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We consider a relativistic plasma containing charged chiral fermions in an external magnetic field, e.g. a

chirally symmetric quark-gluon plasma created in relativistic heavy ion collisions. We show that triangle

anomalies imply the existence of a new type of collective gapless excitation in this system that stems from

the coupling between the density waves of the electric and chiral charges; we call it ‘‘the chiral magnetic

wave’’ (CMW). The CMW exists even in a neutral plasma, i.e. in the absence of the axial and vector

chemical potentials. We demonstrate the existence of CMW and study its properties using three different

approaches: i) relativistic magnetohydrodynamics; ii) dimensional reduction to (1þ 1) Sine-Gordon

model, appropriate in a strong magnetic field; and iii) holographic QCD (Sakai-Sugimoto model),

appropriate at strong coupling. We also briefly discuss the phenomenological implications of the

CMW for heavy ion collisions.
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I. INTRODUCTION

Recently, the role of triangle anomalies in the dynamics
of relativistic plasmas in magnetic field and/or at finite
angular momentum has excited considerable attention.
Such plasmas are created, for example, in relativistic heavy
ion collisions at Relativistic Heavy Ion Collider (RHIC)
and LHC where the initial energy density significantly
exceeds the threshold for the production of deconfined
and chirally symmetric quark-gluon plasma, and the co-
herent electromagnetic fields of colliding ions create a
pulse of very intense magnetic field. Of particular interest
are the following two phenomena caused in the quark-
gluon plasma by the axial anomaly: the chiral magnetic
effect (CME) and the chiral separation effect (CSE).

The CME is the phenomenon of electric charge separa-
tion along the axis of the applied magnetic field in the
presence of fluctuating topological charge [1–5]. The CME
in QCD coupled to electromagnetism assumes a chirality
asymmetry between left- and right-handed quarks, parame-
trized by an axial chemical potential �A. Such an asym-
metry can arise if there is an asymmetry between the
topology-changing transitions early in the heavy ion colli-
sion. In particular, at finite axial chemical potential �A,
an external magnetic field induces the vector current
ji ¼ �c�ic :

~j V ¼ Nce

2�2
�A

~B; (1.1)

in our present convention the current of electric charge is
ejV . Closely related phenomena have been discussed in the
physics of primordial electroweak plasma [6] and quantum
wires [7]. While the original derivation used the

weak-coupling methods, the origin of the effect is essen-
tially topological, and so the CME is not renormalized even
at strong coupling, as was shown by the holographic meth-
ods [8–13]. The evidence for the CME has been found in
lattice QCD coupled to electromagnetism, both within the
quenched approximation [14–16] and with light domain
wall fermions [17].
Recently, STAR [18,19] and PHENIX [20,21]

Collaborations at Relativistic Heavy Ion Collider reported
experimental observation of charge asymmetry fluctua-
tions. While the interpretation of the observed effect is still
under intense discussion, the fluctuations in charge asym-
metry have been predicted [1] to occur in heavy ion colli-
sions due to the CME. Additional tests include the
correlation between the electric and baryon charge asym-
metries [22]. There is an active ongoing discussion of the
microscopic mechanisms of CME [23–29] and of the
quantitative estimates of the expected charge asymmetries
and of possible backgrounds—see e.g. [30–38].
The CSE refers to the separation of chiral charge along

the axis of external magnetic field at finite density of vector
charge (e.g. at finite baryon number density) [39–41]. The
resulting axial current is given by

~j A ¼ Nce

2�2
�V

~B; (1.2)

where �V is the vector chemical potential. The close con-
nection between CME and CSE can be established, for
example, by the method of dimensional reduction appro-
priate in the case of a strong magnetic field [42]: the simple
relations J0V ¼ J1A, J

0
A ¼ J1V between the vector JV and axial

JA currents in the dimensionally reduced (1þ 1) theory
imply that the density of baryon charge must induce the
axial current, and the density of axial charge must induce
the current of electric charge (CME), see also Ref. [43].
Since in the strong coupling, short mean free path, regime
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the plasma represents a fluid (for a recent review, see [44]), a
number of recent studies initiated by [41] address the effects
of triangle anomalies in hydrodynamics, e.g. [45–48].

The central observation of the present paper is the
following: the connection between the CME and CSE
implies the existence of a new type of a collective excita-
tion in the plasma. This excitation stems from the coupling
between the density waves of electric and chiral charge.
Let us illustrate this statement by a qualitative argument, to
be followed by more rigorous derivations in Secs. II, III,
and IV. Consider a local fluctuation of electric charge
density; according to Eq. (1.2) it will induce a local fluc-
tuation of axial current. This fluctuation of axial current
would in turn induce a local fluctuation of the axial chemi-
cal potential, and thus according to Eq. (1.1) a fluctuation
of electric current. The resulting fluctuation of electric
charge density completes the cycle leading to the excita-
tion that combines the density waves of electric and chiral
charges; we will call it the ‘‘chiral magnetic wave’’
(CMW).

Apart from being interesting in its own right, the exis-
tence of CMW has important implications for the phe-
nomenology of heavy ion collisions. The CME relies on
the fluctuation of the axial charge density and so the net
effect is expected to vanish when averaged over many
events; one thus relies on measuring the fluctuations of
charge asymmetries [1,49]. On the other hand, since the
quark-gluon plasma produced in heavy ion collisions pos-
sesses nonzero value of the baryon chemical potential, the
CSE can lead to a nonvanishing axial current even after the
summation over events is performed. However, unfortu-
nately a direct detection of the axial current in heavy ion
collisions is very challenging. The CMW should exist even
in a neutral plasma and so can induce interesting observ-
able effects in heavy ion collisions even after the sum over
many events is performed; wewill return to this topic in the
Summary VI.

The paper is organized as follows. In Sec. II, we provide
a derivation of the CMW based on relativistic magnetohy-
drodynamics. In Sec. III, we consider the case of a strong
magnetic field and perform a dimensional reduction; in this
case the dynamics of CMW is described by the Sine-
Gordon equation. In Sec. IV, we describe the CMW at
strong coupling using the holographic methods within the
Sakai-Sugimoto model. When the electromagnetism is
treated dynamically, the CMWmixes with the longitudinal
charge wave in the plasma—the plasmon. We consider the
mixing of CMW with plasmons in Sec. V. Finally, in the
Summary VI, we outline the main result of the paper and
discuss the directions for future studies.

II. CHIRAL MAGNETIC WAVE IN
MAGNETOHYDRODYNAMICS

Let us now proceed with the derivation sketched out in
the introduction. We will see that there indeed exists a new

gapless excitation in a deconfined QCD plasma that prop-
agates along the applied magnetic field; it arises as a
dynamical consequence of the underlying triangle anomaly
of chiral symmetry. This new excitation is a long wave-
length hydrodynamic mode with a dispersion relation that
looks like that of sound waves,

! ¼ �v�k� iDLk
2 þ � � � ; (2.1)

however, these propagating modes carry both electric and
chiral charges. Since these modes would not exist if it were
not for the applied magnetic field or the underlying triangle
anomaly, we will call them ‘‘the chiral magnetic waves’’.
They give rise to several important new transport proper-
ties of hot QCD plasma and affect its thermodynamics; we
will further discuss this in Sec. V.We note that CMWexists
even if the background plasma is neutral under either
baryonic or axial symmetry, which should make it a ge-
neric phenomenon in relativistic plasmas.
For simplicity, let us consider single flavor (NF ¼ 1)

massless QCD with chiral symmetry Uð1ÞL �Uð1ÞR, or
equivalently Uð1ÞV �Uð1ÞA, where VðAÞ denotes vector
(axial), respectively. The axial symmetry Uð1ÞA suffers
from both QCD anomaly with gluonic topological density
and from the triangle anomaly of global chiral symmetry.
The latter is in fact not harmful to the conservation of
Uð1ÞA as long as one does not elevate the global chiral
symmetry to a gauged one, while the former indeed breaks
the axial Uð1ÞA symmetry by quantum fluctuations of
topological density.
Our starting point is the anomalous generation of vector

and axial currents along the applied magnetic field in the
presence of axial (vector) chemical potential �A (�V), as
given by Eqs. (1.1) and (1.2). We will now rewrite these
equations in a more suggestive matrix form as

~jV

~jA

 !
¼ Nce ~B

2�2

0 1

1 0

 !
�V

�A

 !
: (2.2)

We are interested in small linearized fluctuations of the
chiral currents jA and jV in the plasma; let us assume that
this plasma is neutral, without any background charge
density on average. We may then perform a linear expan-
sion of the chemical potentials with respect to small charge
densities ðj0V; j0AÞ,

�V

�A

 !
¼

@�V

@j0V

@�A

@j0V

@�V

@j0
A

@�A

@j0
A

0
B@

1
CA j0V

j0A

 !
þOððj0Þ2Þ

� �VV �VA

�AV �AA

 !
j0V

j0A

 !
þOððj0Þ2Þ: (2.3)

Remembering that

�i ¼ @F
@j0i

; i ¼ V; A; (2.4)
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where F is the Helmholtz free energy, the �’s appearing
above are nothing but the susceptibility matrices of vector/
axial charge densities,

�ij ¼ @2F
@j0i @j

0
j

: (2.5)

Considering the parity P transformation V ! �V and
A ! A, one concludes that parity invariance of QCD im-
plies that �VA ¼ �AV ¼ 0 in the neutral plasma, �V ¼
�A ¼ 0. Moreover, a simple large Nc counting shows that

�VV � �AA �O
�
1

Nc

�
; (2.6)

while their difference in a deconfined and chirally sym-
metric phase is subleading

�VV � �AA �O
�
1

N2
c

�
; (2.7)

we will confirm this within the holographic largeNc Sakai-
Sugimoto model in Sec. IV. Independently of this, the
vanishing of the difference �VV � �AA can be taken as a
signal of chiral symmetry restoration. Therefore, we expect
it to be a good approximation to let �VV ¼ �AA � � in the
chirally symmetric phase; this leads us to

~jV

~jA

 !
¼ Nce ~B�

2�2

0 1

1 0

 !
j0V

j0A

 !
: (2.8)

It is natural to diagonalize the equation above by going
to the chiral basis

j�L � 1

2
ðj�V � j�A Þ; j�R � 1

2
ðj�V þ j�A Þ: (2.9)

In terms of chiral currents, our previous assumptions and
the definition of �’s are easily translated to

� ¼ 1

2

�
@�L

@j0L

�
¼ 1

2

�
@2F

@j0L@j
0
L

�
¼ 1

2

�
@�R

@j0R

�
¼ 1

2

�
@2F

@j0R@j
0
R

�
:

(2.10)

The (2.8) then leads to two decoupled relations

~jL;R ¼ �
�
Nce ~B�

2�2

�
j0L;R; (2.11)

where one should keep in mind the definite sign in front of
the right-hand side depending on the chirality of the
currents.

One can view the above expression as the leading con-
stitutive equation for the currents in the long wavelength
derivative expansion of hydrodynamics. Indeed, our start-
ing point (1.1) and (1.2) is strictly valid only when the
variation of chemical potentials is sufficiently slow; for a
finite frequency/momentum these expression gets modified
resulting in frequency/momentum dependent chiral mag-
netic conductivity [8,24,32,50]. The Eq. (2.11) is the first

leading term in the derivative expansion, while the next
leading-order correction to the chiral magnetic conductiv-
ity will be @2 or !2 � k2 in frequency/momentum space.
However, there is an important first-order derivative term
in any constitutive equation of conserved current: a diffu-

sion term�D ~rj0, with a diffusion constantD. In our case,
we will be interested only in the waves propagating along
the magnetic field direction which we call longitudinal;
thus on general grounds, the constitutive relation including
the next leading-order diffusion term reads as

~j L;R ¼ �
�
Nce ~B�

2�2

�
j0L;R �DL

~Bð ~B � ~rÞ
B2

j0L;R þ � � � ;
(2.12)

with a longitudinal diffusion constant DL. Although we
discuss only longitudinal dynamics in this paper, it would
also be interesting to study the transverse dynamics with
the transverse diffusion constant DT .
A similar constitutive equation was written previously

by Son and Surowka [41]. There is however one point that
will appear important for us: while Ref. [41] considers a
weak magnetic field B and treats it in the linear approxi-
mation, we are claiming that (2.11) and (2.12) are valid for
arbitrary strength of eB nonperturbatively. This is equiva-
lent to the validity of our starting point (1.1) and (1.2) for
arbitrarily large eB, which is not at all trivial and is a
consequence of the absence of corrections to the axial
anomaly. It is also important to note that although (1.1) and
(1.2) look linear in eB, this linearity is only apparent.
Given a fixed density j0V;A, the chemical potentials �V;A

in general may well depend on the dynamics of underlying
microscopic theory, such as coupling constants, tempera-
ture, as well as magnetic field eB nonlinearly, so that the
currents in (1.1) and (1.2) can in fact be very nonlinear in
these parameters, see e.g. [51–53]. The statement of (1.1)
and (1.2) is that these dependencies can be absorbed into
the chemical potentials�V;A. Therefore, one expects that �
and DL are in general nonlinear functions of eB, tempera-
ture T, etc. In particular, they would also depend on the
coupling constant, so that it is meaningful to study them in
the strong coupling regime via holographic QCD as we do
in our Sec. IV. Let us mention Ref. [54] that presents a
diagrammatic proof of (1.1) and (1.2) perturbatively in the
coupling constant and Ref. [10] that proved this relation in
the Sakai-Sugimoto model using the two-derivative ap-
proximation. We will present a strong coupling proof
with full Dirac-Born-Iinfeld action of holographic QCD
in Sec. IV with arbitrary strength of eB, which presumably
includes nonlinear effects of derivatives as well. Therefore
we expect that the Eqs. (1.1) and (1.2) and hence (2.12)
hold universally.
Our next step is to combine (2.12) with the conservation

law @�j
�
L;R ¼ 0. We take ~B ¼ Bx̂1 and consider only lon-

gitudinal gradient @1, which results in
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�
@0 � NceB�

2�2
@1 �DL@

2
1

�
j0L;R ¼ 0: (2.13)

This describes a directional wave, or chiral wave, of charge
densities whose direction of motion is correlated with its
chirality. The velocity is given by

v� ¼ NceB�

2�2
¼ NceB

4�2

�
@�L

@j0L

�
¼ NceB

4�2

�
@�R

@j0R

�
: (2.14)

As we discussed in the previous paragraph, one expects
that v� and DL are nontrivial functions of eB, T, and the

coupling constant, so they are interesting dynamical quan-
tities to compute in any model. In frequency/momentum
space, the above equation takes the form

! ¼ �v�k� iDLk
2 þ � � � ; (2.15)

as a hydrodynamic dispersion relation. Our main observa-
tion is the new first term in the dispersion relation which
makes the mode propagating instead of simply diffusing. It
exists only if 1) triangle anomaly exists and 2) there is a
background magnetic field. We stress that this new chiral
mode of electric and chiral charge transport is present even
if the plasma is neutral on average.

III. CHIRAL MAGNETIC WAVE IN STRONG
MAGNETIC FIELD: DIMENSIONAL REDUCTION

TO (1þ 1) SINE-GORDON PROBLEM

The expression (2.14) for the velocity v� of the CMW

shows that v� � eB. What happens when eB becomes

large? We will now show that in the limit eB ! 1 the
velocity v� stays finite and reaches the velocity of light. To

understand this, let us first examine the spectrum of
charged fermions in magnetic field; for massless fermions,
the energies of Landau levels are given by

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB

�
nþ 1

2
� sz

�
þ p2

z

s
; (3.1)

we assume that magnetic field ~B is directed along the z
axis. Note that the lowest Landau level (LLL) with zero
energy (at vanishing momentum pz) is not spin degenerate
and all excited Landau levels are—therefore the net chi-
rality sz � pz is carried only by the LLLs.

When magnetic field is large compared to the tempera-
ture T, eB � T2, the fermions stay ‘‘frozen’’ in the LLL
and the transverse and longitudinal (along ~z) dynamics are
independent. In this case one can perform a dimensional
reduction to the (1þ 1)-dimensional theory, where the
only allowed direction of motion is along the magnetic
field. The transverse density of states is given by eB=ð2�Þ,
the density of LLs in the transverse plane. The longitudinal
phase space density for a Fermi momentum is simply
pF=ð2�Þ. Therefore for the density of Nc left-handed
fermions j0L with pF ¼ �L (for massless particles the

Fermi-momentum and the chemical potential � are
equal) is

j0L ¼ Nc

eB

2�

�L

2�
; (3.2)

and the derivative is given by

@�L

@j0L
¼ 1

Nc

4�2

eB
: (3.3)

Substituting this expression into (2.14), we obtain

v� ¼ 1; (3.4)

therefore in the limit of strong magnetic field eB � T2 the
CMW indeed propagates with the velocity of light.
We can deduce a more detailed information about the

dynamics of the CMW in strong magnetic field by making
use of bosonization procedure. As is well known, boson-
ization approach is very powerful in the studies of
(1þ 1)-dimensional systems [55,56]. This is easy to
understand as in one spatial dimension the produced fer-
mion and an antifermion never separate and propagate
together as a composite bosonic excitation—even if they
do not interact at all!
The conservation of vector current @�j

�
V ¼ 0 can be

ensured by introducing a boson field ’ and choosing

j
�
V ¼ 1ffiffiffiffi

�
p ���@�’; (3.5)

this way the vector current is always conserved indepen-
dently of the equations of motion. The corresponding
choice for the axial current is

j�A ¼ ���jV� ¼ 1ffiffiffiffi
�

p @�’: (3.6)

For zero quark mass and in the absence of background
electric field, the axial current should be conserved:

@�j
�
A ¼ h’ ¼ 0: (3.7)

Therefore the conservation of axial current leads to the
wave equation for the bosonic excitation ’. The variation
of ’ in space and time causes variations of both charge and
chiral densities; therefore it is natural to identify the wave
defined by (3.7) with the CMW. Since (for massless
quarks) there is no mass term in (3.7), this CMW prop-
agates with the velocity of light.
It is convenient to split the field ’ into left- and right-

moving components:

’ðx; tÞ ¼ ’Lðx� vtÞ þ ’Rðxþ vtÞ; (3.8)

in terms of these fields the original fermion fields are

�Rðx� vtÞ ¼ 1ffiffiffiffiffiffiffi
2�

p e�i
ffiffiffiffiffi
4�

p
’Rðx�vtÞ;

�Lðxþ vtÞ ¼ 1ffiffiffiffiffiffiffi
2�

p ei
ffiffiffiffiffi
4�

p
’LðxþvtÞ: (3.9)
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Upon quantization of the boson fields, the fermions (3.9)
represent coherent states of ’R, ’L. Vice versa, these
boson fields describe the collective electric and chiral
charge density fluctuations of the underlying fermion
quark fields.

The quark mass term in the original Lagrangian can be
rewritten with the help of (3.9) in the following form:

M ��� ¼ Mð ��R�L þ ��L�RÞ ¼ M

�
cosð ffiffiffiffiffiffiffi

4�
p

’Þ; (3.10)

and leads to the interaction term for bosons; the bosonic
Lagrangian thus describes the Sine-Gordon theory. This
correspondence between the fermionic and bosonic de-
scription has been discovered by Coleman [55] and
Mandelstam [56]. The kinks of the Sine-Gordon theory
describe the fermions and the fluctuations of the
boson field—collective fermion-anti-fermion excitations.
Coleman’s theorem [57] forbids spontaneous breaking of
a continuous symmetry in (1þ 1) dimensions. The under-
lying reason for this no-go theorem is the presence of strong
infrared fluctuations that dominate two-point functions and
destroy the long-range order in two dimensions. Thismeans
that themassless (in the limit ofmassless quarks) boson’ is
not a Goldstone boson.1 This is consistent with our inter-
pretation of the field ’ as of a collective density wave of
electric and chiral charges. At finite density of baryon or
chiral charge, this density wave propagates on top of a
‘‘chiral spiral’’ [59]—the winding configuration of the
background field �’ causing the chiral magnetic effect in
(1þ 1)-dimensional description [42,43].

One can also generalize the above to non-Abelian ver-
sion of chiral magnetic waves. As Fig. 1 illustrates, essen-
tially the same type of triangle diagrams for mixed
Uð1ÞV � SUðNFÞV � SUðNFÞA would result in

~jaV

~jaA

 !
¼ Nce ~B�

2�2

0 1

1 0

 !
j0aV

j0aA

 !
; (3.11)

for non-Abelian SUðNFÞ components of currents j�V;A ¼
j�a
V;At

a with trFðtatbÞ ¼ 1
2�

ab. One then gets to the same

conclusion on the emergence of the chiral/directional
CMWs for each non-Abelian component of SUðNFÞ.
Upon the 1þ 1-dimensional reduction with strong mag-
netic field, these non-Abelian chiral magnetic waves
should be described by non-Abelian bosonization [60] of
SUðNFÞ symmetry. More precisely, the theory of NF Dirac
fermions in fundamental representation of SUðNcÞ in
bosonized description can be represented as

L ¼ NcLðSUðNFÞÞ þLðUð1ÞÞ þ NFLðSUðNcÞÞ; (3.12)

whereLðGÞ represents the Wess-Zumino-Witten model of
group G with level 1 [60]. After integrating over QCD
SUðNcÞ dynamics, one is left with the first two pieces as a
low energy effective theory [61–64]. The Uð1Þ part is what
we have discussed above, while the non-Abelian SUðNFÞ
part describes the non-Abelian chiral magnetic wave as a
propagating group field gðxÞ 2 SUðNFÞ.

IV. CHIRAL MAGNETIC WAVE
IN HOLOGRAPHIC QCD

In this section, we intend to study chiral magnetic wave
at strong coupling in the framework of holographic QCD,
particularly using the model by Sakai and Sugimoto [65].
The Sakai-Sugimoto model is a right place to look for the
phenomenon because it includes the relevant triangle
anomalies of QCD chiral symmetry in terms of five-
dimensional Chern-Simons terms and the existence of
chiral magnetic wave is robust as long as the right anoma-
lies exist. What is nontrivial will be the details of disper-
sion relations such as wave velocity and diffusion constant,
which do depend on the strong dynamics and the stength of
the applied magnetic field.
The Sakai-Sugimoto model in deconfined phase con-

sists of two separated D8 and D8 branes that touch the
black hole horizon of the background geometry as shown
in Fig. 2. This geometric separation of two probe branes
correctly indicates that interactions between left-handed
quarks and right-handed quarks are subleading in large Nc

expansion, when there is no chiral condensate in the
deconfined phase. Because of this decoupling, one can
study dynamics of each D8 probe brane independently at
least in leading-order approximation. The background
geometry is a warped product of a five-dimensional black

hole and S1 � S4, where D8=D8 branes are separated
along S1. They wrap all other dimensions except S1 to
make up nine-dimensional world-volume on which the
action is given by a Dirac-Born-Infeld action plus a
Chern-Simons term;

(a) (b)

SU(N SU(NU(1)U(1)
A V F )A )

VF

B B

FIG. 1. Anomalous triangle diagrams of chiral magnetic waves
for (a) Abelian and (b) non-Abelian flavor symmetries in the
presence of external magnetic field B. The quark lines
are dressed propagators including the background magnetic
field.

1There exists however a way around Coleman’s theorem
uncovered by Witten [58]: for N-component field at N ! 1,
when the number of degrees of freedom diverges at each point,
the two-point functions can exhibit long-range order and the
Goldstone phenomenon can still be realized.
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SD8=D8 ¼ ��8

Z
d9	e�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg� þ 2�l2sFÞ

q

��8ð2�l2sÞ3
3!

Z
FRR
4 ^ A ^ F ^ F; (4.1)

with �p ¼ ð2�Þ�pl�ðpþ1Þ
s . After integrating over S4, one

arrives at an effective five-dimensional world-volume

action of D8=D8 branes embedded in the five-
dimensional black hole space-time of the metric

ds25D ¼
�
U

R

�
3=2
�
�fðUÞdt2 þX3

i¼1

ðdxiÞ2
�
þ 2dUdt;

fðUÞ ¼ 1�
�
UT

U

�
3
; (4.2)

where U is the holographic direction whose UV (IR)
boundary is sitting at U ! 1 (U ¼ UT), and the metric
is written in Eddington-Finkelstein coordinate. Note that
Eddington-Finkelstein coordinate is suitable to describe
future event horizon in a smooth manner, and the ingoing
boundary conditions of perturbed modes at the future
horizon reduce to simple regularity in this coordinate.
The temperature T of the dual four-dimensional QCD
plasma is related to the parameters in the above by

T ¼ 3

4�

�
UT

R3

�
1=2

; R3 ¼ �gsNcl
3
s : (4.3)

The resulting five-dimensional world-volume action of
the probe brane is

SD8=D8 ¼ �CR9=4
Z

d4xdUU1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�5D þ 2�l2sFÞ

q

� Nc

96�2

Z
d4xdU�MNPQRAMFNPFQR;

C ¼ N1=2
c

3 � 25�11=2g1=2s l15=2s

; (4.4)

where the sign of the last Chern-Simons term depends on

the chirality of the probe D8=D8 branes. The � symbol

above is numerical one. It is straightforward to write down
the equation of motion of the world-volume gauge field AM

from the above action, which reads as

CR9=4�l2s@N½U1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg� þ 2�l2sFÞ

q
ððg� þ 2�l2sFÞ�1Þ½MN		

� Nc

32�2
�MNPQRFNPFQR ¼ 0; (4.5)

where ½MN	 ¼ MN � NM is antisymmetrization. In de-
riving the above as well as for later convenience, it is useful
to be reminded of the following expansion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ �AÞ

p
¼ 1þ 1

2
trð�AÞ þ 1

8
½trð�AÞ	2

� 1

4
trðð�AÞ2Þ þOðð�AÞ3Þ: (4.6)

For our purpose of studying chiral magnetic wave, we
first need to construct a background solution of having a
constant magnetic field of arbitrary strength pointing, say,
x3 direction. It is in fact easy to show that the trivially
constant F12 � B solves both Bianchi identity and the
equation of motion (4.5), so the holographic background
configuration of a constant B will be our starting point of
looking for a signal of chiral magnetic wave. In making

contact between our D8=D8 branes and the QCD chiral
symmetry, we work in the case of NF ¼ 1 for simplicity,
neglecting Uð1ÞA anomaly induced by gluons as a leading
large Nc approximation. This is appropriate as long as we
focus on triangle anomalies which are encoded in the five-
dimensional Chern-Simons terms in holographic QCD.
Therefore, chiral symmetry is Uð1ÞL �Uð1ÞR, and

D8ðD8Þ-brane dynamics captures Uð1ÞLðUð1ÞRÞ chiral dy-
namics of QCD holographically. The electromagnetism
lies in the diagonal combination ofUð1ÞL andUð1ÞR, while
axial symmetry is the other orthogonal combination, so one
has a dictionary

eAEM ¼ 1

2
ðAL þ ARÞ; Aa ¼ 1

2
ð�AL þ ARÞ; (4.7)

where ALðARÞ is the external potential that couples to the
chiral current JLðJRÞ, and e is the electromagnetic coupling
constant. Therefore, having a constant electromagnetic B

means having a constantF12 on eachD8 andD8 branewith

FD8
12 ¼ FD8

12 ¼ eB; (4.8)

and we will assume this in the following.
Our next task is to expand linearly around this back-

ground to study hydrodynamics of longitudinal charge/
current fluctuations. As we discuss in previous sections,
these longitudinal charge/current fluctuations would have
had leading diffusive dispersion relation!��iDk2 in the
absence of triangle anomalies. Chiral magnetic wave is an
anomaly-induced modification of this into a leading
propagating dispersion relation

D8 bar Brane

D8 Brane

X_4

Black−hole horizon

FIG. 2. A schematic picture of D8�D8-branes in deconfined
phase of the Sakai-Sugimoto model.
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!��v�k� iDLk
2 þ � � � ; (4.9)

where the velocity v� as well as the longitudinal diffusion

constant DL are expected to depend on strong coupling
dynamics and the magnitude of the magnetic field B. The
above dispersion relation due to triangle anomalies is our
main objective we will be heading to in this section.
Especially, v� as a function of B will be a new physical

quantity that we compute in the framework of holographic
QCD. Because v� should vanish in the absence of anoma-

lies and the magnetic field, it will be an odd function of the
product of Chern-Simons coefficient and the magnetic field
B. We will confirm this expectation later. We also empha-
size that the sign of the leading term in (4.9) is fixed by the
sign of Chern-Simons term, that is, by the chirality one is
looking at, so left-handed charge/current fluctuations
would have a definite propagating direction with respect
to the magnetic field direction, while the right-handed ones
would propagate in the opposite way. Therefore, one can
achieve chirality separation in this way as a dynamical
consequence of triangle anomalies of QCD. Recall that no
charge in the background, either axial or baryonic, needs to
be present for the effect to take place, and only magnetic
field applied to a deconfined plasma with an underlying
triangle anomaly is sufficient to have the phenomenon.

Studying linearized fluctuations from the constant
F12 ¼ eB background requires expanding the five-
dimensional action (4.4) quadratically in terms of relevant
fluctuation fields, and it is tedious but straightforward to do
it using the formula (4.6). As we are interested in longitu-
dinal charge/current fluctuations, it is sufficient to consider
ð�FtU; �F3U; �Ft3Þ fluctuations of ‘‘helicity’’ 0 only.
Because of residual SOð2Þ rotation symmetry of the con-
stant F12 background, other nonzero helicity modes simply
decouple from the above modes at linearized level of
equations of motion. After a sizable amount of computa-
tion, one arrives at

Sð2Þ
D8=D8

¼
Z

d4xdU
1

2
½AðUÞð�FtUÞ2 � BðUÞð�F3UÞ2

þ 2CðUÞð�Ft3Þð�F3UÞ	 � NceB

8�2

�
Z

d4xdU½�AU�Ft3 � �A3�FtU þ �At�F3U	;
(4.10)

where the three functions that appear in the coefficients are
given by

AðUÞ¼Cð2�l2sÞ2U½U3þR3ð2�l2seBÞ2	1=2;
BðUÞ¼Cð2�l2sÞ2UfðUÞ½U3þR3ð2�l2seBÞ2	1=2;
CðUÞ¼Cð2�l2sÞ2

�
U
R

U

�
3=2½U3þR3ð2�l2seBÞ2	1=2: (4.11)

The second line in (4.10) is from the Chern-Simons term
that represents triangle anomaly of QCD holographically.

It is easy to keep track of that by a combination NceB,
which is the product of anomaly coefficient and the mag-
netic field. From the above quadratic expansion of the
action, one easily writes down the linearized equations of
motion as

@UðAðUÞ�FtUÞ þ CðUÞð@3�F3UÞ � NceB

4�2
�F3U ¼ 0;

@UðBðUÞ�F3UÞ þ CðUÞð@t�F3UÞ
� @UðCðUÞ�Ft3Þ � NceB

4�2
�FtU ¼ 0;

AðUÞð@t�FtUÞ � BðUÞð@3�F3UÞ þ CðUÞð@3�Ft3Þ

 NceB

4�2
�Ft3 ¼ 0: (4.12)

To proceed to hydrodynamic analysis from the above, one
invokes low frequency/momentum expansion in solving
(4.12) order by order with right boundary conditions. As
mentioned before, simple regularity at the future horizon
U ¼ UT in Eddington-Finkelstein coordinate is equivalent
to implementing incoming boundary conditions, and one
should also impose normalizability on the modes at the UV
boundary U ! 1. Near U ! 1, (4.12) gives two asymp-

totic behaviors, eitherOð1Þ orOðU�ð3=2ÞÞ, and the normal-
izability picks up the latter only. In holography, U ! 1
boundary value of A� corresponds to the value of an

external gauge potential that couples to the field theory
currents. Because we do not have such external gauge
potential in the system, we have to put the boundary
condition corresponding to A� vanishing at U ! 1.

Assuming the frequency/momentum factor e�i!tþikx3 or
equivalently replacing @t ¼ �i! and @3 ¼ ik, and work-
ing in a gauge AU ¼ 0, the equations of motion become

@U½AðUÞð@U�AtÞÞ	þikCðUÞð@U�A3Þ�NceB

4�2
ð@U�A3Þ¼0;

@U½BðUÞð@U�A3Þ	�i!CðUÞð@U�A3Þ
�@U½CðUÞði!�A3þik�AtÞ	�NceB

4�2
ð@U�AtÞ¼0;

�i!AðUÞð@U�AtÞ�ikBðUÞð@U�A3Þ
þikCðUÞði!�A3þik�AtÞ
NceB

4�2
ði!�A3þik�AtÞ¼0;

(4.13)

which should be solved in perturbative expansion of ð!; kÞ.
What one expects is that imposing boundary conditions
restricts the solution space such that ! in hydrodynamic
expansion is determined once k is given, and the relation
! ¼ !ðkÞ is called the dispersion relation.
There are several methods in literature to solve similar

kinds of equations in hydrodynamic expansion [66], but we
will follow our own method which seems most convenient
to us. We first assume that !ðkÞ is an analytic power series
in k, which is expected based on hydrodynamics,
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!ðkÞ ¼ X
n�1

ank
n ¼ v�k� iDLk

2 þ � � � : (4.14)

Inserting this to (4.13), then one can take k as the only
expansion parameter in solving (4.13) systematically,
along which an should also be determined order by order.
Because (4.13) is linear in ð�At; �A3Þ, one can always
rescale them so that they start their k expansion as

ð�At; �A3Þ ¼
X
n�0

ðAðnÞ
t ; AðnÞ

3 Þkn

¼ ðAð0Þ
t ; Að0Þ

3 Þ þ ðAð1Þ
t ; Að1Þ

3 Þkþ � � � ; (4.15)

where ðAð0Þ
t ; Að0Þ

3 Þ cannot vanish simultaneously by defini-

tion. It is straightforward to insert (4.14) and (4.15) into
(4.13), and solve order by order in k.

At Oðk0Þ, one gets the equations

@U½AðUÞð@UAð0Þ
t Þ	 � NceB

4�2
ð@UAð0Þ

3 Þ ¼ 0; (4.16)

@U½BðUÞð@UAð0Þ
3 Þ	 � NceB

4�2
ð@UAð0Þ

t Þ ¼ 0; (4.17)

� iv�AðUÞð@UAð0Þ
t Þ � iBðUÞð@UAð0Þ

3 Þ

 NceB

4�2
ðiv�A

ð0Þ
3 þ iAð0Þ

t Þ ¼ 0: (4.18)

Integrating the first two Eqs. (4.16) and (4.17) gives us

AðUÞð@UAð0Þ
t Þ � NceB

4�2
Að0Þ
3 ¼ C1; (4.19)

BðUÞð@UAð0Þ
3 Þ � NceB

4�2
Að0Þ
t ¼ C2; (4.20)

with two integration constants, while the last Eq. (4.18)
simply becomes

� iv�C1 � iC2 ¼ 0 ) v� ¼ �C2

C1

; (4.21)

so that v� will be determined once C1;2 (or more precisely

their ratio) are fixed by imposing relevant boundary con-
ditions. Considering (4.19) at U ! 1, one first fixes

C1 ¼ lim
U!1AðUÞð@UAð0Þ

t Þ; (4.22)

and solving Að0Þ
3 gives

Að0Þ
3 ¼ 


�
4�2

NceB

�
ðAðUÞð@UAð0Þ

t Þ � C1Þ: (4.23)

Inserting this into (4.20), one gets a second order differen-

tial equation for Að0Þ
t ,

BðUÞ@UðAðUÞð@UAð0Þ
t ÞÞ �

�
NceB

4�2

�
2
Að0Þ
t ¼ 
C2

�
NceB

4�2

�
:

(4.24)

Because BðUTÞ ¼ 0 at the horizon, the regularity boundary
condition implies that

C2 ¼ �
�
NceB

4�2

�
Að0Þ
t ðUTÞ; (4.25)

and one can write the solution for Að0Þ
t as

Að0Þ
t ¼ ~Aþ Að0Þ

t ðUTÞ; (4.26)

where ~A satisfies

BðUÞ@UðAðUÞð@U ~AÞÞ �
�
NceB

4�2

�
2
~A ¼ 0; (4.27)

with the boundary condition ~AðUTÞ ¼ 0 at the horizon.

This uniquely determines ~A up to rescaling. Note that

Að0Þ
t ðUTÞ is free up to this point, and the final boundary

condition we need to impose is to demand vanishing Að0Þ
t at

U ! 1, and from (4.26) this fixes Að0Þ
t ðUTÞ as

Að0Þ
t ðUTÞ ¼ � lim

U!1
~AðUÞ; (4.28)

so that C2 is finally

C2 ¼ 

�
NceB

4�2

�
lim
U!1

~AðUÞ: (4.29)

Observe that C1 is also given by ~A as

C1 ¼ lim
U!1AðUÞð@U ~AÞ: (4.30)

Therefore, the complete solution at Oðk0Þ with the right

boundary conditions can be written solely in terms of ~A as
above, and it is unique up to overall rescaling. Especially
v� is well posed and given by

v� ¼ �C2

C1

¼ �
�
NceB

4�2

�
lim
U!1

� ~AðUÞ
AðUÞð@U ~AÞ

�
: (4.31)

As expected, v� is proportional to the anomaly coefficient,

and its sign depends on the chirality and the chiral mag-
netic wave is unidirectional.
Discussions in the previous sections independently

argue that v� should be given by

v� ¼ �
�
NceB

4�2

��
@�

@j0

�
j0¼0

; (4.32)

where ð�; j0Þ are chemical potential and charge density for
either Uð1ÞL or Uð1ÞR. Indeed we can confirm this expec-
tation in our final formula (4.31), which is fully nonlinear
in eB, so that one can consider this as a strong coupling

proof of the relation. First, note that to compute ð@�
@j0
Þj0¼0

one only needs a linear perturbation of � or j0 to the
system of our background B field, and the relevant equa-
tions of motion for them are precisely given by our pre-
vious one (4.12) with additional assumption of space-time
homogeneity @t ¼ @3 ¼ 0. Then the equations simplify
exactly to the previous (4.19) and (4.20) with suitable
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boundary conditions. In the second equation considering
the horizon point U ¼ UT , we have BðUTÞ ¼ 0, and we
demand that At vanishes at the horizon, so that C2 ¼ 0.
Combining the two equations after removing A3, one easily

arrives at that At satisfies the same Eq. (4.27) that ~A
satisfies, and moreover they share the same boundary
condition at the horizon U ¼ UT , so that they are in fact

the same object At ¼ ~A. On the other hand, gauge/gravity
dictionary tells us that up to linear order

� ¼ lim
U!1AtðUÞ; j0 ¼ lim

U!1AðUÞð@UAtÞ; (4.33)

so that one has�
@�

@j0

�
j0¼0

¼ lim
U!1

� ~AðUÞ
AðUÞð@U ~AÞ

�
; (4.34)

which proves the relation (4.32) at strong coupling fully
nonlinearly in eB. As the validity of (4.32) is equivalent to
(1.1) and (1.2), this constitutes a holographic proof of (1.1)
and (1.2). Note that there is a subtlety regarding the pos-
sible contribution of the Bardeen counterterm [10]; this
issue was settled in Refs. [9,11] that show that the Bardeen
counterterm does not affect the CME.

It is interesting to see how v� depends on the magnitude

of the magnetic field eB in a nonlinear way because
ðAðUÞ; BðUÞÞ contain eB as in (4.11), although the neces-
sary analysis inevitably involves numerical study. To per-
form numeric analysis, we have to specify parameters of
the model. First of all, one can always put 2�l2s � 1 for
simplicity because this factor will eventually cancel out in
any well-defined field theory observables. One can easily
check that this is the case for v� as well. By fitting to the

observed �-meson mass and the pion decay constant,
Sakai-Sugimoto fixed the parameters as

Nc¼3; g2YMNc�17; MKK�0:94GeV; (4.35)

where g2YM and MKK are related to gs by

g2YM ¼ 2�lsMKKgs: (4.36)

Recall that what matters for us is simply the parameters R3

and C, and in terms of the above parameters, one has

C� 0:0211; R3 � 1:44: (4.37)

For the temperature, we take T ¼ ð150; 200; 250Þ MeV as
an illustrative purpose. Note that this model has deconfine-

ment phase transition at Tc ¼ MKK

2� � 150 MeV [67]. We

plot our numeric result of v� as a function of eB in Fig. 3.

Limited analytic results for v� are available for two

extreme regions, either eB ! 0 or eB ! 1. For this pur-
pose as well as an easier numerical analysis, it is conve-
nient to consider the combination

VðUÞ �
~AðUÞ

AðUÞð@U ~AÞ ; (4.38)

in terms of which the Eq. (4.27) becomes a simple first-
order differential equation

@UVðUÞ ¼ 1

AðUÞ �
�
NceB

4�2

�
2 1

BðUÞV
2ðUÞ; (4.39)

with a boundary condition VðUTÞ ¼ 0. From (4.31), v� is

then simply given by

v� ¼ �
�
NceB

4�2

�
Vð1Þ; (4.40)

which seems technically much easier. With this formula-
tion, it is not difficult to derive the following results:
Weak field limit: eB ! 0

v� ��
�
NceB

4�2

�Z 1

UT

dU0

AðU0Þ þOðeBÞ3

¼ � 27

8�2

MKKðeBÞ
ðg2YMNcÞT3

þOðeBÞ3: (4.41)

Strong field limit: eB ! 1
v� ! �1 ðspeed of lightÞ: (4.42)

Note that the strong field limit gives us the same result
that one expects in the weak-coupling Landau level picture
that is discussed in Sec. III. It might come as a surprise
because the dynamical degrees of freedom in our holo-
graphic model are still mesonic degrees of freedom repre-
sented by world-volume gauge fields on D8-branes. The
Sakai-Sugimoto model operates with mesonic degrees of
freedom, so it is difficult to trace directly the meaning of
our results in terms of the Dirac eigenmodes of quarks [40].
However, we find that our result for the velocity of the
chiral magnetic wave in the strong field limit, v� ! 1,

seems natural in terms of the Landau level picture.
Indeed, in the strong field limit the quarks occupy only
the lowest Landau levels that are chiral, so we indeed are
dealing with left- and right-handed Dirac modes. In this
limit, and for vanishing quark mass, the propagation of the

0.0 0.5 1.0 1.5 2.0
eB GeV 20.0

0.2

0.4

0.6

0.8

1.0

FIG. 3 (color online). Numerical result for v� in the Sakai-
Sugimoto model with T ¼ 150 MeV (dotted), T ¼ 200 MeV
(plain), and T ¼ 250 MeV (dashed).
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wave must occur with the velocity of light, and this is what
we obtain from holography. This may represent a facet of
quark-hadron duality, and it would be interesting to explore
this further.

One can go on to the next order expansion in k to
compute the longitudinal diffusion constant DL. As the
computation is conceptually straightforward, we only
present our numerical results in our Fig. 4. For eB ¼ 0, it
reduces to the known diffusion constant in the model

DL ! CðUTÞ
Z 1

UT

dU0

AðU0Þ ¼
1

2�T
; eB ! 0; (4.43)

while in general it is a complicated function of eB and the
temperature T. As one can observe in Fig. 4, DL generally
gets decreased as eB increases, which seems physically
sensible because a larger magnetic field would align qua-
siparticles more efficiently, so that their microscopic lon-
gitudinal velocity diffusion would be smaller. What is
interesting is that for some range of eB in a low tempera-
ture, say T ¼ 150 MeV, one seems to have a negative
value of DL. Looking at the dispersion relation

! ¼ �v�k� iDLk
2 þ � � � ; (4.44)

this signals an instability for sufficiently small k or long
wavelength fluctuations, which is precisely similar to
Gregory-Laflamme instability in a gravity system [68]. In
the case of gravity system, Gubser-Mitra conjecture [69]
links this dynamic instability with a thermodynamic insta-
bility, and it would be interesting to study whether our
instability is also related to some kind of thermodynamic
instability. We leave this for future studies.

V. DYNAMICAL ELECTROMAGNETISM :MIXING
CHIRAL MAGNETIC WAVE WITH PLASMONS

The previous sections treat electromagnetism as provid-
ing only a nondynamical external magnetic field and ne-
glecting dynamical nature of electromagnetic field. This is
valid in the limit e ! 0 while keeping eB finite. However,
to describe the real world more precisely, it would be

desirable to go beyond this approximation including dy-
namical electromagnetism. In general, dynamical electro-
magnetic field in the plasma couples to longitudinal
fluctuations of vector charge density inducing the plasma
waves. The chiral magnetic wave (more precisely its pro-
jection onto the vector Uð1ÞV part) also involves longitu-
dinal charge density fluctuations; it is thus natural to expect
them to mix with each other, resulting in interesting mod-
ifications of their dispersion relations. This will be the
main topic of this section. We also point out that for non-
Abelian SUðNFÞ chiral magnetic waves there is no mixing
with plasmons as far as one does not introduce gauging of
SUðNFÞ, so that the previous discussion stays intact for
non-Abelian CMWs.2

Having dynamical electromagnetism, one first needs to
include the Maxwell equation as a new dynamical equation
of motion in addition to the conservation laws of currents,

@�ð@�A� � @�A�Þ ¼ ej�V: (5.1)

What is important for us is how to determine the current j�V .
Typical discussions of plasma waves proceed by assuming
a linear retarded response of the plasma to the electromag-
netic field A�,

j�V ¼ e���ð!; kÞA�; k��
�� ¼ 0; (5.2)

where we work in the frequency-momentum space.
Combined with (5.1) this would result in a self-contained
equation for A� from which one can extract the plasmons.

Let us review this procedure briefly as we are going to
extend it by including the chiral magnetic waves and
diffusion terms. Assuming a definite frequency-

momentum e�i!tþikx1 , we focus on longitudinal polariza-
tions ðA0; A1Þ, the only ones where we expect the
emergence of plasmons. Because one has a gauge freedom
of shifting A� by k�, one can use this to remove A1 and

work with A0 only, which simplifies the analysis signifi-
cantly. From (5.1) and (5.2), one then obtains

k2A0¼e2�00ð!;kÞA0; k!A0¼e2�10ð!;kÞA0: (5.3)

These two equations are in fact equivalent as can be seen
using the Ward identity k��

�0 ¼ !�00 � k�10 ¼ 0, and

one has a nontrivial solution of A0 only if ð!; kÞ satisfies
the plasmon dispersion relation,

k2 ¼ e2�00ð!; kÞ: (5.4)

One expects plasma waves in long wavelength regime
k ! 0 with finite frequency, so one expands�00 in powers

of k2

!2 as

0.5 1.0 1.5 2.0
eB GeV 20.0

0.2

0.4

0.6

0.8

1.0

1.2

DL GeV 1

FIG. 4 (color online). Numerical result for DL in the Sakai-
Sugimoto model with T ¼ 150 MeV (dotted), T ¼ 200 MeV
(plain), and T ¼ 250 MeV (dashed).

2To be more precise, EM charge is a sum of Uð1Þ and I3 of
SUð2ÞF for NF ¼ 2, so the situation can be more complicated in
general. We leave a full discussion as a simple extension of ours
to the readers.
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�00 �!2
0

k2

!2

�
1þ c2eff

k2

!2

�
þ � � � ; (5.5)

upon which the dispersion relation becomes

!2 ¼ e2!2
0 þ c2effk

2 þOðk4Þ; (5.6)

this looks like a massive excitation of mass squared !2
p �

e2!2
0 with an effective speed of light ceff . The parameter

!0 is typically of the order of temperature T, and the
plasma frequency is about !p � eT, which can be small

compared to T in weak-coupling limit; the plasmon thus
can be an important ingredient in describing the hydro-
dynamic properties of the system.

We will have to modify this picture in two aspects for
our case of a constant background magnetic field by in-
cluding chiral magnetic waves and diffusion terms.
Because the magnetic field B is constant while the plasma
waves involve only longitudinal electric field fluctuations,
we can decouple them, and treat A� from now on as an

additional fluctuation of the gauge field on top of the
background magnetic field. Looking at the chiral magnetic
effect (2.8), one first notices that the anomalously induced
spatial currents are not directly related to retarded response
to the gauge field fluctuations A�; they are induced from
the total charge densities j0V;A without any regard to how

these charge densities appear. We will discuss these charge
densities below. Also, we have to modify (2.8) for finite
frequency momentum by introducing chiral magnetic
conductivity �ð!; kÞ [8,50] because it generally depends
on ð!; kÞ,

~jV

~jA

 !
¼ ~B�

0 �ð!; kÞ
~�ð!; kÞ 0

 !
j0V

j0A

 !

� Nce ~B�

2�2

0 ð�ð!;kÞ
�0

Þ
ð~�ð!;kÞ

�0
Þ 0

0
@

1
A j0V

j0A

 !
; (5.7)

where �0 ¼ Nce
2�2 is the zero frequency-momentum limit we

have used before. In general, at finite ð!; kÞ, we expect

� � ~�. Therefore the total spatial currents ~jV;A will rep-

resent the sum of the retarded response to A� given by (5.2)
and the anomalously induced contribution (5.7),

j1V ¼ e�10A0 þ NceB�

2�2

�
�ð!; kÞ
�0

�
j0A � ikDLj

0
V;

j1A ¼ e�10
AVA

0 þ NceB�

2�2

�
~�ð!; kÞ
�0

�
j0V � ikDLj

0
A; (5.8)

where we keep our focus on longitudinal components only,
and we also included the diffusion terms proportional to
DL. Note that we also include the induced axial current
from response to A0 through�10

AV because this term indeed

exists in the presence of background magnetic field B
(think of triagle diagram of external B and A0 which
couples to axial current). It is important to keep in mind

that the charge densities j0V;A appearing on the right-hand

side are total charge densities that may come from both
response to A� as well as additional fluctuations due to
chiral magnetic effects. Once we write down (5.8), we do
not and cannot specify charge densities because they are
free up to dynamical equations of Maxwell equation and
current conservation laws. To be more precise, we have
three dynamic equations; � ¼ 0 component of Maxwell
equation and two current conservation laws for j

�
V;A (the

� ¼ 1 Maxwell equation becomes equivalent to � ¼ 0
once j�V conservation is imposed due to gauge invariance).
They are homogeneous linear equations in terms of three
variables ðA0; j

0
V; j

0
AÞ, so that nonzero solutions exist if and

only if the 3� 3 coefficient matrix has zero determinant.
This constraint on ð!; kÞ will give us the dispersion
relation.
Although it is not necessary, it is convenient to decom-

pose j0V as

j0V ¼ e�00A0 þ �j0V; (5.9)

to visualize additional fluctuation �j0V to the retarded re-
sponse explicitly. Let us then write down the three inde-
pendent dynamical equations mentioned above. The
� ¼ 0-component Maxwell equation is

k2A0 ¼ e2�00A0 þ e�j0V; (5.10)

while the vector current conservation, @�j
�
V ¼ 0, looks as

� i!�j0Vþ ik
NceB�

2�2

�
�

�0

�
j0Aþk2DLðe�00A0þ�j0VÞ¼0:

(5.11)

Finally, for axial current conservation, there is an important
modification to its conservation due to triangle anomaly we
are considering (note that we are still neglecting QCD
anomaly from gluons). Recall that axial current becomes
anomalous in the presence of nonzero electromagnetic
~E � ~B � 0 due to triangle anomaly,

@�j
�
A ¼ e2Nc

16�2
����F��F� ¼ e2Nc

2�2
~E � ~B: (5.12)

Remember that our Nc quarks have charge e in this paper.

We already have a background magnetic field ~B ¼ Bx̂1,
while dynamical longitudinal plasma fluctuations we are
considering have a longitudinal electric field fluctuation
E1 ¼ @1A

0 ¼ ikA0 in Fourier space, so that one has locally

nonvanishing ~E � ~B that affects axial current conservation
law as in (5.12). The resulting (modified) conservation law
of j�A gives us

� i!j0A þ ike�01
AVA

0 þ ik
NceB�

2�2

�
~�

�0

�
ðe�00A0 þ �j0VÞ

þ k2DLj
0
A ¼ ik

Nce
2B

2�2
A0; (5.13)
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where the right-hand side is the anomalous contribution
that we discussed. The above Eqs. (5.10), (5.11), and (5.13)
are the main equations for ðA0; �j0V; j

0
AÞ from which one

can obtain dispersion relations.
As an easy application as well as an illustration, let us

turn off the magnetic field for a moment and consider the
diffusion effects only, which may be called diffusive plas-
mons. In this case, one has �10

AV ¼ 0 due to B ¼ 0, and
axial current decouples with the usual diffusion ! ¼
�iDLk

2, while ðA0; �j0VÞ system becomes

ðk2 � e2�00ÞA0 ¼ e�j0V;

ði!� k2DLÞ�j0V ¼ k2eDL�
00A0; (5.14)

which has nonzero solutions if and only if

ðk2 � e2�00ð!; kÞÞði!� k2DLÞ ¼ k2e2DL�
00ð!; kÞ;

(5.15)

which gives the dispersion relation. Upon expanding �00

as in (5.5), one can solve the above for small k as

!2 ¼ !2
p þ ðc2eff � i!pDLÞk2 þOðk4Þ; (5.16)

where !p ¼ e!0 is the plasma frequency.

Going back to our interesting case of nonzero magnetic
field B � 0, it is straightforward to study (5.10), (5.11), and
(5.12) in complete generality, but we will restrict ourselves
to the case withDL ¼ 0 for simplicity in this paper, leaving
their full analysis including DL to the future. The system
then becomes

k2A0 ¼ e2�00A0 þ e�j0V;

� i!�j0V þ ik
NceB�

2�2

�
�

�0

�
j0A ¼ 0;

� i!j0A þ ike�10
AVA

0 þ ik
NceB�

2�2

�
~�

�0

�
ðe�00A0 þ �j0VÞ

¼ ik
Nce

2B

2�2
A0; (5.17)

which mixes all three fluctuations together. From the first
equation, one can replace A0 with �j0V , and inserting it into
the other two equations, one gets

� i!�j0Vþ ik
NceB�

2�2

�
�

�0

�
j0A¼0;

� i!j0Aþ ik
NceB�

2�2

�
~�

�0

�ðk2� e2

�
�0

~� þ 2�2e
NcB�

�0

~� �10
AVÞ

k2�e2�00
�j0V ¼0;

(5.18)

from which one gets the dispersion equation

!2 ¼ v2
�k

2

�
�ð!; kÞ
�0

��
~�ð!; kÞ
�0

�

� ðk2 � e2

�
�0

~�ð!;kÞ þ 2�2e
NcB�

�0

~�ð!;kÞ�
10
AVð!; kÞÞ

k2 � e2�00ð!; kÞ ; (5.19)

where v� ¼ NceB�
2�2 as before. This equation is our master

equation that governs mixing between chiral magnetic
waves and plasma waves.
For small magnetic field B and !�!p � eT � T, one

expects that chiral magnetic conductivities are approxi-
mately the zero-frequency value �  ~�  �0, and more-
over anomaly triangle diagram gives us

�10
AVð!; kÞ ! NceB

2�2
as !; k ! 0; (5.20)

so that the numerator in the right-hand side of (5.19)
becomes simplified. One then uses the previous expansion
(5.5) of �00 to solve the above equation to get

!2 ¼ !2
p þ ðv2

� þ c2effÞk2 þOðk4Þ; (5.21)

which describes effects from chiral magnetic wave to the
plasma waves. Note that the effect exists only with finite k,
and this makes sense because chiral magnetic waves dis-
appear in k ! 0 limit.
Another interesting limit is an infinitely large B ! 1

limit, where one expects effective reduction to 1þ
1-dimensional theory. In fact, making electromagnetism
dynamical corresponds to 1þ 1-dimensional QEDwithNc

massless Dirac fermions or the Schwinger model [70]. It
has been known for long time that the photon in the
model becomes massive due to 1þ 1-dimensional axial
anomaly,

m2
� ¼ Nce

2
eff

�
; (5.22)

where e2eff is an effective 1þ 1-dimensional QED coupling

constant. As the four-dimensional triangle anomaly (5.12)
correctly reduces to 1þ 1-dimensional axial anomaly in
the presence of background magnetic field B, one should
be able to reproduce this Schwinger phenomenon from our
master Eq. (5.19) in the limit B ! 1.
One can be more quantitative to test this connection. To

find e2eff , it is useful to consider a transverse area of

Z
d2xT ¼ 2�

eB
; (5.23)

to have a single lowest Landau level system per each four-
dimensional fermion because the transverse density of
LLL is eB=2�. Thinking of fermion kinetic term, the
proper normalization between four-dimensional fermion
and two-dimensional fermion is

c 4D ¼
ffiffiffiffiffiffiffi
eB

2�

s
c 2D; (5.24)

which will be useful shortly when we discuss about �00.
Because one is looking at only longitudinal dynamics of
four-dimensional Uð1Þ gauge field, the only relevant
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dynamical field is F01, and the gauge field action indeed
reduces to 1þ 1-dimensional QED action as

1

2e2

Z
d4xðF01Þ2 ¼ 1

2e2
2�

eB

Z
d2xðF01Þ2

� 1

2e2eff

Z
d2xðF01Þ2; (5.25)

so that e2eff ¼ e3B
2� , and the Schwinger photon mass should

be

m2
� ¼ Nce

3B

2�2
: (5.26)

To reproduce this from our Eq. (5.19), note that as B ! 1,
the expected !2 ¼ m2

� is also infinite and one naturally

expects that chiral magnetic conductivities go to zero in
this limit as the system cannot respond to arbitrary fast
perturbations; ð�; ~�Þ ! 0 as ! ! 1. Therefore, the solu-
tion of (5.19) in this limit is found simply by demanding
that the denominator vanishes or

k2 ¼ e2�00ð!; kÞ; (5.27)

where �00 should be given by the effective 1þ
1-dimensional theory. To find it, recall from (5.24) that
j
�
4D ¼ eB

2� j
�
2D, so that

�00 �
Z

d4xe�i!tþikxhj04DðxÞj04Dð0Þi

¼ 2�

eB

�
eB

2�

�
2 Z

d2xe�i!tþikxhj02DðxÞj02Dð0Þi

¼
�
eB

2�

�
�00

2D: (5.28)

As we have Nc 1þ 1-dimensional Dirac fermions, �00
2D is

Nc times that of a single Dirac fermion, which can be found
most easily by bosonization to a single real scalar field 

such that

j�V ¼
ffiffiffiffi
1

�

s
���@�
; j�A ¼

ffiffiffiffi
1

�

s
@�
; (5.29)

where 
 is normalized to have a standard kinetic term
L ¼ 1

2@�
@�
. Then, �00
2D is easily computed as

�00
2D ¼ Nc

�
hð@1
Þð@1
Þi ¼ Nc

�

ðikÞð�ikÞ
!2 � k2

¼ Nc

�

k2

!2 � k2
;

(5.30)

so that the Eq. (5.27) becomes

k2 ¼ e2�00
4D ¼ Nce

3B

2�2

k2

!2 � k2
; (5.31)

which indeed gives us !2 ¼ m2
� þ k2 reproducing the

Schwinger model result.
Therefore the plasmon in the dimensionally reduced

theory can be seen as a result of the interaction of the
dynamical photon with the chiral magnetic waves.

VI. SUMMARY

We have demonstrated that the chiral magnetic and
chiral separation effects (CME and CSE) in relativistic
plasmas subjected to magnetic field imply the existence
of a new type of a collective excitation in the plasma—the
chiral magnetic wave (CMW). This excitation represents
the density waves of electric and chiral charge coupled by
the triangle anomaly. In strong magnetic field the CMW
propagates with the velocity of light, v� ! 1. In weak

magnetic field, the velocity v� decreases; the result of

the holographic computation is shown in Fig. 3. At weak
coupling, this decrease of the velocity of the CMW can be
understood as originating from the admixture of the ex-
cited Landau levels.
The existence of CMW in the quark-gluon plasma has

important implications for the phenomenology of heavy
ion collisions. The CME relies on the fluctuation of the
axial charge density and so the net effect is expected to
vanish when averaged over many events; one thus relies
on measuring the fluctuations of charge asymmetries
[1,49]. On the other hand, the CMW should exist even
in a neutral plasma, and so does not require the presence
of the axial or baryon chemical potentials. Since it
represents the coupled density waves of electric and
chiral charges propagating along the direction of the
applied magnetic field (that in heavy ion collisions is
perpendicular to the reaction plane), the CMW can
induce dynamical, reaction plane dependent, fluctuations
of electric charge. The azimuthal angle dependence of
these fluctuations will be determined by the wavelength
of the CMW excitation. We will return to the considera-
tion of phenomenology related to CMW in heavy ion
collisions in a forthcoming publication [71].

ACKNOWLEDGMENTS
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[34] B. Müller and A. Schäfer, Phys. Rev. C82, 057902 (2010).
[35] S.W. Mages, M. Aicher, and A. Schäfer, arXiv:1009.1495.
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