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We use the Gross-Neveu model in 2< d< 4 as a simple fermionic example for Weinberg’s asymptotic

safety scenario: despite being perturbatively nonrenormalizable, the model defines an interacting quantum

field theory being valid to arbitrarily high momentum scales owing to the existence of a non-Gaussian

fixed point. Using the functional renormalization group, we study the uv behavior of the model in both the

purely fermionic as well as a partially bosonized language. We show that asymptotic safety is realized at

non-Gaussian fixed points in both formulations, the universal critical exponents of which we determine

quantitatively. The partially bosonized formulation allows to make contact to the large-Nf expansion

where the model is known to be renormalizable to all orders. In this limit, the fixed-point action as well as

all universal critical exponents can be computed analytically. As asymptotic safety has become an

important scenario for quantizing gravity, our description of a well-understood model is meant to provide

for an easily accessible and controllable example of modern nonperturbative quantum field theory.
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I. INTRODUCTION

Renormalizability is often described as a seemingly
technical cornerstone for the construction of admissible
models in particle physics. Renormalization fixes physical
parameters of a model to measured values of observable
quantities. A prime physical meaning of renormalizability
is the capability of a model to provide an accurate descrip-
tion of a physical system over a wide range of scales at
which measurements can be performed. The set of physical
parameters, say, couplings or mass parameters, etc., mea-
sured at different scales then define the renormalized tra-
jectory in parameter space (theory space). If we demand
for a specific model to provide a fundamental description
of nature, the model must be valid on all scales, in particu-
lar, down to arbitrarily short-distance scales. The renor-
malized trajectory then must exist on all scales without
developing singularities.

The requirement of renormalizability can formally be
verified and realized in perturbatively renormalizable theo-
ries in a weak coupling expansion. Here, all free parame-
ters of a model can be fixed to physical values and the
renormalized trajectory can be constructed order-by-order
in a perturbative expansion. This strategy can successfully
be applied to theories that exist at least over a wide range of
scales, but still suffer from a maximum scale of uv exten-
sion, such as QED [1] or the standard model Higgs sector
[2]. If a theory is asymptotically free, i.e., if the point of
vanishing coupling (Gaussian fixed point) is a uv attractive
fixed point, the perturbative construction can even be ap-
plied on all scales, as in QCD.

Renormalizability is by no means bound to a perturba-
tive construction. Even though reliable nonperturbative
information might be difficult to obtain, the concept of
renormalizability and the existence of a renormalized tra-
jectory on all scales can be formulated rather generally

within Weinberg’s asymptotic safety scenario [3]. Loosely
speaking, asymptotic safety is the generalization of asymp-
totic freedom at the Gaussian fixed point to the case of a
non-Gaussian fixed point. As a fixed point of the renor-
malization group (RG) by construction defines a point in
parameter space where the system becomes scale invariant,
RG trajectories that hit the fixed point towards the ultra-
violet can be extended to arbitrarily igh energy/momentum
scales, thereby defining a fundamental theory; for reviews
see [4,5].
The asymptotic safety scenario has recently become an

important ansatz for quantizing gravity. In contrast to other
approaches, this scenario is based on the standard gravita-
tional degrees of freedom and also the quantization proce-
dure proceeds in a rather standard fashion. Here, significant
progress was made with the aid of the functional RG,
formulated in terms of a flow equation [6] for the effective
average action for the metric field [7]. In simple trunca-
tions, the RG flow of gravity indeed reveals a non-Gaussian
fixed point [8]—a necessary prerequisite for asymptotic
safety. Most importantly, the fixed point has remained
stable under extensions of the truncation, and its universal
properties such as the critical exponents, in fact, exhibit a
quantitative convergence under improvements of the ap-
proximations involved [9–11]. RG-relevant directions in
theory space have been identified and can be associated
with a finite number of physical parameters to be fixed by
experiment. Taken together, this provides for rather strong
evidence that a quantized version of Einstein gravity can
consistently be formulated within the asymptotic safety
scenario.
Still, many questions are difficult to answer in the con-

text of quantum gravity, mainly due to technical and com-
putational limitations. For a confirmation of the asymptotic
safety scenario, contact to other nonperturbative quantiza-
tion schemes has to be made in a quantitative manner; first
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indications for a possible agreement, e.g., with dynamical
triangulations, have already been observed [12].

Uv-complete scenarios for the matter sector of the stan-
dard model built on asymptotic safety have also been
developed, for instance, for toy models of the Higgs sector
[13–15] also involving nonlinear sigma models [16], or
for extra dimensional Yang-Mills theories [17] and
gravity [10,18].

As asymptotic safety is inherently linked with field
theories in the nonperturbative domain, it appears highly
worthwhile to identify and investigate other nontrivial
examples. The present work is devoted to such a detailed
study. Our benchmark model is given by the standard
Gross-Neveu model [19] in d ¼ 3 (or more generally in
2< d< 4) spacetime dimensions. This model is known to
be perturbatively nonrenormalizable as the coupling con-
stant carries a negative mass dimension. A naive loop
expansion leads to a series in terms of diagrams with an
increasing superficial degree of divergence. Proceeding in
the standard fashion of perturbative renormalization would
require infinitely many counterterms and thus infinitely
many physical parameters to be fixed by experiment,
implying that the theory has no predictive power at all.
In fact, it has long been known that this conclusion is only
an artifact of perturbative quantization. By means of a
Hubbard-Stratonovich transformation, the fermionic the-
ory can be partially bosonized such that an alternative
expansion in terms of the inverse fermion flavor number
Nf can conveniently be formulated. The large-Nf expan-
sion turns out to be renormalizable to all orders rather
similar to a small coupling expansion in a perturbatively
renormalizable model [20].

Whereas this provides strong indications for the exis-
tence of an interacting Gross-Neveu model in d ¼ 3, it
remains an open question as to whether this conclusion
holds for finite Nf . On the other hand, one may wonder
whether this conclusion about nonperturbative renormaliz-
ability is indeed profoundly nontrivial, as the partially
bosonized version of the Gross-Neveu model is identical
to a Yukawa model. This seems to suggest that the renor-
malizability in the large-Nf expansion may simply reflect
the super-renormalizability of the d ¼ 3 Yukawa model.
In fact, four-fermi models in d ¼ 4 are known to be related
to Yukawa models near the Gaussian fixed point [21,22].
In this work, we wish to emphasize that this is, in fact,
not the case in 2< d< 4. As we show below, the boson-
ized Yukawa formulation is also renormalized at a non-
Gaussian fixed point within the asymptotic safety scenario.
Similar observations have been made from a more prag-
matic viewpoint by studying the scaling properties of
corresponding lattice models towards the continuum limit
[23,24].

This work mainly has a pedagogical character. Our
analysis is also performed in a self-contained fashion
within the modern formulation of the functional RG to

provide guidance to the recent literature on asymptotically
safe quantum gravity. The fixed-point analysis and the
computation of universal properties is performed explicitly
and contact is made to the large-Nf expansion where fully
analytic results for the fixed-point potential and all univer-
sal critical exponents can be obtained.
As fermionic models occur in many circumstances of

particle physics (effective models of QCD) and many-body
physics (strongly correlated electron systems), our analysis
of the microscopic completeness of the Gross-Neveu
model also provides a lesson for the functional RG treat-
ment of such systems. Of course, model studies of fermi-
onic systems conventionally aim at long-range phenomena
instead of short-distance behavior. As will be detailed
below, the non-Gassßian fixed point facilitating uv asymp-
totic safety in the Gross-Neveu model at the same time
serves as a quantum critical point associated with a 2nd
order quantum phase transition towards a phase with
broken discrete chiral symmetry. This phase transition
has been studied already with a variety of techniques
[23–28]; corresponding critical exponents are, of course,
equivalent to those which we interpret as properties of the
uv limit of the asymptotically safe model.
Our work is organized as follows: we begin with sum-

marizing the essential details of the model in Sect. II. The
basics of the asymptotic safety scenario are summarized in
Sec. III. An RG analysis in the fermionic language is
performed in Sec. IV Section V contains the corresponding
study in the partially bosonized formulation including a
mean-field and large-Nf analysis and a numerical evalu-
ation of the functional RG equations.

II. GROSS-NEVEU MODEL

The Gross-Neveu model describes the quantum field
theory of Nf flavors of massless relativistic fermions in d
space-time dimensions interacting via a four-fermion in-
teraction term. It allows to study dynamical chiral sym-
metry breaking. The Euclidean action in d spacetime
dimensions reads

S½ �c ; c � ¼
Z
x

�XNf

j¼1

�c ji6@c j þ
XNf

i;j¼1

�c ic i

�g

2Nf

�c jc j

�

�
Z
x

�
�c i6@c þ �g

2Nf

ð �c c Þ2
�
; (1)

where
R
x ¼

R
ddx is a shorthand for the integral over the

d-dimensional Euclidean spacetime. The model depends
on a single parameter which is the coupling constant �gwith
mass dimension 2� d.
In this work we restrict ourselves to 2< d< 4; in

d ¼ 2, the model is asymptotically free and perturbatively
renormalizable, as the Gaussian fixed point is uv-attractive.
d ¼ 4 will turn out to be a marginal case, where the
asymptotic safety scenario no longer applies for integer
Nf and the theory becomes trivial, i.e., noninteracting in
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the continuum limit; see below and [14]. To be specific, we
employ a four-component representation for the gamma
matrices in the d ¼ 3 case in this work, i.e., d� ¼ 4 where

d� denotes the dimension of the Dirac algebra. In d ¼ 3,

the explicit representation of our choice for the 4� 4
representation of the Dirac algebra can be written as

�0 ¼ �3 � �3; �1 ¼ �3 � �1; �2 ¼ �3 � �2: (2)

Here, the f�ig’s denote the Pauli matrices which satisfy
�i�j ¼ �ij�0 þ i�ijk�k, with i, j, k ¼ 1, 2, 3 and �0 ¼ 12 is

a 2� 2 unit matrix. The gamma matrices satisfy the anti-
commutation relation, i.e., the Dirac algebra

f��; ��g ¼ 2���14; (3)

where �, � ¼ 0, 1, 2 and 14 denotes the 4� 4 unit matrix.
Moreover, we have two additional 4� 4 matrices which
anticommute with all �� and with each other:

�3 ¼��1 � �0; �5 ¼ �2 � �0; �2
3 ¼ �2

5 ¼ 14: (4)

The matrix �35 � i�3�5, on the other hand, commutes
with �� and anticommutes with �3 and �5. The action of

the Gross-Neveu model is invariant under global UðNfÞ
transformations of the fermion fields. This also implies
invariance under Uð1Þ�Nf transformations, i.e., the associ-
ated U(1)-charge is conserved in each flavor sector sepa-
rately. The matrix �35 further realizes a U35ð1Þ symmetry
in each flavor sector:

�c j � �c je
�i’�35 ; c j � ei’�35c j: (5)

In addition to these two symmetries, the model is symmet-
ric under discrete z52 ¼ f14; �5g chiral transformations act-

ing on all flavors simultaneously:

�c � �c�5; c � �5c : (6)

(A similar symmetry transformation involving �3 can
be understood as a combination of z52 and U35ð1Þ
transformations.)

In continuous dimensions 2< d< 4, we assume that a
suitable analytic continuation for the Dirac structure exists,
such that traces over the algebraic structure yield analytic
functions in d and d�. The chiral symmetry of the model

can be associated with a z2 symmetry for the order pa-
rameter. As we shall discuss below, the infrared regime of
the theory is governed by dynamical chiral symmetry-
breaking, provided the only parameter of the model,
namely �g, is adjusted accordingly.

III. ASYMPTOTIC SAFETY
AND RG FLOW EQUATION

For a self-contained presentation, let us briefly summa-
rize the essentials of Weinberg’s asymptotic safety sce-
nario which is based on the underlying general structure
of the renormalization group. In the space of parameters
and couplings gi, the RG provides a vector field �,

summarizing the RG � functions for these couplings
�i ¼ �giðg1; g2; . . .Þ � @tgi. As the full content of a quan-

tum system can be parameterized in terms of generating
functionals for correlation functions, we can more gener-
ally study the RG behavior of a generating functional.
Introducing an ir-regulated effective average action �k,
the RG flow of this action is determined by the Wetterich
equation [6]

@t�k½�� ¼ 1

2
STrf½�ð2Þ

k ½��þRk��1ð@tRkÞg; @t ¼ k
d

dk
:

(7)

Here, �ð2Þ
k is the second functional derivative with respect

to the field�, representing a collective field variable for all
bosonic or fermionic degrees of freedom. The super trace
STr sums over momenta, internal indices and species of
fields, and includes a negative sign for Grassmann-valued
fields. The function Rk denotes a momentum-dependent
regulator that suppresses ir modes below a momentum
scale k. The solution to the Wetterich equation provides
for an RG trajectory in the space of all action functionals,
also known as theory space, interpolating between the bare
action S� to be quantized �k!� ! S� and the full quantum
effective action � ¼ �k!0 being the generating functional
of 1PI correlation functions; for reviews, see [5,29,30].
For a fundamental quantum field theory, the RG trajec-

tory needs to be extendable over all scales which, in
particular, requires that the uv cutoff � can be sent to
infinity. This is, for instance, possible if the trajectory
approaches a point in theory space which is a fixed point
under the RG transformations, i.e., remains invariant under
the variation of k. Parameterizing the effective average
action �k by a possibly infinite set of generalized dimen-
sionless couplings gi, the Wetterich equation provides us
with the flow of these couplings: @tgi ¼ �giðg1; g2; . . .Þ.
A fixed point gi;� is defined by

�iðg1;�; g2;�; . . .Þ ¼ 08i: (8)

The fixed point is non-Gaussian, if at least one fixed-point
coupling is nonzero gj;� � 0. If the RG trajectory hits a

fixed point in the uv, the uv cutoff can safely be taken to
infinity and the system approaches a conformally invariant
state for k ! � ! 1.
For the theory to be predictive, the number of physical

parameters required for specifying the RG trajectory needs
to be finite. Considering the linearized flow in the fixed-
point regime,

@tgi ¼ Bi
jðgj � gj;�Þ þ . . . ; Bj

i ¼
@�gi

@gj

��������g¼g�
; (9)

we encounter the stability matrix Bi
j, which we

diagonalize

Bi
jVI

j ¼ ��IVI
i (10)
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in terms of right eigenvectors VI
i , enumerated by the index

I. The resulting critical exponents �I now provide for a
classification of physical parameters. The solution of the
coupling flow in the linearized fixed-point regime is
given by

gi ¼ gi;� þ
X
I

CIVI
i

�
k0
k

�
�I

; (11)

where the integration constants CI define the initial con-
ditions at a reference scale k0. All eigendirections with
�I < 0 are suppressed towards the ir and thus are irrele-
vant. All relevant directions with �I > 0 increase towards
the ir and thus determine the macroscopic physics. For
the marginal directions �I ¼ 0, higher-order terms in
the expansion about the fixed point have to be regarded.
Hence, the number of relevant and marginally-relevant
directions determines the total number of physical parame-
ters to be fixed. The theory is predictive if this number
is finite.

For the flow towards the ir, the linearized fixed-point
flow Eq. (9) is generally not sufficient and the full non-
linear � functions have to be taken into account. Even the
parameterization of the effective action in terms of the
same degrees of freedom in the uv and ir might be inap-
propriate, for instance, if bound states or condensates
appear in the ir. This is precisely the case in fermionic
models beyond criticality; below, we discuss asymptotic
safety in the Gross-Neveu model therefore from both view-
points, on the one hand in terms of microscopic fermionic
degrees of freedom and on the other hand in terms of a
mixed fermionic-bosonic description.

IV. FERMIONIC FIXED-POINT STRUCTURE

We begin with a discussion of the fixed-point structure
of the Gross-Neveu model as it becomes apparent already
in a very elementary approximation within a purely fermi-
onic description. Let us consider only a pointlike four-
fermion interaction, such that our ansatz for the effective
action reads

�k½ �c ; c � ¼
Z
x

�
Zc

�c i6@c þ �g

2Nf

ð �c c Þ2
�
; (12)

where we allowed for a wave-function renormalization Zc ,

and both Zc and �g are considered to be scale-dependent,

i.e., a function of k. This simple ansatz can be viewed
as a derivative expansion of the effective action, with the
leading order defined by Zc ¼ const: This expansion can,

in fact, be associated with a potentially small expansion
parameter in terms of the anomalous dimension �c ¼
�@t lnZc . Consequently, a running wave-function renor-

malization corresponds to a next-to-leading order deriva-
tive expansion. Aside from derivatives, further fermion
channels and higher-order interactions compatible with

the symmetries can be taken into account. We come back
to the role of such interactions below.
Let us start with an analysis of the fixed-point structure

in the large-Nf limit. Inserting the ansatz (12) into the flow
Eq. (7), the flow of the dimensionless renormalized four-
fermion coupling g,

g ¼ Z�2
c kd�2 �g (13)

is given by

�g � @tg ¼ ðd� 2þ 2�c Þg� 4d�vdl
F
1 ð0Þg2 (14)

for Nf ! 1, where v�1
d ¼ 2dþ1	d=2�ðd=2Þ and �c �

OðgÞ. Here, we projected the full flow equation
straightforwardly onto the pointlike limit of the Gross-
Neveu coupling; contributions from further (possibly
fluctuation-induced) interaction channels as well as depen-
dencies on the Fierz basis [31–33] have been ignored for
the sake of simplicity. The constant lF1 ð0Þ depends on the
choice of the regulator and parameterizes the regulator
scheme dependence of the RG flow. For instance, for a
linear regulator of the form [34–36]

Rc
k ¼ Zcprc ðp2=k2Þ; rc ðxÞ ¼

�
1ffiffiffi
x

p � 1

�
�ð1� xÞ;

(15)

where p2 ¼ p2
0 þ . . .þ p2

d, we have lF1 ð0Þ ¼ 2=d.
Alternatively, for a sharp cutoff, we find lF1 ð0Þ ¼ 1.
Apart from the Gaussian fixed point we find a second

nontrivial fixed point for the coupling g which is implicitly
given by

g� ¼
d� 2þ 2�c ðg�Þ

4d�vdl
F
1 ð0Þ

: (16)

At leading order of our derivative expansion we have
�c � 0 and thus

g� ¼ dðd� 2Þ
8d�vd

¼ðd¼3Þ 3	2

4

for the linear regulator and

g� ¼ d� 2

4d�vd

¼ðd¼3Þ	2

2

for the sharp cutoff. The regulator dependence of the fixed-
point value exemplifies the nonuniversality of this quantity.
Nevertheless, the existence of the fixed point is a universal
statement, as the regulator-dependent constant lF1 ð0Þ is a
positive number for any regulator. Moreover, the value of
the non-Gaussian fixed point does not depend on Nf .
In Fig. 1, we show a sketch of �g ¼ @tg. The arrows

indicate the direction of the flow towards the infrared.
The theory becomes trivial (noninteracting) in the infrared
regime for initial values g� < g�. Choosing g� > g�,
the four-fermion coupling increases rapidly towards the
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infrared and diverges eventually. The divergence of g at a
finite RG scale actually is an artifact of the over-simplistic
fermionic truncation, but can be associated with the onset
of chiral symmetry breaking and the formation of a fer-
mion condensate. This becomes more obvious in the bo-
sonic formulation, see below. In fact, the scale for a given ir
observable O is set by the scale kcr at which 1=g ! 0:

O � kdOcr ; (17)

where dO is the canonical mass dimension of the observ-
able O. For g� < g�, the coupling never diverges but
approaches zero and thus O � 0. For g� > g�, we find

kcr ¼ �

�jg� � g�j
g�

�ð1=j�jÞ
; (18)

where the critical exponent � is given by

� ¼ �@�gðg ¼ g�Þ
@g

¼ d� 2þ 2�c ;� � 2g�
@�c

@g

��������g�
:

(19)

Here, �c ;� denotes the value of the fermionic anomalous

dimension at the fixed point, �c ;� ¼ �c ðg ¼ g�Þ. Relation
(18) determines how a given ir observable scales when g�
is varied. As the initial condition g� being larger or smaller
than g� distinguishes between two different phases in the
long-range limit, the fixed point g� can be viewed as a
quantum critical point which divides the model into two
physically different regimes.

For our main subject– asymptotic safety –we ignore the
infrared physics in the following and concentrate on the uv
properties induced by the fixed point. In our simple fermi-
onic truncation with only one coupling, the stability matrix
boils down to a number, already represented by the critical
exponent of the coupling direction in this one-dimensional
theory space, see Eq. (19). At leading-order derivative
expansion, where �c ¼ 0, the critical exponent is positive

for all d > 2, such that the Gross-Neveu coupling corre-
sponds to an RG relevant coupling being attracted by the
non-Gaussian fixed point towards the uv. In this simple
truncation, this suggests that the Gross-Neveu model can

be renormalized and extended as a fundamental theory
over all scales on RG trajectories that emanate from the
non-Gaussian fixed point. As there is only one relevant
direction, only one physical parameter has to be fixed (say
the value of the coupling at a uv scale, g�) in order to
predict all physical quantities in the long-range limit.
It is instructive to compare these conclusions within the

asymptotic safety language with standard perturbation the-
ory near the Gaussian fixed point g�;Gau� ¼ 0. The corre-

sponding critical exponent is

�Gau� ¼ � @�gðg ¼ g�;Gau�ÞÞ
@g

¼ 2� d; (20)

in agreement with (minus) the naive power-counting di-
mension of the coupling. At leading-order derivative ex-
pansion �c ¼ 0 and for d > 2, the critical exponent is

negative and the fixed point thus infrared attractive. A uv
limit � ! 1 can only be taken if the RG trajectory ema-
nates from the fixed point, but then the theory would be
noninteracting on all scales and therefore trivial. Within
perturbation theory, the conclusion is that the Gross-Neveu
model is perturbatively nonrenormalizable. Note that this
conclusion remains unchanged also if the anomalous
dimension is taken into account: within perturbation the-
ory, �c ¼ OðgÞ (actually, accidentally Oðg2Þ), such that

�c ¼ 0 at the Gaussian fixed point, implying that standard

power-counting can only be modified logarithmically.
Let us conclude with a word of caution on the derivative

expansion in the fermionic truncation: in this simple ap-
proximation, the fixed point seems to exist with similar
properties in any dimension d > 2, in particular, also in
d ¼ 4 and beyond. This conclusion will change once com-
posite bosonic degrees of freedom are taken into account.
Fluctuations of the latter which are formed by fermionic
interactions will remove the fixed point in the Gross-Neveu
model for d � 4 such that no asymptotic safety scenario
appears to exist for d � 4 in this model. In the fermionic
language, the bosonic degrees of freedom correspond to
specific nonlocal interactions or momentum-structures in
the fermionic vertices. These are not properly resolved in a
derivative expansion. As d ¼ 4 is a marginal case, the
conclusions for fermionic theories in d ¼ 4 may depend
on the details of the interaction and the algebraic structure
of a given model; for instance, an asymptotic safety sce-
nario in a standard-model-inspired SUðNcÞ � Uð1Þ model
has been discussed in [13].
A comparison with the asymptotic safety scenario for

quantum gravity is also instructive: here, the upper critical
dimension is d ¼ 2 as in the fermionic models, and the
non-Gaussian fixed point exists in simple truncations based
on derivative expansions in all d > 2 [10,18]. It is tempting
to speculate whether strong-coupling phenomena such as
bound-state formation may destabilize the fixed point
above another so far unknown critical dimension. A similar
phenomenon has been observed in extra dimensional

FIG. 1. Sketch of the � function of the four-fermion coupling.
For g � g� the infrared regime of the Gross-Neveu model is
governed by chiral symmetry breaking (seemingly diverging
fermionic interaction g ! 1. For g < g� the model becomes a
trivial (noninteracting) theory g ! 0 in the infrared.
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Yang-Mills theories, where a non-Gaussian fixed point
exists in 4þ � dimensions but is nonperturbatively desta-
bilized for � * Oð1Þ [17].

V. PARTIALLY BOSONIZED
GROSS-NEVEU MODEL

In this section, we study the (uv) fixed-point structure
of the Gross-Neveu model by employing a (partially)
bosonized version of the model. We relate our findings to
the purely fermionic description, study analytically the
large-Nf limit and show how corrections beyond the
mean-field approximation can be systematically taken
into account. Formulations of the Gross-Neveu model us-
ing partial bosonization are used for many aspects of the
Gross-Neveu model such as the phase structure at zero and
finite temperature and density [37–39].

Spontaneous symmetry-breaking and the formation
of a fermion condensate in the Gross-Neveu model
can conveniently be studied by introducing an auxiliary
field 
 into the functional integral. Formally, we introduce
this auxiliary field by multiplying the path-integral by a

suitable Gaussian factor. This is known as a Hubbard-
Stratonovich transformation [40,41]. The partially boson-
ized (PB) action of the Gross-Neveu model then reads

SPB½ �c ; c ; 
� ¼
Z
x

�
Nf

2
6@þ i �h
Þc

�
; (21)

and the functional integral now includes integration mea-
sures for both fermionic and bosonic fields. As the auxil-
iary bosonic field only occurs quadratically in the action, it
can be integrated out again; on the level of the action,
this corresponds to replacing the bosonic field by its equa-
tion of motion, Nf �m

2
 ¼ i �h �c c . The action then reduces

again to the Gross-Neveu action upon identifying �g ¼ �h2

�m2 .

From the viewpoint of the Hubbard-Stratonovich trans-
formation, the Yukawa coupling �h is redundant as it can
be scaled into the sigma field. Only the ratio �h2= �m2 has a
physical meaning. In our formulation, the Yukawa
coupling �h is implicitly understood to carry mass dimen-
sion ½ �h� ¼ ð4� dÞ=2 in order to deal with an auxiliary
field with canonical mass dimension ½
� ¼ ðd� 2Þ=2.
Moreover, the 
 field has been scaled such that the first
and second term in (21) are of the same order in Nf . Under
a discrete chiral transformation, see Eq. (6), the 
-field
transforms as 
 � �
. From a phenomenological point
of view 
 can be considered as a bound state of fermions,

� �c c . Thus, the vacuum expectation value of 
 is a
proper order parameter for chiral symmetry breaking,
as it is the case in the purely fermionic formulation of
the model.

A. Mean-field analysis

Before we analyze the partially bosonized version of the
Gross-Neveu model by means of the functional RG, let us
start with a simple mean-field study, corresponding to the
large-Nf limit, in order to rediscover aspects of the fermi-
onic language of the preceding section in this standard
textbook language. Because of the Hubbard-Stratonovich
transformation, the Nf fermion flavors enter only bilinearly
and can be integrated out from the corresponding func-
tional integral. This yields a purely bosonic effective the-
ory for the Gross-Neveu model:

SB½
� ¼
Z
x

Nf

2
�m2
2 � Nf Tr ln½i6@þ i �h
�; (22)

where Tr denotes a functional trace. Since 
 depends on
the space-time coordinates, the action SB is highly non-
local and therefore in general difficult to study. The ground
state 
0 can be obtained from the variational principle, i.e.,
the gap equation

�

�
ðxÞSB½
�
��������
0ðxÞ

¼! 0: (23)

As we are interested in the uv properties of the model, we
assume that the ground state is homogeneous. (In d ¼ 2,
inhomogeneous condensates have been identified in some

0 1 2 3
0

2

4

6

8

10

12

14

2

h2

FIG. 2 (color online). Leading-order RG flow in the 1=Nf

expansion for the partially bosonized Gross-Neveu model in
the ðh2; �2Þ plane. The red line (dashed line starting at
ð�2 ¼ 0; h2 ¼ 0Þ ) denotes the critical manifold of points drawn
into the fixed point towards the infrared. The blue line (dashed
horizontal line) depicts the critical surface attracting the flow
towards the ir. The critical surface contains all trajectories that
emanate from the non-Gaussian fixed point in the uv; its dimen-
sionality equals the number of relevant directions and thus the
number of physical parameters to be fixed. The red dots denote
the Yukawa Gaussian fixed point and the non-Gaussian fixed
point, respectively. The arrows indicate the direction of flow
towards the infrared.
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parts of the phase diagram at finite temperature and large
values of the chemical potential [38]; the status for higher-
dimensional fermionic models is subject to ongoing work,
see e. g. [42,43]). Such a homogeneous ground state

0 ¼ const: is then implicitly given by the solution of
the following equation:


0 ¼ 4
�h2

�m2

Z
p


0

p2 þ �h2
2
0

; (24)

with
R
p ¼ R ddp

ð2	Þd . Apparently this equation has a trivial

solution,
0 ¼ 0. Moreover, nontrivial solutions for
0 can
be found for suitably adjusted values of the four-fermion
coupling �g ¼ �h2= �m2. Since in d ¼ 3 (d ¼ 4) the right-
hand side of Eq. (24) is linearly (quadratically) divergent,
we impose a sharp uv cutoff � 	 mf ¼ �h2
2

0. For d ¼ 3,
we find

mf ¼ 2

	

�
�� 	2

2

�m2

�h2

�
: (25)

Thus, the fermions acquire a nonzero mass due to the
spontaneous breakdown of chiral symmetry, provided we
choose �m2= �h2 < 2�=	2. In terms of the four-fermion
coupling, we can read off a critical value for the dimen-
sionless coupling g ¼ ��g ¼ � �h2= �m2 above which the IR
physics is governed by spontaneous symmetry breaking:

gcr ¼ 	2

2
: (26)

This critical value gcr can be identified with the sharp-
cutoff value of the nontrivial fixed point g� which we found
in our study of the fermionic fixed-point structure. The role
of the critical value as a fixed point becomes obvious from
the fact that if g ¼ gcr the theory is interacting but remains
massless and ungapped on all scales. From the viewpoint
of the partially bosonized theory, we find that the Yukawa
coupling and the boson mass are not independent parame-
ters. For a fixed ratio �h2= �m2 > gcr the ir physics remains
unchanged. Thus, the purely bosonic description of the
theory in this approximation depends only on a single
parameter as in the fermionic formulation.

B. RG flow of the partially bosonized theory

Let us now discuss the fixed-point structure of the par-
tially bosonized theory. A partially bosonized description
of the theory is appealing from a field-theoretical point as it
also forms the basis for the expansion in 1=Nf for a large
number of flavors. In addition, it allows us to systemati-
cally resolve parts of the momentum dependence of the
vertices by means of a derivative expansion. As we shall
see below, these two expansion schemes are not identical
and should therefore not be confused with each other.
For our study we employ the following ansatz for the
effective action:

�½ �c ; c ; 
� ¼
Z
x

�
Nf

2
Z
ð@�
Þ2 þ �c ðZc i6@þ i �h
Þc

þ NfUð
2Þ
�
; (27)

where we allow all couplings and wave function renorm-
alizations Z
;c to be scale dependent. The kinetic term of

the boson field adds a new aspect: on the one hand, it goes
beyond the local approximation of simple mean-field the-
ory; in terms of the fermionic language, this kinetic term
corresponds to a specific momentum dependence in the
scalar s channel of the four-fermion coupling on the other
hand. As we shall see below, this term and the associated
wave function renormalization receive contributions to
leading order in the large-Nf approximation (in order to
simplify the large-Nf counting of orders, the purely bo-
sonic sector is multiplied by anNf factor in Eq. (27) similar
to Eq. (21)). The large-Nf flow corresponds to the choice

Z
jk!� ! 0; @tZ
 � 0; Zc jk!� � 1; @tZc � 0:

(28)

This exemplifies the difference between large-Nf and de-
rivative expansion; as with this choice we include next-to-
leading order corrections in terms of a derivative expansion
in the bosonic sector but treat the fermionic sector in the
leading-order approximation.
From our ansatz (27) we see that a nonzero homoge-

neous expectation value for i �h
 plays the role of a mass
term for the fermions. By expanding the effective action
about the homogeneous background 
 we anticipate that
condensation occurs only in the homogeneous channel.
The bosonized Yukawa model is fixed to the fermionic
Gross-Neveu model by a suitable choice of initial condi-
tions for � at the UV scale �. This correspondence is
established by the choice

Z
jk!� 
 1; Zc jk!� ! 1; U� ¼ 1

2
�m2
�: (29)

Thus, the renormalized boson mass m ¼ �m=
ffiffiffiffiffiffi
Z


p
at the

uv cutoff � becomes much larger than � and renders the
boson propagator essentially momentum independent.
This compositeness condition for the bosonic formulation
can be considered as a locality condition at the uv scale for
the four-fermion coupling g in the purely fermionic for-
mulation of the model.
Since we are interested in the uv fixed-point structure of

the partially bosonized (chirally-symmetric) Gross-Neveu
model, we anticipate that a possible non-Gaussian fixed
point occurs in the symmetric regime. Therefore, we only
need to study the RG flow in the symmetric regime with
vanishing vacuum expectation value for the 
 field. We
then find the following flow equation for the dimensionless
effective potential:
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@tu ¼ �duþ ðd� 2þ �
Þu0�� 2d�vdl
ðFÞd
0 ð2h2�;�c Þ

þ 1

Nf

2vdl
d
0ðu0 þ 2�u00;�
Þ; (30)

where

uð�Þ ¼ k�dUð
Þ; � ¼ 1

2
Z
k

2�d
2; (31)

and the dimensionless renormalized Yukawa coupling is
given by

h2 ¼ Z�1

 Z�2

c kd�4 �h2: (32)

The flow equation for the potential can be solved either
directly or by an expansion around � ¼ 0,

uð�Þ ¼ X1
n¼0

�2n

n!
�n: (33)

In this paper, we shall mainly focus on the latter one which
allows us to directly project onto the (dimensionless)
bosonic mass parameter �2 and the higher-order bosonic
couplings �2n:

�2 ¼ �m2

Z
k
2
; �2n ¼ Z�n


 kðn�1Þd�2nUðnÞj
¼0: (34)

The flow equations for the Yukawa coupling as well
as the anomalous dimensions �
 ¼ �@t lnZ
 and
�c ¼ �@t lnZc read1

@th
2 ¼ ðd� 4þ 2�c þ �
Þh2

þ 1

Nf

8vdh
4lðFBÞd1;1 ð0; �2;�c ; �
Þ; (35)

�
 ¼ 8
d�vd

d
h2mðFÞd

4 ð0;�c Þ; (36)

�c ¼ 1

Nf

8
vd

d
h2mðFBÞd

1;2 ð0; �2;�c ; �
Þ: (37)

The threshold functions l andm in Eqs. (31), (35), and (37)
depend on the details of the regulator. For practical com-
putations, we use an optimized regulator [34–36] for the
fermionic fields (15) and the bosonic fields:

Rk ¼ Z
p
2rðp2=k2Þ; rðxÞ ¼

�
1

x
� 1

�
�ð1� xÞ:

(38)

The corresponding threshold functions are listed in the
Appendix . These functions essentially describe the thresh-
old behavior of regularized 1PI diagrams.

C. RG flow at large Nf

As the nonperturbative renormalizability of the Gross-
Neveu model beyond d ¼ 2 has been proved to all orders
in the 1=Nf expansion, it is worthwhile to study asymptotic
safety on the basis of the RG flow in the same limit. Here,
our set of flow equations for the partially bosonized Gross-
Neveu model reduces to

@tu ¼ �duþ ðd� 2þ �
Þu0�� 2d�vdl
ðFÞd
0 ð2h2�;�c Þ;

(39)

@th
2 ¼ ðd� 4þ 2�c þ �
Þh2; (40)

�
 ¼ 8
d�vd

d
h2mðFÞd

4 ð0;�c Þ; (41)

�c ¼ 0: (42)

As the bosonic fluctuations carry no flavor number, we
observe that 1PI diagrams with at least one inner bosonic
line decouple completely from the large-Nf RG flow. As a
consequence, �
 is nonvanishing in leading order in the
1=Nf expansion, whereas the fermionic anomalous dimen-
sion is zero.2 The flow equations for the bosonic couplings
are essentially driven by the fermion loop,

@t�2n ¼ ðnðd� 2þ �
Þ � dÞ�2n

� ð�1Þnn!2nþ2

�
d�vd

d

�
ðh2Þn: (43)

Fixed point values h2�, �
;�, �2;�, �4;�, �6;�, . . . can be

identified as the zeroes of the corresponding � functions,
@th

2 ¼! 0; @t, @t�2 ¼! 0; . . . Of course, the Gaussian fixed
point with all couplings vanishing solves these fixed point
equations. As the RG flows for the bosonic couplings
decouple in the large-Nf limit, a nontrivial fixed point
requires h� � 0. This immediately requires

�
;� ¼ 4� d: (44)

Whereas this tight relation between the dimensionality and
the bosonic anomalous dimension here is an artifact of the
large-Nf expansion, a similar relation exists in gravity for
the graviton anomalous dimension at the fixed point as a
consequence of background gauge invariance. Similar sum
rules are known for Yukawa theories with chiral symme-
tries [33]. Such a sum rule for a corresponding fixed point
is also responsible for the universality of the BCS–Bose-
Einstein Condensate crossover in the broad resonance limit
of ultracold fermi gases [46]. In the present case, this fixes
the value of the Yukawa fixed-point coupling,

1These flow equations agree with those derived in [14,28] in
the symmetric phase, upon a rescaling of the wave function
renormalization Z
 by a factor of Nf , cf. Eq. (27).

2It is worthwhile to emphasize, that the large-Nf counting is
very different from scalar OðNÞ models, where the the anoma-
lous dimensions are zero to leading order at large Nf [44]. Also,
the structure of the potential equation is very different, such that
also the search for an exact solution requires a different strategy
from that of OðNÞ models [45], see below.
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h2� ¼
�

d

d�vd

� ðd� 4Þðd� 2Þ
ð8� 6dÞ : (45)

The fixed point is interacting for 2< 4 and merges with the
Gaussian fixed point in d ¼ 2 and d ¼ 4. Also the fixed-
point values for the bosonic mass parameter and couplings
can be given analytically

�2n;� ¼ ð�1Þnn!2nþ2

ð2n� dÞ
�

d

d�vd

�
n�1

�ðd� 4Þðd� 2Þ
ð8� 6dÞ

�
n
:

(46)

Thus, the fixed-point values for all bosonic vertices �2n are
nonvanishing. In a purely fermionic formulation of the
model, these higher bosonic self-interactions correspond
to higher (nonlocal) fermionic self-interactions. In any
case, we find that the UV fixed-point theory in 2< d< 4
for Nf ! 1 is not identical to the action SPB but involves
infinitely many operators.

It turns out that the alternating series for the full renor-
malized effective potential can be resummed and yields
a representation of the Gaussian hypergeometric function
2F1ða; b; c; zÞ (see e.g. [47]). In terms of renormalized
fields, the scale invariant fixed-point action then describes
massless fermions coupled to a scalar boson with a
potential

u�ð�Þ ¼ � 4d� 16

3d� 4
��2 F1

�
1� d

2
; 1; 2

� d

2
;
ðd� 4Þðd� 2Þ

3d� 4

d

d�vd

�

�
: (47)

This potential has a large-field asymptotic behavior / �3=2.
The small-field region is depicted in Fig. 2.

The theory has predictive power, as the number of
physical parameters is determined by the number of RG

relevant directions corresponding to the number of positive
critical exponents. At the non-Gaussian fixed point in the
large-Nf limit, the stability matrix assumes a particularly
simple form where only a single column and the main
diagonal are nonvanishing,

B ¼
bh2;h2 0 � � �
bh2;�2

b�2;�2
0 � � �

bh2;�4
0 b�4;�4

0 � � �
..
. ..

.
0 . .

.

0
BBBB@

1
CCCCA: (48)

Therefore, only the main diagonal of B enters into the
stability analysis around the non-Gaussian fixed point.
The important nonvanishing entries bh2;h2 and b�2n;�2n

turn out to be completely universal and are given by

bh2;h2 �
@�h2

@h2

��������g¼g�
¼ �
;� ¼ 4� d (49)

and

b�2n;�2n
� @��2n

@�2n

��������g¼g�
¼ �dþ nðd� 2þ �
;�Þ

¼ 2n� d: (50)

The characteristic polynomial detðBþ�1Þ of the matrixB
yielding the eigenvalues ��I via its zeroes is then easily
found to be

ð��� ð4� dÞÞY1
n¼1

ð��� ð2n� dÞÞ: (51)

All large-Nf critical exponents are thus given by d� 4
and d� 2n. In d ¼ 3 this boils down to one positive
critical exponent with value 1, i.e., one relevant RG direc-
tion, and infinitely many negative critical exponents
�1;�1;�3;�5;�7; . . . , corresponding to irrelevant RG
directions. For the case of the Gaussian Yukawa fixed
point, the characteristic polynomial of the stability matrix
B is changed to

ð��� ðd� 4ÞÞY1
n¼1

ð��� ðnðd� 2Þ � dÞÞ: (52)

As expected, the critical exponents coincide with the mass
dimension of the Yukawa coupling and the bosonic cou-
plings, reproducing simple perturbative power counting. In
total, this yields three relevant RG directions and one
marginal RG direction. Note that the Gaussian fixed point
found in the purely fermionic flow in Sect. IV translates
into a diverging dimensionless renormalized boson mass

�1=2
2 � g�1=2.
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u

FIG. 3 (color online). (Resummed) Fixed-point potential u�ð�Þ
for d ¼ 3 in the large-Nf limit (blue/solid line), see Eq. (47), and
low-order polynomial approximations thereof ranging from �2

to �9 for small values of � (dashed lines).
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Returning to the non-Gaussian fixed point, we can, of
course, make contact with the purely fermionic description
and deduce the fixed point of the four-fermion coupling
from the fixed point values of the Yukawa coupling and the
bosonic mass parameter. We find

g� ¼ h2�
�2;�

¼
�

d

d�vd

�
d� 2

8
¼ðd¼3Þ 3	2

4
; (53)

for the linear regulator which agrees with our findings in
Sec. IV (using the same regulator). In fact, the flow equa-
tion of the four-fermion interaction g can be reconstructed
from the flow of h2=�2,

@t

�
h2

�2

�
¼ ðd� 2Þ

�
h2

�2

�
� 8d�vd

d

�
h2

�2

�
2 þO

�
1

Nf

�
: (54)

Using the linear regulator in Eq. (14), we observe that the
flow equation for g and h2=�2 are identical in the large-Nf

limit. Recall that �c ¼ 0 in this limit.

Because of the equivalence of g and h2=�2, the quantum
critical point found in the purely fermionic formulation is
also present in our study of the partially bosonized theory
forNf ! 1, as it should be the case. As it can be seen from
the scaling law (18), this quantum critical point is associ-
ated with a vanishing boson mass, i.e., a diverging corre-
lation length, in the long-range limit.

Let us conclude our large-Nf analysis with a word of
caution on the widely used so-called local potential ap-
proximation (LPA) in which the running of the wave-
function renormalizations are neglected. If we ignored
the running of the wave-function renormalization of the
bosonic field in the present case, the model would artifi-
cially depend on more than one physical parameter. To be
more specific, let us consider the mass spectrum of the
theory in the regime with broken chiral symmetry and
assume that we have already fixed the mass of the fermi-
ons. Using the definition of the masses and the flow equa-
tions of the couplings, we find that the (dimensionless)
renormalized boson mass in the broken regime can be
written in terms of the (renormalized) fermion mass mf:

m2 ¼ 2�4�0 � Z�1



�h2ð �h2 ��0Þ � Z�1



�h2m2
f ; (55)

where �0 ¼ ð1=2Þ
2
0. Neglecting the running of Z
, i. e.

Z
 ¼ const: as is done in the LPA, we observe that the
boson mass does not depend on a single physical parame-
ter, as it should be, but on two parameters independently,
namely, the fermion mass and the (bare) Yukawa coupling.
By contrast, taking the running of Z
 � �h2 into account,
the value of the boson mass is fixed solely in terms of the
fermion mass, in agreement with our fixed-point analysis.
While this argument might be altered in d ¼ 4 space-time
dimensions where the Yukawa coupling is marginal, it is
true for the Gross-Neveu model (as well as the Nambu-
Jona-Lasinio model) in any dimension d in which the flow
equation for Z
 is nonvanishing even at leading order in an
expansion in 1=Nf . Therefore, the flow of Z
 has to be

taken into account in a systematic and consistent expansion
of the flow equations in powers of 1=Nf . To be specific, the
flow of the order parameter potential (30) incorporates
already fluctuations at next-to-leading order in 1=Nf due
to the presence of the bosonic loop.3 However, for a
systematic and consistent study of the effects of corrections
beyond the large-Nf expansion the flow of Z
, Zc as well

as of the Yukawa coupling needs to be taken into account.

D. RG flow for general flavor number Nf

Beyond the limit of large Nf , bosonic fluctuations begin
to play a role. An immediate consequence is that a new
fixed point for h ¼ 0 arises for the flow of the effective
potential for 2< d< 4. This fixed point of the purely
bosonic theory is nothing but the Wilson-Fisher fixed point
which describes critical phenomena in the Ising universal-
ity class.
The non-Gaussian fixed point of the full Gross-Neveu

system can now be understood as being sourced from
the leading large-Nf terms discussed above and the
bosonic fluctuations inducing a Wilson-Fisher fixed point.
Depending on the value of Nf the non-Gaussian Gross-
Neveu fixed point interpolates between the large-Nf fixed
point for Nf ! 1 and the Wilson-Fisher fixed point in the
formal limit of Nf ! 0. For the latter, the functional RG
has already proven to be a useful quantitative tool for
describing nonperturbative critical phenomena, see e. g.
Refs. [30,49–54].
Let us repeat the preceding large-Nf analysis, now using

the full flow equations at next-to-leading order derivative
expansion, i.e., Eqs. (30), (35), (37), and (36). For all
quantities of interest, such as critical exponents and fixed
point values of couplings, a solution of the potential flow in
a polynomial expansion is sufficient. Confining our nu-
merical studies to d ¼ 3, all figures are produced within a
truncated expansion up to 22nd order in 
; quantitative
results are derived from an expansion to the same order in

. In the symmetric regime, a nontrivial fixed point in the
Yukawa coupling requires the following inequality to be
satisfied:

d� 4þ 2�c ;� þ �
;� < 0; for Nf <1: (56)

This is because the second term of the Yukawa flow
Eq. (35) is strictly positive for admissible values of the
anomalous dimensions �
; �c & Oð1Þ. For instance, in

d ¼ 3, the sum of the anomalous-dimension terms is
always slightly smaller than 1, see Figs. 4 and 5. The

3We stress that our parameter Nf plays the role of the number
of colors Nc in quantum chromodynamics. The number of
flavors Nf in, e. g., QCD low-energy models is related to the
number of involved mesonic scalar fields N ¼ N2

f . Thus, a
large-Nc expansion in QCD models corresponds to a large-Nf

expansion in the Gross-Neveu model. For an analysis of the role
of corrections beyond the large-Nc approximation for the ther-
modynamics of QCD low-energy models we refer to Ref. [48].
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inequality becomes an equality in the large-Nf limit,
see Eq. (44).

The resulting fixed point values for the Yukawa coupling
in d ¼ 3 are depicted in Fig. 6. For increasing Nf , the fixed
point quickly approaches its large-Nf limit (45), whereas it
tends to zero for small Nf leaving us with the pure Wilson-
Fisher fixed point of a pure scalar model. As the latter is
known to exhibit a fixed-point potential in the broken
regime, i.e., with a nonvanishing expectation value of the
scalar field 
, we expect such a fixed-point potential
featuring a nontrivial minimum to occur for small Nf .
For all integer values of Nf � 1 Dirac (four-component)
fermions, we still observe fixed-point potentials in the
symmetric regime, in agreement with [28]. Nevertheless,
the fixed point seems to occur in the broken regime for the
model with one two-component fermion (corresponding to
Nf ¼ 1=2 in our language) [28].

The fixed-point potential in d ¼ 3 for various values of
Nf is plotted in Fig. 7 in a 22nd-order approximation. Also
the potential converges rapidly to the large-Nf result for
increasing values of Nf .

Let us now turn to the leading universal critical expo-
nents �1;2. The convergence of the polynomial expansion
of the potential is demonstrated in Tables I and II, where
the leading critical exponents for Nf ¼ 2 and Nf ¼ 12 are
listed for increasing truncation order. In each case, the
leading exponents converge to a stable value. We observe
a more rapid convergence for larger values of Nf . The
somewhat slower convergence for more scalar dominated
models is familiar from pure OðNÞ models. The leading
two critical exponents are plotted as a function of Nf in
Figs. 8 and 9. Table III lists the leading exponents for
increasing number of Nf , illustrating the approach to the
analytical large-Nf results.
This approach is also visible in the anomalous dimen-

sion and the fixed point values for the coupling, see
Table IV. Whereas the fixed-point couplings are nonuni-
versal (holding for the linear regulator in this case), the
anomalous dimensions are universal and illustrate the in-
equality (56).
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FIG. 5 (color online). Scalar anomalous dimension �c for
Nf ¼ 2; 4; 6; . . . ; 100 in d ¼ 3.
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FIG. 4 (color online). Scalar anomalous dimension �
 for
Nf ¼ 2; 4; 6; . . . ; 100 in d ¼ 3.
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FIG. 6 (color online). Yukawa fixed-point value over Nf ¼
2; 4; 6; . . . ; 100 in d ¼ 3.
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FIG. 7 (color online). Fixed-point potentials u�ð�Þ in d ¼ 3 for
Nf ¼ 2; 4; 6; . . . ; 100 (from bottom to top). The large-Nf result is
shown as a thick/blue line. Incidentally, for Nf ¼ 0 the potential
approaches the Wilson-Fisher fixed-point potential with a non-
trivial minimum near � ’ 0:3 (not shown).
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Quantitatively, our results for the leading critical expo-
nent can be compared to those studies of the quantum
critical phase transition aiming at the long-range physics,
as �1 is related to the correlation length exponent � by
� ¼ 1=�1. Together with the scalar anomalous dimension
and corresponding scaling and hyperscaling relation, all
thermodynamic exponents of the phase transition are
determined. Wherever comparable, our results agree
quantitatively with the functional RG study of [28] where

both a polynomial expansion as well as a grid solution
of the potential was used (note that our Nf counts four-
component fermions, whereas [28] uses two-component
fermions). Also the agreement with results from other
methods such as 1=Nf expansions [26] and Monte Carlo
simulations [23,24] is satisfactory. Discrepancies are
mainly visible only in the anomalous dimensions for small
Nf , a feature familiar from scalar models. Also the poly-
nomial expansion of the potential converges somewhat
slower for the special case Nf ¼ 1, where our results for
the leading exponents are compatible with those of [28],
but subleading exponents seem to require a precise solution
of the potential flow.

TABLE I. Non-Gaussian critical exponents in d ¼ 3 for in-
creasing polynomial truncations for Nf ¼ 2. The results for the
critical exponent �1 agree within the error bars with the result
from Monte Carlo (MC) simulations [24], 1=�1

MC ¼ �MC �
1:00ð4Þ.
2n �1 �2 �3 �4 �5 �6

4 0.9928 �0:8687 �1:5743 � � � � � � � � �
6 0.9766 �0:8743 �1:0624 �5:4313 � � � � � �
8 0.9831 �0:8721 �1:0790 �3:5622 �10:5959 � � �
10 0.9821 �0:8720 �1:0999 �3:4194 �6:8111 �17:4807
12 0.9819 �0:8723 �1:0897 �3:5628 �5:7949 �11:2156
14 0.9821 �0:8722 �1:0911 �3:5104 �6:0610 �8:6408
16 0.9820 �0:8722 �1:0920 �3:5062 �6:1190 �8:3598
18 0.9820 �0:8722 �1:0914 �3:5202 �5:9849 �8:9972
20 0.9821 �0:8722 �1:0915 �3:5132 �6:0516 �8:5869
22 0.9821 �0:8722 �1:0916 �3:5135 �6:0514 �8:5820

TABLE II. Non-Gaussian critical exponents in d ¼ 3 for in-
creasing polynomial truncations for Nf ¼ 12.

2n �1 �2 �3 �4 �5 �6

4 0.9898 �0:9735 �1:0701 � � � � � � � � �
6 0.9903 �0:9735 �1:0489 �3:2583 � � � � � �
8 0.9903 �0:9735 �1:0507 �3:1714 �5:5889 � � �
10 0.9903 �0:9735 �1:0505 �3:1821 �5:3368 �8:1011

0 20 40 60 80 100

0.980

0.985

0.990

0.995

Nf

1

FIG. 8 (color online). Relevant critical exponent �1 for Nf ¼
2; 4; 6; . . . ; 100 in d ¼ 3. The nonmonotonic behavior for small
Nf is expected, since �1 has to approach �1 ’ 1:6 for Nf ¼ 0
corresponding to a correlation length exponent � ¼ 1=�1 ’
0:63 of the Ising universality class.
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0.90
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Nf
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FIG. 9 (color online). First subleading irrelevant critical ex-
ponent �2 for Nf ¼ 2; 4; 6; . . . ; 100 in d ¼ 3.

TABLE III. Non-Gaussian critical exponents for various flavor
numbers Nf in d ¼ 3 in the �11 truncation.

Nf �1 �2 �3 �4 �5 �6

2 0.9821 �0:8722 �1:0916 �3:5135 �6:0514 �8:5820
4 0.9775 �0:9240 �1:1010 �3:3910 �5:7739 �8:2429
12 0.9903 �0:9735 �1:0506 �3:1810 �5:3665 �7:6004
50 0.9975 �0:9936 �1:0143 �3:0510 �5:1062 �7:1789
100 0.9987 �0:9968 �1:0073 �3:0263 �5:0550 �7:0934
1 1 �1 �1 �3 �5 �7

TABLE IV. Non-Gaussian fixed-point values of the universal
anomalous dimensions for various flavor numbers Nf in d ¼ 3.
The (nonuniversal) fixed-point couplings hold for the linear
regulator. In Monte-Carlo (MC) simulations [24], �MC


;� ¼
0:754ð8Þ has been found for Nf ¼ 4 two-component fermions
(corresponding to Nf ¼ 2 in our language).

Nf �
;� �c ;� h2� �2;�
2 0.7596 0.0320 4.5565 0.3956

4 0.8870 0.0138 5.2820 0.5846

12 0.9644 0.0041 5.7206 0.7263

50 0.9917 0.0009 5.8746 0.7822

100 0.9958 0.0005 5.8983 0.7911

1 1 0 5.9218 0.8
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To summarize, the nonperturbative features of the
Gross-Neveu model near criticality can well be described
by the functional renormalization group, as the model
interpolates between two well-accessible limits: the
large-Nf limit for Nf ! 1 and the Wilson-Fisher fixed
point in the Ising universality class for Nf ! 0. Our results
suggest that the Gross-Neveu model is asymptotically safe
for all Nf > 0 and that the model depends on only one
parameter, even when we take into account corrections
beyond the large-Nf limit. This might provide helpful
information, e.g., for a systematic study of the finite-
temperature phase diagram of the Gross-Neveu model
beyond the large-Nf approximation.

VI. CONCLUSIONS AND OUTLOOK

We have used the functional RG to describe the uv
behavior of the Gross-Neveu model in 2< d< 4 dimen-
sions. In agreement with many earlier results in the litera-
ture, the model is nonperturbatively renormalizable by
means of a non-Gaussian fixed point, providing a simple
example of asymptotic safety in Weinberg’s sense. The
perturbative conclusion about nonrenormalizability is a
mere artifact of naive power-counting which is only justi-
fied near the Gaussian fixed point.

In this work, we have summarized these conclusions in
the functional RG language as it is also extensively used
recently to explore the possibility of quantizing gravity
within pure quantum field theory. This pedagogic character
of our work is amended by new results in the large-Nf

limit, where the fixed-point potential as well as all critical
exponents can be computed analytically. Moreover, we
have also provided finite Nf results, demonstrating that
the model interpolates between the large Nf limit and a
purely bosonic model in the Ising universality class.

Some final comments are in order: the simple fermionic
Gross-Neveu action is minimalistic in the sense that it
suffices to put the system into the right ‘‘Gross-Neveu
universality class’’. Comparing the fermionic action with
the fixed-point action in the partially bosonized version, we
have to conclude that the fixed-point action in the fermi-
onic language is far more complicated than the simple
ansatz (12). In general, it will contain higher-order as
well as nonlocal interaction terms. The deviations from
the simple Gross-Neveu structure, however, are irrelevant
operators which do not modify the predictive power of the
Gross-Neveu model.

The simple Gross-Neveu action is also incomplete in the
sense that it does not exhibit all possible four-fermi terms
compatible with the defining symmetries of the model.
For instance, a Thirring-like interaction ð �c��c Þ2 is also

invariant under the symmetries of the Gross-Neveu model
and will thus generically be generated by the RG flow.
A more complete RG analysis thus has to include these
terms facilitating the appearance of further fixedpoints, as
is known for the Thirring model [55]. If so, this implies the

possible existence of further uv completions of fermionic
models with the same symmetries as the Gross-Neveu
model.
Finally, let us mention once more that the property of

asymptotic safety in the Gross-Neveu model is tightly
related to the occurrence of a quantum phase transition
of 2nd order separating a disordered phase from a phase
with broken (discrete) chiral symmetry. More generally,
models with such 2nd-order quantum phase transitions are
guaranteed to be asymptotically safe. Whether the con-
verse is true, i.e., whether asymptotically safe models
always exhibit a physically relevant order-disorder quan-
tum phase transition, is an interesting question for future
studies.
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THRESHOLD FUNCTIONS

The regulator dependence of the flow equations is en-
coded in dimensionless threshold functions which arise
from 1PI diagrams incorporating bosonic and/or fermionic
fields. In this work we have employed a linear regulator
[34–36], see Eqs. (15) and (38). For the threshold functions
appearing in the flow equations in Sec. V, we then find

ld0ð!;�
Þ ¼ 2

d

�
1� �


dþ 2

�
1

1þ!
;

lðFÞd0 ð!;�c Þ ¼ 2

d

�
1� �c

dþ 1

�
1

1þ!
;

lðFBÞd1;1 ð!1; !2;�c ; �
Þ
¼ 2

d

1

ð1þ!1Þð1þ!2Þ �
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1� �c

dþ 1

�
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�
1
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�
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mðFÞd
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ð1þ!Þ4 þ
1� �c

d� 2

1

ð1þ!Þ3

�
�
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2d� 4
þ 1
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�
1

ð1þ!Þ2 ;

mðFBÞd
1;2 ð!1; !2;�c ; �
Þ
¼

�
1� �


dþ 1

�
1

ð1þ!1Þð1þ!2Þ2
:

Note that the linear regulators (15) and (38) render mðFBÞd
1;2

independent of �c .
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