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We present Stückelberg mechanisms for tensor multiplets coupled to supergravity in four dimensions

(4D), six dimensions (6D), and three dimensions (3D). For N ¼ 1 supergravity in 4D, our field content is

ðe�m; c �Þ, ðB��; �; ’Þ and ðA�; �Þ, respectively, for the supergravity, tensor, and vector multiplets. In our

Stückelberg mechanism, the Abelian vector field A� is absorbed into the longitudinal component of the

tensor B��, which becomes massive. The field strength F ¼ dA of A is replaced by F � FþmB, where

m is a coupling constant with the dimension of mass. In 6D, we utilize the so-called dual version for

N ¼ 2 supergravity, in order to avoid the obstruction caused by the Chern-Simons term F ^ A in the

B-field strengthG. Instead of the F ^ A-term inG, the 6D Lagrangian has a peculiar topological and cubic

interaction term proportional tom�1F ^F ^F . In 3D, we also show that a similar mechanism works for

N ¼ 1 supergravity. Interestingly, the basic structure is parallel to the 4D case, except that the originally

nonpropagating field B starts propagating, after absorbing the A-field. We also show a possible

compactification of 6D theory on AdS3 � S3.
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I. INTRODUCTION

In supergravity theories associated with superstring [1],
supermembrane [2], M-theory [3], or D-branes [4], the
so-called axion field B�� and dilaton field ’ arise as

massless fields in the Neveu-Schwarz sector, or in com-
pactifications of higher-rank flux fields from higher dimen-
sions, such as ten (10D) or 11 (11D) dimensions. These
fields are also called moduli, and they are problematic for
realistic phenomenological model building in 4D.

In our previous papers [5,6], we have presented super-
symmetric Stückelberg mechanisms [7,8] that can absorb
the problematic massless fields B�� and ’, respectively,

into the tensor field C��� and the vector A�, making the

tensor field and vector massive. Upon this mechanism, B��

and ’ are absorbed into the longitudinal components of
C��� and A�, and they completely disappear from the low-

energy spectrum, as desired for low-energy models.
In the present paper, we present alternative or reversed

Stückelberg mechanisms, in which a tensor B�� absorbs a

vector field A�, and becomes massive. Its massm can be as

heavy as desired, so that it can again disappear from the
low-energy particle spectrum. The original Abelian field
strength F ¼ dA of A is replaced by F � FþmB, where
m is the coupling constant with the dimension of mass. In
other words, the field strength F will be completely gauged
away by the tensorial transformation ��B ¼ d� of the
B-field. Effectively, we can replace F by mB everywhere
in the system. For example, the kinetic term�ð1=4ÞðF��Þ2
of Awill play the role of the mass term of B. Because of the
consistency under supersymmetry, the partner fermionic

field � will be also massive, forming a Dirac field with the
gaugino �.
Actually, such a supersymmetric Stückelberg mecha-

nism is not new at all, and it has been practiced in super-
gravity in higher dimensions. The most typical example is
the massive type IIA theory in 10D [9], where the original
field strength F ¼ dA of A is replaced by F � FþmB,
and the vector field A� is absorbed into B��.

It then seems straightforward to practice similar mecha-
nisms in supergravity in lower dimensions. However, there
are obstructions against such an idea. The most serious
one is the common feature that the field strength G of the
tensor B contains the Chern-Simons (CS) term as G ¼
dBþ F ^ A. This is closely related to the universal expo-
nential couplings of the dilaton field ’ to bosonic fields,
yielding the kinetic terms such as ec’ðF��Þ2. The reason is
that this term generates the variation of the type ���F2,
which in turn necessitates the Lagrangian term ���F. Such
a term then generates a variation ���FG, which necessitates
the CS term F ^ A in G in the B-kinetic term.
The obstruction caused by the F ^ A-term in G is that

the bare field A is involved in the Lagrangian, so that the
Stückelberg mechanism does not work here. This is be-
cause the simple replacement of F by F does not work for
the bare A-term in the F ^ A-term. In a system with G
without the F ^ A-term, there arises no such obstruction.
For example, in the case of type IIA supergravity [9], the
original field strength G � dB had no CS term F ^ A with
no obstruction against the Stückelberg mechanism for
massive B. Our desirable supergravity system, therefore,
should have the field strength G without any F ^ A-type
CS term.
Fortunately, such desirable systems do exist in 4D, 6D,

and also 3D. In 4D, we presented in our previous paper [6]
a Lagrangian for supergravity ðe�m; c �Þ, tensor
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ðB��; �; ’Þ [10],1 and vector ðA�; �Þ multiplets, such that

the field strength G has no F ^ A term.
In 6D, one way to avoid the F ^ A-term inG is to use the

dual version [11] for Lagrangian formulation. We use the

supergravity multiplet ðe�m; c �
A; BðþÞ

�� Þ,2 a tensor multi-

plet ðBð�Þ
�� ; �A; ’Þ [12], and a vector multiplet ðA�; �

AÞ. The
tensors BðþÞ

�� and Bð�Þ
�� are, respectively, self-dual and

anti–self-dual tensors [12]. The former two multiplets are
combined to form a long (reducible) multiplet
ðe�m; c �

A; B��; �
A; ’Þ, so that the field content is essen-

tially the same as in the 4D case. In the dual formulation
[11], the original field strength G is replaced by its Hodge
dual N ¼ �G.3 Accordingly, the field strength N � dM
involves no CS term which is desirable for our objective.
The price we have to pay is the presence of the new CS
term in the Lagrangian of the form M ^ F ^ F. However,
as will be explained shortly, this term has more advantage
than drawback, because this term can be easily replaced by
F ^F ^F in the Stückelberg mechanism.

In this paper, we start with the 4D case in the next
section, due to its direct relevance to low-energy physics.
We study N ¼ 1 supergravity in 4D with the multiplets
ðe�m; c �Þ; ðB��; �; ’Þ, and ðA�; �Þ, using the Lagrangian
terms in [6]. In Sec. III, we study the 6D case with more
relevance to compactifications of higher-dimensional theo-
ries [1,2,4]. We use the long supergravity multiplet
ðe�m; c �

A; B��; �
A; ’Þ, and ðA�; �

AÞ for N ¼ 2 super-

gravity in 6D in terms of the dual formulation [11]. The 3D
case is studied in Sec. IV, due to its relevance to the base
space for supermembrane [2]. We show that a similar
mechanism works also for N ¼ 1 supergravity in 3D. In
Sec. V, we show a possible compactification of our 6D
theory on AdS3 � S3, by assigning a nontrivial solution to
the field strength G. Concluding remarks are given in
Sec. VI.

II. LAGRANGIAN IN 4D

We start with 4D with the multiplet of supergravity
ðe�m; c �Þ, the tensor multiplet ðB��; �;’Þ [10], and the

Abelian vector multiplet ðA�; �Þ,4 adopting the essentially

same interaction terms given in [6]. The vector A� is

absorbed into the longitudinal components of B�� as the

Stückelberg mechanism.
As we also mentioned in [6], there are certain ambigu-

ities for the couplings involving the tensor multiplet. The

Lagrangian presented in [6] is desirable because of the
absence of the F ^ A-term in G.
A drawback, however, is the presence of the 4th rank

field strengthH � dC for the 3rd rank potential C. For our
purpose, the potential C or H is not playing a crucial role.
As a close invariance confirmation reveals, there arises no
problem, even if we consistently truncate both C and H
everywhere in the Lagrangian (Eq. 2.1) and the transfor-
mation rule (Eq. 2.4) in [6].
Another drawback of the Lagrangian (2.1) in [6] is the

absence of exponential couplings for the tensor B�. It

seems that the potential term of the form m2e�4’ should
be present, for the m�@�’-type variation in �QL4D to be

cancelled, arising from themð ���Þ-term. Another trouble is
that the G-field strength has the Bd’-type term with the
bare B-field. The trouble is that everywhere the B-field
appears, there should be the field strength F, so that the
latter is absorbed into B, as the Stückelberg mechanism.
Actually, these two problems seem related to each other. In
order to avoid this problem, we rescale the B-field such
that the new B-field scales under the dilaton shift
’ ! ’þ c.
Based on these guiding principles, our action I4D �R
d4xL4D has the Lagrangian5

e�1L4D ¼ � 1

4
Rð!Þ � ð �c ��

���D�ð!Þc �Þ

� 1

12
e4’ðG���Þ2 � 1

2
ð@�’Þ2 � 1

4
ðF ��Þ2

þ 1

2
ð ����D�ð!Þ�Þ þ 1

2
ð ����D�ð!Þ�Þ

þ ð �c ��
����Þ@�’� 1

2
ð �c ��

�	���ÞF �	

þ e2’
�
þ 1

6
ð �c ��

�	
���Þ � 1

8
ð ����	
�Þ

� 1

24
ð ����	
�Þ

�
G�	
 �me�2’ð ���Þ

þ 1

2
me�2’ð �c ��

��Þ � 1

8
m2e�4’; (2.1)

up to quartic fermion terms. As has been mentioned, we
have

F �� � F�� þmB�� � þ2@½�A�� þmB��; (2.2a)

G��� � þ3@½�B���: (2.2b)

Our action I4D is invariant under N ¼ 1 local supersym-
metry:

1It may be more common to call it linear multiplet in 4D.
However, in order to be consistent with 6D, we also call it
‘‘tensor multiplet’’ in 4D.

2We use the index A for the 2 of Spð1Þ.
3For the 3rd-rank field strength in Sec. III, we use the symbol

G instead of N for the dual formulation [11]. We believe that this
is not confusing, as long as it is clear from the context.

4For a reason to be mentioned shortly, we truncate the 3rd rank
field C��� in [6].

5Our metric is ð�mnÞ � diag:ð�;þ;þ;þÞ. We also use the
‘‘plus-favored’’ metrics in 6D and 3D.
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�Qe�
m ¼ �2ð ���mc �Þ;

�Qc � ¼ þD�ð!̂Þ�� 1

12
e2’ð��

�	
�ÞĜ�	
;

�QB�� ¼ þe�2’ð ������Þ þ 2e�2’ð ���½�c ��Þ;
�Q� ¼ �ð���ÞD̂�’þ 1

6
e2’ð��	
�ÞĜ�	
;

�Q’ ¼ þð ���Þ;
�QA� ¼ þð �����Þ;
�Q� ¼ þ 1

2
ð����ÞF̂ �� þ 1

2
me�2’�:

(2.3)

As usual in supergravity [13], all the hatted quantities are

supercovariant, such as D̂�’, F̂ ��, and Ĝ���.

Since the field strengthG��� has no CS-term, there is no

additional term with �QA� in �QB��, either. Note also the

absence of the ���F -term that is present in the 6D case, as
will be seen in the next section. The absence of this term is
related to the absence of the exponential dilaton factor in
the A�-kinetic term. The m-linear term in �Q� is required

for the invariance �QI4D.
As has been mentioned, our action has also the global

invariance of the dilaton shift:

’ ! ’þ c; B�� ! e�2cB��; m ! eþ2cm;

(2.4)

while A� is invariant. This is also consistent with the

mB-term in F .
Note that the potential term Vð’Þ ¼ þð1=8Þm2e�4’ is

positive definite. This feature is shared with the gauged
supergravity in 6D [14], in which the dilaton potential is

also positive definite: ~V ¼ þð1=8Þe�
ffiffi
2

p
’ðCiÎÞ2, containing

a similar positive-definite dilaton potential part: þð3=8Þ�
ðg0Þ2e�

ffiffi
2

p
’ [14].

The confirmation of the invariance �QI4D ¼ 0 up to

quartic terms works as follows: For all the
m-independent terms generated in �QI4D, the cancellation
mechanism is just parallel to [6]. There are two subtleties
to be mentioned. The first one is related to the truncation of
the C-field, while the second one is associated with the
rescaling of the B-field. For the former subtlety, fortu-
nately, their truncation does not affect all other cancellation
structures in the Lagrangian. For the second subtlety, the
rescaling deletes the Bd’-term in G as in (2.2b), which
makes the computation easier.

All them-dependent terms in �QI4D are categorized into

the seven sectors: (i) mD�, (ii) m�F , (iii) mcF 2,
(iv) m�G, (v) m�’, (vi) m2�, and (vii) m2c . The subtle
sector is (iv), to which the variation of the Noether term
�c�F contributes via @½�F �	� ¼ ð1=3ÞmG��	. Another

subtlety is with the sector (vi), which necessitates the
presence of the exponential dilaton factor in the potential.
This is why we have to go to the special frame in which the
B-field and the mass m are transforming under (2.4).
As in the usual Stückelberg mechanism [7], the original

vector field A� appears only in the F ��-term with mB��,

so it is completely gauged away by the �-transformation
��B�� ¼ 2@½���� of B��. Eventually, we can replace all

the F ��-field strength by mB�� everywhere in the

Lagrangian (2.1), as well as in the transformation rules
(2.3). In particular, the kinetic term for A�-field becomes

the mass term of B��:

� 1

12
e4’ðG�	
Þ2 � 1

4
ðF ��Þ2

! � 1

12
e4’ðG�	
Þ2 � 1

4
m2ðB��Þ2: (2.5)

Accordingly, the original Majorana fields � and � are
combined into a massive Dirac field, because of the
mixture term mð ���Þ. This prescription is equivalent to
adopting the gauge in which A� ¼ 0, so that the new

supersymmetry transformation rule of A� is �0
QA� ¼ 0,

while the new �0
QB�� has an additional term

2m�1@½�ð ������Þ.

III. LAGRANGIAN IN 6D

As has been mentioned for 6D, we need to use the dual
version [11] of N ¼ 2 supergravity [12,14]. We use the
reducible supergravity multiplet ðe�m; c �

A; B��; �
A; ’Þ,

and the Abelian vector multiplet ðA�; �
AÞ. The former is

the combination of the supergravity multiplet

ðe�m; c �
A; BðþÞ

�� Þ and the tensor multiplet ðBð�Þ
�� ; �A; ’Þ

[12]. Each of these two multiplets do not have
Lagrangian formulation due to the (anti) self-duality of

Bð�Þ
�� , so that we need to combine them to have a

Lagrangian [14]. Even though we use the notation B��

for the tensor, the original symbol for the tensor is M��

[11], which is dual to the usual tensor B�� [12,14].

As has been also mentioned, instead of the F ^ A term in
the field strengthG, the Lagrangian of the dual version [11]
has the B ^ F ^ F-type CS term, as desirable for our
purpose of a Stückelberg mechanism.
As in the 4D case, the basic prescription is to replace the

field strength F ¼ dA by F � FþmB. The only subtlety
is about the above-mentioned B ^ F ^ F-term. However, it
turns out to be rather simple, because the leading part F ^
F ^ F itself is a total divergence, while if these F’s are
replaced by the F ’s, it becomes covariant under the
�-transformation ��B�� ¼ 2@½����. Accordingly, its su-
persymmetry transformation becomes also covariantized:
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�Q

�
� 1

24
m�1����	
�F ��F �	F 
�

�
¼ � 1

6
����	
�ð�QA�ÞG��	F 
� � 1

8
����	
�ð�QB��ÞF �	F 
�: (3.1)

With this caveat in mind, our action I6D � R
d6xL6D has the Lagrangian

e�1L6D ¼ þ 1

4
Rð!Þ � 1

2
ð �c ��

��	D�ð!Þc �Þ � 1

12
e�2

ffiffi
2

p
’ðG���Þ2 � 1

2
ð ����D�ð!Þ�Þ � 1

2
ð@�’Þ2 � 1

4
e
ffiffi
2

p
’ðF ��Þ2

� 1

2
ð ����D�ð!Þ�Þ þ 1ffiffiffi

2
p ð �c ��

����Þ@�’� 1

24
e�

ffiffi
2

p
’½ð �c ��½���	
���c �Þ

þ 2ð �c ��
�	
���Þ � ð ����	
�Þ � ð ����	
�Þ�G�	
 þ 1

2
ffiffiffi
2

p e’=
ffiffi
2

p
½ð �c ��

�	���Þ � ð ����	�Þ�F �	

� 1

24
m�1e�1����	
�F ��F �	F 
� þ 3

2
ffiffiffi
2

p me3’=
ffiffi
2

p
ð ���Þ � 1

2
ffiffiffi
2

p me3’=
ffiffi
2

p
ð �c ��

��Þ � 1

8
m2e3

ffiffi
2

p
’; (3.2)

up to quartic terms. We omit contracted A-indices, e.g.,
ð ����	�Þ � ð ��A��	�AÞ, etc. As in the 4D case, we have

F�� � F�� þmB�� � þ2@½�A�� þmB��;

G��� � þ3@½�B���:
(3.3)

Our action I6D is invariant under N ¼ 2 local
supersymmetry:

�Qe�
m ¼ þð ���mc �Þ;

�Qc �
A ¼ þD�ð!̂Þ�A þ 1

24
e�

ffiffi
2

p
’ð��	
���

AÞĜ�	
;

�QB�� ¼ � 1

2
e
ffiffi
2

p
’ð ������Þ � e

ffiffi
2

p
’ð ���½�c ��Þ;

�Q�
A ¼ þ 1ffiffiffi

2
p ð���AÞD̂�’þ 1

12
e�

ffiffi
2

p
’ð��	
�AÞĜ�	
;

�Q’ ¼ þ 1ffiffiffi
2

p ð ���Þ;

�QA� ¼ � 1ffiffiffi
2

p e�’=
ffiffi
2

p
ð �����Þ;

�Q�
A ¼ þ 1

2
ffiffiffi
2

p e’=
ffiffi
2

p
ð����AÞF̂ �� þ 1

2
ffiffiffi
2

p me3’
ffiffi
2

p
�A:

(3.4)

As in the 4D case, the m2 potential term is positive
definite, implying 6D de Sitter space-time (dS6). There is
global scale invariance of the Lagrangian, dictated by

’ ! ’þ c; B�� ! e
ffiffi
2

p
cB��;

A� ! e�c=
ffiffi
2

p
A�; m ! e�3c=

ffiffi
2

p
m;

(3.5)

so that each term in our Lagrangian is invariant under this
global transformation. In particular, the m�1F ^F ^
F -term is invariant.

Note the existence of other ‘‘symmetry’’ of our
Lagrangian. Under this symmetry our Lagrangian is not
invariant, but is covariant instead [14]:

’ ! ’þ c; e�
m ! e�c=

ffiffi
2

p
e�

m;

em
� ! ec=

ffiffi
2

p
em

�; c � ! e�c=2
ffiffi
2

p
c �;

ð�; �Þ ! ec=2
ffiffi
2

p
ð�; �Þ; m ! e�

ffiffi
2

p
cm;

L6D ! e�2
ffiffi
2

p
cL6D:

(3.6)

To our knowledge, the peculiar m�1F ^F ^F -term
has not been presented in the past in the context of 6D
supergravity, or, at least, not in the context of a Stückelberg
mechanism consistent with supergravity.
The confirmation of �QI6D ¼ 0 up to quartic terms goes

as follows. First, for the m-independent terms, all the
cancellations work as in [11]. The only subtlety is related
to (3.1), but fortunately their structures are eventually the
same as the original m ¼ 0 case without any disturbance.
Second, for the m-dependent terms, there are seven

sectors: (i) mD�, (ii) m�F , (iii) mcF 2, (iv) m�G,
(v) m�’, (vi) m2�, and (vii) m2c , that are parallel to the
previous 4D case. The only differences are as follows. To
the sector (ii), there is a new contribution from the
���F -term in the Lagrangian which was absent in the
previous 4D case [6]. To the sector (iv), the contribution
from �Qc � is zero in the 6D case due to the identity

���
�	
�� � 0, and therefore there is no contribution

from the mð �c ��
��Þ-term.

As in the previous 4D case, the vector field A� inF �� �
F�� þmB�� is completely gauged away by the tensorial

transformation ��B�� ¼ 2@½����. Accordingly, the origi-
nal A�-kinetic term ð�1=4ÞðF��Þ2 is replaced by the mass

term �ð1=4Þm2ðB��Þ2. This is also equivalent to adopting

the gauge in which A� ¼ 0, so that the new transformation

rule for A� is �0
QA� ¼ 0, while the new �0

QB�� has an

additional term � ffiffiffi
2

p
m�1@½�jðe’=

ffiffi
2

p
���j���Þ.
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The importance of our result in 6D is multifold. First, we
have shown the system with a positive-definite potential,
without the usual gauging technique [14]. Even though this
mechanism is similar to the massive type IIA case [9], it
does not seem to have been pointed out in the past in 6D.
Second, we have the peculiarm�1F ^F ^F -term which
is equivalent to the cubic self-interaction m2B ^ B ^ B
after the A-field is gauged away. This does not seem to
have been presented in the past, either. Third, we can
regard the Stückelberg mechanism for B�� as an important

application of the dual version [11] of N ¼ 2 supergravity
in 6D [12,14]. In other words, the Stückelberg mechanism
for the tensor B�� differentiates the dual version [11] from

the usual version [14]. Relevantly, a duality transformation
becomes impossible once the bare B��-field is involved in

the field strength F .

IV. LAGRANGIAN IN 3D

We now show that a similar Stückelberg mechanism also
works forN ¼ 1 supergravity in 3D. Even though 3D is not
useful for dimensional reductions to phenomenologically
interesting models in 4D, it still has some significance in
the context of supermembrane [2] or M-theory [3]. The
field content is the sum of the multiplet of supergravity
ðe�m; c �Þ, the tensor multiplet ðB��; �; ’Þ, and the vector

multiplet ðA�; �Þ. Actually, the second multiplet is a scalar

multiplet, where B�� is originally an auxiliary field in 3D.

However, to be consistent with 4D and 6D, we call it
temporarily ‘‘tensor multiplet.’’

Since most of the notations used are the same as in the
4D case with the same metric ð�mnÞ � diag:ð�;þ;þÞ, we
directly show the Lagrangian and transformation rule. Our
total action I3D � R

d3xL3D has the Lagrangian

e�1L3D¼�1

4
Rð!Þ�ð �c ��

���D�ð!Þc �Þ� 1

12
e4’ðG���Þ2

�1

2
ð@�’Þ2�1

4
ðF ��Þ2þ1

2
ð ����D�ð!Þ�Þ

þ1

2
ð ����D�ð!Þ�Þþð �c ��

����Þ@�’

�1

2
ð �c ��

�	���ÞF �	þe2’
�
þ1

6
ð �c ��

�	
���Þ

�1

6
ð ����	
�Þ

�
G�	
�me�2’ð ���Þ

þ1

2
me�2’ð �c ��

��Þ�1

8
m2e�4’; (4.1)

up to quartic terms. As in the 4D case, we have

F �� � F�� þmB�� � þ2@½�A�� þmB��;

G��� � þ3@½�B���:
(4.2)

Our action I3D is invariant up to quartic terms under
N ¼ 1 local supersymmetry:

�Qe�
m ¼ �2ð ���mc �Þ;

�Qc � ¼ þD�ð!̂Þ�;
�QB�� ¼ þe�2’ð ������Þ þ 2e�2’ð ���½�c ��Þ;
�Q� ¼ �ð���ÞD̂�’þ 1

6
e2’ð��	
�ÞĜ�	
;

�Q’ ¼ þð ���Þ;
�QA� ¼ þð �����Þ;
�Q� ¼ þ 1

2
ð����ÞF̂ �� þ 1

2
me�2’�:

(4.3)

As in the 4D case, our action I3D also has the global
invariance of the dilaton shift:

’ ! ’þ c; B�� ! e�2cB��; m ! eþ2cm:

(4.4)

Compared with the 4D case (2.1) through (2.3), there are
three major differences: (i) The absence of the ���G-term
in the Lagrangian, (ii) The absence of the G-linear term in
�Qc �, and (iii) The original field B�� was auxiliary

without physical degree of freedom, but it starts propagat-
ing after absorbing the vector A�. In particular, the first two

features are related to each other, via the contribution to the
�FG-sector. All other terms, including the m-linear terms,
are exactly the same, and even their coefficients and dilaton
exponential factors are the same. The cancellation struc-
ture for the invariance �QI3D ¼ 0 is essentially parallel to

the 4D case, so we do not elaborate the details.
As in the 4D and 6D cases, the A�-field is completely

absorbed into B��. Thus the kinetic term of the former

becomes the mass term for the latter. This is also equivalent
to adopting the gauge, in which A� ¼ 0, so that �0

QA� ¼ 0,

while the new �0
QB�� has an additional term

2m�1@½�ð ������Þ.

V. COMPACTIFICATION ON AdS3 � S3

As an application of our 6D theory, we investigate
possible compactifications from 6D to lower dimensions.
It turns out that a compactification of 6D on AdS3 � S3 is
indeed possible. In a sense, this is similar to other com-
pactification patterns of higher-dimensional supergravity
on anti–de Sitter space-time [15].
Our bosonic field equations for gMN ,6 AM, BMN , and ’

from our L6D (3.2) are

6Only in this section, we are using the capital alphabetic
indices M;N; � � � ¼ 0; 1; � � � ; 5 for 6D space-time.
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RMN ¼: þe�2
ffiffi
2

p
’̂GMRSGN

RS þ 2e
ffiffi
2

p
’FMRF N

R þ 2ð@M’Þð@N’Þ
� gMN

�
þ 1

6
e�2

ffiffi
2

p
’ðGRSTÞ2 þ 1

4
e
ffiffi
2

p
’ðF RSÞ2 � 1

8
m2e3

ffiffi
2

p
’

�
; (5.1a)

@Nðee
ffiffi
2

p
’FMNÞ þ 1

6
�MNRSTUGNRSF TU ¼: 0; (5.1b)

@Rðee�2
ffiffi
2

p
’GMNRÞ �mee

ffiffi
2

p
’FMN � 1

4
�MNRSTUF RSF TU ¼: 0; (5.1c)

D2
M’þ 1

3
ffiffiffi
2

p e�2
ffiffi
2

p
’ðGMNRÞ2 � 1

2
ffiffiffi
2

p e
ffiffi
2

p
’ðFMNÞ2 � 3

4
ffiffiffi
2

p m2e3
ffiffi
2

p
’ ¼: 0: (5.1d)

From now on, we use the symbol¼: for a field equation or a
solution.

Note that the relative sign between theF 2 andm2-terms
in the ’-field equation (5.1d) is positive. Because of
this relative sign, and due to our metric
diag:ð�;þ;þ;þ;þ;þÞ, there seems no direct way to
compactify this 6D theory on ðMinkowskiÞ4 � S2 via a
monopole solution for FMN in the extra 2D [16].

In conventional N ¼ 2 gauged supergravity in 6D [14],
the last gMN-terms in (5.1a) could be expressed only in
terms of D2

M’ using the ’-field equation. This is because
of Lagrangian ‘‘covariance’’ analogous to (3.6) without the
gauge coupling g transforming. In our 6D theory, however,
the m2-term in (5.1a) has a different coefficient from the
corresponding term in the ’-field equation (5.1d). This is
related to the fact that the constantm is transforming under
(3.6). Compared with the G2 and F2-terms, the last
m2-term in the last line of (5.1a) has different relative
factors, and therefore it is not absorbed into D2

M’. This
feature in turn becomes an obstruction against the com-
pactification on ðMinkowskiÞ4 � S2, as opposed to the
gauged N ¼ 2 supergravity in 6D [16] including dual
version [11].

Despite this obstruction, there is a different compactifi-
cation scheme. Since the relative sign between the G2 and
m2-terms is negative, we can assign certain nontrivial value
toGMNR, compactifying from 6D into 3D. This is similar to
thework [17] about the compactification of 6D supergravity
on AdS3 � ½SUð2ÞGroup Manifold�. Of course, the differ-
ence is that we use the Stückelberg mechanism in 6D, that
generates the positive-definite potential, that in turn makes
the compactification from 6D on AdS3 � S3 possible.

For our compactification into 3D, our Ansätze with the
constants a, b, g, and ’0 are

RMN ¼

8>>><
>>>:

R�¼: þ a�2�� ðfor M ¼ �;N ¼ Þ;
R��¼: � b�2��� ðfor M ¼ �;N ¼ �Þ;
0 ðotherwiseÞ;

GMNR ¼:
8<
:
g��� ðfor M ¼ �;N ¼ ;R ¼ �Þ;
0 ðotherwiseÞ;

FMN ¼: 0; ’¼: ’0 ¼ const; (5.2)

where �;; � � � ¼ 3; 4; 5 (or �; �; � � � ¼ 0; 1; 2) are for S3

(or AdS3).
By substituting these Ansätze into the field equations

(5.1), we get the conditions on g, a, b, ’0 in terms of m as

g2 ¼: þ 3

8
m2e5

ffiffi
2

p
’0 ;

a2 ¼: þ2m�2e�3
ffiffi
2

p
’0 ;

b2 ¼: þ4m�2e�3
ffiffi
2

p
’0 :

(5.3)

The important aspect here is that these solutions are
consistent with the positive definiteness of g2, a2, and b2.
In fact, the signs of the scalar curvatures in each 3D are

R�
� ¼: þ3a�2 > 0 ðfor S3Þ;

R�
� ¼: �3b�2 < 0 ðfor AdS3Þ:

(5.4)

We have thus seen that our Stückelberg mechanism
in 6D resulted in the interesting compactification on
AdS3 � S3.

VI. CONCLUDING REMARKS

In this paper we have presented locally supersymmetric
Stückelberg mechanisms [7,8] for the massive tensor field
B�� in 4D, 6D, and 3D. In the 4D case, we have used

special couplings between the tensor multiplet and super-
gravity in [6]. In particular, the absence of the F ^ A-term
in the field strength G was crucial. In the 6D case, we have
used the dual formulation [11] of N ¼ 2 supergravity,
which has no F ^ A-term in G, either. The 3D case is
just parallel to the 4D case: The field content is parallel;
the Lagrangian and transformation rule are almost exactly
the same.
In these dimensions, the inclusions of the mB-terms in

F ¼ dAþmB resulted in several new explicitly
m-dependent terms, such as the dilaton potential terms at
Oðm2Þ, mð ���Þ, mð �c ��

��Þ, and the linear m-terms in

�Q�. Interestingly, all these m-dependent Lagrangian

terms have exactly the same structures in dimensions 4D,
6D, and 3D.
As an important application of our Stückelberg

mechanism in 6D, we have presented a nontrivial
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compactification on AdS3 � S3. Thanks to the positive-
definite potential generated, the 6D theory can compactify
into 3D by a nontrivial solution for the field strength G���.

We have seen that the extra 3D become S3, while the final
3D become AdS3.

There are differences as well as similarities in these
dimensions 4D, 6D, and 3D. The most fundamental simi-
larity is about the field contents which are essentially the
same in these dimensions. Another similarity is the pres-
ence of the positive-definite potential at Oðm2Þ, implying
de Sitter space-time. The structure of the 3D case is just
parallel to the 4D case, including the dilaton exponential
factors. A difference in the 6D case is the usage of the dual
version [11], while in 4D we used the special Lagrangian
terms in [6] with noF ^ A-term inG. Another difference in
6D is the presence of the peculiar term F ^F ^F , con-
taining the topological surface term F ^ F ^ F.

We emphasize that the result in this paper is highly
nontrivial, and not obtained by straightforward computa-
tions. The special choice of frames, in particular, the
dilaton exponential factors, play very crucial roles. The
usage of the dual version [11] instead of the usual version
[14] is also one of such nontrivial features. In all the
dimensions 4D, 6D, and 3D, we have used the special
frame of couplings with no F ^ A-term in G.

Note that the Stückelberg mechanism [7] has problems
at the quantum level for a non-Abelian gauge group, such
as unitarity [8,18]. However, since we are dealing only
with Abelian symmetries, our formulation does not seem to
pose such a problem. Note also that the Abelian-type
Stückelberg mechanism has been established in 10D as

massive type IIA theory [9]. Moreover, the presence of
local supersymmetry provides a better chance for the con-
sistency also at the quantum level.
We can think of other space-time dimensions for similar

mechanisms. However, a simple consideration immedi-
ately reveals that there are certain restrictions. For ex-
ample, in N ¼ 2 supergravity in 5D, the 2nd-rank tensor
B needs the 3rd-rank field strength G ¼ dBþ F ^ A with
the CS term [19,20], which is an obstruction against our
mechanism. As opposed to the 6D case, we cannot use a
duality transformation, either, because the original tensor
B�� will be dualized into a vector which we do not want. In

a sense, the series of 3D, 4D, and 6D is analogous to the
space-time dimensions, in which the so-called Green-
Schwarz formulations with fermionic �-symmetries are
possible [21]. These dimensions have also certain similar-
ity with respect to fermions [22].
Despite such restrictions, our new mechanism has

opened a new avenue for massive tensor multiplets. It
provides not only a massive tensor field B��, but also

nontrivial dilaton potentials and new interaction terms
that are similar to but slightly different from conventional
gauging techniques. Obviously, there is a considerable
number of potential applications of our methods and re-
sults to supergravity theories in diverse space-time
dimensions.
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