of view of random matrix theory, the
different universality classes corresponding to whether
one imposes �5 Hermiticity or not are well understood
[47]. In the random matrix theory literature this is referred
to as Q symmetry.

Clearly the conclusions of this section have the same
origin, namely, that the caseW8 < 0 (andW6 ¼ W7 ¼ 0) is
in conflict with the �5 Hermiticity of DW and the
Hermiticity of D5. A positive sign of W8 is consistent
with the existence of an Aoki phase.

VII. CONCLUSIONS

In this paper we analyzed the spectral properties
of the Wilson Dirac operator in the microscopic
scaling regime. Eigenvalues of the Wilson Dirac operator
in this regime are responsible for spontaneous chiral sym-
metry breaking. Another feature of Wilson fermions is the
existence of the Aoki phase with spontaneous breaking of
parity. In the microscopic scaling regime one has analytical
means for studying both. We have shown that the chiral
Lagrangian for Wilson chiral perturbation theory can be
used to compute spectral properties of the Wilson Dirac
operator DW and its Hermitian counterpart D5. Using a
graded extension of the chiral Lagrangian up to and in-
cluding Oða2Þ effects, we have computed the microscopic
spectrum of the Hermitian Wilson Dirac operatorD5 in the
quenched theory. We have shown how to incorporate all
possible terms of the Lagrangian to this order, including
double-trace terms.

An alternative path to the microscopic spectrum goes
through a chiral random matrix theory based on symme-
tries of the Wilson Dirac operator. Here we have formu-
lated such a theory and proved that the partition function
coincides with that of Wilson chiral perturbation theory to

leading order in the �-counting scheme. Numerically, we
have demonstrated that also the spectral correlation func-
tions of the chiral random matrix theory agree beautifully
with the analytical predictions of Wilson chiral perturba-
tion theory.
Interestingly, we find restrictions on the possible

values of the low-energy constants of Wilson chiral per-
turbation theory arising from the imposition of �5

Hermiticity. It would be most interesting to have a more
detailed understanding of this phenomenon, which seems
to run deep. It is noteworthy that the bound we get from the
chiral Lagrangian matches exactly with the bound we get,
by an entirely different route, from our Wilson chiral
random matrix theory. In its simplest form, where we
ignore double-trace terms, it was found that this bound is
consistent with the existence of an Aoki phase.
The results presented here are for the microscopic

limit in sectors with a fixed index of the Wilson Dirac
operator. The real modes of the Wilson Dirac operator
have an interesting dynamics on their own. Remarkably,
we find that very close to the continuum, the j
j real
modes behave like the eigenvalues of a j
j � j
j
Hermitian random matrix theory of exactly Gaussian
weight. We emphasize that this is a universal result
that has been derived from a chiral Lagrangian.
In lattice gauge theory simulations it would be most inter-
esting to study just this subset of real modes of
the Wilson Dirac operator. In particular, as we
have shown, their dynamics carries detailed information
about the low-energy constants of Wilson chiral perturba-
tion theory.
In general, we suggest to use spectral properties

of the Wilson Dirac operator to determine the new
parameters of Wilson chiral perturbation theory. While
these parameters are unphysical, it is nevertheless
crucial to establish their values if one wishes to extract
physical observables from Wilson fermion simu-
lations at finite lattice spacings. It will thus be of obvious
interest to extend the first results presented here for the
quenched theory to the corresponding theories with Nf

light fermions. Work in this direction is presently under-
way [48].
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APPENDIX A: SMALL â8 LIMIT OF
RESOLVENT FOR ðẑ� m̂Þ=â8 FIXED

In this appendix we consider the leading nontrivial
expansion of �


5 for small â8 at 
 
 0. We start from

(42) with W6 ¼ W7 ¼ 0 and then compute the small â8

limit for ðẑ� m̂Þ=â8 fixed. Our aim is to prove that in this
limit the eigenvalue density is given by the familiar ex-
pression for the density of the Gaussian unitary ensemble
with matrices of size 
� 
.
The fermionic � integrals in (42) are all of the form

Zf
p � 1

2	

Z 	

�	
d�eip�e�m̂ sin�þiẑ cos�þ2â2

8
cos2�; for p ¼ 
� 3; . . . ; 
þ 3;

¼ 1

2	

Z 	

�	
d�eip�e

ffiffiffiffiffiffiffiffiffiffiffi
m̂2�ẑ2

p
cosð�þ�Þþ2â2

8
cos2�

¼ 1

2	

Z 	

�	
d�eipð���Þe

ffiffiffiffiffiffiffiffiffiffiffi
m̂2�ẑ2

p
cosð�Þþ2â2

8
cos2ð���Þ; (A1)

with

e�i� ¼
�
ẑ� m̂

ẑþ m̂

�
1=2

and cos� ¼ iẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 � ẑ2

p ; sin� ¼ m̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 � ẑ2

p : (A2)

To obtain the small â8 and small m̂� ẑ limit we expand the exponential functions in a Taylor series

Zf
p¼ 1

2	

Z 	

�	
d�eipð���Þ X1

k;l¼0

1

k!l!
ðm̂2� ẑ2Þk=2cosk�ð2â28 cos2ð���ÞÞl: (A3)

The leading terms, which we will refer to as �Zf
p, are obtained from exponents in the cosines with opposite sign to the

sign of p

�Zf
p � e�ip�

X
kþ2l¼jpj

1

k!l!2k
ðm̂2 � ẑ2Þk=2â2l8 e2ilsignðpÞ� ¼ X

kþ2l¼jpj

1

k!l!2k
ðm̂2 � ẑ2Þk=2â2l8 e�iksignðpÞ�

¼ ðâ8
ffiffiffi
2

p Þjpj X½jpj=2�
l¼0

�jpj�2l

ðjpj � 2lÞ!l!2l ; (A4)

where we define

� ¼ iðẑ� signðpÞm̂Þ
2â8

ffiffiffi
2

p : (A5)

For p ¼ 0 we have �Zf
p¼0 ¼ 1. The sum above can be

expressed in terms of Hermite polynomials, normalized
according to (58), for all p,

�Z
f
p ¼ ðâ8

ffiffiffi
2

p Þjpj ijpj

2jpj=2jpj!Hjpjð�=ði
ffiffiffi
2

p ÞÞ; (A6)

where the only dependence on the sign of p is in the
argument � (noting that H0 ¼ 1).
We now turn to the bosonic s integrals in (42). They are

all of the form

Zb
p �

Z 1

�1
dse�pse�im̂ sinhðsÞ�iẑ coshðsÞ�2â2

8
coshð2sÞ; for p ¼ 
� 2; . . . ; 
þ 2;

¼
Z 1

0

dy

y
y�pe�ði=2Þðm̂þẑÞy�ði=2Þðẑ�m̂Þ=y�â28ðy2þy�2Þ; (A7)

after using the same definition as in (A2) and changing
variables y ¼ es. In the limit a ! 0 with jm̂� ẑj=â8 fixed
the leading contribution in an expansion in powers of â8 is
given as follows.

For p > 0 (p < 0) we change to rescaled new variables

y ¼ â8
ffiffiffi
2

p
=t (y ¼ t=â8

ffiffiffi
2

p
) to obtain to leading order

�Z b
p � ðâ8

ffiffiffi
2

p Þ�jpj Z 1

0
dttjpj�1 exp½��t� t2=2�

¼ ðjpj � 1Þ!D�jpjð�Þ e�
2=4

ðâ8
ffiffiffi
2

p Þjpj ; (A8)
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with Dp a parabolic cylinder function [49], and � depend-

ing on signðpÞ defined in (A5).
For p ¼ 0 the behavior in â8 is different. Because of the

exact result Zb
pðẑ ¼ 0 ¼ m̂Þ ¼ K0ð2â28Þ we expect a loga-

rithmic singularity here. Splitting the integration in
Eq. (A7) into (0, 1) and ð1;1Þ and changing variables as
for p > 0 for the former integral, and as for p < 0 for the
latter, we arrive at

Zb
p¼0 ¼

Z 1

â8
ffiffi
2

p
dt

t
½e�ði=2Þðm̂þẑÞðâ8

ffiffi
2

p Þ=t�ði=2Þðẑ�m̂Þðt=â8
ffiffi
2

p Þ þ e�ði=2Þðm̂þẑÞt=ðâ8
ffiffi
2

p Þ�ði=2Þðẑ�m̂Þððâ8
ffiffi
2

p Þ=tÞ�e�â28ð2â28=t2þt2=ð2â28ÞÞ: (A9)

Because the saddle point is outside the integration contour the leading contribution comes from the lower endpoint of
integration â8

ffiffiffi
2

p
, and we arrive at

�Zb
0 ¼�logð2â28Þexp½�iðm̂þ ẑÞ=2� iðẑ�m̂Þ=2�: (A10)

By combining the fermionic and bosonic integrals we obtain

G
ðẑ;m̂; â8Þ� i

2

�
Zb



	
i

4
ðm̂þ ẑÞ½Zf


þ2þZf

�þ i

4
ðẑ�m̂Þ½Zf


þZf

�2�þ

1

2
½Zf


þ1þZf

�1�þ â28½Zf


þ3þZf

þ1þZf


�1þZf

�3�




þðZf

þ1þZf


�1Þ
	
i

4
ðm̂þ ẑÞZb


�1þ
i

4
ðẑ�m̂ÞZb


þ1þ â28½Zb

�2þZb


þ2�



þ2â28Z
b

�1½Zf


þ2þZf

�þ2â28Z

b

þ1½Zf


�2þZf

�
�
: (A11)

To obtain the leading small â8 limit we simply replace the
partition functions by those with a caron.

For 
 
 3 all bosonic integrals have a positive subscript
p > 0 and no log terms appear. For the fermionic integrals
for 
 
 3 it is immediately clear that in the limit â8 ! 0
only the fermionic partition functions with the lowest index
have to be taken into account in each sum. The cases

 ¼ 0, 1, 2 have to be checked separately. Here special
attention has to be paid to the fact that for signðpÞ< 0 we
have �� 1=â8.

On the fermionic side the term �Zf

þ3 þ �Zf


þ1 þ �Zf

�1 þ

�Zf

�3 is subleading both for 
 ¼ 1 and 
 ¼ 2 whereas
�Zf

 þ �Zf


�2 is subleading for 
 ¼ 1. (This is also the case

for z ¼ 0 relevant for the resolvent of the real eigenvalues
of DW .) Below this is automatically taken care of by the
factors (
� 1) and (
� 2).

For 
 > 0 the expression for the resolvent thus simplifies
to leading order to

G
>0ðẑ;m̂;â8Þ

¼ i

2

i
�1e�
2=4

2ð
�1Þ=2â82
ffiffiffi
2

p
�
H
�1

�
�

i
ffiffiffi
2

p
�
½D�
ð�Þþ
�D�1�
ð�Þ

þ
ð
þ1ÞD�
�2ð�Þ�þ
ffiffiffi
2

p ð
�1Þ
i

H
�2

�
�

i
ffiffiffi
2

p
�

�½�D�
ð�Þþ2
D�
�1ð�Þ�

þ2ð
�1Þð
�2Þ
i2

H
�3

�
�

i
ffiffiffi
2

p
�
D�
ð�Þ

�
: (A12)

For 
 ¼ 0 we obtain no order 1=â8 terms, and the leading
order is in this particular case given by

1

8
logð2â28Þðẑþ m̂Þ exp½�iðm̂þ ẑÞ=2�: (A13)

Using the recursion relation

Dpþ1ðẑÞ � ẑDpðẑÞ þ pDp�1ðẑÞ ¼ 0; (A14)

one can simplify the first term in Eq. (A12)

G
>0ðẑ;m̂;â8Þ

¼ i
e�
2=4

2ð
þ3Þ=2â8
ffiffiffi
2

p
�
ð
þ1ÞH
�1

�
�

i
ffiffiffi
2

p
�
D�
ð�Þ�i

ffiffiffi
2

p ð
�1Þ

�H
�2

�
�

i
ffiffiffi
2

p
�
½�D�
ð�Þþ2
D�
�1ð�Þ�

�2ð
�1Þð
�2ÞH
�3

�
�

i
ffiffiffi
2

p
�
D�
ð�Þ

�
: (A15)

For p a positive integer, the parabolic cylinder functions
can be written as

D�pð�Þ ¼
ffiffiffiffi
	

2

r ð�iÞp�1

2ðp�1Þ=2ðp� 1Þ!Hp�1ð�=ði
ffiffiffi
2

p ÞÞ

� e�
2=4 erfcð�= ffiffiffi

2
p Þ þ Pp�2ð�Þe��2=4; (A16)

where we define the following polynomials that have
parity k

PkðxÞ ¼
X½k=2�
l¼0

alx
k�2l (A17)

with real coefficients al. This relation follows from induc-
tion, using the recurrence relation (A14) as well as the
following [49]
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DnðxÞ ¼ 2�n=2e�x2=4Hnðx=
ffiffiffi
2

p Þ; for n ¼ 0; 1; 2; . . . ;

D�1ðxÞ ¼
ffiffiffiffi
	

2

r
ex

2=4 erfcðx= ffiffiffi
2

p Þ: (A18)

By inspection it is clear that the terms containing the
polynomial Pk do not contribute to the imaginary part of
the resolvent. Because of erfcðxÞ ¼ 1� erfðxÞ and erfðxÞ
being odd, only the term proportional to unity contributes
to the imaginary part. After using the recursion relation for
the Hermite polynomials,

Hnþ1ðxÞ ¼ 2xHnðxÞ � 2nHn�1ðxÞ; (A19)

we find for the imaginary part of the resolvent and hence
the eigenvalue density of D5 (with â8 ! 0 and jẑ� m̂j=â8
fixed valid for 
 > 0)

�
>0
5 ðẑ;m̂;â8Þ� 1

	
Im½G
>0ðẑ;m̂;â8Þ�

¼ e�
2=2ffiffiffiffi

	
p

â82

þ2ð
�1Þ!½H

2

ð�=ði

ffiffiffi
2

p ÞÞ

�H
þ1ð�=ði
ffiffiffi
2

p ÞÞH
�1ð�=ði
ffiffiffi
2

p ÞÞ�: (A20)

This is the familiar density of the 
� 
 Gaussian unitary
ensemble shifted by m̂ and rescaled by 1=4â8. For 
 ¼ 0
the density is simply zero at the same order.

APPENDIX B: MEAN FIELD LIMIT

In this appendix we give more details for the mean field
results discussed in Sec. VE (see also [16,50]).

1. Mean field analysis of graded partition function

For large mN, zN and a2N, the integrals in the expres-
sion for the generating function of the resolvent can be
evaluated by a saddle point approximation. Unless the
Grassmann integrals vanish at the saddle point (we will
see below that this indeed may happen), the leading order
result can be obtained by putting the Grassmann variables
equal to zero so that the integral factorizes into a compact
and a noncompact integral which each can be approxi-
mated by a saddle point integral.

A priori we can choose either the compact or the non-
compact integral to derive the mean field result for the
resolvent. This limit corresponds to the physical limit of
taking the thermodynamic limit at fixed lattice spacing.

The mean field approximation to the supersymmetric
generating function is thus given by (provided that the
Grassmann integrals do not vanish at the saddle point)

Zðm̂; ẑ; ẑ0; â8Þ ¼ Zfðm̂; ẑ; â8ÞZbðm̂; ẑ0; â8Þ (B1)

resulting in the spectral density

�5ðẑ; m̂; â8Þ ¼ Im

�
Zfðm̂; ẑÞ 1

	

d

dẑ0
Zbðm̂; ẑ0Þ

���������ẑ0¼ẑ
: (B2)

Let us start with the fermionic integral given by

Zfðẑ; m̂; â8Þ ¼
Z 	

�	

d�

	
e�m̂ sin�þiẑ cos�þ2â2

8
cosð2�Þ: (B3)

For real ẑ, the imaginary part of the integral vanishes so
that the spectral density is given by

�5ðẑ;m̂;â8Þ¼Zfðẑ;m̂; â8Þ 1	
d

dẑ0
ImZbðẑ0;m̂;â8Þjẑ0¼ẑ: (B4)

The fermionic integral can be rewritten as

Zfðẑ; m̂; â8Þ ¼ 2

	
Re

Z 1

�1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p e�m̂yþiẑ
ffiffiffiffiffiffiffiffi
1�y2

p
þ2â2

8
ð1�2y2Þ:

(B5)

The extremum of the real part of the exponent is at
y ¼ �m̂=8â28, so that for 8â28 < m̂, the integral can be

approximated by expanding about y ¼ �1. In the thermo-
dynamic limit we arrive at

Zfðẑ; m̂; â8Þ ¼ 2
ffiffiffi
2

p
	

Re
Z 1

0
dsem̂�2â28�ðm̂�8â28Þs2þiẑs

ffiffi
2

p

¼
ffiffiffiffi
2

	

s
em̂�2â2

8
�ẑ2=2ðm̂�8a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂� 8â28

q : (B6)

The z dependence in the exponent is subleading in the
above expression, so that the fermionic part of the partition
function does not contribute to the resolvent to leading
order. For â8 ¼ 0 the integral in Eq. (B3) is given by [see
Eq. (46)]

Zfðẑ; m̂; â8 ¼ 0Þ ¼ 2I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2 � ẑ2

p �
� e

ffiffiffiffiffiffiffiffiffiffiffi
m̂2�ẑ2

p

2
ffiffiffiffiffiffiffi
2	

p ðm̂2 � ẑ2Þ1=4 :
(B7)

For ẑ 	 m̂ this expression is approximated byffiffiffiffi
2

	

s
em̂�ẑ2=2m̂ffiffiffiffi

m̂
p (B8)

in agreement with the asymptotic result (B6) for a ¼ 0.
Next we consider the bosonic integral given by

Zbðẑ; m̂; â8Þ ¼
Z 1

�1
dse�im̂ sinhs�iẑ coshs�2â2

8
cosh2s: (B9)

The imaginary part of the partition function can be written
as

ImZbðẑ; m̂; â8Þ ¼ 1

2i

Z 1

�1
ds½eim̂ sinhsþiẑ coshs�2â2

8
cosh2s

� e�im̂ sinhs�iẑ coshs�2â2
8
cosh2s�: (B10)

It is convenient to shift the integration contour by �	i=2
so that the exponent becomes real. The saddle point ap-
proximation to the bosonic integral is then given by
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Zbspðẑ; m̂; â8Þ ¼
X
p

�
	

�S00s ðspÞ
�
1=2

eSsðspÞ; (B11)

where

SsðsÞ ¼ �m̂ coshs� ẑ sinhsþ 2â28 cosh2s; (B12)

and the sum is over the saddle points. For ẑ < ẑg the saddle

points are real and only the saddle points with S00s ðspÞ> 0

contribute to ImðZbÞ. There is one saddle point with
S00s ðspÞ< 0 which gives the real part of Zb and is of the

order of ðZfÞ�1 so that the graded partition function is
normalized correctly at the mean field level. We thus find
that for z < zg the real and imaginary parts of Zb are

determined by different saddle points.
At z ¼ zg the real saddle point with negative curvature

merges with the real saddle point with positive curvature
(which determines the imaginary part of the partition
function), and for z > zg they turn into a pair of complex

conjugate saddle points. However, only one of the two
saddle points is accessible resulting in a bosonic partition
function with a real and an imaginary part that are both
determined by the same saddle point.

Since the negative of the fermionic exponent is obtained
from the bosonic exponent by replacing s ! i�, the saddle
points for the bosonic and fermionic integral are the same
but in the fermionic case both saddle points of the complex
conjugate pair contribute to the partition function resulting
in a real expression.

Notice that replica symmetry or supersymmetry is bro-
ken for the contribution to the tail. The fermionic integral is
always real and the imaginary part is due to the bosonic
integral [51]. The resolvent that can be derived from the
fermionic partition function does not have an imaginary
part for any number of flavors. The replica trick therefore
fails for the fermionic partition function even at the mean
field level. To get the correct result we have to select one of
the two saddle points. This is the case for the bosonic
partition function where only one of the two saddle points
is accessible by deformation of the integration contour.

A leading order saddle point approximation for the
imaginary part of the bosonic partition function is accurate
for a large parameter range. In particular, for large m̂ and ẑ
it covers both large and small â8. There are two parameter
domains where the derivation simplifies. First, for
ðm̂� ẑÞ=â8 
 1, then coshs in Eq. (B12) can be approxi-
mated by sinhðsÞ. Second, for ẑ close to the edge of the
spectrum, where two real saddle points are close and the
potential (B12) can be approximated by a cubic potential.
We first discuss the small â8 limit.

2. Tail of eigenvalue distribution for ðm̂� ẑÞ=â8 
 1

It is convenient to introduce u ¼ sinhs as a new variable
so the potential (B12) is given by Eq. (71). For
ðm̂� ẑÞ=â8 
 1, the leading saddle point �u 
 1, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� juj. For ẑ > 0 the leading saddle point is nega-

tive (and mutatis mutandis for ẑ < 0), so that

SbðuÞ � m̂u� ẑuþ 2â28ð2u2 þ 1Þ; ẑ > 0: (B13)

Taking into account the Jacobian of the transformation
u ¼ sinhs we arrive at

ImZbðẑ;m̂; â8Þ�4
ffiffiffiffi
	

p â8
m̂� ẑ

e�ðm̂�ẑÞ2=16â2
8
þ2â2

8 : (B14)

Combining this with the fermionic integral we obtain for
the spectral density

�5ðẑ; m̂; â8Þ ¼ 4
ffiffiffi
2

p
	

â8

ðm̂� ẑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂� 8â28

q
� em̂�m̂2=2ðm̂�8â2

8
Þ�ðm̂�ẑÞ2=16â2

8 : (B15)

3. Edge scaling

In this section we study the Dirac spectrum near the gap
at ẑ ¼ ẑg. We first consider ẑ < ẑg and then analyze ẑ > ẑg.

a. Edge scaling for ẑ < ẑg

We now expand SbðuÞ near the edge of the spectrum.
The second derivative vanishes and the first derivative is
given by

S0bðugÞ ¼ ẑg � ẑ (B16)

resulting in the expansion

SbðuÞ ¼ SbðugÞ � ðu� ugÞðẑ� ẑgÞ þ 1

6
ðu� ugÞ3S000b ðugÞ

(B17)

with

S000b ðugÞ ¼ � 3m̂ug

ð1þ u2gÞ5=2
: (B18)

The saddle points are given by

�u ¼ ug �
�
2ðẑ� ẑgÞ
S000ðugÞ

�
1=2

: (B19)

We will see that the minus sign corresponds to the leading
saddle point of the imaginary part of the bosonic partition
function whereas the negative sign corresponds to the
leading saddle point of the fermionic partition function
as well as the real part of the bosonic partition function.
Notice that because of the supertrace, the fermionic and
bosonic actions are each other’s inverses. The bosonic
exponent at the saddle point for the imaginary part be-
comes

Sbð �uÞ ¼ SbðugÞ � 1

3

ð2ðẑg � ẑÞÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S000b ðugÞ

q ; (B20)
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whereas the fermionic exponent at the saddle point reads

Sbð �uÞ ¼ �SbðugÞ � 1

3

ð2ðẑg � ẑÞÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S000b ðugÞ

q : (B21)

The second derivative at the saddle points is given by

S00ð �uÞ¼S00ðugÞþð �u� �ugÞS000ðugÞ¼ð �u� �ugÞS000ðugÞ; (B22)

so that

SbðuÞ ¼ Sbð �uÞ þ 1

2
ðu� �uÞ2ð �u� ugÞS000b ðugÞ

¼ Sbð �ugÞ þ 1

2
ðu� �uÞ2½2ðẑ� ẑgÞS000ðugÞ�1=2: (B23)

Therefore, integration over u gives an overall factor i for
ẑ < ẑg for the saddle point �u < ug, whereas for the saddle

point ( �u > ug) the Gaussian integral is real.

The spectral density is given by

�5ðẑÞ ¼ 1

	
ZfðẑÞ d

dẑ
ImZbðẑÞ: (B24)

Differentiating the preexponential factors gives subleading
corrections. The leading order saddle point result for the
spectral density is thus given by

�5ðẑÞ ¼ 4

�S000ðugÞ e
�ð2=3Þð2ðẑg�ẑÞÞ3=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S000

b
ðugÞ

p
: (B25)

Note that the preexponential terms are not determined
by a leading order mean field calculation. Comparing
this result to the leading order asymptotic expansion of
the universal result for the spectral density at the soft
edge

�5ðxÞ ¼ 1

�
ðAi0ðxÞ2 � xAi2ðxÞÞ � e�4x3=2=3

	x
; with

x ¼ ðzg � zÞ=�; (B26)

we find that the two results coincide if we make the
identification

� ¼ ð�S000ðugÞ=2Þ1=3: (B27)

b. Edge scaling for ẑ > ẑg

For ẑ > ẑg the leading order saddle point result is de-

termined by a pair of complex conjugate saddle
points. Near the edge of the spectrum, they are given by
Eq. (B19).

In order to understand the mean field limit for ẑ < ẑg we

first discuss the case of â8 ¼ 0. The saddle points are
given by

sinh�r¼� iẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2�m̂2

p ; cosh�r¼� im̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2�m̂2

p : (B28)

When the fermionic and bosonic saddle points have
opposite sign, then the preexponential factor vanishes.
Therefore this combination of the saddle points does not
contribute to the partition function. Only one of the
bosonic saddle points can be reached by deforming
the integration contour and the relevant fermionic saddle
point necessarily has the same sign. This is the way the
supersymmetric method selects the fermionic saddle
point and circumvents the failure of the fermionic replica
trick.

The preexponential factors add up to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 � m̂2

p
which

is canceled by the contributions from the Gaussian
integrals about the saddle point (up to a factor of 	)
resulting in a partition function that is correctly
normalized.
Next we consider the thermodynamic limit at fixed â.

Then the 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 � m̂2

p
singularity at the edge of the spec-

trum turns into a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ� ẑg

p
singularity for which we expect

an Airy like behavior. The saddle points for ẑ close to ẑg
are given by

sinh�r�¼ug� i

�
2ðẑ� ẑgÞ
�S000ðugÞ

�
1=2

; cosh�r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsinh2 �r

p
:

(B29)

The structure of the saddle point approximation to the
resolvent is given by

GðzÞ ¼ Pð�rþ; �rþÞe~Sbð�rþÞþ~Sfð �rþÞ þ Pð �rþ; �r�Þe~Sbð �rþÞþ~Sfð�r�Þ;
(B30)

where the exponents are given in Eq. (69) and the prefactor
is equal to

�
Pðs; rÞ � i

2

�
sinhr (B31)

with Pðs; rÞ defined in Eq. (70). In the first term in
Eq. (B30) the exponents cancel, whereas in the second
term they add up to [see Eq. (69)]

~S bð�rþÞ þ ~Sfð �r�Þ ¼ i
2

3

ð2ðẑ� ẑgÞÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S000ðugÞ

q : (B32)

When the saddle points are different the prefactor is sup-
pressed by 1=m̂ in agreement with the asymptotic expan-
sion of the universal expression for the level density near
the edge in terms of Airy functions. We have not worked
out the asymptotic behavior for ẑ > ẑg but checked nu-

merically that the exact expression for the spectral density
is in agreement with the expression in terms of Airy
function. The asymptotic domain is already reached
when m̂� 40 and â8 � 1.

G. AKEMANN et al. PHYSICAL REVIEW D 83, 085014 (2011)

085014-20



APPENDIX C: THE SIGN OF W8 AT SMALL MASS

In this appendix we investigate in detail the sign
of the partition function as a function ofW8, in the vicinity
of m̂ ¼ 0. Throughout this appendix we will set ẑ ¼ 0. In
particular we can show analytically that at m̂ ¼ 0 the
Nf ¼ 2 flavor partition function is positive for all values

of 
 only if W8 
 0. In contrast the partition function
becomes negative for odd values of 
 if W8 < 0. For both
signs of W8 we show that the Nf ¼ 2 flavor partition

function has a local minimum at m̂ ¼ 0: its first derivative
with respect to m̂ vanishes, and its second derivative is
positive.

We begin by stating an equivalent integral form of the
Nf ¼ 1 flavor partition function [Eq. (94)] by linearizing

cos2ð�Þ through a Gaussian integral and applying an inte-
gral representation for Bessel-I functions:

Z

Nf¼1ðm̂;�â28Þ

¼ exp½�2â28�
Z 	

�	

d�

2	
ei�
 exp½m̂ cosð�Þ � 4â28cos

2ð�Þ�

¼ exp½�2â28�
Z 1

�1
dxffiffiffiffi
	

p e�x2I


�
m̂þ 4â8x

	
i

1


�
: (C1)

Here the signþð�Þ corresponds to positive (negative)W8.
Following Eq. (93) the Nf ¼ 2 flavor partition function is

then given by

Z

Nf¼2ðm̂;�â28Þ ¼ Z


Nf¼1ðm̂;�â28Þ2
� Z
�1

Nf¼1ðm̂;�â28ÞZ
þ1
Nf¼1ðm̂;�â28Þ: (C2)

At m̂ ¼ 0 the integral in Eq. (C1) becomes doable.
First, due to the parity of Bessel-I functions, I
ð�xÞ ¼
ð�Þ
I
ðxÞ, the zero mass single flavor partition function
vanishes for odd values of 
 (for both signs of W8):

Z
¼2kþ1
Nf¼1 ðm̂ ¼ 0;�â28Þ ¼ 0: (C3)

At even value of 
 we obtain for a single flavor

Z
¼2k
Nf¼1ðm̂ ¼ 0;�â28Þ ¼

	
i2k

1



Ikð2â28Þ: (C4)

Thus for Nf ¼ 2 at even 
 we have

Z
¼2k
Nf¼2ðm̂ ¼ 0;�â28Þ ¼

	 ð�Þ2k
1



Ikð2â28Þ2; (C5)

as only the first term in Eq. (C2) is nonvanishing. This is
obviously real and positive being a complete square, for
both signs of W8. On the other hand when 
 ¼ 2kþ 1 the
first term vanishes in Eq. (C2), and we have

Z
¼2kþ1
Nf¼2 ðm̂ ¼ 0;�â28Þ ¼

	 ð�Þ2kþ1

1



ð�ÞIkð2â28ÞIkþ1ð2â28Þ:

(C6)

Only for the upper sign þ the factor ð�Þ2kþ1 compensates
the second minus sign. Knowing that Bessel-I is a positive
function for positive arguments we get again a positive
partition function for W8 > 0, but a negative one for
W8 < 0.
Next we investigate whether or not the point m̂ ¼ 0

is a relative extremum. Using the following Bessel
identity,

I0
ðxÞ ¼ 1

2
ðI
�1ðxÞ þ I
þ1ðxÞÞ; (C7)

it is easy to see that

@

@m̂
Z

2ðm̂;�â28Þjm̂¼0

¼ 1

2
ðZ


1ð0;�â28ÞðZ
�1
1 ð0;�â28Þ þ Z
þ1

1 ð0;�â28ÞÞ
� Z
�2

1 ð0;�â28ÞZ
þ1
1 ð0;�â28Þ

� Z
�1
1 ð0;�â28ÞZ
þ2

1 ð0;�â28ÞÞ: (C8)

Because of its parity this expression vanishes for both even
and odd 
, independent of the sign of W8.
To see if this is a local minimum we compute the second

derivative, given by

@2

@m̂2
Z

2ðm̂;�â28Þjm̂¼0

¼ 1

4
ð2Z


1ð0;�â28Þ2 � 2Z
�2
1 ð0;�â28ÞZ
þ2

1 ð0;�â28Þ
þ Z
�1

1 ð0;�â28Þ2 � Z
�3
1 ð0;�â28ÞZ
þ1

1 ð0;�â28Þ
þ Z
þ1

1 ð0;�â28Þ2 � Z
�1
1 ð0;�â28ÞZ
þ3

1 ð0;�â28ÞÞ:
(C9)

For even 
 only the first line of the right-hand side is
nonvanishing due to parity, and we have

@2

@m̂2
Z
¼2k
2 ðm̂;�â8Þjm̂¼0

¼ 1

2

	 ð�Þ2k
1



ðIkð2â28Þ2� Ik�1ð2â28ÞIkþ1ð2â28ÞÞ: (C10)

This is positive for both signs of W8:

IkðxÞ2 � Ik�1ðxÞIkþ1ðxÞ ¼ 2
Z 1

0
dttIkðxtÞ2 > 0: (C11)

Taking equation Eq. (C9) for odd 
, the first line of the
right-hand side vanishes due to parity and the second and
third line do contribute to give
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@2

@m̂2
Z
¼2kþ1
2 ðm̂;�â8Þjm̂¼0 ¼ 1

4

	 ð�Þ2k�2

1



ðIkð2â28Þ2 � Ik�1ð2â28ÞIkþ1ð2â28ÞÞ

þ 1

4

	 ð�Þ2kþ2

1



ðIkþ1ð2â28Þ2 � Ikð2â28ÞIkþ2ð2â28ÞÞ: (C12)

This is once more positive for both signs ofW8, because of the identity (C11). In conclusion the second derivative is always
positive and we have a relative minimum for small m̂.
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