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We apply the nonlinear realizations method for constructing new Galilean conformal mechanics

models. Our starting point is the Galilean conformal algebra which is a nonrelativistic contraction of

its relativistic counterpart. We calculate Maurer-Cartan one-forms, examine various choices of the

relevant coset spaces, and consider the geometric inverse Higgs-type constraints which reduce the number

of the independent coset parameters and, in some cases, provide dynamical equations. New Galilean

conformally invariant actions are derived in arbitrary space-time dimension D ¼ dþ 1 (no central

charges), as well as in the special dimension D ¼ 2þ 1 with one exotic central charge. We obtain

new classical mechanics models which extend the standard (D ¼ 0þ 1) conformal mechanics in the

presence of d nonvanishing space dimensions.
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I. INTRODUCTION

In recent years, there has been an increasing interest in
the applications of renowned AdS/CFT correspondence
[1–3] to nonrelativistic conformal field theory [4,5] (see
also [6–9] and references therein). In the AdS/CFT frame-
work, an important role is played by the (super)conformal
quantum mechanics as the simplest counterpart of the
higher-dimensional (super)conformal field theories.
Keeping in mind an extension to the nonrelativistic case,
it is desirable to consider various nonrelativistic versions of
the (super)conformal mechanics. The study of such models
would allow us to gain deeper insights into the physical and
mathematical aspects of nonrelativistic conformal symme-
try and can be used in the analysis of the corresponding
(super)strings and field theories.

The basic aim of the present paper is to construct, at the
classical level, several new mechanical models invariant
under Galilean conformal symmetries. Our main tool will
be the systematic use of the universal geometric method of
nonlinear realizations [10].

It is known that the de Alfaro, Fubini, and Furlan (AFF)
conformal mechanics [11], as well as its supersymmetric
extensions [12–14], can be adequately described in the
framework of nonlinear realizations of the D ¼ 0þ 1
conformal group SLð2;RÞ � SOð1; 2Þ [15] and its super-
symmetric extensions [14,16]. An important part of these
geometric techniques is the covariant reduction of the
number of (super)conformal group parameters by means
of the inverse Higgs mechanism [17], which singles out the
dynamical variables. The inverse Higgs constraints can be
derived in the geometrically transparent way, using the

formalism of the Maurer-Cartan (MC) one-forms on the
suitably chosen cosets of the symmetry group.
In this paper we apply the MC method to the Galilean

conformal (GC) group. The GC group extends the one-
dimensional conformal symmetry of [11] to the conformal
symmetry of the D ¼ dþ 1–dimensional nonrelativistic
space-time, with d � 1 being the number of space dimen-
sions. For a long time, since it was proposed in [18,19], the
name of nonrelativistic conformal symmetry was attributed
to the Schrödinger symmetries, which provide the covari-
ance of the Schrödinger equation describing a nonrelativ-
istic massive particle.1 However, the corresponding
Schrödinger algebra does not require mass parameters to
vanish and does not contain the nonrelativistic counterpart
of the conformal spatial accelerations. An alternative can-
didate for the nonrelativistic conformal symmetry algebra
is the Galilean conformal algebra (GCA), and it is the
symmetry we shall deal with in this paper. It can be

obtained by a contraction of the ðdþ2Þðdþ3Þ
2 -dimensional

relativistic conformal algebra oðdþ 1; 2Þ, in such a way
that the number of generators is preserved [21–26].2

GCA in d space dimensions has the following semidirect
sum structure:

CðdÞ ¼ ðoð2; 1Þ � oðdÞÞ2Að3dÞ ðd � 2Þ;
Cð1Þ ¼ oð2; 1Þ2Að3Þ; Cð0Þ ¼ oð2; 1Þ: (1.1)
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1It should be mentioned that the Schrödinger algebra is simply
related to the Lie algebra description of the invariance of the heat
equation, proposed first in the nineteenth century [20].

2To avoid possible confusion, let us note that the term ‘‘non-
relativistic conformal symmetries’’ is sometimes used for the
infinite-dimensional conformal isometries of nonrelativistic
space-time [6,22,26,27]. Nonrelativistic conformal symmetries
arise due to the degeneracy of the Galilean space-time metric
and have no relativistic counterpart. Here we will not deal with
this type of conformal symmetry.
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Here, oð2; 1Þ describes the conformal symmetries on the
worldline and was employed in [11,15], oðdÞ generates the
space rotations, and Að3dÞ represents the 3d-dimensional
Abelian subalgebra of space translations, Galilean boosts,
and nonrelativistic constant accelerations. We see that the
symmetry of standard conformal mechanics is given by

Cð0Þ ¼ oð2; 1Þ � CðdÞ for d > 0; besides, it is clear that CðdÞ
includes as a subalgebra the centerless Galilean
ðdþ1Þðdþ2Þ

2 -dimensional algebra in d space dimensions:

GðdÞ ¼ ðoð1; 1Þ � oðdÞÞ2 ~Að2dÞ ðd � 2Þ;
Gð1Þ ¼ oð1; 1Þ2 ~Að2Þ; (1.2)

where the Abelian subalgebra oð1; 1Þ describes the time

translations and ~Að2dÞ is formed by the space translations

and Galilean boosts; i.e., we get that GðdÞ � CðdÞ. Note that
the algebra (1.2) admits an extension by one central charge
for any d and by two central charges for the special case of
d ¼ 2 (see below); however, only the latter case, and with
only one central charge, can be promoted to a central
extension of the GCA for d ¼ 2. We also add that the
semidirect sum structure represented by the formulas
(1.1) and (1.2) reflects as well the semidirect product
decomposition of the corresponding centerless Galilean
and Galilean conformal groups. We will denote these

groups as ĜðdÞ
and ĈðdÞ, respectively.

We begin our paper by recalling, in Sec. II, a few known
examples of the application of the techniques of MC one-
forms and inverse Higgs constraints to mechanical systems
in order to derive the relevant dynamical equations of
motion and invariant actions. We consider the following
models of classical mechanics:

(i) Massive free nonrelativistic particle model (for any

d, we use GðdÞ with one central charge M) [28,29];
(ii) Massive free nonrelativistic particle model with

higher-order Chern-Simons-type term (for d ¼ 2,

we use Gð2Þ with two central charges) [30];
(iii) Standard conformal mechanics model [for d ¼ 0,

with Cð0Þ ¼ oð2; 1Þ] [11,15].
In cases (i).and (ii) we shall use the MC one-forms for

centrally extended Lie algebras. In particular, the MC one-
forms associated with the central charge generators will be
used for the geometric construction of the invariant actions
[28,29,31].

In Sec. III we consider GCA for arbitrary d, calculate the
corresponding MC one-forms, and propose the choice of
inverse Higgs constraints and GC-covariant dynamical
equations, which leads to the extensions of standard AFF
conformal mechanics model [11,15]. We consider four
examples of cosets for GCA. The canonical choice [with
the stability subalgebra oðdÞ] is shown to lead, after im-
posing the properly chosen inverse Higgs constraints, to
new GC-covariant field equations for arbitrary d.

In Sec. IV we propose the actions dynamically ge-
nerating the GC-covariant inverse Higgs constraints.

For arbitrary D ¼ dþ 1 we propose two new extensions
of the AFF model [11] and, forD ¼ 2þ 1, an extension of
the conformal dynamics considered in [32].
Brief conclusions are collected in Sec. V.

II. NONLINEAR REALIZATIONS METHOD
IN CLASSICAL MECHANICS:
ILLUSTRATIVE EXAMPLES

In this section we recall some known examples of the
nonlinear realizations, for the standard Galilei and exotic
Galilei groups and for the one-dimensional conformal

group Cð0Þ leading to standard conformal mechanics. We
demonstrate that the dynamics of considered systems is
completely determined by imposing the appropriate con-
ditions on the MC one-forms. Some of these conditions,
the inverse Higgs constraints, are algebraic equations elim-
inating part of the original coset variables. Other covariant
conditions imposed on the MC one-forms are the dynami-
cal equations of motion. Invariant actions are also con-
structed by making use of the MC one-forms. In
nonconformal cases the correct action is obtained from
the MC one-forms associated with the generators of central
charges. In the case of conformal mechanics, both the
algebraic constraints and the equations of motion follow
from the action which is linear in MC one-forms.

A. Galilei group in arbitrary space-time dimension D

The centrally extended Galilei algebra in D ¼ dþ
1–dimensional space-time is spanned by the generator of
the time translation H, the space translation generators Pi,
i ¼ 1; . . . ; d, the boosts Bi, the oðdÞ rotation generators
Jij ¼ �Jji, and the central charge M describing a non-

relativistic mass. The full set of commutation relations
consists of oðdÞ Lie algebra, the relations

½H;Pi� ¼ 0; ½H;Bi� ¼ iPi; (2.1)

½Pi;Pj�¼0; ½Bi;Pj�¼ i�ijM; ½Bi;Bj�¼0; (2.2)

and the commutators of oðdÞ generators Jij with the vector
generators Pi, Bi.
Let us consider the nonlinear realization of the centrally

extended Galilei group in the coset with OðdÞ as the
stability subgroup [28,29]. We choose the following
explicit parametrization of the coset

G ¼ eitHeixkPkeivkBkei’M: (2.3)

The left-invariant MC one-forms defined by the general
relation

G�1dG ¼ ið!HH þ!P;kPk þ!B;kBk þ!MMÞ (2.4)

are given by the following explicit expressions:
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!H ¼ dt; !P;i ¼ dxi � vidt;

!B;i ¼ dvi; !M ¼ d’þ vidxi � 1

2
vividt:

(2.5)

The group variables in (2.3) describe the mechanical
system with the Hamiltonian H and the trajectories in the
extended phase space xi ¼ xiðtÞ, vi ¼ viðtÞ, ’ ¼ ’ðtÞ.
The fields viðtÞ can be covariantly eliminated by imposing
the algebraic inverse Higgs constraints

!P;i ¼ 0 ) vi ¼ _xi: (2.6)

The equations of motion for the remaining physical vari-
ables xiðtÞ are represented by the constraints

!B;i ¼ 0 ) €x ¼ 0: (2.7)

Both the algebraic inverse Higgs constraints (2.6) and
dynamical equations (2.7) can be derived as the Euler-
Lagrange equations from the first-order action [28,29]

Sm ¼ m
Z

!M ¼ m
Z

dt

�
_’þ vi _xi � 1

2
vivi

�
: (2.8)

After inserting the constraints (2.6) in the action (2.8) we
obtain (up to a total derivative under the integral) the
standard action for the massive particle

Sm ¼ 1

2
m
Z

dt _xi _xi: (2.9)

B. Exotic Galilei group in D ¼ 2þ 1

The D ¼ 2þ 1–dimensional space-time is special be-
cause in this case we can add to the setH, Pi, Bi, Jij,M the

second (exotic) central charge � and consider exotic
Galilei algebra with the additional nonvanishing commu-
tators

½Bi; Bj� ¼ i�ij�: (2.10)

The MC one-forms

~G�1d ~G ¼ ið!HH þ!P;kPk þ!B;kBk þ!MMþ!��Þ;
~G ¼ Gei��; (2.11)

are given by (2.5) and the additional expression

!� ¼ d�þ 1

2
�ijvidvj (2.12)

for the MC one-form corresponding to the exotic central
charge. Using this one-form, we can generalize (2.8) and
consider the action [31]

Sm;� ¼ m
Z

!M þ �
Z

!�

¼ m
Z

dt

�
_’þ vi _xi � 1

2
vivi

�

þ 1

2
�
Z

dt½2 _�þ �ijvi _vj�; (2.13)

where both � and m are constant. Inserting the inverse
Higgs constraints (2.6),3 we get, modulo a total derivative,
the action for the D ¼ 2þ 1 massive particle with the
higher-order Chern-Simons-type term, which was pro-
posed in [30]:

Sm;� ¼ 1

2
m
Z

dt _xi _xi þ 1

2
�
Z

dt�ij _xi €xj: (2.14)

C. D ¼ 0þ 1 conformal mechanics

Following [15], the AFF conformal mechanics [11] can
be obtained by applying the MC method to the one-

dimensional conformal algebra Cð0Þ ¼ oð2; 1Þ:
½D;H�¼�iH; ½K;H�¼�2iD; ½D;K�¼ iK: (2.15)

We choose the exponential parametrization for the group

Ĉð0Þ ¼ SOð2; 1Þ,
Ĉ ð0Þ � G0 ¼ eitHeizKeiuD; (2.16)

and obtain the following left-covariant MC one-forms

G�1
0 dG0 ¼ ið!HHþ!KK þ!DDÞ; (2.17)

with

!H ¼ e�udt; !K ¼ euðdzþ z2dtÞ; !D ¼ du�2zdt:

(2.18)

In the conformal mechanics model [11], as in the con-
struction of unitary representations of the group SO(2,1)
[33], one is led to the choice of the following basis in the
oð2; 1Þ algebra,

R� ¼ 1

2
ð�K � ��1HÞ; D; ½Rþ; R�� ¼ iD;

½D;R�� ¼ iR	; (2.19)

where � is a constant with the mass dimension, so that R�
are dimensionless. The MC one-forms related to the gen-
erators R� are, respectively,

!�
R ¼ ��1!K � �!H: (2.20)

The dynamics of AFF conformal mechanics is obtained
by imposing the following constraints [15]

!D ¼ 0; (2.21a)

!�
R ¼ 0 (2.21b)

on the one-dimensional coset fields zðtÞ and uðtÞ. From the
inverse Higgs constraint (2.21a) it follows that

z ¼ 1

2
_u; (2.22)

3If � � 0 the constraints (2.6) can be obtained from (2.13) as
on-shell conditions, i.e., as a consequence of field equations.

GALILEAN CONFORMAL MECHANICS FROM NONLINEAR . . . PHYSICAL REVIEW D 83, 085013 (2011)

085013-3



while the dynamical constraint (2.21b) leads to the equa-
tion of motion

€� ¼ �2��3 (2.23)

for the single independent variable � ¼ eu=2.
The standard AFF conformal mechanics action [11]

S0 ¼
Z

dtð _�2 � �2��2Þ; (2.24)

which generates the equation of motion (2.23), in the
formalism of MC one-forms can be rewritten as [15]

S0 ¼ ��
Z

!þ
R ¼ �

Z
dt½euð _zþ z2Þ þ �2e�u�: (2.25)

We see that the action (2.25) is specified by the remaining
nonvanishing MC one-form in oð2; 1Þ. Both the kinemati-
cal constraint (2.22) (!D ¼ 0) and the dynamical equation
(2.23) (!�

R ¼ 0) are the equations of motion following
from the action (2.25).

Note that Eqs. (2.21a) and (2.21b) define a class of
geodesics on the SO(1,2) group manifold, described by
the one-parameter compact subgroup with the generator
Rþ [15]. Only such a class leads to the standard conformal
mechanics with good quantum properties [11], as opposed
to any other nontrivial choice of the constraints [for ex-
ample, the choice of!þ

R ¼ 0 instead of (2.21b). This is the
reason why in our further considerations we will use only
the constraints (2.21a) and (2.21b).

Let us make brief comments on the Hamiltonian for-
mulation of the model (2.25), which will be useful later in
the consideration of other GC-invariant actions.

The definitions of the momenta yield the second class
constraints

pu 
 0; pz þ eu 
 0: (2.26)

These constraints allow us to eliminate the phase space
variables ðpz; puÞ. The Dirac brackets for the surviving pair
of the phase space variables ðu; zÞ and the Hamiltonian take
the form

fu; zgD ¼ e�u; H ¼ euz2 þ �2e�u: (2.27)

After introducing the variables � ¼ eu=2, p� ¼ 2eu=2z

which possess the standard canonical brackets

ðu;zÞ: fu;zgD¼e�u ) ð�;p�Þ: f�;p�gD¼1; (2.28)

we obtain that the system (2.25) is described by the
Hamiltonian

H ¼ 1

4
p2
� þ �2��2; (2.29)

which follows from the action (2.24).

III. ALGEBRAIC DESCRIPTION OF GALILEAN
CONFORMAL SYMMETRY

A. Galilean conformal algebra and
corresponding MC one-forms

1. Arbitrary D

GCA CðdÞ in D ¼ dþ 1 defined by Eq. (1.1) is obtained

by adding to the Cð0Þ ¼ oð2; 1Þ algebra (2.15) the Lie

algebra of space rotations oðdÞ which commutes with Cð0Þ,

½Jij; Jkl� ¼ ið�ikJjl � �ilJjk þ �jlJik � �jkJilÞ; (3.1)

½Jij; H� ¼ ½Jij; D� ¼ ½Jij; K� ¼ 0; (3.2)

as well as the 3d-dimensional Abelian subalgebra Að3dÞ
spanned by the generators Pi, Bi, and Fi with the following
commutators:

½H;Pk�¼0; ½H;Fk�¼2iBk; ½H;Bk�¼ iPk;

½K;Pk�¼�2iBk; ½K;Fk�¼0; ½K;Bk�¼�iFk;

½D;Pk�¼�iPk; ½D;Fk�¼ iFk; ½D;Bk�¼0; (3.3)

½Jij;Aa;k� ¼ ið�ikAa;j � �jkAa;iÞ; (3.4)

½Aa;i;Ab;j� ¼ 0: (3.5)

Here, A1;i ¼ Pi, A2:i ¼ Bi, and A3;i ¼ Fi.

The generators of GCA enlarge the algebras (2.1), (2.2),
and (2.15), considered in the previous section. We recall
that the operators Bi generate the Galilean boosts and the
nonrelativistic energy operator H generates the Galilean
time translations. The operators Fi generate constant non-
relativistic accelerations, and their presence implies that
the central charge M [introduced in (2.2)] should be put
equal to zero for any D ¼ dþ 1. For d ¼ 2 one can still
add the central charge� as in (2.10), without breaking any

Jacobi identity of the full GCA algebra Cð2Þ.
We choose the coset KðdÞ ¼ ĈðdÞ=H , where ĈðdÞ is the

GC group with the algebra (1.1) andH ¼ SOðdÞ. We call
this coset canonical and use for it the following para-
metrization:

K ðdÞ ¼ G0e
ixkPkeifkFkeivkBk ; (3.6)

where Ĉð0Þ ¼ G0 is defined in (2.16).
The left-covariant MC one-forms are defined, as

usual, by

KðdÞ�1dKðdÞ ¼ ið!HH þ!KK þ!DDþ!P;kPk

þ!F;kFk þ!B;kBkÞ: (3.7)

The forms!H,!K, and!D are the same as in (2.18), while
the remaining Cartan forms read

!P;i ¼ dxi þ xi!D � vi!H; (3.8)
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!F;i ¼ dfi � fi!D þ vi!K; (3.9)

!B;i ¼ dvi þ 2xi!K � 2fi!H: (3.10)

Rewriting (3.7) in the form

KðdÞ�1dKðdÞ ¼ i!HðH þDzK þDuDþDxkPk

þDfkFk þDvkBkÞ (3.11)

we are left with the worldline density E,

!H ¼ dtE; E ¼ e�u; (3.12)

and the covariant time derivatives

Dz ¼ e2uð _zþ z2Þ;
Du ¼ euð _u� 2zÞ;
Dxi ¼ eu _xi þ xiDu� vi;

Dfi ¼ eu _fi � fiDuþ viDz;

Dvi ¼ eu _vi þ 2xiDz� 2fi:

(3.13)

The infinitesimal transformations of the coset parame-
ters, generated by the constant coset group elements

K ðdÞð"Þ ¼ eiaHeibKeicDeiakPkeibkFkeickBk ; (3.14)

are as follows:4

�t ¼ aþ bt2 þ ct � �ðtÞ; �z ¼ bð1� 2tzÞ � cz;

�u ¼ 2btþ c; �xi ¼ e�u½ai þ t2bi þ tci�;
�fi ¼ eu½z2ai þ ð1� tzÞ2bi � zð1� tzÞci�;
�vi ¼ �2zai þ 2tð1� tzÞbi þ ð1� 2tzÞci:

(3.15)

The forms (2.18), (3.8), (3.9), and (3.10) are invariant with
respect to the transformations (3.15) and are covariant
under the SOðdÞ transformations, which act as the standard
rotations of the vector index i.

In our further consideration, by analogy with the basis
(2.19) in the oð2; 1Þ algebra, we shall use the following new
basis in the Abelian subalgebra Að3dÞ:

A�
i ¼ 1

2
ð�Fi � ��1PiÞ; Bi: (3.16)

The commutation relations between the generators (3.16)
and (2.19) are as follows:

½R�;A�
k � ¼ 0; ½R�;A	

k � ¼�iBk; ½R�;Bk� ¼�iA	
k ;

½D;A�
k � ¼ iA	

k ; ½D;Bk� ¼ 0: (3.17)

The explicit expressions for the corresponding MC
one-forms

!�
A;i ¼ ��1!F;i � �!P;i; !B;i (3.18)

are

!�
A;i ¼ dX	

i �X	
i !D þ vi!

	
R ;

!B;i ¼ dvi þXþ
i !

�
R �X�

i !
þ
R ; (3.19)

where we introduced new group variables

X 	
i ¼ ��xi þ ��1fi: (3.20)

The covariant derivatives of the new vector coset variables
(3.20) are

DX	
i ¼ eu _X�

i �X	
i Du� ��1viðDz	 �2Þ;

Dvi ¼ eu _vi � ��1X�
i ðDzþ �2Þ

þ ��1X	
i ðDz� �2Þ: (3.21)

2. Exotic D ¼ 2þ 1 case with central charge �

If D ¼ 2þ 1, the central charge � can be added [see
(2.10)]. It appears in the following commutators:

½Bi; Bj� ¼ i�ij�; ½Pi; Fj� ¼ �2i�ij�: (3.22)

The parametrization of the coset ~Kð2Þ ¼ ~Cð2Þ=SOð2Þ,
where ~Cð2Þ is the centrally extended GC group for d ¼ 2,
can be chosen as

~K ð2Þ ¼ G0e
ixkPkeifkFkeivkBkei��; (3.23)

where G0 ¼ Ĉð0Þ and k ¼ 1; 2.
The left-covariant MC one-forms are defined as

~Kð2Þ�1d ~Kð2Þ ¼ ið!HH þ!KK þ!DDþ!P;kPk

þ!F;kFk þ!B;kBk þ!��Þ: (3.24)

All ‘‘noncentral’’ one-forms are given by the old expres-
sions (2.18), (3.8), (3.9), and (3.10), whereas !� is

!� ¼ d�� 2�ijfi!P;j þ 1

2
�ijvi!B;j

þ �ijviðfj!H þ xj!KÞ: (3.25)

The MC one-form !� will be used in Sec. IV for the
construction of new GC-invariant action.
To summarize, we observe that, before imposing the

inverse Higgs constraints, our mechanical system is
spanned by the trajectories

z ¼ zðtÞ; u ¼ uðtÞ; xk ¼ xkðtÞ;
fk ¼ fkðtÞ; vk ¼ vkðtÞ; (3.26)

describing the motion in the cosetKðdÞ, and, in the specific
D ¼ 2þ 1 case, in the coset ~Kð2Þ with the extra coordi-
nate �ðtÞ. In the next subsection, we propose the natural
covariant constraints on the MC one-forms which permit
us to eliminate a part of the functions (3.26).

4We use the formula iKðdÞ�1ð" � TÞKðdÞ ¼ KðdÞ�1�KðdÞ þ
�h, where T are coset generators and �h defines induced trans-
formations of the stability subgroup hind ¼ 1þ �h (see [34]).
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B. Inverse Higgs constraints and field equations

In this subsection and in Sec. IV we shall consider
possible extensions of the AFF conformal mechanics
which are covariant under the Galilean conformal symme-
try with d � 0. Here we start our analysis at the level of
equations of motion, leaving aside the existence of relevant
Lagrangians. The choice of independent dynamical de-
grees of freedom is specified by the choice of cosets and
the appropriate inverse Higgs constraints. The dynamical
equations are also formulated as constraints imposed on
the MC one-forms. In such a way the resulting dynamics is
by construction covariant under the GC group transforma-
tions. Possible choices of actions for such systems will be
considered in Sec. IV.5

1. Canonical case: Coset KðdÞ with
the stability subalgebra oðdÞ

We postulate that the constraints of standard conformal
mechanics (2.21) remain valid also in the presence of
additional vectorial variables which appear if d � 0. In
terms of the covariant derivatives defined by (3.13),
Eqs. (2.21a) and (2.21b) take the form

Du ¼ 0; (3.27a)

Dz ¼ �2: (3.27b)

The remaining MC one-forms (3.19) are given by the
expressions

!þ
A;i ¼ dXþ

i ; (3.28)

!�
A;i ¼ dX�

i þ vi!
þ
R ¼ dX�

i þ 2�vi!H; (3.29)

!B;i ¼ dvi �X�
i !

þ
R ¼ dvi � 2�X�

i !H: (3.30)

We use here the ‘‘conformal’’ basis (3.17) and (3.18), since
in this case the variable Xþ

i decouples from other vector
variables X�

i , vi. It enters only into the one-form !þ
A;i,

whereas the other two MC one-forms contain onlyX�
i , vi.

Besides (2.21), we also impose the following additional
constraints,

!B;i ¼ 0; (3.31a)

!�
A;i ¼ 0; (3.31b)

which yield the equations

�2 _vi � 2�X�
i ¼ 0; (3.32a)

�2 _X�
i þ 2�vi ¼ 0; (3.32b)

where � ¼ eu=2. After eliminating vi by the inverse Higgs
constraint (3.32b), we obtain the following new dynamical
second-order equations,

�2 d

dt
ð�2 _X�

i Þ þ 4�2X�
i ¼ 0; (3.33)

for the trajectory functions X�
i ðtÞ.

Equations of motions for Xþ
i are defined by the con-

straints on the MC one-forms !þ
A;i. For instance, the ad-

missible GC covariant constraints are!þ
A;i ¼ 0, which lead

to the constant, time-independent vector Xþ
i . It is more

interesting to look at the case when the equations of motion
for Xþ

i are of the second order in time derivative. Such
equations are

d

dt
ð�2 _Xþ

i Þ ¼ 0: (3.34)

These equations, like Eqs. (3.32) and (3.33), are covariant
under the GC transformations (3.15): the variations of
(3.34) are proportional to the equation of motion for the
dilaton (2.23). For example,

�

�
d

dt
ð�2 _Xþ

i Þ
�
¼� _�

d

dt
ð�2 _Xþ

i Þ���1 d

dt
½�3ð €���2��3Þ�vi�;

(3.35)

where � and �vi are defined in (3.15).
The GC covariance of Eqs. (3.32), (3.33), and (3.34)

becomes manifest after rewriting them using the covariant
derivatives (3.21). Modulo Eqs. (3.27a) and (3.27b),
Eqs. (3.32a) and (3.32b) can be written equivalently as

Dvi ¼ 0; (3.36a)

DX�
i ¼ 0; (3.36b)

while (3.33) and (3.34) as

DDX�
i � 2�Dvi ¼ 0; (3.37a)

DDXþ
i ¼ 0; (3.37b)

where the covariant derivative acting on DX	
i is just

D ¼ E�1@t: DDX�
i ¼ �2@tðDX�

i Þ.
We see that our extended conformal mechanics is de-

scribed by the dynamical variables � andX�
i . The variable

� still obeys the standard equation (2.23), but now it is
coupled to the vectorial coset variablesX�

i via Eqs. (3.33)
and (3.34).
There is another dynamical system which is still invari-

ant under the GC symmetry but contains a smaller number
of degrees of freedom. Namely, using the dynamical equa-
tions (3.34) we can consider the system in which, instead of
the full vector X�

i , only its covariant projection

X � X�
i DXþ

i (3.38)

appears. Taking into account Eqs. (3.27a) and (3.27b), we

obtain that X ¼ �2X�
i

_Xþ
i . Equation (3.33) leads to the

following dynamical equation for X:

�2 d

dt
ð�2 _XÞ þ 4�2X ¼ 0: (3.39)

5Different ways of eliminating the auxiliary coset fields by the
inverse Higgs effect and an issue of deriving the relevant con-
straints as equations of motion from some actions were discussed
in a recent paper [35].
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The action for such a system encompassing the dynamical
variables �, Xþ

i , and X will be presented in Sec. IV. Note
that Eq. (3.39) is the projection of Eq. (3.37a) on the
covariantly constant vector DXþ

i [see (3.37b)]. With
Eqs. (3.27a) and (3.27b) taken into account, Eq. (3.39)
can be equivalently rewritten in the manifestly covariant
form as

DDX � 2�DV ¼ 0; (3.40)

where V � viDXþ
i , DV ¼ DviDXþ

i , and DX ¼
DX�

i X
þ
i .

2. Three noncanonical cosets

The noncanonical cosets are obtained by including some
of the oð2; 1Þ generators H, K, D into the stability sub-
group. This gives rise to reducing the set of the primary
coset fields (3.26).

(i) GCA coset KðdÞ
1 with the stability subalgebra

½oðdÞ � K �D�.—This case is obtained by setting
z ¼ u ¼ 0 in the formulas (2.18), (3.8), (3.9), (3.10),
and (3.26). We obtain the following reduced MC
one-forms:

!H ¼ dt; !P;i ¼ dxi � vidt;

!F;i ¼ dfi; !B;i ¼ dvi � 2fidt:
(3.41)

Imposing the inverse Higgs conditions

!P;i ¼ 0; !B;i ¼ 0; (3.42)

we can express vi and fi in terms of xi:

vi ¼ _xi; fi ¼ 1

2
_vi ¼ 1

2
€xi: (3.43)

Further, the additional covariant constraint

!F;i ¼ 0 (3.44)

results in the following dynamical equation for xi:

x
:::
i ¼ 0: (3.45)

In the D ¼ 2þ 1 case, Eq. (3.45) coincides with the
dynamics of the exotic model considered in [32], but
here the same equation is obtained for arbitrary
D ¼ dþ 1.

(ii) GCA coset KðdÞ
1 with the stability subalgebra

½oðdÞ � K�.—This case is obtained by setting
z ¼ 0 in (2.18), (3.8), (3.9), (3.10), and (3.26). The
MC one-forms read

!H ¼ e�udt; !D ¼ du; (3.46)

!P;i ¼ e�u½dðeuxiÞ � vidt�;
!F;i ¼ eudðe�ufiÞ;
!B;i ¼ dvi � 2fie

�udt:

(3.47)

Inverse Higgs conditions !P;i ¼ 0, !B;i ¼ 0 in

(3.42) express vi and fi in terms of xi as

vi ¼ ðeuxiÞ�; fi ¼ 1

2
eu _vi: (3.48)

From the condition !F;i ¼ 0 we get the dynamical

equations

y
:::
i ¼ 0 (3.49)

for yi � euxi. Thus, after the redefinition xi ! yi,
the vector sector coincides with the one obtained in
case (i).
Note that we can impose the additional condition
!D ¼ 0, which implies that the residual variable u
becomes a constant.

(iii) GCA coset KðdÞ
3 with the stability subalgebra

½oðdÞ �D�.—In this case we set u ¼ 0 in the MC
one-forms for the canonical coset (3.6). We obtain

!H ¼ dt; !K ¼ dzþ z2dt; (3.50)

!P;i ¼ dxi � 2zxidt� vidt; (3.51)

!F;i ¼ dfi þ 2zfidtþ viðdzþ z2dtÞ; (3.52)

!B;i ¼ dvi þ 2xiðdzþ z2dtÞ � 2fidt: (3.53)

In this case the conditions (3.42) express vi and fi
in terms of xi as

vi¼ _xi�2zxi; fi¼1

2
_viþð _zþz2Þxi (3.54)

and also lead to the field equations (3.45), which
leaves the decoupled variable z arbitrary. The mini-
mal formulation corresponds to adding the con-
straint !K ¼ 0. In this case we obtain the
following dynamical equation for z:

_zþ z2 ¼ 0: (3.55)

Thus, in all three cases (i), (ii), and (iii), the vector
variables decouple and describe the motion with
constant acceleration given by Eq. (3.45).

IV. LAGRANGIAN GC-INVARIANT MODELS

A. New actions for arbitrary D

Here we consider GC-invariant actions for arbitrary D,
without central charge. We present two GC-invariant mod-
els. In one of them the Lagrangian is bilinear in the
covariant derivatives of the vector coset variables and
the other model is described by the action which resembles
the well-known Brink-Schwarz action.

1. The actions bilinear in covariant derivatives

We consider the following general class of extended
AFF actions,
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S1 ¼
Z

dtEmabDYa
i DYb

i ; (4.1)

where Ya
i ¼ ðxi; vi; fiÞ, a ¼ 1, 2, 3, and mab is a constant

matrix. The manifest GC invariance of this action is ob-
vious. Note that, following the Volkov’s proposal [10], this
action can be equivalently rewritten in a geometric way asR mab!

a
i !

b
i

!H
, where !a

i are the MC one-forms corresponding

to the variables Ya
i .

Let us study in more detail the example with

S1 ¼
Z

dtL1 ¼ 1

2

Z
dtEDXþ

i DXþ
i ; (4.2)

where

DXþ
i ¼ eu½ _Xþ

i �X�
i ð _u� 2zÞ

þ ��1viðeuð _zþ z2Þ � �2e�uÞ�;
E ¼ e�u: (4.3)

One can show that the action (4.2) describes the dynamical
system introduced in Sec. III A 1 from purely geometric
considerations. The equations of motion following from
(4.2) are

�vi: e
uð _zþ z2Þ � �2e�u ¼ 0; (4.4)

�X�
i : _u� 2z ¼ 0; (4.5)

�Xþ
i :

_Pþ
i ¼ 0; (4.6)

�u: Pþ
i ðeu _X�

i þ 2�viÞ þ 1

2
Pþ

i P
þ
i ¼ 0; (4.7)

�z: Pþ
i ðeu _vi � 2�X�

i Þ ¼ 0; (4.8)

for DXþ
i � 0. Here

P þ
i ¼ DXþ

i (4.9)

is the momentum conjugate to Xþ
i . Equations (4.4) and

(4.5) provide the relation

P þ
i ¼ eu _Xþ

i : (4.10)

Equations (4.4) and (4.5) are the equations of standard
conformal mechanics [see (2.22) and (2.23)]. Thus, the
action (4.2) reproduces as well the equations of motion
for the standard conformal mechanics sector. Eliminating
vi from Eqs. (4.7) and (4.8), we obtain

P þ
i

�
d

dt
ð�2 _X�

i Þ þ 4�2��2X�
i

�
¼ 0: (4.11)

This is the projection of the field equations (3.33) for X�
i

on Pþ
i ; i.e., we obtained precisely Eq. (3.39). Finally, the

formulas in Eq. (4.6) are the equations of motion (3.34)
for Xþ

i .

Thus the model with the action (4.2) amounts to one of
the dynamical systems described in Sec. III A by con-
strained MC one-forms. This particular system is repre-
sented by the geometric variables �, Xþ

i , and X with the
equations of motion (2.23), (3.34), and (3.39). At present it
is not known whether one can define the off-shell action for
the system in which all X�

i are dynamical and are de-
scribed by Eq. (3.33).
Eliminating auxiliary variable z by the algebraic equa-

tion (4.5) and introducing the new variable � ¼ eu=2, we
obtain an equivalent Lagrangian

L1 ¼ 1

2
�2½ _Xþ

i þ ��1við� €�� �2��2Þ�2: (4.12)

The equations of motion following from (4.12) can be
identified with those derived from (4.2).
Let us now consider the Hamiltonian formulation of the

system described by the action (4.2). The definitions of the
momenta lead to the primary constraints

P vi 
 0; P�
i 
 0; (4.13)

F u � pu þX�
i P

þ
i 
 0;

F z � pz � ��1euviPþ
i 
 0;

(4.14)

where the canonical pairs are

fX�
i ;P

�
j gP ¼ �ij; fvi;P vj

gP ¼ �ij;

fz; pzgP ¼ 1; fu; pugP ¼ 1:
(4.15)

The canonical Hamiltonian is

H1 ¼ 1

2
e�uPþ

i P
þ
i � ½2zX�

i þ ��1viðeuz2 � �2e�uÞ�Pþ
i :

(4.16)

From the explicit form of nonvanishing Poisson brackets
of the constraints (4.13) and (4.14)

fF u;P�
i gP ¼ Pþ

i ;

fF z;P vi
gP ¼ ���1euPþ

i ;

fF u;F zgP ¼ ��1euviP
þ
i ;

(4.17)

we see that the constraints (4.13) and (4.14) are the mixture
of first and second class constraints. A simple analysis
shows that the considered system is described by the
second class constraints F u 
 0, F z 
 0, P vi

Pþ
i 
 0,

P�
i P

þ
i 
 0 and the first class constraints given by the

components of P vi

 0 and P�

i 
 0 orthogonal to Pþ
i .

Using the gauge freedom generated by the first class con-
straints we can eliminate the components of vi, P vi

, X�
I ,

and P�
i orthogonal to Pþ

i .

Remaining phase space variables are ~Xþ
i , Pþ

i , u, pu, z,
pz and the projections
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V � viPþ
i ; PV ; X � X�

i P
þ
i ; PX (4.18)

of vi, P vi
,X�

i , P
�
i . The expressions for the new variables

~Xþ
i , PV , and PX can be given explicitly. It is important to

note that, if we introduce Dirac brackets (DBs), for the
remaining variables they coincide with canonical Poisson
brackets. The remaining second class constraints take the
form

PV 
 0; PX 
 0; F u � pu þ X 
 0;

F z � pz � ��1euV 
 0: (4.19)

Introducing DBs for the second class constraints (4.19)
and eliminating the variables pu, pz, PV , and PX, we are
left with the variables u, z, V, and X with the following
nonvanishing DBs

fu; XgD ¼ �1; fz; VgD ¼ �e�u;

fV; XgD ¼ V; fXþ
i ;P

þ
j gD ¼ �ij

(4.20)

and the Hamiltonian

H1¼1

2
e�uPþ

i P
þ
i �2zX���1ðeuz2��2e�uÞV: (4.21)

The set of equations (4.20) and (4.21), determines the
dynamics of our model (4.2) in phase space. We can check
that the equations of motion generated by the Hamiltonian
(4.20), _u ¼ fu;HgD, etc., coincide with Eqs. (4.4), (4.5),
(4.6), (4.7), and (4.8).

Introducing the variables

� � eu=2; p� � �2e�u=2X;

y � �2euV; py � ��1z;
(4.22)

which form two canonical pairs,

f�; p�gD ¼ 1; fy; pygD ¼ 1; (4.23)

(other DBs are vanishing), we can put the Hamiltonian
(4.21) in the following form:

H1¼1

2
��2Pþ

i P
þ
i þ�ð�p�þypyÞpy����4y: (4.24)

Now we can present our model in a more economical
formulation. Namely, we can use the following first-order
Hamiltonian form of the action:

S1 ¼
Z

dt½Pþ
i

_Xþ
i þ p� _�þ py _y� 1

2
��2Pþ

i P
þ
i

� �ð�p� þ ypyÞpy þ ���4y�: (4.25)

Eliminating momenta Pþ
i , p�, and py by their equations of

motion, we finally obtain

S1 ¼
Z

dt

�
1

2
�2 _Xþ

i
_Xþ
i þ 1

��

�
_y _�� y

�
_� _�

�
þ �y

�4

�
:

(4.26)

This new action is a generalization of the conformal me-
chanics action (2.24). Besides invariance under the

one-dimensional conformal symmetry SO(2,1) acting on
� and y [recall the definitions (4.22)], the model (4.26) is
invariant under the full GC symmetry with d � 0.

2. Square-root action

The second way of introducing the dynamics in the
sector of vector coset parameters provides the
Lagrangian as the square root of the product of vector
one-forms, in a way resembling the model of free relativ-
istic particle. We consider the action

S2 ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!þ
A;i!

þ
A;i

q
; (4.27)

wherem is a constant. It is a particular case of more general
action

S2 ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mab!
a
i !

b
i

q
; (4.28)

where !a
i are vector MC one-forms.

By applying variational principle to the action (4.27) we
get Eqs. (4.4), (4.5), (4.6), (4.7), and (4.8) with the minor
modification in Eq. (4.7),

�u: Pþ
i ðeu _X�

i þ 2�viÞ ¼ 0; (4.29)

and with the additional property that in all equations the
expression

P þ
i ¼ mDXþ

i ðDXþ
k DXþ

k Þ�1=2 (4.30)

should be substituted in place of the variable Pþ
i . As in the

previous model, from Eqs. (4.4) and (4.5), it follows that

DXþ
i ¼ eu _Xþ

i , and as well Pþ
i ¼ m _Xþ

i ð _Xþ
k

_Xþ
k Þ�ð1=2Þ.

From the latter expression for Pþ
i we derive the important

relation

M � Pþ
i P

þ
i �m2 ¼ 0: (4.31)

Despite the difference between Eqs. (4.29) and (4.7),
after elimination of vi Eqs. (4.29) and (4.8) yield the same
equation (4.11) for X ¼ X�

i P
þ
i .

6 Thus the two-parameter
sector ð�; XÞ is described by the same equations as in
Sec. IVA1: by the AFF equation (2.23) and the
equation (4.11).
However, the dynamics in the sector of vector variable

Xþ
i is now different. Distinctly from the model considered

in Sec. IVA 1, the quantities (4.30), which become the
conjugate momenta forXþ

k in the Hamiltonian formalism,

are constrained by Eq. (4.31). As a consequence of this
constraint, and taking into account Eqs. (4.4) and (4.5),
Eq. (4.6) proves to be linearly dependent

_X þ
i
_Pþ
i � 0: (4.32)

6Note that adding of the ‘‘cosmological’’ term ð� 1
2m

2
R
e�uÞ

to the action (4.27) leads to the new term ð12m2Þ in the left-hand
side of (4.29) which coincides, due to (4.31), with the term
ð12Pþ

i P
þ
i Þ in (4.7).
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The condition (4.31) becomes transparent in the
Hamiltonian language, where it appears as the additional
first class constraint.

The definitions of the momenta yield the same set of
primary constraints (4.13) and (4.14), and also the addi-
tional constraint M 
 0 (4.31). The last constraint indi-
cates that momentum vector Pþ

i parametrizes the sphere
Sd�1. The constantm plays the role of its radius (in the case
of the Brink-Schwarz superparticle described by a similar
square-root action, an analogous constant is identified
with a mass of the relativistic particle). The canonical
Hamiltonian of the square-root system (4.27) is given by
the second term in (4.16):

H2 ¼ �½2zX�
i þ ��1viðeuz2 � �2e�uÞ�Pþ

i : (4.33)

The constraint (4.31) has the vanishing Poisson brackets
with all other constraints (4.13) and (4.14). Thus, the set of
constraints is the same as in the model (4.2). The only
difference between these two systems is the presence of
additional first class ‘‘mass’’ constraint (4.31) in the second
system. Similarly to the previous case, after gauge-fixing
for the first class constraints presented in (4.13) and (4.14),
eliminating the auxiliary phase space variables, and intro-
ducing new variables (4.22) which are canonical with re-
spect to DBs, we find that the ‘‘square-root’’ model (4.27) is
described by the following Hamiltonian [compare with
(4.24)]:

H2 ¼ �ðPþ
i P

þ
i �m2Þ þ �ð�p� þ ypyÞpy � ���4y:

(4.34)

Here, the first term reflects the presence of the first class
constraint (4.31), with �ðtÞ being a Lagrange multiplier.

To summarize, in Sec. IVAwe illustrated the method of
nonlinear realizations on the simplest particular cases of
the general actions (4.2) and (4.27). The study of these
general actions, and, perhaps, of their further extensions,
with added actions for the scalar Goldstone fields u, z,
deserves further studies. It is important to note that the
additional vector variables Xþ

i and Pþ
i , which are the

characteristic feature of the new GCA invariant models,
can be presumably treated as a kind of ‘‘angular’’ variables,
keeping in mind that, in multidimensional mechanical
models with SO(2,1) invariance, the standard conformal
mechanics describes a radial variable.

B. Exotic D ¼ 2þ 1 case

In this case, the presence of the MC one-form associated
with the central charge makes it possible to consider GC
mechanics described by the action

~S ¼ ~Sconf þ ~S� ¼ ��
Z

!þ
R þ �

Z
!�: (4.35)

The first term defines the standard conformal mechanics
sector [11,15], whereas the sector of the vector coset fields
is represented by the Wess-Zumino (WZ) term.

To obtain a minimal formulation we use the inverse
Higgs conditions

!P;i ¼ 0; !B;i ¼ 0 (4.36)

in the action (4.35).
First we consider the case with the stability subalgebra

½oðdÞ � K �D� [case (i)]. The solutions of the constraints
(4.36) are given in (3.43). Inserting these solutions in the
action (4.35), we obtain, modulo a total derivative under
the integral, the action

~S � ¼ 1

2
�
Z

dt�ij _xi €xj: (4.37)

It is the action of the ‘‘massless’’ particle with the higher-
order Chern-Simons-type term [32], which is the m ! 0
limit of the action (2.14). Other choices (ii), (iii) of the
stability subalgebra, i.e., ½oðdÞ � K� or ½oðdÞ �D�, lead to
the same result: the dynamics is again described by the
action (4.37) [in case (ii)—after redefining the variable xi].
In the canonical case, when the stability subalgebra does

not contain the oð2; 1Þ generators, the first term in (4.35)
produces dynamics in the oð2; 1Þ sector. Inserting in the
action (4.35) the expressions

vi ¼ eu½ _xi þ ð _u� 2zÞxi�;
fi ¼ eu

�
1

2
_vi þ euð _zþ z2Þxi

�
; (4.38)

which follow from the inverse Higgs constraints (4.36), as
well as the expressions for the one-forms (2.18), we obtain

!� ¼
�
1

2
�ij _yi €yj þ d

dt
ð�� z�ijyi _yjÞ

�
dt: (4.39)

Then, eliminating the field z by its algebraic equation of
motion, we obtain (modulo a total derivative) the action

~S ¼
Z

dt

�
_�2 � �2

�2
þ �

2
�ij _yi €yj

�
; (4.40)

where yi � euxi.
Thus we ended up with a decoupled pair of the GC-

invariant D ¼ 2þ 1 models. One of them is the AFF
conformal mechanics with the action (2.24) [11], and the
other one is described by the WZ action (4.37), first
proposed in [32].

V. CONCLUSIONS

We have investigated nonlinear realizations of the
Galilean conformal group in arbitrary space-time dimen-
sions D, including the exotic D ¼ 2þ 1 case with the
additional central charge. The analysis of the MC one-
forms with the appropriate inverse Higgs and dynamical
covariant constraints in many cases is sufficient to reveal
the underlying dynamics of the new mechanical systems
with Galilean conformal symmetry. Alternatively, one can
use the MC one-forms for the construction of the invariant
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actions and obtaining some further examples of the
Galilean conformal mechanics. Following [28,29,31], in
the D ¼ 2þ 1 case we use the central charge MC one-
form to describe the WZ term in the action.

We recall that, until recently, the only known GC-
invariant classical mechanics Lagrangian model was the
one related to the exotic dimension D ¼ 2þ 1, that is, the
nonrelativistic particle model described by the action with
the higher-order Chern-Simons-type term [30,32].7 The
powerful techniques of the nonlinear realizations allowed
us to obtain the whole family of new models exhibiting
Galilean conformal symmetry for any D ¼ dþ 1.
Moreover, using the covariant MC one-forms, it is possible
to construct many such models—we considered only some
simple examples.

The difficulty with finding dynamical realizations of
GCA with d � 0 was one of the undesirable features of
this symmetry. In this paper, by using the nonlinear real-
izations approach, we obtained new dynamical realiza-
tions, including those for an abitrary space dimension d.
We proposed three GC-invariant models of classical me-
chanics which contain, besides the scalar coset coordinate
�, also nonrelativistic vector coordinates. In Sec. IV we
obtained the known model of AFF conformal mechanics
(in the first-order formalism, with the original degrees of
freedom u ¼ 1

2 ln� and z), accompanied by couplings to

the additional nonrelativistic vector variables X�
i . It is

interesting that in this case one can define two actions
with different Lagrangians which lead to similar dynamical
equations, such that in both cases the sector of the AFF
conformal mechanics is decoupled. One more model
(Sec. II A) is specific for the D ¼ 2þ 1 case. It involves
the GC-covariant coupling between the degrees of freedom
u, z and the nonrelativistic vector coordinate xi through the
WZ term defined by the MC one-form associated with the
exotic central charge. It turns out that the conformal me-
chanics degrees of freedom ðu; zÞ and the vectorial ones

yi ¼ euxi decouple again in this model. We would like to
add that the model (4.40) in D ¼ 2þ 1 contains a higher-
(third-)order time derivative, while the field equations
(4.4), (4.5), (4.6), (4.7), and (4.8) of the first two models
are of the first and second orders only.
In this paper we studied the Galilean conformally in-

variant models at the classical level, based on the geomet-
ric properties of the Galilean conformal symmetry. The
next step will consist in analyzing quantum properties of
the new mechanical systems constructed in our paper. In
particular, the quantized version of simple model (2.14) in
D ¼ 2þ 1 space-time was studied earlier [30,32]. As was
shown in [30], despite the presence of the states with
negative norm in this model due to higher-order time
derivatives in the action, it is possible to remove such states
by imposing the appropriate constraints and maintain uni-
tarity in the physical subspace of states. As a mechanical
model on the noncommutative two-dimensional plane, the
model (2.14) reveals also direct links to the description of
anyons, to the quantum Hall effect and related issues of the
condensed-matter physics (see, e.g., [38,39] and references
therein). In the subsequent studies, we plan to elaborate in
similar contexts on the quantum properties of the new
models presented here and to consider as well their field-
theoretical extensions.
Finally we add that we did not address in this paper

supersymmetric generalizations of the Galilean conformal
algebra [40,41] which should yield extensions of the
D ¼ 0þ 1 superconformal mechanics models. Currently,
such extensions are under consideration. Also, it would be
interesting to perform the quantization, to find the quantum
spectrum of the new GC-invariant models, and to clarify
the role of the additional vector variables in physical
considerations.
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