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We investigate the validity of the Dirac quantization condition for magnetic monopoles in non-

commutative space-time. We use an approach which is based on an extension of the method introduced

by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge

transformations of U?ð1Þ gauge fields and use the corresponding deformed Maxwell’s equations. Using a

perturbation expansion in the noncommutativity parameter �, we show that the Dirac quantization

condition remains unmodified up to the first order in the expansion parameter. The result is obtained

for a class of noncommutative source terms, which reduce to the Dirac delta function in the commutative

limit.
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I. INTRODUCTION

Even though magnetic monopoles remain unobserved
experimentally, they have attracted interest for decades
both experimentally and theoretically. In 1931, Dirac [1]
showed for the first time that the existence of a magnetic
monopole would imply the quantization of electric charge.
This, along with the duality-like symmetry of Maxwell’s
equations, is a major motivation for the study of mono-
poles. The Dirac quantization condition (DQC),

2ge

ℏc
¼ integer ¼ N; (1)

is a topological property of space. In 1975, the singular
potentials thatDirac’s derivation result inwere better under-
stood when Wu and Yang [2] rederived the DQC by a new
method based on singularity-free gauge transformations.

In this paper we study the validity of the DQC in non-
commutative (NC) space-time using the Wu and Yang
approach. The motivation for such a study is that since
the noncommutativity of space-time is expected to affect
the very short distances, the singularity structure could also
be affected. We consider the NC Weyl-Moyal space-time
defined by the commutator

½x̂�; x̂�� ¼ i���; (2)

where ��� is a constant antisymmetric matrix (not a
Lorentz tensor).

The study of different types of noncommutative space-
time models is mainly motivated by open string theory
with a constant background field [3] and the attempt to
combine quantum mechanics with classical gravity [4]. In
this work we only consider the so-called space-space non-
commutativity, i.e. �0i ¼ 0, because of the issues of unitary

[5] and causality [6] which appear when time does not
commute with space.
The use of the commutator (2) has interesting conse-

quences, most notably the breaking of Lorentz invariance.
However, the corresponding noncommutative space-time
has a richer symmetry than the subgroup to which the
Lorentz group is broken, the so-called twisted Poincaré
symmetry [7], which has the same representation content
as the usual Poincaré symmetry. In addition, UV and IR
divergences are mixed in noncommutative field theories
[8]. This mixing is the manifestation of the fact that the
short and long distance effects in such theories are inti-
mately related. Thus, it is interesting to explore the DQC in
the noncommutative case, since it probes the singularity
structure of the theory.
For noncommutative field theories we shall use the well-

knownWeyl-Moyal star product and the fact that the gauge
group U?ð1Þ is non-Abelian; thus the form of the gauge
transformations of fields will differ from the commutative
Uð1Þ theory [9]. In this work we shall use the asymptotic
expansion of the Weyl-Moyal ? product:

ð�c ÞðxÞ ! ð� ? c ÞðxÞ
� ½�ðxÞeði=2Þ���ð@

 
=@x�Þð@

!
=@y�Þc ðyÞ�x¼y: (3)

Since we shall be working outside of singularities and with
continuous functions, we are free to use (3) which is
defined for smooth functions.
The paper is arranged as follows: In Sec. II the approach

to the DQC of Wu and Yang [2] in commutative space is
briefly reviewed. In Sec. III we discuss the modifications
needed when considering the DQC in noncommutative
space-time. In Sec. IV we study the NC gauge transforma-
tions to first order in �, and in Secs. Vand VI we define and
solve the noncommutative Maxwell’s equations to first
order in � and discuss how the DQC can be kept valid to
this order. In Sec. VII we make our concluding remarks.
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II. DQC IN THE WU-YANG APPROACH

When describing a magnetic monopole in the Dirac
approach [1], one is led to a singularity in the gauge
potential A� for the magnetic field—the Dirac string.

The string is rotatable by a gauge transformation and
thus cannot be observed, but the gauge transformations
used for the rotation are also singular. This could be some-
what troubling. In the approach of Wu and Yang [2], the
singularity problem is circumvented by dividing the whole
space into two overlapping hemispheres and by defining a
singularity-free potential in each hemisphere. In the origi-
nal paper the space R is divided as

RN: 0��<�=2þ�; r>0; 0��<2�; t2ð�1;1Þ;
RS:�=2��<���; r>0; 0��<2�; t2ð�1;1Þ

(4)

and the two gauge fields AN
� and AS

� are taken to be

AN
t ¼ AN

r ¼ AN
� ¼ 0; AN

� ¼
g

r sin�
ð1� cos�Þ;

AS
t ¼ AS

r ¼ AS
� ¼ 0; AS

� ¼ �
g

r sin�
ð1þ cos�Þ: (5)

The conditions the potentials need to satisfy are the
following:

(1) In the overlapping region they are gauge transform-
able to each other.

(2) Their curls give the magnetic field.
(3) Both potentials are singularity-free in their respec-

tive regions of validity.

For the potentials (5), the gauge transformation is given by

S ¼ Sab ¼ e�i� ¼ eð2ige=ℏcÞ�: (6)

This gauge transformation remains single valued only if
the condition

2ge

ℏc
¼ integer ¼ N (7)

is satisfied. Equation (7) is exactly the quantization condi-
tion due to Dirac [1].

III. WU-YANG PROCEDURE
IN MOYAL SPACE-TIME

To check the validity of the Dirac quantization condition
in NC space-time, we shall use a slightly modified version
of the Wu-Yang procedure. In commutative space-time,
Wu and Yang looked for a gauge transformation from
one hemisphere to the other and required that the potentials
in each hemisphere give the magnetic field. In NC space-
time the situation is modified since theU?ð1Þ group is non-
Abelian and it is not clear what the magnetic field is in this
case. Therefore we shall look for a potential in each
hemisphere, AN

�ðxÞ and AS
�ðxÞ, such that

(1) The potentials are gauge transformable to each other
in the overlap region of the potentials. For the non-
Abelian group U?ð1Þ this means that we require

AN=S
� ðxÞ!UðxÞ?AN=S

� ðxÞ?U�1ðxÞ
�iUðxÞ?@�U�1ðxÞ¼AS=N

� ðxÞ: (8)

(2) Both potentials satisfy Maxwell’s equations with an
appropriate source for the magnetic charge.

(3) The potentials remain singularity-free in their re-
spective regions of validity; i.e., Maxwell’s
equations are solved in such a way that noncommu-
tativity does not produce new singularities into the
potentials.

The analogy between these conditions and the conditions
in the commutative case (see Sec. II) is apparent.
Requiring these three conditions, we may then consider

which types of sources would be compatible with the DQC.
This follows because from both equations we are able to
solve for the difference in the potentials AN

�ðxÞ � AS
�ðxÞ

(perturbatively), and since both equations need to be sat-
isfied simultaneously we get an equation relating the
source term contained in Maxwell’s equations and the
gauge transformation parameter �ðxÞ.
We shall treat the problem as a perturbation series to first

order in �. We use a notation where the NC gauge field A�

is expanded as A� ¼ A0
� þ A1

� þ A2
� þOð�3Þ. Here the

upper index corresponds to the order in �. In this notation,
the gauge transformation parameter is (symbolically) ex-
panded as � ¼ �0 þ �1 þ �2 þOð�3Þ. To preserve the
DQC we require that the � corrections to � can be put to
zero (or a constant), i.e. � ¼ �0 þ C, while satisfying the
above three requirements. We begin by calculating the
finite gauge transformations of the fields to first order in �.

IV. NONCOMMUTATIVE GAUGE
TRANSFORMATIONS

The noncommutative gauge transformations under the
group U?ð1Þ, with group elements

U�1ðxÞ ¼ ei�ðxÞ? ¼ 1þ i�ðxÞ þ i2

2!
�ðxÞ ? �ðxÞ þ . . . ;

are given by

A�ðxÞ ! UðxÞ ? A�ðxÞ ? U�1ðxÞ � iUðxÞ ? @�U
�1ðxÞ:

(9)

There will be � contributions from the nontrivial gauge
group element UðxÞ, as well as from the ? products be-
tween the factors of (9).
Using the result

�ij@i�ðxÞ@j�ðxÞ ¼ 0; (10)
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we find that the gauge group element in first order in �
remains unmodified:

ei�ðxÞ? ¼ 1þ i�ðxÞ þ i2

2!
�ðxÞ ? �ðxÞ

þ i3

3!
�ðxÞ ? �ðxÞ ? �ðxÞ þ . . .

¼ ei�ðxÞ þOð�2Þ: (11)

Next, we go back to (9) and calculate the full expression
for the gauge transformation in first order. Writing the
noncommutative field AiðxÞ as AiðxÞ ¼ A0

i ðxÞ þ A1
i ðxÞ þ

A2
i ðxÞ þ . . . , we can calculate the gauge transformation

(9) to first order in �. It is given by

AiðxÞ!e�i� ? ðA0
i ðxÞþA1

i ðxÞÞ?ei�� ie�i� ?@iei�þOð�2Þ
¼A0

i ðxÞþA1
i ðxÞþ�kl@k�@lA

0
i ðxÞþ@i�

þ�kl

2
@k�@l@i�þOð�2Þ: (12)

From this we have the following gauge transformations in
the zeroth and first order in �:

A0
i ðxÞ ! A0

i ðxÞ þ @i�; (13)

A1
i ðxÞ ! A1

i ðxÞ þ �kl@k�@lA
0
i ðxÞ þ

�kl

2
@k�@l@i�: (14)

To conclude, due to the first requirement in Sec. III, we
require up to first order that the following equations hold:

A
N0

i ðxÞ ¼ A
S0
i ðxÞ þ @i�; (15)

AN1

i ðxÞ¼AS1
i ðxÞþ�kl@k�@lA

S0
i ðxÞþ

�kl

2
@k�@l@i�: (16)

Next we shall move on to consider the second requirement
of Sec. III, i.e. that the potentials satisfy Maxwell’s
equations.

V. NONCOMMUTATIVE MAXWELL’S
EQUATIONS IN FIRST ORDER

In Weyl-Moyal space Maxwell’s equations for a static
monopole are

	��
�D� ?F 
� ¼ 0; (17)

D� ?F �� ¼ J�; (18)

where F �� ¼ 1
2 	

��
�F
� is the dual field strength tensor.

The NC U?ð1Þ field strength tensor and the covariant
derivative are given by

F�� ¼ @�A� � @�A� � ie½A�; A��?; (19)

D� ¼ @� � ie½A�; ��?: (20)

We shall look at Eqs. (17) and (18) as a perturbative series
in � and check whether we can find solutions for them

perturbatively. For the source we have Ji ¼ 0 and J0 �
�ðrÞ ¼ 4�g�ðrÞ þ �1ðrÞ þ �2ðrÞ þOð�3Þ, where the
superscript denotes the order of �. In this way the total
noncommutative magnetic charge is defined as

gNC ¼
Z

J0ðxÞd3x (21)

and it is therefore gauge invariant. Observe that gNC be-
comes a perturbation series in �, and consequently, g from
the commutative Maxwell’s monopole equations becomes
a coupling constant which coincides with the definition for
magnetic charge in the commutative limit.
We should mention that we have the additional consis-

tency condition for Eq. (18),

D� ? J� ¼ 0: (22)

We do not, however, need to consider this condition sepa-
rately because the source and monopole equations are
static, Ji ¼ 0, and all electric fields are set to zero (i.e.
A0 ¼ 0, in the static case).
Because of the static case we consider, the other two

Maxwell’s equations contained in (17) and (18) are iden-
tically satisfied, and consequently, we shall refer to
Eq. (17) as Ampère’s law and to Eq. (18) as Gauss’s law.
In the following, we shall use units in which ℏ ¼ c ¼ g ¼
e ¼ 1 throughout, but the units will be restored whenever
we return to discussing the DQC.
The gauge covariant form of the equations does make

one worry about the existence of gauge invariant non-
commutative electric and magnetic fields. This problem
can be overcome if we take the view that the electric and
magnetic fields are gauge invariant combinations of the
potentials. That is, if we can find gauge invariant combi-
nations of the noncommutative potential that reduce to the
electric and magnetic fields in the �! 0 limit, it is very
well justified to call these combinations the noncommu-
tative electric and magnetic fields, respectively. These
combinations can be found by the use of Wilson lines
as in [10], where gauge invariant operators in noncom-
mutative gauge theory were constructed. These operators
are given in momentum space, but by a usual, commuta-
tive inverse Fourier transformation, they can be trans-
formed back to coordinate space. Using that result, one
may define a gauge invariant object constructed from the
U?ð1Þ field strength tensor F�� as

G�� ¼
Z

d4ke�ikx
�Z

d4xF�� ? Wðx; CÞ ? eikx
�
; (23)

where Wðx; CÞ is the noncommutative U?ð1Þ Wilson
line:

Wðx; CÞ ¼ P? exp

�
ig

Z 1

0
d�

d�

d�
A�ðxþ ð�ÞÞ

�
; (24)
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and where C is the curve which is parametrized by �ð�Þ
with 0 � � � 1, ð0Þ ¼ 0, ð1Þ ¼ l and satisfies the
condition l� ¼ k��

��, l being the length of the curve.

P? denotes the path ordering with respect to the ?
product:

Wðx;CÞ¼X1
n¼0
ðigÞn

Z 1

0
d�1

Z 1

�1

d�2 .. .

�
Z 1

�n�1
d�n

0
�1
ð�1Þ . . . 0�n

ð�nÞ

�A�1
ðxþð�1ÞÞ? . . .?A�n

ðxþð�nÞÞ: (25)

Equation (23) is a gauge invariant combination of the
noncommutative potential, that reduces to the commuta-
tive field strength in the limit �! 0. Therefore the F0i

and Fij parts of the noncommutative field strength may be
attributed to the noncommutative electric and magnetic
fields, such that G0i is the noncommutative electric field
and 	ijkG

jk is the noncommutative magnetic field.

One should point out that the shape of the curve C gives
rise to different gauge invariant objects, and therefore the
definition of the magnetic and electric fields in (23) is
ambiguous. It may be that straight Wilson lines are the
best choices as then the point of attachment of F�� to the
Wilson line does not matter, as argued in [10]. However,
the definitions of the gauge invariant fields are only given
here for a better understanding of the noncommutative
Maxwell’s equations, and as we shall not need them in
the following, we do not discuss this ambiguity further.

Ampère’s law.—We start by investigating (17):

	��
�D� ?F 
� ¼ 1
2	

��
�	
���D� ? F��

¼ 2D� ? F�� ¼ 0; (26)

in the first order in �. Since the electric field is set to zero,
F0i ¼ Ei ¼ 0, and all time derivatives vanish, the indices
� and � run over the spatial coordinates only. Con-
sequently, we have

Dk ? Fik ¼ @kð@iAk
1 � @kAi

1Þ þ @kð@iAk
0 � @kAi

0Þ
� i@k½Ai

0; A
k
0�? � i½A0

k; @
iAk

0 � @kAi
0

� i½Ai
0; A

k
0�?�? þOð�2Þ

¼ 	ikp@kB
1
p þ 	ikp@kB

0
p þ �pqf@kð@pAi

0@qA
k
0Þ

þ @pA
0
k	

ikp@qB
0
pg þOð�2Þ; (27)

where we have denoted (@iAk
1 � @kAi

1) by 	ikpB1
p. Hence

we find Ampère’s law up to first order in � to have the form

ðr�B0Þi¼0;

ðr�B1Þi¼��
�½@jð@
Ai
0@�A

j
0Þþ@
A

0
j	

ijk@�B
0
k�; (28)

where i, j, k ¼ 1, 2, 3.
Gauss’s law.—Next we shall do the same for Gauss’s

law:

D� ?F �� ¼ 1
2	

����D� ? F�� ¼ J�: (29)

Since Ji ¼ 0, we set � ¼ 0, and as in the above, the indices
run over the spatial coordinates only. Separating again the
relevant term r � B1 and using

1
2 	

i0jk@ið@jA0
k � @kA

0
j Þ ¼ �1

2	
ijk@ið@jA0

k � @kA
0
j Þ

¼ �r �B0 ¼ 4��ðrÞ;

we obtain

Di ?F i0 � 4��ðrÞ ¼ 1
2	

i0jk@ið@jA0
k � @kA

0
j Þ � 4��ðrÞ þ 1

2	
i0jkð�iÞ½Ai; @jA

0
k � @kA

0
j �? þ 1

2	
i0jk@ið�iÞ½A0

j ; A
0
k�?

þ 1
2	

i0jk@ið@jA1
k � @kA

1
j Þ � �1ðxÞ

¼ i12	
ijkð½Ai; @jA

0
k � @kA

0
j �? þ ½@iA0

j ; A
0
k�? þ ½A0

j ; @iA
0
k�?Þ � 1

2	
ijk@i	jklB

l
1 � �1ðxÞ

¼ �1
2	

ijk@i	jklB
l
1 � �1ðxÞ: (30)

Since � 1
2 	

ijk@i	jklB
l
1 ¼ r � B1, we find the simple result

r �B0 ¼ �4��ðrÞ; r �B1 ¼ ��1ðxÞ: (31)

Combining Ampère’s and Gauss’s laws.—We combine
the equations of motion of Gauss (31) and Ampère (28) in
the usual way, with the help of the identity from vector
calculusr2B ¼ rðr �BÞ þ r� ðr� BÞ. Since the form
of Gauss’s law is so simple, we obtain

ðr2B1ðA1ÞÞi¼�@i�1��pq	ijk@j½@lð@pAk
0@

qAl
0Þ

þ@pAl
0	

klm@qBm
0 �

¼�@i�1��pqf	ijk@j@lð@pAk
0@

qAl
0Þ

þ@mð@pAi
0@

qBm
0 Þ�@mð@pAm

0 @
qBi

0Þg
¼�@i�1��pqf	ijk@lð@pAk

0@
j@qAl

0Þ
�2@mð@pAm

0 @
qBi

0Þ�@mð@pBm
0 @

qAi
0Þg: (32)

MIKLOS LÅNGVIK, TAPIO SALMINEN, AND ANCA TUREANU PHYSICAL REVIEW D 83, 085006 (2011)

085006-4



VI. SOLUTION OF THE NONCOMMUTATIVE
MAXWELL’S EQUATIONS

To complete criterion 2 for our potentials in Sec. III, we
need to solve Eq. (32). We do this by choosing a frame of
reference; i.e. we fix �pq. We will first choose �12 ¼ ��21,
while all other components of � are set to zero.
Furthermore, we use the original potentials of Wu and
Yang (5) in Cartesian coordinates:

AN0

1 ¼
�yðr� zÞ
ðx2 þ y2Þr ; AN0

2 ¼
xðr� zÞ
ðx2 þ y2Þr ;

AS0
1 ¼

yðrþ zÞ
ðx2 þ y2Þr ; AS0

2 ¼
�xðrþ zÞ
ðx2 þ y2Þr ;

AN0

3 ¼ AS0
3 ¼ AN0

0 ¼ AS0
0 ¼ 0: (33)

Here N0 and S0 denote the zeroth order terms in � in the
northern and southern hemispheres, respectively, and

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

Since the potentials (33) are only defined outside the
origin, the expression (32) contains two problematic terms.
For all components i, there is a term �pqð@pr �B0Þ@qAi

0,

and when i ¼ 3 we have the additional term �ðr � B0Þ2.
These are somewhat ambiguous in our construction since
for the Maxwell’s equations the origin is included, but for
the zeroth order potentials Ai

0, this point is removed. This

implies that once we expand the noncommutative field as
Ai
NC ¼ Ai

0 þ Ai
1 þ Ai

2 þ . . . , the origin is not included in

the range of values that Ai
NC can take. Consequently, we

can ignore any contribution to the total noncommutative
field Ai

NC that contributes only at the origin, making the

theory more singular. Therefore, terms such as r2B1
i ¼

�pqð@p�3ðrÞÞ@qAi
0 can be considered to contribute to B1

i

only at r ¼ 0 and consequently ignored. The same goes for
terms of the form �ð�3ðrÞÞ2. In Maxwell’s equations we
need to keep these terms, for the consistency of the per-
turbative approach.

By using the components (32) and (33) for � ¼ �12, we
get the following Laplace equations for the difference in
B1 in the overlap of the two potentials:

r2ðBN1�BS1Þ1¼12�xð3r2�5z2Þ
ðr2�z2Þr7 �@1�

N1þ@1�
S1 ; (34)

r2ðBN1�BS1Þ2¼12�yð3r2�5z2Þ
ðr2�z2Þr7 �@2�

N1þ@2�
S1 ; (35)

r2ðBN1�BS1Þ3
¼4�zð45ðr2�z2Þ3þ70ðr2�z2Þ2z2þ56ðr2�z2Þz4þ16z6Þ

ðr2�z2Þ3r7
�@3�

N1þ@3�
S1 : (36)

In these equations the vector index 0 for the source term
from Eq. (31) has been dropped. The superscript N1 in �

N1

means the northern hemisphere and the first order non-
commutative correction to the source; similarly, S denotes
the southern hemisphere.
The homogeneous part (�N1 ¼ �S1 ¼ 0) of these equa-

tions is solved by

ðBN1 � BS1Þ1 ¼ 2�xð2r2 � 3z2Þ
ðr2 � z2Þr5 ; (37)

ðBN1 � BS1Þ2 ¼ 2�yð2r2 � 3z2Þ
ðr2 � z2Þr5 ; (38)

ðBN1�BS1Þ3¼2�zð6ðr2�z2Þ2þ5ðr2�z2Þz2þ2z4Þ
ðr2�z2Þ2r5 : (39)

The solutions to these equations are given by

AN1

1 � AS1
1 ¼

2�yzð2r2 � z2Þ
ðr2 � z2Þ2r3 ; (40)

AN1

2 � AS1
2 ¼ �

2�xzð2r2 � z2Þ
ðr2 � z2Þ2r3 ; (41)

AN1

3 � AS1
3 ¼ 0: (42)

Now we would like to compare these equations with those
coming from the gauge transformation (8). That is, we try
to satisfy criteria 1 and 2 from Sec. III simultaneously.
More specifically, to first order in � we use the explicit
formula (16):

AN1

i ðxÞ � AS1
i ðxÞ ¼ �ð@1�@2AS0

i ðxÞ � @2�@1A
S0
i ðxÞÞ

þ �

2
ð@1�@2@i�� @2�@1@i�Þ: (43)

Inserting the potentials of Wu and Yang (33) and � ¼ �0 þ
Oð�2Þ ¼ 2ge

"c �þOð�2Þ, where � ¼ arctanðyxÞ, we recover

exactly Eqs. (40)–(42). In other words, there exist poten-

tials AN1
� and AS1

� that are gauge transformable to each other
and satisfy the equations of motion as long as the first order
contribution to the source term does not change the solu-
tion of Eqs. (37)–(39). As these can be solved with the
Green’s function for the Laplace equation, we have the
following condition:

BN1ðsourceÞ
i � BS1ðsourceÞ

i ¼ �
Z @0ið�N1ðr0Þ � �S1ðr0ÞÞd3r0

jr0 � rj
¼ 0: (44)

The symmetries of the equations will further constrain
the form of a possible source term. It turns out that the
ordinary delta-function source is not compatible with these
symmetries and thus needs to be modified. This will be
discussed below, in Sec. VIA. First, we will check that our
results are not sensitive to the choice of the noncommuta-
tive plane.
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Since we chose our noncommutative plane to be parallel
with the overlap, i.e. the ðx; yÞ plane, we should check the
above result for another choice of � as the results might
differ when the two planes are not parallel. We should
therefore do the same calculation for either �13 or �23. It
does not matter which one of these we choose because they
are symmetric with respect to the plane of overlap. We
choose �13 ¼ �0.

We begin the analysis in �0 to first order from Eqs. (32).
With this choice of �0, the equations become

r2ðBN1 � BS1Þ1 ¼ 12�0xyzð3r2 � 5z2Þ
ðr2 � z2Þ2r7 � @1�

N1 þ @S1� ;

(45)

r2ðBN1 � BS1Þ2
¼ 12�0zð�x2ð3r2 � 5z2Þ þ ðr2 � z2Þð4r2 � 5z2ÞÞ

ðr2 � z2Þ2r7
� @2�

N1 þ @2�
S1 ; (46)

r2ðBN1 � BS1Þ3 ¼ � 12�0yð3r2 � 5z2Þ
ðr2 � z2Þr7 � @3�

N1 þ @3�
S1 ;

(47)

where we have used the potentials (33). The solutions,
again neglecting the source, to these equations are

ðBN1 � BS1Þ1 ¼ 6�0xyz
ðr2 � z2Þr5 ; (48)

ðBN1 � BS1Þ2 ¼ 6�0y2z
ðr2 � z2Þr5 ; (49)

ðBN1 � BS1Þ3 ¼ 2�0yð�2r2 þ 3z2Þ
ðr2 � z2Þr5 : (50)

The potentials in the overlap can then be chosen as

AN1

1 � AS1
1 ¼ �

2�0y2

ðr2 � z2Þr3 ; (51)

AN1

2 � AS1
2 ¼

2�0xy
ðr2 � z2Þr3 ; (52)

AN1

3 � AS1
3 ¼ 0: (53)

These potentials are exactly the same as when we calculate
(16) for the �0 ¼ �13 case, and we can conclude in the same
fashion as for �12 that the DQC holds to first order in �13,
provided condition (44) is satisfied and the correction �1ðrÞ
is gauge covariant.

We should make a brief comment on the uniqueness of
the above solutions. The solutions are not unique, as we
can always add a gradient term @ifðx; y; zÞ to them without
changing the equations of motion (34)–(36). However, as

we are looking for potentials satisfying the equations of
motion and transforming in the right manner under gauge
transformations such that the DQC remains unmodified,
we are free to choose @ifðx; y; zÞ as we wish, and indeed
need to take @ifðx; y; zÞ ¼ 0 to preserve the DQC.
Therefore we choose @ifðx; y; zÞ ¼ 0 and consider the
potential differences given by (40)–(42).
At this point we can conclude that there exist potentials

AN1
� and AS1

� that are gauge transformable to each other and
satisfy the equations of motion as long as the first order
contribution to the source term does not change the solu-
tion of the equations of motion in the overlapping region in
the first order of �. As was already mentioned above, the
symmetries of the equations constrain the source term
further, and as will be shown in the next subsection, we
cannot use the ordinary �3ðrÞ-function source.

A. Noncommutative corrections to the source term

In this subsection we consider, in general, which types of
sources are possible in order to retain the DQC and have
noncommutative Maxwell’s equations consistent with their
gauge symmetry.
The requirement that the first order correction to the

source should not affect the solutions of the equations of
motion [condition (44)] constrains the form of the source
but is not stringent enough to forbid a correction term
entirely. Also, Eq. (18) transforms as UðxÞ ? D� ?F �0 ?

U�1ðxÞ on the left-hand side. Namely, it is gauge cova-
riant. Therefore, the source must also transform this way.
Moreover, the left-hand side in Eq. (18) is Oð1; 1Þ �
SOð2Þ symmetric, and consequently, the source must
also be that. We shall also, as a correspondence principle,
require that we recover the Dirac delta function for the
source when �! 0.
A possible source up to first order in �, satisfying all the

symmetry requirements, is

J0 ¼ 4�g

�
�3ðrÞ þ ie

2ℏc
�kl@kðAl�

3ðrÞÞ
�
þOð�2Þ: (54)

This source was found in [11], where it was shown that
within a specific quantum mechanical model for noncom-
mutative space-time, the DQC holds to first order in �.
Since the first order source term needs to be a scalar, the
above first order part of the source is unique up to a change
in the position of the derivative @k and a change of the
constant factor. Since the source is proportional to a delta
function �3ðrÞ and derivatives of it, it is easy to convince
oneself that its only contribution in first order of the
perturbation is to make Maxwell’s equations gauge
covariant.

B. Singularity-free potentials

We should still convince ourselves that the potentials
remain singularity-free when the first order corrections
are included. To really speak of singularity-free gauge
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potentials we need to solve for the potentials AN1 and AS1

(not just their difference) in first order.
If we choose � ¼ �12 as our Moyal plane, we obtain the

equations for BN1

i from (32) as

r2BN1

1 ¼
6�xð3ðr2�z2Þ2þðr2�z2Þzðz�5rÞþ2z3ðr�zÞÞ

ðr2�z2Þr9 ;

(55)

r2BN1

2 ¼
6�yð3ðr2�z2Þ2þðr2�z2Þzðz�5rÞþ2z3ðr�zÞÞ

ðr2�z2Þr9 ;

(56)

r2BN1

3 ¼2�

�
� 16

ðr2�z2Þ3þ
21ðr2�z2Þ

r8
�13

r6

þz

r

�
15

r6
þ 6

ðr2�z2Þr4þ
8

ðr2�z2Þ2r2þ
16

ðr2�z2Þ3
��

:

(57)

The solutions to the previous equations are given by

BN1

1 ¼
�xð2ðr2 � z2Þ2 þ ðr2 � z2Þzðz� 6rÞ þ z3ðr� zÞÞ

ðr2 � z2Þr7 ;

(58)

BN1

2 ¼
�yð2ðr2 � z2Þ2 þ ðr2 � z2Þzðz� 6rÞ þ z3ðr� zÞÞ

ðr2 � z2Þr7 ;

(59)

BN1

3 ¼ �

�
� 2

ðr2 � z2Þ2 �
7z2

r6
þ 5

2r4

þ 6ðr2 � z2Þ2zþ 5ðr2 � z2Þz3 þ 2z5Þ
ðr2 � z2Þ2r5

�
: (60)

We then proceed to integrate out the potentials for BN1

i .
One choice, not introducing new singularities according to
requirement 3 in Sec. III, is e.g.

AN1

1 ¼ �

��2x arctanðxyÞ
ðr2 � z2Þ2

þ y

4

�
7

r4
� 2

ðr2 � z2Þr2 þ
4zð2r2 � z2Þ
ðr2 � z2Þ2r3

��
; (61)

AN1

2 ¼ ��
�2y arctanðxyÞ
ðr2 � z2Þ2

þ x

4

�
7

r4
� 2

ðr2 � z2Þr2 þ
4zð2r2 � z2Þ
ðr2 � z2Þ2r3

��
; (62)

AN1

3 ¼ 0: (63)

From these potentials it is straightforward to obtain the

expression for AS1
i , using (40)–(42). It is clear that the

potentials are singularity-free on the manifold R3 n f0g.
We have thus found potentials that remain singularity-free
over the manifold R3 n f0g, and our construction is com-
plete. We may note that from the form of Eqs. (58)–(60) it
is clear that the large r limit gives us the commutative
theory when we consider only the leading order terms.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a modified version of
the method of Wu and Yang to accommodate noncom-
mutativity of space-time when considering magnetic
monopoles. The method is based on perturbation theory
with the expansion parameter �. Using this method we
have studied the DQC to first order in � and found that
the condition remains unmodified for a class of sources
that reduce to the Dirac delta function in the commuta-
tive limit. Our result serves to clarify the relation be-
tween Maxwell’s equations and the quantum mechanical
model used in [11].
There have been many interesting studies devoted to

noncommutative Bogomol’nyi-Prasad-Sommerfield (BPS)
monopoles (see [12–15] for a nonexhaustive list of refer-
ences). The works include perturbative studies of the
U?ð2Þ [12] and U?ð1Þ [13] BPS monopoles, as well as
nonperturbative studies of the U?ð1Þ [14] BPS monopoles,
generalized to other groups in [15]. These constructions
share the assumption that the definition of magnetic charge
in the BPS limit may be taken over, without change, to the
noncommutative case. The legitimacy of this assumption is
still an open question, since the BPS gauge field should
reduce to the solution of noncommutative Maxwell’s equa-
tions, with a magnetic monopole, in order to justify the
very name magnetic charge in this context. It should be
stressed that, with a constant � matrix, the noncommuta-
tivity is present everywhere in space and thus the effect of
noncommutativity cannot be assumed to vanish even
asymptotically far away from the monopole. Although
the BPS constructions [12–15] do have a topological
charge, it is not necessarily the same as the noncommuta-
tive magnetic charge considered in the present work.
To find out what the noncommutative magnetic charge

is, one must first solve Maxwell’s equations in noncom-
mutative space for a magnetic monopole to know how the
noncommutative magnetic monopole solution looks in
order to speak of a magnetic monopole within noncommu-
tative field theory. The aim of this work has therefore been
to begin to fill in this gap. The analysis to second order in �
will be the subject of [16].
We would additionally like to mention the fact that

although noncommutative QED is known to be CPT in-
variant [17] (see also [18]), symmetry arguments alone do
not rule out the existence of a first order �-correction term
in the DQC.
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