
Quantization of Fayet-Iliopoulos parameters in supergravity

Jacques Distler1,* and Eric Sharpe2,†

1Department of Physics, University of Texas at Austin, Austin, Texas 78712-0264, USA
2Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA

(Received 7 September 2010; published 8 April 2011)

In this short article we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories.

We argue that, in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a

line bundle, and such lifts are quantized. Just as D-terms in rigidN ¼ 1 supersymmetry are interpreted in

terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the

Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant

theory quotients, the algebro-geometric version of symplectic quotients.
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I. INTRODUCTION

The recent paper [1] discussed quantization of Fayet-
Iliopoulos parameters in four-dimensional supergravity
theories in which the group action on scalars was realized
linearly. In this paper, we observe that that quantization
condition has a more general understanding, as a choice of
lift of the group action to a line bundle over the moduli
space. Such a lift is precisely a linearization in the sense of
geometric invariant theory (GIT) quotients, the algebro-
geometric analogue of symplectic quotients.

After reviewing in Sec. II the result that Kähler classes
on moduli spaces in supergravity are integral forms, we
discuss the quantization of the Fayet-Iliopoulos parameter
in Sec. III. In rigid supersymmetry, the Fayet-Iliopoulos
parameter is interpreted in terms of symplectic quotients
and is not quantized. We argue that inN ¼ 1 supergravity
in four dimensions, the Fayet-Iliopoulos parameter should
instead be interpreted in terms of a choice of lift of the G
action to a holomorphic line bundle, and such choices are
quantized. In Sec. IV, we discuss how to interpret the
supergravity quotient in terms of the algebraic-geometry
version of symplectic quotients, known as geometric in-
variant theory quotients. In Sec. V, we briefly comment on
implications of this work for discussions of supersymmetry
breaking in supergravity. Finally in Sec. VI we conclude
with some observations on analogues in N ¼ 2 super-
gravity in four dimensions. In appendixes we discuss per-
tinent sigma model anomalies and conditions for bundles
to admit lifts of group actions, and we work through a
simple example of a geometric invariant theory quotient.

The recent paper [1] also discussed two-dimensional
theories defined by restricting sums over instantons to a
subset of all instantons. Such theories are the same as
strings on gerbes, special kinds of stacks, as is discussed
in the physics literature in for example [2–9] and reviewed
in conference proceedings including [10–12]. (There is

also a significant mathematics literature on Gromov-
Witten invariants of stacks and gerbes; see for example
[13–16] for a few representative examples of that litera-
ture.) A more direct description of a string on a gerbe is as
(the RG endpoint of) a gauged sigma model in which the
group acts ineffectively, meaning a subgroup acts trivially.
More globally, gauging ineffective group actions and re-
stricting nonperturbative sectors go hand-in-hand.
In the special case of stacks that are gerbes, i.e. the

theories discussed in [1], such theories in two dimensions
are equivalent to nonlinear sigmamodels on disjoint unions
of spaces [8], a result named the ‘‘decomposition conjec-
ture.’’ We can understand the decomposition conjecture
schematically as follows. Consider a nonlinear sigmamodel
on a space X, for simplicity with H2ðX;ZÞ ¼ Z, with a
restriction on world sheet instantons to degrees divisible
by k. We can realize that restriction in the path integral by
inserting a projection operator
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where ! is the de Rham image of a generator of H2ðX;ZÞ.
Inserting this operator into a partition function is equivalent
to working with a sum of partition functions with rotating
B fields, and this is the essence of the decomposition
conjecture.
One of the applications of the result above is to Gromov-

Witten theory, where it has been checked and applied to
simplify computations of Gromov-Witten invariants of
gerbes; see [17–22]. Another application is to gauged
linear sigma models [9], where it answers old questions
about the meaning of the Landau-Ginzburg point in a
gauged linear sigma model (GLSM) for a complete inter-
section of quadrics, gives a physical realization of
Kuznetsov’s homological projective duality [23–25], and
updates old lore on gauged linear sigma models.
A more detailed discussion of gerbes, including four-

dimensional theories (which have somewhat different
properties from the two-dimensional ones reviewed
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above), examples of gerby moduli ‘‘spaces’’ in field and
string theory, and a discussion of the Fayet-Iliopoulos
quantization condition for gerby moduli spaces in super-
gravity appear in [26].

II. REVIEW OF BAGGER-WITTEN

Bagger and Witten [27] discussed how the Kähler class
of the moduli space1 of scalars of a supergravity theory is
quantized, resulting from the fact that ultimately the
Kähler class must be the first Chern class of a line bundle
over the moduli space. In this section we will describe an
analogous argument for quantization of the Fayet-
Iliopoulos term in supergravity.

Let us briefly begin by reviewing the quantization of
Newton’s constant in ungauged supergravity theories, fol-
lowing [27]. First, across coordinate patches on the moduli
space, the Kähler potential K transforms as

K � K þ fþ �f;

where f is a holomorphic function of moduli. To be a
symmetry of the theory, this must be accompanied by a
rotation of the gravitino c � and the superpartners �i of the

scalar fields on the moduli space:

�i� exp

�
þ i

2
Imf

�
�i; c �� exp

�
� i

2
Imf

�
c �: (2.1)

(Since the �i and c � are chiral fermions, these are chiral

rotations, hence there are potential anomalies—see for
example [28] or Appendix A for a discussion.)

Consistency of the rotations (2.1) across triple overlaps
(even within classical physics) implies that the f’s define a
line bundle with even c1, to which the fermions �i, c �

couple. In more formal language, if we let that line bundle
be L�2, we can summarize (2.1) by saying that the grav-
itino is a spinor-valued section of TX ���L�1, where X is
the four-dimensional low-energy effective spacetime and

�:X ! M

is the boson of the four-dimensional nonlinear sigma
model on the compactification moduli space M, and that
the fermions�i are spinor-valued sections of��ðTM �LÞ.
In the same language, the Kähler form onM is (a de Rham
representative of) c1ðL�2Þ (and hence an even integral
form). Moreover, given how the �i transform, the super-
potential W transforms as a holomorphic section of L�2.
Because the Kähler form determines the metric on the
Fermi kinetic terms, which must be positive-definite, [27]
argues that L�2 must be a negative bundle—so if the
moduli space M is a smooth compact manifold, then the
superpotential must vanish.

III. QUANTIZATION OF THE
FAYET-ILIOPOULOS PARAMETER

Now, let us imagine gauging a group action on the target
space M of the nonlinear sigma model above. We will
argue that, in supergravity, one must lift the group action
on the base M to the line bundle L, and that the Fayet-
Iliopoulos parameter corresponds to such a choice of lift.
As there are integrally many choices of lifts, possible
values of the Fayet-Iliopoulos parameter are quantized.
Let us begin by reviewing how one gauges group actions

in nonlinear sigma models in general. To preserve super-
symmetry (see e.g. [29,30]), the group action must be
generated by holomorphic Killing vectors,

XðaÞ � XðaÞi @

@�i ;

where ðaÞ denotes a Lie algebra index, and � a map in the
nonlinear sigma model. To be holomorphic Killing means
they must satisfy

riX
ðaÞ
j þrjX

ðaÞ
i ¼ 0;

r�{X
ðaÞ
j þrjX

ðaÞ
�{ ¼ 0:

On a Kähler manifold, the first equation holds automati-
cally. The second equation implies that there exist real

scalar functions DðaÞð�i;��{Þ such that

gi�|X
ðaÞ�| ¼ i

@

@�i D
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@��| D
ðaÞ: (3.1)

These conditions determine the DðaÞ only up to additive
constants.

Quantities DðaÞ solving the equations above are known
as ‘‘Killing potentials,’’ and are moment maps for the
group action [29,30]. Because only their derivatives are
defined, they are ambiguous up to a constant shift, and such
constant shifts are Fayet-Iliopoulos parameters.
In rigid supersymmetry, we interpret the gauging mathe-

matically as a symplectic quotient in symplectic geometry.

The DðaÞ define moment maps, and the constant shifts, the
Fayet-Iliopoulos parameters, define the coadjoint orbit on
which the symplectic reduction takes place. For a gauged
Uð1Þ, say, there is a single Fayet-Iliopoulos parameter
which can take any real value, defining symplectic quo-
tients with symplectic forms in real-valued cohomology.
In supergravity, however, that picture is problematic, as

can be seen from the following quick and slighty sloppy
argument. The value of the Fayet-Iliopoulos parameter
determines the Kähler form on the quotient, but as we
just outlined, Witten and Bagger [27] have argued that,
in an ungauged moduli space, the Kähler form is integral
(and even). To get an integral Kähler form on the quotient,
the Fayet-Iliopoulos parameter must be quantized.
The simplest example is the construction of Pn as a

symplectic quotient of Cnþ1 by Uð1Þ. One begins on

1The arguments of [27], and our own arguments here, all
assume that the moduli space of the supergravity theory is a
smooth manifold.
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Cnþ1 with an integral (in fact trivial) Kähler form, but by
varying the image of the moment map, one can recover Pn

with any real Kähler class, not necessarily integral. To get
an integral Kähler class, the image of the moment map
must also be integral. More generally [31], for Abelian G,
the moment map takes values in t�, but only if one reduces
on points in T� � t� can one hope to get an integral Kähler
form on the quotient.

Hence, to get an integral Kähler form on the quotient,
the Fayet-Iliopoulos parameter must be quantized.

This argument is a little too slick; it is not immediately
obvious, from the arguments of [27], that the Kähler class
on the symplectic quotient must also be quantized. In the
case of linearly realized group actions, as was recently
discussed in [1] (Sec. 3), it is easy to make the argument
precise. The supergravity action contains

� 3
Z

d4�E expð�K � rVÞ=3;

where r is the Fayet-Iliopoulos parameter. As a result,
gauge transformations

V � V þ�þ ��

act as Kähler transformations with f ¼ �r�. Thus, the
gauge symmetry acts as an R-symmetry under which the
superpotential has charge�r. As a result, if a superfield�j

has charge qj, then the fermion �j has charge qj þ r=2,

and so charge quantization implies that r=2 must be an
integer, i.e. the Fayet-Iliopoulos parameter must be an even
integer.

However, it remains to understand this problem more
generally. What is clear from the geometrical discussion of
Sec. II is that, for the purposes of the supergravity theory, it
does not suffice to define the action of G on M; we also
need an equivariant lift2 of the G-action to the line bundle
L, and, as we shall discuss later, such equivariant lifts,
when they exist, are quantized. In particular, we will
identify Fayet-Iliopoulos parameters with, in essence, a
choice of equivariant lift, and this is the ultimate reason
for their quantization in supergravity.

We can see Fayet-Iliopoulos parameters as lifts explic-
itly in the supergravity Lagrangians of [32] (Chap. 25). In
general, since the fermions �i, c � couple to L, L�1, a

group action onM must be lifted to an action onL,L�1 in
order to uniquely define the theory. (A group action on
either of L, L�1 defines a group action on the other, so
henceforth we will only speak about group actions on L.)
We can see infinitesimal lifts explicitly in the infinitesimal

group actions for real �ðaÞ [32] [Eq. (25.14)]:

��i ¼ �ðaÞXðaÞi;

�AðaÞ
� ¼ @��

ðaÞ þ fabc�ðbÞAðcÞ
� ;

��i ¼ �ðaÞ
�
@XðaÞi

@�j �j þ i

2
ImFðaÞ�i

�
;

��ðaÞ ¼ fabc�ðbÞ�ðcÞ � i

2
�ðaÞ ImFðaÞ�ðaÞ;

�c � ¼ � i

2
�ðaÞ ImFðaÞc �;

where FðaÞ ¼ XðaÞK þ iDðaÞ (K the Kähler potential),

and FðaÞ is easily checked to be holomorphic. For real

�ðaÞ, the Kähler potential undergoes a standard Kähler
transformation,

�K ¼ �ðaÞFðaÞ þ �ðaÞ �FðaÞ;

hence in the gauge transformations above, terms pro-

portional to ImFðaÞ are precisely encoding the Kähler
transformations on fermions given in Eq. (2.1). Thus,

the gauge-transformation terms proportional to ImFðaÞ
(also known as super-Weyl transformations) appear to
encode an infinitesimal lift of the group action to L.
Strictly speaking, infinitesimal lifts are required to obey
the Lie algebra:

½�ðaÞ; �ðbÞ�c � ¼ i

2
�ðaÞ�ðbÞfabc ImFðcÞc � (3.2)

(for real �ðaÞ). The DðaÞ can be chosen to obey [32]’s
Eq. (24.6):

½XðaÞi@i þ XðaÞ�{@�{�DðbÞ ¼ �fabcDðcÞ;

and it is straightforward to check that, with this choice, the

FðaÞ do indeed satisfy Eq. (3.2), and hence define an infini-
tesimal lift of G (equivalently, an equivariant lift of the Lie

algebra). Shifts in the imaginary part of FðaÞ are precisely
Fayet-Iliopoulos parameters; hence, Fayet-Iliopoulos
parameters encode a choice of equivariant lift.
Next, we shall show that the allowed values of the Fayet-

Iliopoulos parameter are constrained (in fact, quantized) by
the condition that the infinitesimal lifts integrate to honest
(global) lifts. As noted above, the infinitesimal group
action on L, the infinitesimal lift, is given by

þ i

2
�ðaÞ ImFðaÞ

so that the lift of the group element

g � expði�ðaÞTaÞ
(Ta generators of the Lie algebra) is

~g � exp

�
i

2
�ðaÞ ImFðaÞ

�
:

2Given fg 2 Gg, such a lift is a set f~gg acting on the bundle

such that ~g ~h ¼ fgh. These are known technically as a
G-equivariant structure or linearization. See Appendix B for
technical details and remarks on their existence.
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We require that the group be represented honestly, not

projectively, i.e. ~g ~h ¼ fgh; , in order to define an honest
lift of the group G (known technically as a G-equivariant
structure or in this case, a G-linearization). Shifting the

Fayet-Iliopoulos parameters (translating DðaÞ) corresponds
to a g-dependent rescaling of ~g:

~g � ~g expði�gÞ
since FðaÞ ¼ XðaÞK þ iDðaÞ. We can use such shifts to try to
produce an honest representation if the ~g’s do not already
form an honest representation; nevertheless, we might not
be able to do so. Let the group formed by the ~g be denoted
~G, then for real3 Lie groups we have a short exact
sequence:

1 ! Uð1Þ ! ~G ! G ! 1: (3.3)

We can shift Fayet-Iliopoulos parameters to get an

honest representation if and only if the extension ~G
splits as G�Uð1Þ. In general, this will not always be
the case—equivariant structures lifting group actions do
not always exist. As we explain in Appendix B, an
equivariant moment map (3.2) suffices to guarantee an
equivariant lift of the Lie algebra. For G connected and
simply connected, we show that this suffices to guaran-
tee that (3.3) splits and gives an equivariant lift of G.

Assuming that we can find an honest representation, i.e.
assuming an honest lift exists, we still have a little freedom
left in the Fayet-Iliopoulos parameters: we can deform ~g’s
by �g’s that represent G. In other words, if

�g þ �h ¼ �gh

for all g, h 2 G, then we can shift the Fayet-Iliopoulos
parameters to give phases as

~g � ~g expði�gÞ
while maintaining an honest representation:

ð~g expði�gÞÞð~h expði�hÞÞ ¼ ~g ~h expðið�g þ �hÞÞ
¼ fgh expði�ghÞ:

Such shifts � [i.e., the difference between two splittings of
(3.3)] are classified by HomðG;Uð1ÞÞ (for real Lie groups
G) or HomðGC;C

�Þ (for algebraic groups GC). These are,
clearly, the only remaining allowed Fayet-Iliopoulos shifts.

For example, if the gauge group is Uð1Þ, then we can
shift

1

2
ImFðaÞ � ðintegerÞ

and leave the group representation invariant. This quan-
tized shift is the Fayet-Iliopoulos parameter.

The fact that honest lifts, when they exist, are quantized
in the fashion above is a standard result in the mathematics
literature (see e.g. [33], Prop. 1.13.1). Since it also forms
the intellectual basis for the central point of this paper, let
us give a second explicit argument that differences be-
tween lifts are quantized, following4 [34]. Assume the
space is connected, and let fU	g be an open cover, that is
‘‘compatible’’ with the group action.5 At the level of Cech
cohomology, a G-equivariant line bundle is defined by
transition functions g	
, a gauge field A	, and related

data such that

g�A	 ¼ A	 þ d lnhg	;

g�g	
 ¼ ðhg	Þðg	
Þðhg
Þ�1;

hg1g2	 ¼ ðg�2hg1	 Þðhg2	 Þ:
Now, suppose we have two distinct equivariant struc-

tures, two lifts, defined by hg	 and �hg	. Define

�g
	 � hg	

�hg	
:

From the consistency condition on g�g	
 for each equi-

variant, we find that �g
	 ¼ �g


, i.e. �
g
	 is the restriction to

U	 of a function we shall call �g. From the consistency
condition on g�A	 for each equivariant structure, we find
that �g is a locally constant function, and finally from the
remaining consistency condition we find that

�g1g2 ¼ �g2�g1 ;

i.e.� defines a homomorphismG ! Uð1Þ. In other words,
on a connected manifold, the difference6 between any two
G-lifts is an element of HomðG;Uð1ÞÞ.
If the gauge group is Uð1Þ, then as HomðUð1Þ;

Uð1ÞÞ ¼ Z, we see that the difference between any two
lifts is an integer.
Applying to the present case, we find that the difference

between any two versions of

1

2
ImFðaÞ

is an integer, and since ImF ¼ Dþ 	 	 	 , we see that
the difference between any two allowed values of the

3For algebraic groups, we have the nearly identical sequence

1 ! C� ! ~GC ! GC ! 1:

4Essentially the same argument, in a different context, is
responsible for understanding discrete torsion as a choice of
equivariant structure on the B field.

5We omit details concerning covers. The result whose deriva-
tion we are sloppily outlining here is standard.

6Note that the lifts themselves cannot be canonically identified
with elements of HomðG;Uð1ÞÞ—unless the line bundle is
trivial, there is in general no canonical ‘‘zero’’ lift—i.e., there
is no natural zero for the Fayet-Iliopoulos parameter. Instead, the
set of linearizations is acted upon freely by this group.
Technically, we say the set of linearizations is a torsor under
this group.
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Fayet-Iliopoulos parameter must be an even integer. (Any
e.g. one-loop counterterm would merely product an overall
shift; the difference between any two allowed values would
still be an integer.)

IV. INTERPRETATION IN GEOMETRIC
INVARIANT THEORY

In rigid supersymmetry, the D terms and Fayet-
Iliopoulos parameters are interpreted in terms of symplec-
tic quotients and symplectic reduction. In supergravity,
however, there are some key differences:

(1) As we saw in the previous section, in supergravity
the Fayet-Iliopoulos parameter is quantized, be-
cause it acts as a lift of the group action on M to a
line bundle,L. These structures have no analogue in
rigid supersymmetry.

(2) A more obscure but also important point is that L
defines a projective embedding of M. The quantiza-
tion of the Kähler form ! described in [27] means
thatM is a Hodge manifold. By the Kodaira embed-
ding theorem [35], every Hodge manifold is projec-
tive, and L�n, for some n 
 0 is the ample line
bundle that provides the projective embedding.

These features are not characteristic of symplectic quo-
tients, but they are characteristic of the algebro-geometric
analogue of symplectic quotients, known as geometric
invariant theory (GIT) quotients (see e.g. [36–38]) instead.

In a GIT quotient, the analogue of the image of the
moment map is quantized. Briefly, when both are defined,
GIT quotients are essentially equivalent to symplectic
quotients, except that GIT quotients are constructed to
always have integral Kähler classes, whereas symplectic
quotients can have arbitrary real Kähler classes.

In a GIT quotient, instead of quotienting the inverse
image of the moment map by a real Lie group, one con-
siders instead a quotient of a complex manifold by an
algebraic group (typically the complexification of a real
Lie group, which is very natural from the point of view of
N ¼ 1 supersymmetry). The effect of quotienting by a
complex algebraic group turns out to be functionally
equivalent to first taking the inverse image of the moment
map and then quotienting by a real Lie group (a subgroup
of the algebraic group). In GIT quotients, the quotient is
built via an explicit embedding into a projective space
(technically, the quotient is constructed as the Proj of a
graded ring of group invariants), and the Kähler class on
the quotient is the pullback along that embedding of the
first Chern class ofOð1Þ. To build a GIT quotient, we must
specify a lift (technically, a ‘‘linearization’’) of the (alge-
braic) group action to a line bundle L on the space being
quotiented, whose first Chern class is the Kähler class
upstairs. As this technology may not be widely familiar
to physicists, we show explicitly in Appendix C how
projective spaces can be constructed in this form.

We have seen these structures inN ¼ 1 supergravity—
the moduli space M has a projective embedding by virtue
of L�1, and in order to define the quotient we must pick a
G-linearization of L�1. In fact, the Fayet-Iliopoulos
parameter is understood in terms of such a choice of lift
of the group action. Thus, the structure of gaugings in
N ¼ 1 supergravity closely parallels the key features of
GIT quotient constructions.
That said, some of the technical details of GIT quotient

constructions are rather different. In a GIT quotient, for
example, quotients are build via embeddings into projec-
tive spaces constructed from invariant rings (thus the
name), whereas symplectic reductions are built as
G-quotients of fibers of the moment map. In the present
case, although we see projective embeddings and Fayet-
Iliopoulos parameters as G-linearizations of an ample line
bundle, the rest of the quotient construction more nearly
follows the standard symplectic story (G-quotients of
fibers of a moment map) rather than that of geometric
invariant theory (as invariant coordinate rings are not com-
pletely central, modulo the discussion above).
The construction of the GIT quotient, in terms of the ring

of invariant functions, is closely reminiscent of the ap-
proach to four-dimensional gauge theories, where one
describes the moduli space in terms of its (invariant) chiral
rings (see for example [39], Sec. 12.3, and references
therein, although also see [40] for a different perspective).
Perhaps the best interpretation of the D-terms in super-

gravity is that the Fayet-Iliopoulos parameter is defined by
a choice of linearization, although the rest of the construc-
tion should still be interpreted in terms of symplectic
quotients. In particular, a choice of linearization directly
defines a moment map. We can see this as follows. Let G
act on a space X, which is lifted to a linearization on a line
bundle L over X. SupposeG preserves a connection 1-form
A on L, whose curvature is the symplectic form !. Then
pairing vector fields from Lie(G) with A gives real-valued
functions on X, in the usual fashion:

iVg
! ¼ d�g

for a function �: X � LieðGÞ ! R. Such a pairing is
equivalent to a moment map X ! LieðGÞ�.

V. SUPERSYMMETRY BREAKING

A sufficient condition for supersymmetry breaking in

supergravity is that hDðaÞi � 0. One result of our analysis is
that, in principle, for some moduli spaces and line bundles

L, there may not exist an allowed translation of DðaÞ for
which hDðaÞi ¼ 0. In such a case, supersymmetry breaking
would be inevitable.
An example of this phenomenon is discussed in [41],

Sec. 5. There, M ¼ P1. The group of isometries is SOð3Þ,
but whenL is an odd power of the tautological line bundle,
the group that has an equivariant lift is actually
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G ¼ SUð2Þ. Since HomðSUð2Þ; Uð1ÞÞ is trivial, the equi-
variant lift is unique.

Moreover, for L ¼ Oð�nÞ,

ðDð1ÞÞ2 þ ðDð2ÞÞ2 þ ðDð3ÞÞ2 ¼
�
n

2�

�
2

independent of the location on P1. Supersymmetry is
always broken.

As another example, consider gauging just a Uð1Þ sub-
group of the isometry group of M ¼ P1. The allowed
moment maps are

D ¼ � 1

2�

�
n

1þ j�j2 þ k

�

for any k 2 Z. Different choices of k correspond to differ-
ent allowed values of the Fayet-Iliopoulos coefficient.
There are two fixed points of the Uð1Þ action, the north
pole (� ¼ 0) and the south pole (�0 ¼ 1=� ¼ 0). Both are
extrema of the scalar potential (minima, for an appropriate
range of k). For generic choice of k, supersymmetry is
broken at both points. For k ¼ �n, supersymmetry is
unbroken at the north pole, and broken at the south pole.
For k ¼ 0, supersymmetry is broken at the north pole, and
unbroken at the south pole. Exchanging the roles of north
and south pole requires shifting k ! �n� k, reflecting the
fact that there is no canonical zero for the FI coefficient;
rather, they form a torsor for HomðG;Uð1ÞÞ.

VI. HIGHER SUPERSYMMETRY

We have not investigated higher supersymmetry cases
thoroughly, although we will make some basic observa-
tions regarding N ¼ 2 supergravity in four dimensions.
For example, consider the hypermultiplet moduli space. In
rigid N ¼ 2 supersymmetry, that moduli space is a
hyperKähler manifold, but in N ¼ 2 supergravity it is a
quaternionic Kähler manifold [42]. It was argued in [43],
Eq. (5.16), that, in N ¼ 2 supergravity in four dimen-
sions, the curvature scalar on the quaternionic Kähler
moduli manifold is uniquely determined, so that there is
not even an integral ambiguity. Similarly, it seems to be a
standard result that, in quaternionic Kähler reduction, un-
like hyperKähler reduction, there is no Fayet-Iliopoulos
ambiguity in the moment map, but rather the moment map
is uniquely defined7 [44–46].

One can consider also the moduli space of vector mul-
tiplets in N ¼ 2 supergravity. Such moduli spaces are
described by special geometry, and in this case [see e.g.
[47], Eq. (10)], the Kähler form on the moduli space arising
in Calabi-Yau compactifications is identified with

@ �@ lnh�j ��i
and hence unique (as this is invariant under rescalings of
the holomorphic top form �). All of these results tell us
that triplets of D terms in N ¼ 2 supergravity have no
Fayet-Iliopoulos ambiguity.
We leave a careful analysis of N ¼ 2 supergravity to

future work.

VII. CONCLUSIONS

In this paper we have reviewed recent discussions of
quantization of the Fayet-Iliopoulos parameter in super-
gravity theories. We argued that, in general, that quantiza-
tion can be understood formally via a choice of
linearization on a line bundle appearing in the theory,
linking gauging in supergravity models with ‘‘geometric
invariant theory’’ quotients.
The recent paper [1] went one step further to consider

e.g. Uð1Þ gaugings with nonminimal charges, which (as
argued in the Introduction) correspond mathematically to
sigma models on gerbes. The claims of [1] regarding such
models can be understood as arising from the fact that
there are more (‘‘fractional’’) line bundles over gerbes
than exist over the underlying spaces. We will consider
such models in [26].
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APPENDIX A: 4-DIMENSIONAL
SIGMA MODEL ANOMALIES

In Sec. II we described the classical physics of the
fermions in an N ¼ 1 supergravity theory in four dimen-
sions. Because those fermions are chiral, and hence (nec-
essarily) undergo chiral rotations across coordinate
patches, there is the potential for an anomaly.
In this Appendix we will briefly outline the resulting

anomalies, following [28]. (See also [48–50] for back-
ground information on sigma model anomalies.)
Globally, the fact that the fermions undergo chiral rota-

tions across coordinate patches is encoded in an anomaly,

given by the 6-form piece of ÂðXÞ ^ chðEÞ, where
E ¼ ��ðTM �LÞ � ðTX � 1Þ ���L�1:

7Our intuition for this is that, in N ¼ 2 supergravity, there is
a triplet of Fayet-Iliopoulos parameters, which (from the dis-
cussion of this section) must all be integral, and yet can also be
rotated under the action of an SUð2ÞR. The only triple of integers
consistent with SUð2ÞR rotation is (0,0,0).
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(The first term is from the superpartners �i of the chiral
superfields, the second from the gravitino c �.) In the

notation above,M is the target space of the nonlinear sigma
model (the moduli space of the supergravity theory), X is
the four-dimensional spacetime, �: X ! M the boson of
the nonlinear sigma model, and L is the line bundle
encoding the chiral rotations across overlaps.

The 6-form piece above (for the E appropriate for
supergravity) is given by

��ch3ðMÞ � 1

24
p1ðXÞ��c1ðMÞ

þ��c1ðLÞ
�
��ch2ðMÞ þ 21� n

24
p1ðXÞ

�

þ 1

2
�ðc1ðLÞ2c1ðMÞÞ þ nþ 3

6
��c1ðLÞ3; (A1)

where n is the number of chiral superfields, the dimension
of the moduli space M.

The first two terms are independent ofL, and are present
even in the case of rigid supersymmetry. They rule out
many classically sensible supersymmetric sigma models,
for instance, projective spaces of dimension greater than
two. Of course, for the phenomenologically interesting
case of the sigma model which arises for a
spontaneously-broken global symmetry, G ! H, M ¼
T�ðG=HÞ, the anomaly, in the rigid case, vanishes.

When coupled to supergravity, with nontrivial L, the
anomaly polynomial takes the above, more complicated,
form. The moduli spaces which arise in string theory are
typically noncompact but can, nonetheless, have quite
complicated topology. So (A1) seems to provide a non-
trivial constraint. Unfortunately, these moduli spaces are
typically not smooth varieties, but rather are stacks. The
extension of these considerations, to the case ofM a stack,
will be pursued elsewhere.

For our present purposes, we would like to extend (A1)
to the case where we gauge some global symmetry, G,
ofM. Two things change when we do this. First of all, � is
no longer a map from X to a fixed manifold,M. Rather, let
P ! X be a G-principal bundle. We form the associated
bundle

M ¼ ðP�MÞ=G

with fiber M. Now, � is a section

The first effect of this change is to replace TM in
Eq. (A1) with TvertM. The second change is that, in
supergravity, the gaugini transform as sections of
��L�1. The net effect is to modify (A1) to

��ch3ðTvertMÞ� 1

24
p1ðXÞ��c1ðTvertMÞþ��c1ðLÞ

�
�
��ch2ðTvertMÞþ21�nþdimðGÞ

24
p1ðXÞ

�

þ1

2
��ðc1ðLÞ2c1ðTvertMÞÞþnþ3�dimðGÞ

6
��c1ðLÞ3:

(A2)

Even when (A2) does not vanish, it is possible to con-
template canceling the anomaly by adding to the action
‘‘Wess–Zumino’’-type terms, whose classical variation is
anomalous [51,52], but we will not pursue that here.

APPENDIX B: EXISTENCE OF
EQUIVARIANT STRUCTURES

As noted in the text, G-equivariant structures on line
bundles do not always exist. In this Appendix, we shall
work out conditions for finding such equivariant structures.
In general, if a group G acts on a manifold M, then a

G-equivariant structure on a line bundle L is a lift of G to
the total space of that line bundle, i.e. for all g 2 G, a map
~g: TotðLÞ ! TotðLÞ such that

�ðgyÞ ¼ g�ðyÞ
for all y 2 TotðLÞ, and such that ~g ~h ¼ fgh. Furthermore,
one often imposes additional constraints, e.g. an equivari-
ant lift that preserves a holomorphic structure or a
connection.
It is a standard result in the mathematics literature that

equivariant structures do not always exist. The obstruction

is typically finding a lift such that ~g ~h ¼ fgh—often one can
find a projective representation of the group, but it may not
be possible to find an honest representation of the group.
One necessary condition for equivariant structures to

exist is that characteristic classes be invariant under group
actions, but this is not sufficient. Examples of nonequivar-
iant line and vector bundles, with invariant characteristic
classes, can be found in e.g. [53,54] and references therein.
Another example is as follows: Let E be an elliptic curve
with a marked point � 2 E. Let L ¼ OEð2�Þ. Let x 2 E,
and let tx: E ! E be the translation by x in the group law.
Then for any x, the automorphism tx preserves c1ðLÞ
simply because tx is homotopic to the identity and so
acts trivially on H2ðE;ZÞ. However, if x is a general point,
t�xL is not isomorphic to L as a holomorphic bundle. Hence
this group of translations on E clearly cannot have an
equivariant lift.8 However, this sort of group action is not
of interest, even in globally supersymmetric sigma models

8In fact, t�xL ffi L if and only if x is a point of order two on E.
Now, even if we restrict to points of order two, we will not have
an equivariant structure. The points of order two are an Abelian
group isomorphic to Z2 � Z2 which preserves L, but L does not
have an equivariant structure.

QUANTIZATION OF FAYET-ILIOPOULOS PARAMETERS . . . PHYSICAL REVIEW D 83, 085010 (2011)

085010-7



(let alone locally supersymmetric ones). There is no mo-
ment map for the translation action. [In the language of
(B1), below, the vector field generating this symmetry is
not in the kernel of s.]

In Sec. III, we noted the condition for an equivariant lift
(or linearization,9 in the nomenclature of GIT quotient
constructions) of the infinitesimal G-action. Here, we
will lay out those conditions more carefully, and consider
the existence of an equivariant lift for finite G
transformations.

The Kähler form, !, endows M with a symplectic
structure. (To be precise, we will use !0 ¼ 1

2! as the

symplectic structure.) At the Lie algebra level, g � XH,
the Lie algebra of Hamiltonian vector fields onM; in other
words, the g-action arises from globally defined moment
maps (3.1). There is an exact sequence,

0 ! H0ðM;RÞ ! C1ðMÞ ! X!!s H1ðM;RÞ ! 0; (B1)

where X!0 is the Lie algebra of symplectic vector fields
(those preserving !0), and XH � X!0 is the subalgebra
which is the kernel of s. So we naturally have a central
extension

0 ! H0ðM;RÞ ! ~g ! g ! 0; (B2)

where ~g acts equivariantly on L. (An infinitesimal lift is
the same as an equivariant action of the Lie algebra.) Next,
let us determine when the extension (B2) splits. Let

�: M ! g�

be the moment map. In the notation of (3.1), the functions

DðaÞ ¼ 2h�; tai
for ta 2 g. The condition for (B2) to split is that � be
equivariant, i.e. that

h�; ½ta; tb�i ¼ fh�; tai; h�; tbig; (B3)

where f	; 	g is the Poisson-bracket, defined using !0. Given
two splittings of (B2), the difference is an element of
Homðg; H0ðM;RÞÞ.

Having found an infinitesimal lift, an equivariant lift of
the Lie algebra, it remains to find a lift of the groupG itself,
that is, a splitting of the exact sequence of groups

1 ! Uð1Þ ! ~G ! G ! 1:

For G connected and simply connected, there is no further
obstruction. Given a lift at the level of the Lie algebra,

every path in G lifts (uniquely) to a path in ~G. Moreover,
two paths in G, which are homotopic, lift to homotopic

paths in ~G. If G is not simply connected, there is no
guarantee that a closed path in G lifts to a closed path

in ~G. But for G simply connected, every closed path is
homotopic to the trivial path, and hence lifts to a closed

path in ~G.
For G not simply connected, we may need to go to a

finite cover Ĝ ! G, in order to find an equivariant lift. As
an example, consider M ¼ CP1, with G ¼ SOð3Þ. As dis-
cussed in [41], whenL is an odd power of the tautological

line bundle, it is Ĝ ¼ SUð2Þ that lifts to an equivariant
action on L; L does not admit an SOð3Þ-equivariant
structure.
As noted earlier, when equivariant structures do exist,

they are not unique. The set of equivariant structures on
C1 line bundles preserving the connection form torsors
under HomðG;Uð1ÞÞ; the set of equivariant structures on
holomorphic line bundles preserving the holomorphic
structure form torsors under HomðG;C�Þ. As noted
elsewhere in this paper, the Fayet-Iliopoulos parameters
correspond precisely to such choices (and hence are
quantized).

APPENDIX C: AN EXAMPLE OFAGIT QUOTIENT

In order to clarify some of the claims made in the text,
and since the technology is not widely familiar to phys-
icists, in this section we shall work through a very basic
example of a geometric invariant theory (GIT) quotient.
(See [36–38] for more information on GIT quotients and
Appendix C in [55] for additional examples.)
In principle, given a complex manifold X with very

ample line bundle L ! X, and the action of some group
G on X which has been lifted to a linearization on L, then
the GIT quotient is defined to be

Proj
M
n0

H0ðX; L�nÞG:

The resulting quotient is sometimes denoted X==G, and
depends upon the choice of linearization. (As discussed in
the text, in ‘‘typical’’ cases the result will be equivalent to a
symplectic quotient, for reductions on special (‘‘integral’’)
coadjoint orbits.)
To clarify, let us describe a projective space Pn�1 as

Cn==C�, where the C� acts with weights 1. We write

C n==C� ¼ Proj
M
p0

H0ðCn; L�pÞC�
; (C1)

where the line bundle L is necessarily O. The choice of
linearization, the choice of equivariant structure, can be
encoded in the C� action on a generator, call it 	 of the
module corresponding to L. Since L ffi O,

H0ðCn; L�pÞ ¼ C½x1; 	 	 	 ; xn�
for all p, but the C� action varies. For example, if s 2
H0ðCn; L�pÞ is homogeneous of degree d, and the genera-
tor 	 is of weight r under C�, then under the C� action,

9Technically, a ‘‘linearization’’ is an equivariant structure in
which the group acts linearly on the fibers of vector bundles:
Lx ! Lgx. All of the equivariant structures appearing in this
paper are examples of linearizations.
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s � �dþprs;

where � 2 C�—the �d because s is a degree d polyno-
mial, the �pr because of the action on the generator.

If r ¼ 0, then for all p, the only C�-invariant sections
are constants, so we have

Proj
M
p0

C ¼ ProjC½y�;

where y is taken to have degree 1. This is just a point.
If r ¼ �1, then the C�-invariant sections of L�p are

homogeneous polynomials of degree p. In this case, (C1)
becomes

Proj
M
p0

ðdegree p polynomialsÞ ¼ ProjC½x1; 	 	 	 ; xn�;

where the xi all have degree 1, which is Pn�1.
If r <�1, then (C1) becomes

Proj
M
p0

ðdegree � rp polynomialsÞ:

The map from C½x1; 	 	 	 ; xn� into the graded ring above
defines the Veronese embedding of degree�r of Pn�1 into

Pðn�1þrÞchooseðn�1Þ�1. This is a degree �r map.

If r > 0, then there are no invariant sections except for
constant sections in the special case that p ¼ 0. In this
case, (C1) is the empty set.
Physically, the integer r corresponds to the Fayet-

Iliopoulos parameter in the supergravity theory.
What distinguishes the various values of r is the Kähler

class of the resulting space. In the GIT quotient construc-
tion, the Kähler class is the first Chern class of some line
bundle, obtained by pulling back Oð1Þ along the canoni-
cal embedding into a projective space defined by the Proj
construction. For the linearization defined by �r, we
have seen that the GIT quotient (defined by the Proj of
the invariant subring) is given by the projective space
Pn�1 together with a natural embedding of degree �r
into a higher-dimensional projective space. Pulling back
Oð1Þ along such a map gives Oð�rÞ. Thus, the lineariza-
tion defined by r (r < 0) corresponds to a Kähler class
�r on Pn�1.
In principle, one would like a gerby analogue of the

construction above, that produces a closed substack of a
gerbe on a projective space, rather than a closed subvariety
of a projective space. However, we do not know of a
precise analogue—meaning the Proj construction always
builds spaces, not stacks, and we do not know of a stacky
analogue of Proj.
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