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Nonthermal scaling phenomena can exhibit a characteristic dependence on the dimensionality d of

space. For d ¼ 3 and 4 we simulate a relativistic scalar field theory on a lattice and compute turbulent

scaling exponents. We recover Kolmogorov or weak wave-turbulence in the perturbative high-momentum

regime, where it exhibits the scaling exponent �w ¼ d� 3=2. In the nonperturbative infrared regime, we

find a different scaling exponent �s ¼ 4ð5Þ for d ¼ 3ð4Þ, which is in agreement with the recently predicted

anomalously large values �s ¼ dþ 1 of strong turbulence. We show how the latter can be seen to

characterize stationary transport of a conserved effective particle number.

DOI: 10.1103/PhysRevD.83.085004 PACS numbers: 11.10.Wx, 98.80.Cq

I. INTRODUCTION

Turbulent scaling phenomena appear for very different
physical systems and length scales, ranging from early
Universe reheating dynamics [1,2] to the physics of super-
nova explosions [3] or laboratory experiments with ultra-
cold quantum gases [4]. While many aspects of turbulence
have long reached the textbook level [5], relatively little is
known about turbulent behavior in nonperturbative re-
gimes of relativistic quantum field theories. Here the strong
interest is to a large extent also driven by related questions
concerning relativistic heavy-ion collisions [6].

It has recently been demonstrated that a new class of
turbulent scaling phenomena exist in the nonperturbative
regime of relativistic scalar field theories for sufficiently
high occupation numbers per mode [2]. The nonthermal
scaling solutions were shown to exhibit a strong enhance-
ment �jpj�4 in the infrared for three spatial dimensions,
while at high momenta a well-known scaling regime of

weak wave-turbulence �jpj�3=2 is observed. In Ref. [7] a
characteristic dependence of the nonperturbative infrared
solutions on the dimensionality of space was predicted.
Turbulent scaling phenomena are insensitive to the details
of the underlying microscopic theory. In particular, the
infrared scaling solutions are expected to belong to univer-
sality classes. These may only depend on few general
properties such as space dimension, symmetry, field con-
tent and conserved charges.

In this work we compute turbulent scaling behavior of a
self-interacting N-component scalar field theory. This is
done using classical-statistical simulations on a lattice,
which are expected to be an accurate description also for
the corresponding quantum theory for the considered high
occupation numbers per mode [2]. In order to further
classify the universality class of nonperturbative scaling
solutions, we perform simulations in three and four spatial
dimensions. In addition, we simulate for N ¼ 4 and N ¼
10 field components. We find striking agreement of the
numerical results with the previously predicted analytic

dependence on the dimensionality of space based on re-
summed large-N techniques [7]. In particular, we find no
indication for a dependence on N and the results are
consistent with a vanishing anomalous dimension as well
as a dynamic scaling exponent z ¼ 1 for the relativistic
theory. We show that the phenomenon of strong turbulence
at low momenta may be associated to stationary transport
of a conserved effective particle number.
The paper is organized as follows. We start with the

definition of suitable correlation functions, which can be
used to discuss weak as well as strong turbulence from a
common framework in Sec. II. After a brief review of
perturbative wave-turbulence using kinetic theory, we an-
alytically discuss strong turbulence as the stationary trans-
port of a conserved effective particle number. In Sec. III we
discuss the numerical results from lattice simulations.

II. STONG VERSUS WEAK
STATIONARY TURBULENCE

We describe turbulence in a relativistic self-interacting
scalar field theory as the stationary transport of a conserved
quantity. Typically this is done perturbatively using kinetic
theory. To obtain a description that is valid also beyond
perturbation theory, we first define correlations functions
which suitably describe the physics of turbulence. These
are evaluated perturbatively using kinetic theory in
Sec. II A and then nonperturbatively in Secs. II B and III.
For a real scalar field theory with Heisenberg field

operator �ðxÞ, where x ¼ ðx0;xÞ denotes the time x0 and
d-dimensional space variable x, we consider the expecta-
tion value of the anticommutator Fðx; yÞ and commutator
�ðx; yÞ of two fields,

Fðx;yÞ¼ 1
2hf�ðxÞ;�ðyÞgi; �ðx;yÞ¼ ih½�ðxÞ;�ðyÞ�i; (1)

respectively. Here the real spectral function �ðx; yÞ is re-
lated to the retarded or advanced propagators by

GRðx; yÞ ¼ GAðy; xÞ ¼ �ðx0 � y0Þ�ðx; yÞ; (2)
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with the step function�ðx0 � y0Þ ¼ 1 for x0 > y0 and zero
otherwise. Because of antisymmetry, �ðx; yÞ ¼ ��ðy; xÞ,
one has �ðx; xÞ ¼ 0. The real statistical two-point function
is symmetric, Fðx; yÞ ¼ Fðy; xÞ. It is convenient to intro-
duce Wigner coordinates

X� ¼ x� þ y�

2
; s� ¼ x� � y� (3)

and Fourier transform with respect to the relative coordi-
nates,

FpðXÞ ¼
Z

ddþ1se�ip�s
�
FðX þ s=2; X � s=2Þ; (4)

~� pðXÞ ¼ �i
Z

ddþ1se�ip�s
�
�ðX þ s=2; X � s=2Þ (5)

with p ¼ ðp0;pÞ. The conventional factor of �i in the
transform for the spectral function makes the latter real
in Fourier space and we use a tilde to denote this.
According to (2), retarded and advanced propagators in
Fourier space are then related to the spectral function by

i~�pðXÞ ¼ GR
pðXÞ �GA

pðXÞ: (6)

For the real scalar field theory one finds from the defini-
tions (1),

F�pðXÞ ¼ FpðXÞ; ~��pðXÞ ¼ �~�pðXÞ: (7)

Without loss of generality we write

FpðXÞ ¼ ðnpðXÞ þ 1
2Þ~�pðXÞ; (8)

which defines the function npðXÞ for any given FpðXÞ and
~�pðXÞ. We emphasize that without additional assumptions

(8) does not represent a fluctuation-dissipation relation,
which holds only if npðXÞ is replaced by a thermal distri-

bution function. We will not assume this in the following
and keep npðXÞ general at this stage. In particular, (7) then
implies the identity

n�pðXÞ ¼ �ðnpðXÞ þ 1Þ: (9)

Since we are interested in stationary behavior, we may
consider the dynamics employing a gradient expansion to
lowest order in the number of derivatives with respect to
the center coordinates X� and powers of the relative coor-
dinates s�. This is a standard procedure for the derivation
of kinetic equations from field theory, and for the spectral
function to lowest order one has [8,9]

2p� @

@X� ~�pðXÞ ¼ 0: (10)

For spatially homogeneous ensembles (10) implies a con-
stant ~�p that does not depend on time. In contrast, the

statistical function FpðtÞ to this order can depend on time

t � X0 and using (8) we can write

Z 1

0

dp0

2�
2p0 @

@t
FpðtÞ ¼

Z 1

0

dp0

2�
2p0 ~�p

@npðtÞ
@t

¼ C½n�ðt;pÞ: (11)

Here C½n� denotes the ‘‘gain’’ and ‘‘loss’’ terms, which
describe the effects of interactions to lowest order in the
gradient expansion. We will determine C½n� using pertur-
bation theory in Sec. II A, and in Sec. II B it will be
obtained from a resummed 1=N expansion to next-to-
leading order (NLO).

A. Weak wave-turbulence

In this section we review some relevant aspects of
perturbative Kolmogorov or weak wave-turbulence [10],
which will be used below for comparison with the non-
perturbative regime of strong turbulence. The free spectral
function is

~� 0
p ¼ 2�sgnðp0Þ�ððp0Þ2 �!2

pÞ (12)

for a relativistic scalar field theory with particle energy!p.

Plugging this into (11) gives

@npðtÞ
@t

¼ C½n�ðt;pÞ; (13)

where

npðtÞ �
Z 1

0

dp0

2�
2p0 ~�0

pnpðtÞ: (14)

For a compact notation we will frequently suppress the t
dependence and write np. In kinetic theory, when two

particles scatter into two particles, the collision integral
on the right-hand side (RHS) of (13) is of the form

C2$2ðpÞ ¼
Z

d�2$2ðp; l;q; rÞ½ð1þ npÞð1þ nlÞnqnr
� npnlð1þ nqÞð1þ nrÞ�; (15)

where the gain and loss terms in the integrand take into
account that for bosons there is an enhancement of the rate
if the final state is already occupied. The details of
the model enter

R
d�2$2ðp; l;q; rÞ, which for an

OðNÞ-symmetric scalar field with quartic �=ð4!NÞ interac-
tion reads [11]

Z
d�2$2ðp; l;q; rÞ

¼ �2 N þ 2

18N2

Z
lqr

ð2�Þdþ1�ðdÞðpþ l� q� rÞ

� �ð!p þ!l �!q �!rÞ 1

2!p2!l2!q2!r

(16)

with the notation
R
p � R

ddp=ð2�Þd. Using the approxi-

mation (15) with (16) for the collision integral on the RHS
of (13), one obtains the well-known Boltzmann
equation for a gas of relativistic particles. Clearly, this
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approximation cannot be used if the occupation numbers
per mode become large and, parametrically, for a weak
coupling � a necessary condition is np � 1=� [11]. In

Sec. II B we will discuss suitable approximations that are
valid also for nonperturbatively large occupation numbers.

Turbulence is expected for not too small occupation
numbers per mode such that quantum corrections can be
neglected. For a regime 1 � np � 1=� one may still use

the above Boltzmann equation, which becomes

@npðtÞ
@t

’
Z

d�2$2ðp; l;q; rÞ½ðnp þ nlÞnqnr
� npnlðnq þ nrÞ�: (17)

For the considered real scalar field theory the energy
density � is conserved. Since we restrict our discussion in
this section to number conserving 2 $ 2 scatterings also
the total particle number ntot is conserved, and

� ¼
Z
p
!pnp; ntot ¼

Z
p
np: (18)

The fact that they are conserved and interactions are suffi-
ciently local in momentum space1 may be described by a
continuity equation in Fourier space, such as

@

@t
ð!pnpÞ þ rp � jp ¼ 0 (19)

for energy conservation [10]. Similarly, particle number
conservation is described by formally replacing !p ! 1 in

the above equation and corresponding substitution of the
flux density. For isotropic ensembles we consider the en-
ergy flux AðkÞ through a momentum sphere of radius k.
Then only the radial component of the flux density jp is

nonvanishing and

Z k

p
rp � jp ¼

Z
@k
jp � dAp � ð2�ÞdAðkÞ: (20)

Since !p is constant in time, we can thus write with the

help of (19)

AðkÞ¼� 1

2d�d=2�ðd=2þ1Þ
Z k

dpjpjd�1!p

@npðtÞ
@t

: (21)

For stationary turbulence the flux AðkÞ is scale indepen-
dent, i.e. the respective integral does not depend on the
integration limit k. We consider scaling solutions

np ¼ s�wnsp; !p ¼ s�1!sp; (22)

with occupation number exponent �w and assuming a
linear dispersion relation. Since the physics is scale invari-
ant, we can choose s ¼ 1=jpj such that np ¼ jpj��wn1 and

!p ¼ jpj!1. Using the scaling properties (22) one obtains

from (16)

Z
d�2$2ðp; l;q; rÞ ¼ s��4

Z
d�2$2ðsp; sl; sq; srÞ: (23)

Here the scaling exponent �4 for the theory with quartic
self-interaction is given by

�4 ¼ ð3d� 4Þ � ðdþ 1Þ ¼ 2d� 5; (24)

where the first term in brackets comes from the scaling of
the measure and the second from energy-momentum con-
servation for two-to-two scattering described by (15).
Apart from the quartic self-interaction, it will be relevant
to consider also scattering in the presence of a nonvanish-
ing field expectation value such that an effective 3-vertex
appears [11]. In this case, one obtains along these lines

�3 ¼ ð2d� 3Þ � ðdþ 1Þ ¼ d� 4: (25)

To keep the discussion more general, we write for the
scaling properties of the flux for a given m-vertex

AðkÞ ¼ � 1

2d�d=2�ðd=2þ 1Þ
�

Z k
dpjpjd�1þ1��wðm�1Þþ�m!1

@n1
@t

: (26)

For m ¼ 4 this can be directly verified to agree to the two-
to-two scattering case with a 4-vertex using (17) and (24).
If the exponent in the integrand of (26) is nonvanishing, the
integral gives

AðkÞ � kdþ1��wðm�1Þþ�m

dþ 1� �wðm� 1Þ þ�m

!1

@n1
@t

: (27)

Scale invariance up to logarithmic corrections is, therefore,
obtained for

dþ 1� �wðm� 1Þ þ�m ¼ 0: (28)

This yields for the energy cascade

�w ¼m¼4
d� 4

3; �wm ¼ 3 ¼ d� 3
2: (29)

One observes that stationary turbulence requires the exis-
tence of the limit

lim
dþ1��wðm�1Þþ�m!0

@n1=@t

dþ 1� �wðm� 1Þ þ�m

¼ const � 0;

(30)

such that the collision integral must have a corresponding
zero of first degree. Similarly, starting from the continuity
equation for particle number one can study stationary
turbulence associated to particle number conservation.
For instance, for two-to-two scattering this leads to �w ¼
d� 5=3, and �w ¼ d� 2 for the case of interaction
through a 3-vertex.

1Strongly nonlocal contributions are suppressed by phase
space and energy-momentum conservation. The classical theory
requires, of course, an ultraviolet cutoff to regularize the
Rayleigh-Jeans divergence.
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B. Strong turbulence

The above perturbative description of stationary turbu-
lence becomes invalid at low momenta jpj, since the
occupation numbers np � jpj��w can grow nonperturba-

tively large in the infrared. This concerns positive values of
the scaling exponent �w given by (29), which is the case for
the dimensions d ¼ 3 and 4 to be considered below. To
understand where the picture of weak wave-turbulence
breaks down and to compute the properties of the infrared
regime, we have to consider nonperturbative approxima-
tions. In this section we consider the expansion of the two-
particle irreducible (2PI) effective action in the number of
field components to NLO to get analytical insight [12]. We
extend the discussions of Refs. [2,7] by showing that a

conserved effective particle number characterizes strongly
modified scaling properties in the nonperturbative low-
momentum regime.
At NLO in the 2PI 1=N expansion the evolution Eq. (11)

for

neffðt;pÞ �
Z 1

0

dp0

2�
2p0 ~�pnpðtÞ (31)

reads

@neffðt;pÞ
@t

¼ CNLO½n�ðt;pÞ: (32)

Here the NLO contribution [12] can be written as

CNLOðpÞ ¼
Z

d�2$2ðp; l; q; rÞ½ð1þ npÞð1þ nlÞnqnr � npnlð1þ nqÞð1þ nrÞ�

þ
Z

d�1$3
ðaÞ ðp; l; q; rÞ½ð1þ npÞð1þ nlÞð1þ nqÞnr � npnlnqð1þ nrÞ�

þ
Z

d�1$3
ðbÞ ðp; l; q; rÞ½ð1þ npÞnlnqnr � npð1þ nlÞð1þ nqÞð1þ nrÞ�

þ
Z

d�0$4ðp; l; q; rÞ½ð1þ npÞð1þ nlÞð1þ nqÞð1þ nrÞ � npnlnqnr�; (33)

where we consider the case of a vanishing macroscopic field, i.e. h�i ¼ 0, relevant for the infrared regime [2]. Again we
suppress in the notation the time dependence. Here

Z
d�2$2ðp;l;q;rÞ¼ �

18N

Z 1

0

dp0dl0dq0dr0

ð2�Þ4�ðdþ1Þ
Z
lqr

�ðdþ1Þðpþ l�q�rÞ~�p ~�l ~�q ~�r½�effðpþ lÞþ�effðp�qÞþ�effðp�rÞ�;
Z
d�1$3

ðaÞ ðp;l;q;rÞ¼ �

18N

Z 1

0

dp0dl0dq0dr0

ð2�Þ4�ðdþ1Þ
Z
lqr

�ðdþ1Þðpþ lþq�rÞ~�p ~�l ~�q ~�r½�effðpþ lÞþ�effðpþqÞþ�effðp�rÞ�;
Z
d�1$3

ðbÞ ðp;l;q;rÞ¼ �

18N

Z 1

0

dp0dl0dq0dr0

ð2�Þ4�ðdþ1Þ
Z
lqr

�ðdþ1Þðp� l�q�rÞ~�p ~�l ~�q ~�r�effðp� lÞ;
Z
d�0$4ðp;l;q;rÞ¼ �

18N

Z 1

0

dp0dl0dq0dr0

ð2�Þ4�ðdþ1Þ
Z
lqr

�ðdþ1Þðpþ lþqþrÞ~�p ~�l ~�q ~�r�effðpþ lÞ: (34)

In contrast to (16), the above expressions still contain the
integrations over frequencies and spectral functions. We
emphasize that the latter are, in general, not of the free field
form (12) in the nonperturbative regime. No quasiparticle
assumptions has been employed and the only approxima-
tions are the 1=N expansion to NLO and the gradient
expansion underlying (11).

The effective momentum-dependent ‘‘coupling’’ �effðpÞ
appearing at NLO in the 2PI 1=N expansion is given by
[2,7]

�effðpÞ ¼ �

j1þ�RðpÞj2 ; (35)

which involves the squared absolute value j1þ�RðpÞj2 ¼
½1þ�RðpÞ�½1þ�AðpÞ� of the retarded or advanced
self-energy

�R;AðpÞ ¼ �

3

Z
q

�
np�q þ 1

2

�
~�p�qG

R;A
q : (36)

One observes that for sufficiently large p, for which
�R;AðpÞ � 1, the effective coupling (35) approaches �.
In this case the ‘‘2 $ 2’’ contribution of the first line in
(33) is reminiscent of the two-to-two scattering process
described by the perturbative expression presented in (15).
The main difference is that the latter assumes a �-like
spectral function such that all momenta are on shell.
Therefore, in the perturbative expression (15) off-shell
processes involving the decay of one into three particles
or corresponding 3 ! 1 annihilation processes or even
0 $ 4 processes are absent. They can occur in principle
at NLO in the 2PI 1=N expansion, which leads to
the different terms contributing to the RHS of (33). At
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sufficiently high momenta these off-shell contributions
should be suppressed along with quantum-statistical cor-
rections such that the spectral function approaches a �-like
behavior. In this case we would recover stationary turbu-
lence characterized by a weak scaling exponent �w de-
scribed above. In contrast, in the infrared �effðpÞ may have
a nontrivial momentum dependence, which is discussed in
the following.

Following similar lines as in Sec. II A, we look for
scaling solutions where np � 1 such that (33) can be

approximated by its classical-statistical limit

CNLO
cl ðpÞ¼

Z
d�2$2ðp;l;q;rÞ½ðnpþnlÞnqnr�npnlðnqþnrÞ�

þ
Z
d�1$3

ðaÞ ðp;l;q;rÞ½ðnpþnlÞnqnr�npnlðnq�nrÞ�

þ
Z
d�1$3

ðbÞ ðp;l;q;rÞ½ð�npþnlÞnqnr�npnlðnqþnrÞ�

þ
Z
d�0$4ðp;l;q;rÞ½ðnpþnlÞnqnrþnpnlðnqþnrÞ�:

(37)

Again, only the first term above is reminiscent of the
perturbative expression in (17). In principle, nonperturba-
tive scaling phenomena may involve an anomalous scaling
exponent for ~�p � ~�ðp0;pÞ. Using isotropy we write

following Ref. [7]

~�ðp0;pÞ ¼ s2�� ~�ðszp0; spÞ; (38)

with a nonequilibrium ‘‘anomalous dimension’’ �. A dy-
namical scaling exponent z is taken into account since only
spatial momenta are related by rotational symmetry and
frequencies may scale differently because of the presence
of (non-)thermal corrections. The scaling behavior of the
statistical correlation function

Fðp0;pÞ ¼ s2þ�sFðszp0; spÞ (39)

then translates with (8) for np � 1 into

nðp0;pÞ ¼ s�sþ�nðszp0; spÞ: (40)

With this one can determine the scaling behavior of
�effðpÞ. From (36) follows

�R;Aðp0;pÞ ¼ s��R;Aðszp0; spÞ (41)

with

� ¼ 4� d� zþ �s � �: (42)

If �> 0 one finds from (35), the infrared scaling behavior

�effðp0;pÞ ¼ s�2��effðszp0; spÞ: (43)

For � 	 0 the effective coupling becomes trivial with
�effðpÞ ’ �, on which we comment below. Using these
scaling properties one obtains from (34)

Z
d�2$2ðp; l; q; rÞ ¼ s�2�s�z�2�

�
Z

d�2$2ðszp0; szl0; szq0; szr0; sp; sl; sq; srÞ (44)

and the same scaling behavior for
R
d�1$3

ðaÞ ðp; l; q; rÞ,R
d�1$3

ðbÞ ðp; l; q; rÞ and R
d�0$4ðp; l; q; rÞ.

Similar to Sec. II A, for any conserved quantity we can
compute the flux through a momentum sphere k. Stationary
turbulence solutions then require that the respective inte-
gral does not depend on k. Obviously, energy is conserved.
The highly nontrivial question is whether a conserved
effective particle number exists since there is no conserved
charge associated to particle number in the real scalar field
theory. Off-shell processes included in (37), such as 1 $ 3
processes, make this manifest. In the following, we analyze
whether the effective particle number neffðt;pÞ given by
(31) represents a conserved quantity for the nonperturba-
tive low-momentum regime. Similar to (21), the flux for
this effective particle number now reads

AeffðkÞ ¼ � 1

2d�d=2�ðd=2þ 1Þ
Z k

dpjpjd�1 @neffðt;pÞ
@t

:

(45)

The momentum integral can be evaluated along the lines of
Sec. II A using the above scaling properties with

@neffðt;pÞ
@t

¼ jpj��sþz�� @neffðt; 1Þ
@t

; (46)

such that

AeffðkÞ � kd��sþz��

d� �s þ z� �

@neffðt; 1Þ
@t

(47)

if the exponent in the integrand is nonvanishing. Scale
invariance up to logarithmic corrections may, therefore,
be obtained in the nonperturbative low-momentum regime
for

�s ¼ dþ z� �: (48)

This scaling solution is associated to a conserved neffðt;pÞ
for sufficiently low-momentum p.2 Similarly, for the scal-
ing solution associated to conserved energy one finds,
taking into account an additional power of p0, the exponent
�s ¼ dþ 2z� � in accordance with Ref. [7].
The above discussion shows that in the presence of a

conserved neffðt;pÞ there is a strongly modified infrared
scaling behavior as compared to perturbative treatments. In
particular, (48) predicts a characteristic dependence on
the dimensionality of space d and no dependence on the

2References [2,7] assume that the 1 $ 3 and 0 $ 4 contribu-
tions in (37) vanish to obtain the solution (48). See also the
discussion of this point in Ref. [4]. We note that the momentum
integral over neffðpÞ can be strongly infrared divergent for the
discussed scaling solutions and requires an infrared cutoff.
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number N of field components. For the following compari-
son of these analytical results with simulations, we note
that stationary scaling solutions of the effective particle
number (31) scale as

neffðpÞ ¼ s2þ�s�2zneffðspÞ (49)

using (38) and (40).

III. LATTICE SIMULATIONS

In this section we solve the evolution equations for our
theory in the classical-statistical limit using simulations on
a lattice. Varying the dimensionality of space d and the
number of field components N, we will then compare
the numerical results with the analytical estimates (48) in
the infrared and (29) for high momenta.

The field equation of motion for the classical
N-component scalar field theory reads with 1 	 a 	 N:

€’ aðt;xÞ ¼ ð4�m2Þ’aðt;xÞ � �

6N

� XN
b¼1

’bðt;xÞ’bðt;xÞ’aðt;xÞ: (50)

For the numerical implementation of the above equation
the leap-frog discretization is used on a cubic space-time
lattice in three and four spatial dimensions. The initial
conditions are chosen such that the system will evolve
closely to nonthermal scaling solutions. To achieve this
one can start with a nonequilibrium instability, such that
low-momentum modes get highly populated [2]. Such
instabilities are, for example, the tachyonic instability or
the parametric resonance instability, which also have cos-
mological relevance as models for reheating [13–15]. In
this study we use initial conditions triggering parametric
resonance: the space average of the field has a nonzero
initial value h’1ðt ¼ 0Þi ¼ 	0 while h’aðt ¼ 0Þi ¼ 0 for
1< a 	 N. The nonzero momentum modes are initialized
with a small amplitude white noise3 to provide a seed for
unstable modes. The results are then averaged over differ-
ent realizations of the initial noise distribution.

Our main observable, the momentum-dependent particle
number is defined by

nclðt;pÞ ¼ 1

N

XN
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj _’aðt;pÞj2ihj’aðt;pÞj2i

q
; (51)

where ’aðt;pÞ is the spatial Fourier transform of the field

in d dimensions, i.e. ’aðt;pÞ ¼ 1=
ffiffiffiffi
V

p R
ddx’aðt;xÞ�

expðipxÞ with the spatial volume V. Here the brackets
indicate an average over different runs of an ensemble.
For our purposes it is crucial that (51) has the same scaling

properties as the effective particle number defined in (31)
from correlation functions in the corresponding quantum
theory, i.e. for stationary scaling solutions one has nclðpÞ ¼
s2þ�s�2znclðspÞ as in (49).
Figure 1 shows the particle number spectrum for a three

dimensional simulation using a 1923 lattice with � ¼ 24,
m2 ¼ 0 andN ¼ 4. The infrared modes exhibit a slow time
evolution, whereas higher-momentummodes seem to settle
much more quickly. For the final plotted time 	0t ¼
184 000 one observes two separate regions with clear
power laws. For high momenta the scaling exponent �w ’
1:5 agrees well with the analytic prediction (29) for
Kolmogorov turbulence in three space dimensions as ex-
pected [10]. As the occupation number per mode grows
towards lower momenta, the perturbative approximation
breaks down for the description of the infrared modes.
Accordingly, one observes a strongly modified power
law. Assuming z ¼ 1 for the relativistic theory and
� ¼ 0, which is the case also at high momenta, the ob-
served value �s ’ 4 agrees well with the estimate (48) in
accordance with the results of Ref. [2].4

A crucial test for the interpretation of these results in
terms of the analytic estimates of Secs. II A and II B is their
predicted characteristic momentum dependence. In Fig. 2
we show the particle number spectrum for simulations in
d ¼ 4 for different initial conditions and coupling values.
The upper graph indeed shows a low-momentum scaling
exponent �s ’ 5 as well as a high-momentum scaling
exponent �w ’ 2:5, which are in remarkable agreement
with the predicted values (48) for z ¼ 1 and � ¼ 0 as
well as (29). The lower graph shows results for a much
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FIG. 1 (color online). The particle number spectrum of the
d ¼ 3 simulation for different times in units of the initial field
amplitude 	0.

3Its spectral composition is not important as long as the
amplitude is small.

4We note that the same scaling is observed also for m2 < 0,
which corresponds to spinodal or tachyonic preheating
dynamics.
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higher energy density in lattice units aLat. While the low-
momentum scaling behavior is insensitive to these
changes, only the upper graph shows the perturbative
Kolmogorov scaling at high momenta. In particular, the
observed high-momentum behavior is closer to the classi-
cal thermal exponent value of one, rather than to the
Kolmogorov exponent for d ¼ 4.

We have seen that, in particular, the strong turbulence
regime is very insensitive to details of the underlying
theory such as couplings or initial conditions. It remains
to see whether there is a dependence of the scaling behav-
ior on the number of field componentsN. In Fig. 3 we show
results from simulations using N ¼ 10 fields in three di-
mensions. Again the exponents follow very closely the

analytic estimates for z ¼ 1 and � ¼ 0. This indicates
that the universality class for the turbulent scaling expo-
nents does not depend onN in accordance with the analytic
estimates.

IV. CONCLUSIONS

Stationary turbulence is associated to conserved quanti-
ties. We have demonstrated that the nonperturbative
scaling solution first observed in Ref. [2] can be associated
to a conserved effective particle number for the low-
momentum regime. The strong turbulence solution pre-
dicts a characteristic dependence on the dimensionality
of space. Our classical-statistical lattice simulations pro-
vide a striking confirmation of this dependence for three
and four dimensions. In particular, we see no indications
for a dependence on the number of field components N.
This strongly suggests that the universal behavior associ-
ated to the conserved effective particle number indeed only
depends on the dimensionality of space and the value of the
dynamic scaling exponent z ¼ 1 for relativistic dynamics
with zero anomalous dimension.
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