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The same complex matrix model calculates both tachyon scattering for the c ¼ 1 noncritical string at

the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry

inN ¼ 4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the

first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is

mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner

model, the correlation functions of the second model can be written as sums over discrete points in

subspaces of the moduli space of punctured Riemann surfaces.
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I. INTRODUCTION

In recent examples of gauge-gravity duality, Feynman
graphs of the gauge theory are lifted to open string dia-
grams whose world sheet holes are summed over, replacing
them with closed string insertions, to give a closed string
theory in a different background. Open-closed string dual-
ities like this, such as the three-dimensional Chern-Simons
to conifold duality [1,2] or the Kontsevich matrix model to
two-dimensional (2D) topological gravity duality [3,4],
have been categorized by Gopakumar as of the ‘‘F type’’
[5] because it is the faces of Feynman graphs which are
replaced by closed string insertions. On the other hand,
dualities such as that between four-dimensional (4D)
N ¼ 4 super Yang-Mills (SYM) and type IIB closed
string theory on AdS5 � S5 [6] are of the ‘‘V type’’ [5]
because it is the vertices of the Feynman diagrams, corre-
sponding to local operators and interaction vertices, which
are replaced by closed string insertions. All known open-
closed dualities are either of the F type or the V type [5].
The possibility was raised by Gopakumar [5] that for every
gauge-gravity duality the closed string theory has open
string duals of both types, related to each other by graph
duality. Topological gravity in 2D was given as an ex-
ample, with the theory of the V type being the double-
scaled Hermitian matrix model [7–9] and that of the F type
being the Kontsevich Hermitian matrix model [3]. Using
the proof of equivalence in [10], the graph duality can be
shown dynamically by integrating in and out different
fields, so that at different steps vertices are replaced by
faces and vice versa [5].

In this paper we show this open-open duality between a
complexmatrix model of the V type called the Zmodel and
another complex matrix model of the F type called the F
model. The Z model is known to calculate certain correla-
tion functions of half-BPS operators in N ¼ 4 super
Yang-Mills as well as tachyon scattering amplitudes for
the c ¼ 1 string at the self-dual radius. The dual F model

provides a new Kontsevich-Penner matrix model for
these amplitudes and thus throws new light on how to write
them as integrals over the moduli space of Riemann
surfaces.
The Z model is

Z ðftg; f�tgÞ ¼
Z
½dZ�CN�Ne

�trðZZyÞþP1
k¼1

tk trðZkÞþP1
k¼1

tk trðZykÞ:

(1)

It has two infinite sets of couplings which are often called
times in the literature because of the relation with the �
function of the Toda integrable hierarchy.
From the 4D N ¼ 4 super Yang-Mills perspective, the

Z model is a generating function for certain correlation
functions of holomorphic and antiholomorphic half-BPS
operators built from a single complex scalar transforming
in the adjoint of the gauge group UðNÞ [11,12]. In ‘‘ex-
tremal’’ correlation functions, for which the antiholomor-
phic operators are all at the same spacetime position, the
spacetime dependence of the correlation function factors
out of the result; the Z model computes the remaining
combinatorial factor, which is an expansion in 1=N.1

Because local operators in N ¼ 4 super Yang-Mills (ver-
tices in the Z model) map to string (or supergravity in this
case) states, the Z model is of the V type.
In the guise of a normal matrix model [14] the Z model

is also a generating function for the correlation functions of
integer-momentum massless tachyons in the c ¼ 1 non-
critical string compactified at the self-dual radius. The
cosmological constant � of the c ¼ 1 string, which con-
trols the genus expansion, is related to the rank N of
the complex matrix by N ¼ �i�. In contrast to the
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1This combinatorial factor is unchanged if all the holomorphic
operators are also taken to the same spacetime position, so really
the Z model just generates the two-point function of multitrace
half-BPS states. This is like a metric on the multitrace states, cf.
the discussion in [13]. Note too that the extremal correlation
functions are known not to renormalize when the coupling is
nontrivial.

PHYSICAL REVIEW D 83, 085002 (2011)

1550-7998=2011=83(8)=085002(22) 085002-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.085002


double-scaled matrix quantum mechanics (MQM) for the
c ¼ 1 string,2 the Z model requires no scaling limit and
works at finite N. This is reflected in the fact that the
Zmodel is not a triangulation of the Riemann surface itself
but rather, through its dual, a triangulation of the moduli
space of punctured Riemann surfaces. This relation be-
tween the half-BPS sector of the AdS5 duality and the
c ¼ 1 string has been explored in [17,18] based on the
similarity of their MQM descriptions [19] and shown to
be exact at the self-dual radius in [20]. This connection is
in the spirit of the minimal ðp; 1Þ string embedding in the
AdS3 duality [21].

The map from tachyons T p with integer momentum p

to matrix variables is for k > 0

T k ! trðZkÞ; T �k ! trðZykÞ: (2)

The individual tachyon correlation functions are then

hT k1 � � �T kpT �k1
� � �T �kq

ic¼1

¼ htrðZk1Þ � � � trðZkpÞtrðZy �k1Þ � � � trðZy �kqÞi: (3)

On the right-hand side, the correlation function is taken
using the complex matrix model with Gaussian action
trðZZyÞ. It is computed by Wick contracting with the
propagator

hZe
fZ

yg
hi ¼ �e

h�
g
f: (4)

These correlation functions can be computed to all orders
in N using symmetric group techniques [13,19].

The dual F model is exactly the same function of ftg, f�tg

Z ðftg; f�tgÞ ¼
Z
½dF�Cn�ne

�trðFFyÞ�N tr logð1�A�1FB�1FyÞ

¼
Z
½dF�Cn�ne

�trðFFyÞþN
P1

k¼1
ð1=kÞtr½ðA�1FB�1FyÞk�:

(5)

The couplings ftg and f�tg are encoded in matrices A, B by a
Kontsevich-Miwa transformation

tk¼
Xn
i¼1

1

kaki
¼1

k
trA�k; �tk¼

Xn
j¼1

1

kbkj
¼1

k
trB�k: (6)

To expand Zðftg; f�tgÞ in these variables, compute correla-
tion functions with the even-valency vertices that appear in
(5) for k > 1 using the propagator from the matrix model

hFi
jF

yk
li ¼

�i
l�

k
j

ð1� Na�1
i b�1

j Þ : (7)

The color index for each face of the F model Feynman
diagrams comes with either an ai or a bj, so the couplings

ftg and f�tg are associated to faces of the F model. Thus, the
F model is of the F type.
Relations between Hermitian matrix models via graph

duality have appeared before in the literature, as have
complex matrix models similar to the F model (see for
example [22–31], also in connection with � functions
[32,33]). The F model is of the Kontsevich type because
the couplings are encoded and expanded similarly to the
Kontsevich model for topological gravity [3]. It is also of
the Penner type because the appearance of a logarithmic
term in the action is similar to the Penner model for the
virtual Euler characteristic of the moduli space of punc-
tured Riemann surfacesMg;n [34]. In fact, the Fmodel is a

complex matrix model analogue of the Hermitian
Kontsevich-Penner model studied by Chekhov and
Makeenko [35], which is dual to the Hermitian version of
the Zmodel (before the double-scaling limit) in exactly the
same way [5,35].
The most direct way to prove the duality between the Z

and Fmodels is by using character expansions, see Sec. IV.
Term by term it can be seen that the Feynman diagrams of
the different models are graph dual. In Sec. IVD it is
shown that the correlation functions are in fact sums over
Hurwitz numbers, which count holomorphic maps from the
world sheet to CP1 branched just 3 times. The valencies of
the vertices and faces specify the ramification profiles.
Further proof is given in Sec. II with the techniques used

in the 2D topological gravity case by Maldacena, Moore,
Seiberg, Shih [10], and Gopakumar [5], which involve
integrating fields in and out twice. In this method the graph
duality between the Z and F model can be seen ‘‘dynami-
cally,’’ as explained in Sec. III. Every Feynman diagram in
the original Zmatrix model corresponds to a diagram in the
Fmatrix model to which it is dual. This insight is crucial to
read off the correct terms that are identified in the different
models. In fact with the propagator (7), the Fmodel is only
sensitive to ‘‘skeleton’’ graphs of the Z model where
propagators running parallel between the same vertices
are bunched together into the same edge. These skeleton
graphs were introduced in [36] as part of Gopakumar’s
program to find the closed string duals of free gauge
theories [36–38].
An advantage of the F model is that its correlation

functions can be expressed directly as integrals over the
moduli space Mg;n of punctured Riemann surfaces, using

the example set by the Kontsevich model [3]. In the
Schwinger parameterization of the propagators, the
Schwinger lengths associated to each edge of each
Feynman graph provide coordinates on a cell decomposi-
tion of Mg;n. The integrals over the top-dimensional cells

in Mg;n require all vertices of the graphs to be trivalent.

The vertices of the F model have a minimum valency of 4,
which means that the correlation functions can only come
from lower-dimensional cells in the moduli space.
Furthermore, following the analysis of the Hermitian2See [15,16] for reviews and references therein.
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Kontsevich-Penner model in [39], the integral localizes on
discrete points in these subspaces, see Sec. V.

Despite the fact that the Z model needs no double-
scaling limit for its identification with the c ¼ 1 string, it
is still possible to take one. From the N ¼ 4 perspective,
it is the Berenstein-Maldacena-Nastase (BMN) limit [40]
and it limits the F model to only 4-valent vertices, see
Sec. IVC. The meaning of this limit for the c ¼ 1 string is
unclear. Rewriting the correlation functions of the Z=F
model in terms of Hurwitz numbers in Sec. IVD, this limit
involves restricting to a special class of Hurwitz numbers
called double Hurwitz numbers, with arbitrary branching
profiles at two points and simple branchings elsewhere.

Another topological matrix model for the c ¼ 1, R ¼ 1
string is theW1 model of [41,42], reviewed in [43], where
just the positive momentum tachyon couplings are rear-
ranged in this way

Z ðftg; f�tgÞ ¼
Z
½dM�HN�Ne

trð�MþP1
k¼1

�tkðMA�1ÞkÞ: (8)

The integral is over a Hermitian matrix M. The relation of
the Zmodel to thisW1 model was explained by Mukherjee
and Mukhi in [44]; a direct transformation of the W1
model into the F model is shown in Appendix C.

II. PROOF OF DUALITY USING INTEGRATION
IN-OUT-IN-OUT

In this section the duality between the Z and F models is
proved using the techniques of [5,10] by integrating in and
out different fields. This makes the graph duality of the
models manifest, as is explained in the next section.

The partition function for the Z model is

Z ðftg; f�tgÞ ¼
Z
½dZ�CN�Ne

�trðZZyÞþP1
k¼1

tk trðZkÞþP1
k¼1

�tk trðZykÞ:

(9)

This model is the same as the model II for the c ¼ 1 string
at the self-dual radius R ¼ 1 with N ¼ � � �i� in [14].
Although the integration in [14] is over a normal matrix
with the condition ½Z; Zy� ¼ 0 enforced, with this action
for R ¼ 1 both the complex and normal matrix model are
the same.3 The tachyon scattering matrix agrees with older
results calculated in the literature [46].

Substitute the tk and �tk for two diagonal n� n matrices
A and B, with eigenvalues ai and bj respectively, using the

Kontsevich-Miwa transformation

tk ¼ 1

k
trA�k ¼ Xn

i¼1

1

kaki
; �tk ¼ 1

k
trB�k ¼ Xn

j¼1

1

kbkj
:

(10)

For the tk to be independent whenever the trðZkÞ are, we
need n � N and similarly for the �tk.
The exponentiated trðZkÞ operators can be written as

inverse determinants provided the ai are sufficiently large
(to avoid convergence issues)

exp

�X1
k¼1

tk trðZkÞ
�
¼ exp

�X1
k¼1

Xn
i¼1

1

kaki
trðZkÞ

�

¼ exp

�
�Xn

i¼1

tr log

�
1� Z

ai

��

¼ Yn
i¼1

�
det

�
1� Z

ai

���1
: (11)

[In the 2D topological gravity case the determinants in
the double-scaled Hermitian matrix model correspond to
exponentiated macroscopic loop operators for Fateev-
Zamolodchikov-Zamolodchikov-Teschner (FZZT) branes
[47]

tr logðai �MÞ ¼
Z dl

l
tre�lðai�MÞ: (12)

Each of the n FZZT branes has boundary cosmological
constant ai. There is no clear such interpretation of the
determinants as wave functions of FZZT branes here, and
in fact the more natural extension of [10] would be to
investigate macroscopic loops in the MQM, cf. [48]. The
fact that we have inverse determinants in the c ¼ 1 case
(also present in the study of the normal matrix model in
[44]) also differs from [10] and alters the statistics for the
fields that we integrate in later, which in the c < 1 case are
fermionic strings stretching between the ZZ [49] and FZZT
branes.4 From the 4D N ¼ 4 SYM perspective, these
determinants [more clearly expanded in Eq. (48)] are in-
terpreted as giant graviton branes in the bulk [19,50].]
Using (11), the Z model partition function is now

Zðftg; f�tgÞ ¼
Z
½dZ�CN�Ne

�trðZZyÞþP1
k¼1

tk trðZkÞþP1
k¼1

�tk trðZykÞ

¼ detðAÞN detðBÞN
�Yn
i¼1

1

detðai � ZÞ

�Yn
j¼1

1

detðbj � ZyÞ
�
: (13)

3A normal matrix can be decomposed into a unitary matrix U
and a diagonal matrix of its complex eigenvalues D, ZN ¼
UDUy. This is not true for a complex matrix, for which we
have Z ¼ UðDþ RÞUy where R is strictly upper triangular [45].
It can be checked that in the action (9) R completely decouples,
and since the measure onU andD is the same, the normal matrix
model is equivalent to the complex matrix model with this
action. See Eq. (C4) in Appendix C for an alternative way to
decompose a complex matrix.

4Note that if we had chosen to include a minus sign in the
identification (10) we would have had normal determinants here
and fermions integrated in later. The choice of sign is left to a
physical interpretation in the future.
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The correlation function is taken with the Gaussian action
trðZZyÞ, as will always be the case for the Z model.

Writing the products of determinants using single deter-
minants of larger nN � nN matrices, we can write them as
integrals over two sets of complex bosonic fields5�

1

detðA � IN � In � ZÞ
1

detðB � IN � In � ZyÞ
�

¼
Z
½dZ�CN�N½dC�CN�n

� ½dD�CN�ne
�tr½ZZyþCyðA�IN�In�ZÞCþDyðB�IN�In�ZyÞD�:

(14)

Cei and Dej are bifundamental fields with e ¼ 1; . . .N and

i; j ¼ 1; . . . n. Again because we have inverse determinants
this contrasts to the minimal string case, in which one must
integrate in fermions rather than bosons.

Next integrate out the Z field, after rewriting (14)
appropriatelyZ

½dZ�½dC�½dD�e�tr½ðZ�DDyÞðZy�CCyÞ�CCyDDyþCyACþDyBD�

¼
Z
½dC�½dD�e�trðCyACþDyBD�CCyDDyÞ: (15)

This is the C, D matrix model. The quartic vertex is

CCyDDy ¼ CeiC
y
fiDfjD

y
ej. It has propagators

hCei1C
y
fi2
i ¼ �ef�i1i2

ai1
; hDej1D

y
fj2

i ¼ �ef�j1j2

bj1
: (16)

The C, D model can also be expanded as a function of the
couplings ftg, f�tg, see Appendix B.
Next we integrate back in an n� n complex matrix Fi

j

being careful with the indices

Z
½dC�½dD�e�Cy

ei1
Ai1i2

Cei2
�Dy

ej1
Bj1j2

Dej2
þCeiD

y
ejDfjC

y
fi

¼
Z
½dF�Cn�n½dC�½dD�e�ðFi

j�CeiD
y
ejÞðFyj

i �DfjC
y
fi
ÞþCeiD

y
ejDfjC

y
fi
�Cy

ei1
Ai1i2

Cei2
�Dy

ej1
Bj1j2

Dej2

¼
Z
½dF�Cn�n½dC�½dD�e�trðFFy�DyFyC�CyFDþCyACþDyBDÞ: (17)

To integrate out C and D write them together as a single
N � 2n field so that the cubic terms become

ðCy Dy Þ A �F
�Fy B

� �
C
D

� �
: (18)

The result is an inverse determinant of an ½N � 2n� �
½N � 2n� matrix

Z
½dF�

�
det

�
A �F

�Fy B

� �
� IN

���1
e�trðFFyÞ

¼
Z
½dF�

�
det

A �F
�Fy B

� ���N
e�trðFFyÞ:

Now write the determinant in terms of a product of
matrices

det
A �F

�Fy B

 !
¼det

0
@ A 0

0 B

 !
1 �A�1F

�B�1Fy 1

 !1A
¼detðAÞdetðBÞdet 1 �A�1F

�B�1Fy 1

 !
:

(19)

The constant terms detðAÞ�N detðBÞ�N cancel those in (13),
so we get

Z ðftg; f�tgÞ ¼
Z
½dF�e

�trðFFyÞ�N tr log

�
1 �A�1F

�B�1Fy 1

�
:

(20)

Expanding the logarithm for large A, B, just as we did
in (11), we find

Zðftg;f�tgÞ

¼
Z
½dF�Cn�ne

�trðFFyÞþN
P1

k¼1
ð1=kÞtr

"�
0 A�1F

B�1Fy 0

�
k
#

¼
Z
½dF�Cn�ne

�trðFFyÞþN
P1

k¼1
ð1=kÞtr½ðA�1FB�1FyÞk�: (21)

This is the F model introduced in Eq. (5). To extract the
propagator study the quadratic term

Fi
jð�l

i�
j
k � NðA�1ÞliðB�1ÞjkÞFyk

l: (22)

Using ðA�1Þli ¼ a�1
i �l

i, the propagator is

hFi
jF

yk
l i ¼ �i

l�
k
j

ð1� Na�1
i b�1

j Þ : (23)

Alternatively, we could have taken the plain quadratic
term trðFFyÞ with plain propagator

5This type of identity for the determinants only works with the
determinant of a Hermitian matrix. We extend it to our case by
noting that the Z model only depends on the eigenvalues of Z
and since they are complex we can extend the identity by
analytic continuation.
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hFi
jF

yk
l iplain ¼ �i

l�
k
j (24)

and treated the k ¼ 1 term NtrðA�1FB�1FyÞ from (21) as
an additional interaction vertex. The propagator (23) is
then a sum over an arbitrary number of intervening such
2-valent vertices

X1
p¼0

Np

p!
hFi

j½trðA�1FB�1FyÞ�pFyk
liplain

¼ X1
p¼0

ðNa�1
i b�1

j Þp�i
l�

k
j ¼

�i
l�

k
j

ð1� Na�1
i b�1

j Þ : (25)

This is an important issue for the interpretation of the graph
duality in Sec. III, since these 2-valent vertices are exactly
those which are dual to the faces bounded by parallel
propagators between the same vertices, see Fig. 7.
Bunching such parallel propagators into a single edge,
reducing the Feynman diagram to a skeleton graph, re-
moves such 2-valent vertices from the dual graph. This
works because the propagator (23) sums over all possible Z
diagrams with the same skeleton graph. These interpreta-
tional issues are also crucial to understand the dual of the
planar two-point function of the Z model and the character
expansion to which we turn in Sec. IV.

It will often be useful for calculations to rescale the F

model F ! ffiffiffiffi
A

p
F

ffiffiffiffi
B

p
to get

Z ðftg; f�tgÞ ¼ ðdetAÞnðdetBÞn

�
Z
½dF�Cn�ne

�trðAFBFyÞþN
P1

k¼1
ð1=kÞtrðFFyÞk :

(26)

This model then has the propagator

hFi
jF

yk
liscaled ¼

�i
l�

k
j

aibj � N
: (27)

This form is useful for transferring the Hermitian
Kontsevich-Penner analysis of [39] to the F model in
Sec. V. Example F model correlation functions are com-
puted in Appendix A.

III. DYNAMICAL GRAPH DUALITY

In this section the duality between the Zmodel and the F
model is shown to work at the level of individual Feynman
diagrams. An explicit proof with formulae is provided in
Sec. IV.

Each graph of the Zmodel corresponds to a graph of the
F model which is dual to the original Z model graph. The
graph duality is shown ‘‘dynamically’’ in the sense that it is
split up into stages where we first replace the vertices of the
Z model by faces (integrating in C, D), then contract and

expand propagators in different channels (integrating out
Z and in F) and then finally replacing the faces of the
Z model by vertices of the F model (integrating out C, D).
This analysis completely mirrors the 2D topological grav-
ity analysis by Gopakumar [5].
We start with a correlation function such as (3) for the

Z matrix model with several holomorphic vertices trðZkÞ
and several antiholomorphic vertices trðZykÞ. Each pos-
sible Wick contraction with the propagator will give a
different Feynman graph. Because the only nontrivial
propagator is Z ! Zy and no vertices mix Z’s with Zy’s,
there can be no propagators connecting a vertex back to
itself. The Feynman diagram has a minimum genus surface
on which it can be drawn with no lines crossing.
Propagators that run parallel to each other between the
same pair of vertices will be referred to as ‘‘homotopic’’
and can be bunched together into a single edge. If we do
this for all possible propagators then we get what
Gopakumar named a skeleton graph [36]. For each corre-
lation function there may be several topologically distinct
skeleton graphs, each corresponding to a number of pos-
sibleWick contractions of the original correlation function.
Later in Sec. IV we will see that these distinct skeleton
graphs correspond to the cut-and-join operators of [13].
It should also be noted that some graphs, where there is

more than one single trace for both holomorphic and anti-
holomorphic operators, are disconnected; cf. the examples
in Appendix A 4.
When we integrate in the C, D matrices, a vertex like

trðZmÞ is replaced by a face of C’s and an antiholomorphic
vertex trðZymÞ is replaced by a face ofD’s, see Fig. 1. In the
figures the double lines of the Z are drawn with solid lines

FIG. 1. C, D integrated in.
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e ¼ 1; . . .N, while the bifundamental C’s involve both a
solid line and a dashed line for i ¼ 1; . . . n and the D’s a
solid line and a dotted line for j ¼ 1; . . . n. We get cubic
couplings CyZC and DyZyD from the action in (14).

We then integrate out Z, Zy. The Z ! Zy propagators
shrink to give graphs with the quartic vertex CCyDDy,
cf. Figure 2. This is the C,Dmatrix model from (15). It can
be expanded in its own right, see the examples in
Appendix B.

Integrating in the complex matrix F, the quartic vertex
CCyDDy expands in a different channel into an F ! Fy
propagator with the cubic couplings CyFD and DyFyC of
(17) at each end, cf. Fig. 3. In this way each propagator of
the Z model corresponds to a transverse propagator of the
F model via the quartic CCyDDy vertex.

Finally we integrate out C andD to get the dual graph in
terms of F, Fy for the F model (21). Each face involving a
solid line, corresponding to the original faces of the Z
model Feynman diagram, is replaced by an even-valency
F, Fy vertex ðFFyÞp, cf. Fig. 4. Faces to which only two
F ! Fy propagators connect become just a single F ! Fy
propagator. These faces correspond to the faces between
parallel homotopic propagators of the Z model, cf. Fig. 7.
Thus a bunch of parallel propagators from the Z model
become just a single F propagator in the dual graph; in
other words the Fmodel is sensitive only to the topology of
the skeleton graph.

We have thus seen that the correspondence between the
Z model and the F model corresponds to graph duality. A
vertex of the Z model becomes a face of the F model;
homotopically bunched propagators (edges) of the Zmodel
become a single propagator (edge) of the F model which is
perpendicular to the original Z ! Zy propagators; and
finally the faces of the Z model become even-valency
vertices of the F model.

An important constraining feature of the F model (21) is
that the faces of the graphs are always associated with
either A’s or B’s but never both. From the propagator in
(23) the ai is associated to one (dashed) index line, while
the bj is associated to the other (dotted) index line, cf. the

left part of Fig. 5. The vertices also preserve the ai and bj
associations, cf. the right part of Fig. 5. This is because the
faces correspond to vertices of the Z model where the A’s
map to trðZkÞ vertices and the B’s to trðZykÞ vertices. In
fact, because a Z model vertex can never have a self-
contraction, each edge of the F model has an A face on
one side and a B face on the other, reflected in the fact that
the double-line propagator for F has one dashed and one
dotted line.
A full example of this dynamical graph duality is given

for htrðZ2ÞtrðZÞtrðZy3Þi in Fig. 6.
To conclude this section we summarize the procedure

for seeing the duality from graphs:
(i) Starting from the Zmodel, expand the partition func-

tion in correlation functions of holomorphic and anti-
holomorphic operators. Each correlation function
corresponds to a sum of different topologically

FIG. 2. Z integrated out.

FIG. 3. F integrated in.

FIG. 4. C, D integrated out; note that you can have any even-
valency ðFFyÞp of F, Fy vertices.

FIG. 5. Associations of A with dashed faces and B with dotted
faces. On the left is the propagator and associated ai; bj. On the

right is an example 6-valent vertex tr½ðA�1FB�1FyÞ3�, also with
associated ai; bj.
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distinct skeleton graphs. Each skeleton graph corre-
sponds to a sum of topologically identical F model
Feynman diagrams, to which the skeleton graph is
dual.

(ii) Starting from the F model, expand the partition
function in correlation functions of the interaction
vertices. Each F correlation function splits into
classes of topologically identical Feynman dia-
grams. Each such class of Feynman diagrams is
dual to a family of topologically identical Z skeleton
graphs.

We will now give an alternative proof of this graph
duality using symmetric group techniques.

IV. CHARACTER EXPANSIONS

In this section we use symmetric group and representa-
tion theory techniques to expand both the Z and F models

and show that they are equal. The graph duality is revealed
in the character expansions of the models. In fact a more
general correspondence is proven

Zðftg;f�tg;fsgÞ
¼
Z
½dZ�CN�N

�e�trðS�ð1=2ÞZS�ð1=2ÞZyÞþP1
k¼1

tk trðZkÞþP1
k¼1

�tk trðZykÞ; (28)

¼ X
lðRÞ�N

jRj!�RðSÞ�RðA�1Þ�RðB�1Þ
dR

; (29)

¼
Z
½dF�Cn�ne

�trFFyþP1
k¼1

sk trðA�1FB�1FyÞk ; (30)

(a) (b)

(d) (c)

(e) (f)

FIG. 6. htrðZ2ÞtrðZÞtrðZy3Þi graph duality, step by step. Graph (a) is the original Z model double-line diagram with three vertices and
three propagators. In (b) C and D are integrated in, replacing the vertices of Z with faces of C and D. In (b) the Z propagators are
shrunk to give the quartic vertices CCyDDy of the C, D model. In (d) the quartic vertices are expanded in a different channel as
propagators of F. Figure part (e) is the same graph as (d), just redrawn on the sphere so that the outer solid line of (d) becomes the
inside central solid line of (e). In (f) C and D are integrated out; the faces of solid lines in (e) have been replaced by F=Fy vertices.
Now faces of (f) bounded by dashed lines are associated with A’s [corresponding to holomorphic vertices of (a)], while faces bounded
by dotted lines are associated with B’s [corresponding to the antiholomorphic vertices of (a)].
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/
Z
½dF�Cn�ne

�trðAFBFyÞþP1
k¼1

sk trðFFyÞk : (31)

In the first line the quadratic term of the Z model has been
modified with an N � N diagonal matrix S whose eigen-
values are S1 � � �SN . The propagator is now

hZe
fZ

yg
hi ¼ S1=2e S1=2f �e

h�
g
f: (32)

Each face of the Z model is bounded by 2k edges (the face

has valency 2k). Since each edge picks up a factor of S1=2

from the propagator, each 2k-valent face of the Z model
comes with a factor trðSkÞ. Each vertex of the Zmodel has a
coupling tk or �tk depending on whether it is holomorphic or
antiholomorphic. To recover the vanilla Z model of (1) set
S to be the identity matrix S ¼ IN .

In the second line the Z model has been expanded in
characters �R of the group UðNÞ whose representations R
are labeled by Young diagrams with at most N rows,
lðRÞ � N. jRj is the number of boxes in the Young diagram
and dR is the dimension of the symmetric group represen-
tation for the same Young diagram. If we set S ¼ IN here,
the character of S becomes the dimension of the UðNÞ
representation R, �RðINÞ ¼ dimNR. Note the symmetry of
the character expansion in the variables ftg, f�tg and fsg, as
encoded in the matrices A�1, B�1 and S.

In the third line this character expansion is equal to the F
model, which has been modified so that now each
2k-valent vertex is weighted with a coupling sk. This
coupling is related to the N � N matrix S by the
Kontsevich-Miwa transformation sk � 1

k trðSkÞ. If we set

S ¼ IN here, sk becomes sk ¼ 1
k trðIkNÞ ¼ N

k and we recover

the vanilla F model of (5).

In the fourth line the F model has been rescaled F !ffiffiffiffi
A

p
F

ffiffiffiffi
B

p
as in Eq. (26) to make the duality with the Z

model in (28) more transparent.
In the Z model each 2k-valent face picks up a coupling

sk from the propagator, while the k-valent vertices pick up
couplings tk or �tk. On the other hand, for the dual F model,
exactly the reverse happens: it is the 2k-valent vertices
which pick up the couplings sk, while the k-valent faces
pick up couplings tk or �tk from the propagator. Thus, the
addition of the matrix S and its associated couplings sk
allow us to follow the graph duality more clearly.

Similar Hermitian models where faces of their graph
expansions are weighted separately from the vertices have
been studied in [23–26] and indeed the F model and its
character expansion were mentioned in the review [27] as a
complex generalization.

A. Character expansion of the Z model

In this section the symmetric group techniques of
[13,19] are used to expand the Z model, which generates
the correlation functions computed in those papers.

The first step is to write each product of holomorphic
traces (often referred to as multitrace operators) using a

conjugacy class element of Sk where k is the sum of the
powers of Z. We write the conjugacy class as a partition
½�1; �2; � � ��p� of k so that k ¼ P

i�i � j�j.6 Each �i

corresponds to a �i cycle in Sk. In this way

tr ðZ�1ÞtrðZ�2Þ � � � trðZ�pÞ ¼ Ze1
e�ð1ÞZ

e2
e�ð2Þ � � �Zek

e�ðkÞ

� trð�Z�kÞ; (33)

where � is in the conjugacy class ½�1; �2; � � ��p�. For a
partition � of k (written � ‘ k), we write a representative
of the corresponding conjugacy class ½�� as �� 2 ½�� 	
Sk. In fact for these operators it does not matter which
representative we pick because all elements in the conju-
gacy class ½��, given by ��1��� for � 2 Sk, correspond

to the same multitrace operator (33). The size of the con-
jugacy class is

j½��j ¼ k!

jSymð½��Þj ¼
k!Q

k
p¼1 p

ipð�Þipð�Þ! : (34)

jSymð½��Þj is the size of the symmetry group Symð½��Þ of
the conjugacy class. Symð��Þ is the subgroup of Sk that

leaves �� invariant under conjugation: Symð��Þ ¼ f� 2
Skj����

�1 ¼ ��g. ipð�Þ is the number of parts of � of

length p. The factors in the denominator of (34) come from
the cyclic symmetry ffi Zp of the ipð�Þ cycles of length p

and the ipð�Þ! ways of exchanging them.

Summing over all permutations of theWick contractions
of the fields, the correlation functions of the vanilla Z
model (1) are an expansion in N where the power of N is
the number of faces of the Z model graph [19]

htrð��Z
y�kÞtrð��Z

�kÞi ¼ X
�2Sk

NCð������
�1Þ

¼ X
�;�2Sk

NCð�Þ�ð�������
�1Þ:

(35)

Cð�Þ is the number of cycles in the permutation � 2 Sk
(i.e. the number of parts of the corresponding partition).
The second equality is just a rewriting of the first with the
symmetric group delta function �ð�Þ. �ð�Þ is zero on all
elements of Sk except the group identity id, on which it is 1.
Since the operators only depend on the conjugacy of ��,

it is often useful to write them with sums over the entire
conjugacy class trð��Z

�kÞ ¼ 1
j½��j trð��Z

�kÞ, where

�� � X
�2½��	Sk

�: (36)

The sum over� 2 Sk in (35) can also be subdivided into
conjugacy classes

6Assume the parts of the partition are ordered �i � �iþ1 so
that the parts map to the row lengths of a Young diagram with k
boxes.
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X
�2Sk

NCð�Þ� ¼ X
	‘k

NCð½	�Þ�	: (37)

This element of the group algebra is often written in the
literature as

�k � N�k
X
	‘k

NCð½	�Þ�	 ¼ X
	‘k

1

NTð½	�Þ�	: (38)

We have used the identity Tð½	�Þ ¼ k� Cð½	�Þ, where
Tð½	�Þ is the minimum number of transpositions needed
to build an element in the conjugacy class ½	�.

The correlation function (35) can now be written as

htrð��Z
y�kÞtrð��Z

�kÞi ¼ k!Nk

j½��jj½��j�ð���k��Þ

¼ k!

j½��jj½��j
X
	‘k

NCð½	�Þ�ð���	��Þ:

(39)

Each summand in (39) now corresponds to topologically
different graphs. The partitions �; � label the different
holomorphic and antiholomorphic vertices, respectively.
The partition 	, on the other hand, labels the faces. Each
part 	i of the partition labels a face so that Cð½	�Þ is the
total number of faces and hence gives the power of N.
Putting a nontrivial matrix S into the Zmodel as in (28) the

factor NCð½	�Þ is refined as

NCð½	�Þ ! trð�	S
�kÞ ¼ Yk

p¼1

½trðSpÞ�ipð	Þ: (40)

ipð	Þ is the number of parts in 	 of length p. Each part of

length p corresponds to a 2p-valent face of the Z graph
bounded by 2p edges. The parts of length 1 correspond to
faces with only two edges; these are the faces between
propagators running parallel between two vertices, see the
left-hand diagram in Fig. 7. Bunching these parallel propa-
gators into single edges so that we get a skeleton graph that
corresponds to ignoring the parts of 	 of length 1. This
proves a conjecture in [13] that the different�	 correspond
to the different skeleton graphs if you ignore the parts of

length 1. The genus of the Feynman diagram can be read
off using the Euler characteristic with V ¼ Cð½��Þ þ
Cð½��Þ vertices, E ¼ k edges and F ¼ Cð½	�Þ faces

� ¼ 2� 2g ¼ V � Eþ F

¼ Cð½��Þ þ Cð½��Þ þ Cð½	�Þ � k: (41)

In [13] the �	 were called cut-and-join operators be-
cause they have an action on a multitrace operator
trð��Z

�kÞ that can split single traces into many traces or

join many into one. This action is simply left multiplication

�	: trð��Z
�kÞ ! trð�	��Z

�kÞ: (42)

For example, the conjugacy class of transpositions 	 ¼
½2; 1k�2� gives the cut-and-join operator�½2�. Acting on the
single-trace operator given by � ¼ ½k� splits it into all
possible double traces ½p; k� p�

�½2� trðZkÞ ¼ 1

j½k�j trð�½2��½k�Z�kÞ ¼ k

2

Xk�1

p¼1

trðZpÞtrðZk�pÞ:

(43)

Acting on a double trace with �½2� can also join it into a

single trace. Similar results follow when acting with more
general cut-and-join operators �	 on more general trace
structures. When writing partitions 	 for cut-and-join op-
erators we omit parts of length 1 so that in this example
	 ¼ ½2; 1k�2� ! ½2�. This omission of length-1 parts cor-
responds to only considering skeleton graphs, as discussed
above.7

Next we turn to the character expansion. The symmetric
group delta function in (39) can be expanded as a sum over
representations R of Sk, also indexed by partitions, in terms
of the characters �Rð�Þ of � in the representations R and
the Sk representation dimensions dR ¼ �RðidÞ. The iden-
tity is �ð�Þ ¼ 1

k!

P
R‘kdR�Rð�Þ. Using the fact that

FIG. 7. Replacement of 2-valent vertices of the F model with plain trðFFyÞ quadratic term (dashed lines), dual to faces bounded by
parallel propagators in the Z model (thin solid lines), by the propagator of the proper F model (23), which is dual to the parallel
propagators of the Z model bunched into an edge of the skeleton graph. [All propagators are drawn in a single-line notation here for
ease of reading.]

7In [13] it was useful to think of the correlation function (39)
as an inner product of trð��Z

y�kÞ with the result of �k acting on
trð��Z

�kÞ. The bra-ket notation of the inner product in [13] is
the same as the delta function here h�j�i ¼ k!

j½��jj½��j �ð����Þ ¼
jSymð½��Þj��¼�.
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dR�Rð���Þ ¼ �Rð�Þ�Rð��Þ, since �� is central in Sk,

and the relation between �k and the unitary group UðNÞ
dimension of the partition R, Nk�Rð�kÞ ¼ k!dimNR,

8 the
correlation function (39) has a character expansion

htrð��Z
y�kÞtrð��Z

�kÞi ¼ X
R‘k

k!�Rð��Þ�Rð��ÞdimNR

dR
:

(44)

This identity can also be seen by expanding the traces
in terms of UðNÞ characters trð��Z

�kÞ ¼ P
R‘k�

�Rð��Þ�RðZÞ, where the UðNÞ character �RðZÞ is itself

expanded in terms of traces �RðZÞ ¼ 1
k!

P
�2Sk

�
�Rð�Þtrð�Z�kÞ. The two-point function of these characters
�RðZÞ is diagonal [19]. Note that the dimension dimNR
vanishes if the number of parts lðRÞ of the partition R
exceeds N.

For general S as in (28) the correlation functions (39)
and (44) become

htrð��Z
y�kÞtrð��Z

�kÞi¼X
R‘k

X
	‘k

j½	�jtrð�	S
�kÞ

��Rð��Þ�Rð��Þ�Rð�	Þ
dR

; (45)

¼X
R‘k

k!�Rð��Þ�Rð��Þ�RðSÞ
dR

: (46)

Now we are in a position to expand the full Z partition
function. It is useful to collect the expansions of the
exponentials into multitrace operators indexed by parti-
tions � of k, so that the total number of Z fields in each
term is k. Using the Kontsevich-Miwa transformation (10)

e
P1

k¼1
tk trðZkÞ ¼ X1

k¼0

X
�‘k

Yk
p¼1

½tp trðZpÞ�ipð�Þ

ipð�Þ!

¼ X1
k¼0

X
�‘k

Yk
p¼1

½trðA�pÞtrðZpÞ�ipð�Þ

kipð�Þipð�Þ! : (47)

The denominator factors give the size of the conjugacy
class from (34) so

e
P1

k¼1
tk trðZkÞ ¼ X1

k¼0

X
�‘k

j½��j
k!

trð��ðA�1Þ�kÞtrð��Z
�kÞ

¼ X1
k¼0

X
R‘k

�RðA�1Þ�RðZÞ: (48)

The Z model partition function (28) becomes

Z ðftg; f�tgÞ ¼
�
e
P1

k¼1
�tk trðZykÞe

P1
k¼1

tktrðZkÞ
�

¼ X1
k¼0

X
�;�‘k

j½��j
k!

trð��ðA�1Þ�kÞ

� j½��j
k!

trð��ðB�1Þ�kÞ
� htrð��Z

y�kÞtrð��Z
�kÞi

¼ X1
k¼0

X
R‘k

k!�RðA�1Þ�RðB�1Þ�RðSÞ
dR

: (49)

Noting that �RðSÞ for an N � N matrix S vanishes if
lðRÞ>N, and since n � N this constraint takes prece-
dence over those coming from �RðA�1Þ and �RðB�1Þ,
this concludes the proof of (29).

B. Character expansion of the F model

A generalization of the Itzykson-Zuber integral [53] (see
for example [31]) can be used for the following integral for
the F model with plain quadratic term (24):

h�RðA�1FB�1FyÞiplain
¼
Z
½dF�Cn�ne

�trðFFyÞ�RðA�1FB�1FyÞ

¼ jRj!�RðA�1Þ�RðB�1Þ
dR

: (50)

For an F model correlation function the vertices are dic-
tated by a partition 	 of k, so that the ipð	Þ parts of 	 of

length p correspond to ipð	Þ 2p-valent vertices. Expanding
with the formula (50)

�Yk
p¼1

½trðA�1FB�1FyÞp�ipð	Þ
�
plain

¼ htrð�	ðA�1FB�1FyÞ�kÞiplain
¼ X

R‘k

k!�Rð�	Þ�RðA�1Þ�RðB�1Þ
dR

(51)

Expanding out the characters �RðA�1Þ and �RðB�1Þ as
multitraces gives

X
R‘k

X
�;�‘k

j½��jj½��j
k!

trð��ðA�1Þ�kÞtrð��ðB�1Þ�kÞ

� �Rð�	Þ�Rð��Þ�Rð��Þ
dR

: (52)

This expansion is important because we see how the faces
of the F model diagrams are controlled by the partitions �
and � that organize the couplings ftg and f�tg. Comparing
(52) to its Z model equivalent (45) and picking out the

8Characters of the cut-and-join operators �Rð��Þ roughly
correspond toUðNÞ Casimirs, cf. Sec. 2.7 of [13] and the original
references in [51,52].
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terms for particular face configurations in the respective
models

k!htrð�	ðA�1FB�1FyÞ�pÞiplain;�;�term

¼ htrð��Z
y�kÞtrð��Z

�kÞi	term
¼ X

R‘k

�Rð��Þ�Rð�	Þ�Rð��Þ
dR

¼ k!�ð���	��Þ: (53)

In other words, both models are doing nothing other than
computing the conjugacy class algebra of the symmetric
group.

If we use the corrected propagator (23), then there are no
2-valent vertices in the F model, corresponding to the fact
that all parallel propagators of the Z model are bunched
into single edges. Thus with the corrected propagator for
the F model the partitions 	 of vertices have no parts of
length 1, i1ð	Þ ¼ 0. To relate this to the above analysis
above define 	r ¼ 	þ ½1r� so that

k!htrð�	ðA�1FB�1FyÞ�kÞi

¼ k!
X1
r¼0

htrð�	rðA�1FB�1FyÞ�kþrÞiplain

¼ X1
r¼0

X
�;�‘kþr

trð��ðA�1Þ�kþrÞtrð��ðB�1Þ�kþrÞ

� htrð��Z
y�kþrÞtrð��Z

�kþrÞi�
	k
term:

Even if we fix the structure of �, �, 	 there are still an
infinite number of Z diagrams for every F diagram because
in the Z model we can have any number of bunched
parallel propagators at each edge, corresponding to adding
arbitrary numbers of 2-valent vertices to the plain Fmodel.

In the original vanilla Z model with S ¼ IN picking a
particular power of N in the expansion of the correlation
function (39) corresponds to fixing the genus of the

diagrams in the Z model expansion. Looking at the
expansion of �k in terms of cut-and-join operators �	

in Eq. (38), fixing the genus means we only consider
	 composed from a fixed number of transpositions
Tð½	�Þ ¼ p. The generic 	 with this property is ½2p�,
followed by cases where the transpositions blend into
longer cycles ½3; 2p�2�; ½4; 2p�3�; ½3; 3; 2p�4�, etc. For ex-
ample, ½2; 2� ! ½3� corresponds to the degenerate multi-
plication of two transpositions when they share an element
i to get a 3-cycle ðikÞðijÞ ¼ ðijkÞ.
In the Fmodel 	 ¼ ½2p�means p 4-valent vertices in the

graph. The other terms for fixed genus, such as ½3; 2p�2�,
correspond to vertices in the F model colliding to create
higher-valency vertices. For example the collision of two
4-valent vertices into a single 6-valency vertex for the dual
to the Z model torus two-point function in Fig. 9 is the
counterpart of ½2; 2� ! ½3�. The limit with only the generic
cut-and-join operator �½2p�, corresponding to having only

4-valent vertices in the F model, is discussed in Sec. IVC.
Note that the number of edges E in the Z or F model

diagram is given by a sum over the faces/vertices weighted
by their valency 2E ¼ P

k
p¼1 2pipð	Þ ¼

P
p¼1pðipð�Þ þ

ipð�ÞÞ. This is automatic since 	, � and � are each parti-

tions of E ¼ k.
Finally, to prove Eq. (30) for the full expansion of the

F model partition function expand the exponential using
(48). With couplings sk ¼ 1

k trðSkÞ to the 2k-valent vertices

Z
½dF�Cn�ne

�trðFFyÞþP1
k¼1

sk trðA�1FB�1FyÞk

¼ X1
k¼0

X
	‘k

j½	�j
k!

trð�	S
�kÞ

� htrð�	ðA�1FB�1FyÞ�kÞiplain
¼ X1

k¼0

X
R‘k

jRj!�RðSÞ�RðA�1Þ�RðB�1Þ
dR

: (54)

FIG. 8. Zmodel three-point function and two-point function on the sphere with bunched propagators. The dual graph is drawn with a
dashed line.
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C. A large k limit

It was shown in [13,54] that if you take a given corre-
lation function in the Z model and fix the genus, corre-
sponding to a particular power of N, then in the large k
limit of operators with many powers of Z the cut-and-join
operator �½2p� dominates [cf. the torus two-point function

in (A3)]

htrð��Z
y�kÞtrð��Z

�kÞiNk�p term

¼ k!Nk

j½��jj½��j
X

	: Tð½	�Þ¼p

1

Np �ð���	��Þ

!k!1 k!Nk�p

j½��jj½��j�ð���½2p���Þ: (55)

In other words, if we take the expansion of �k in cut-and-
join operators in Eq. (38) and take this limit for each
inverse power of N then the �½2p� term always dominates

as a function of k in the correlation functions at this genus

�k ¼
Xk
p¼0

1

Np

X
	: Tð	Þ¼p

�	 !k!1 X1
p¼0

1

Np �½2p�: (56)

For a fixed genus the terms we lose in this limit correspond
to the degenerate cases where transpositions collide to give
higher cycles. These degenerate cases appear with less
frequency so they are suppressed for large k.

Since in this large k limit �½2p� � 1
p! �

p
½2�,�k can be said

to exponentiate �k ! expð1N�½2�Þ. The sum over transpo-

sitions �½2� has a simple interpretation in terms of either

splitting or joining a trace. Geometrically this means that n

punctured genus g surfaces factorize into 3-punctured
spheres. See [13] for more details.
Here N has been treated as a bookkeeping device for the

genus. If we allow N to be a number, then the limit must be
taken delicately. Really we are taking the double-scaling

BMN limit k� N1=2 ! 1 [40] and expanding with the

nonplanar coupling g2 ¼ k2

N < 1, cf. [13]. If k grows faster

thanN1=2 then other terms become significant and spoil the
simple exponentiation �k ! expð1N�½2�Þ.
In terms of the F model, restricting to cut-and-join

operators of the form �½2p� means that we only have

4-vertices in the model. In terms of the couplings sk, we
are setting sk ¼ 0 for k � 3 and only retaining 4-vertices
s1 ¼ N, s2 ¼ N

2 . Diagrams involving higher-valency ver-

tices resulting from collisions of 4-vertices are dropped.
In the 2D topological gravity case the Hermitian matrix

model with couplings
P

k¼1tktrðMkÞ can also be rearranged
exactly into a Kontsevich-Penner model before taking the
double-scaling limit. This is the Chekhov-Makeenko
model [35] and is the Hermitian version of the complex
matrix model duality discussed here. The dual model has
vertices of all valency, including odd ones. Taking the
double-scaling limit eliminates all but the 3-valent terms,
giving the standard Kontsevich model.

D. Hurwitz theory for CP1 n f0;1g
The formulae for the correlation functions as sums over

cut-and-join operators (39) can be interpreted in terms of
Hurwitz numbers that count holomorphic maps from the
Riemann surface Sg on which a graph is drawn to the

sphere CP1 with three branch points. For a k-sheeted
covering of CP1 by a genus g surface with ramification
profiles �, � and 	 the number of coverings is

FIG. 9. The two different bunchings of propagators with no crossing for the Zmodel two-point function on the torus: three bunchings
from �½3� on the left and four bunchings from �½2;2� on the right. The dual graphs are drawn with dashed lines. The left dual graph can

be considered as a degenerate case of the right graph when the two vertices of the dual graph on the right collide.
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Covgkð�; 	;�Þ :¼ X
fð�;	;�Þ: Sg!CP1

1

jAutðfÞj

¼ 1

k!
�ð���	��Þ: (57)

The maps are counted up to automorphisms of the covering
map f: Sg ! CP1. The genus g for which this is non-

vanishing is given by the Riemann-Hurwitz theorem,
which relates the genus g of Sg to the branching numbers

at each branch point

2g� 2 ¼ �2kþ Tð½��Þ þ Tð½	�Þ þ Tð½��Þ: (58)

The branching number at each branch point is given by the
minimum number of transpositions needed to build the
conjugacy class corresponding to the partition.9 For our
case this formula is just a restatement of the Euler charac-
teristic formula (41).

So each correlation function is a sum over Hurwitz
numbers for maps to CP1 with three branch points

htrð��Z
y�kÞtrð��Z

�kÞi ¼ ðk!Þ2X
	‘k

NCð½	�ÞCovkð�; 	;�Þ:

(59)

There is a similar story for the Hermitian matrix model
[23,56]. The relation with the complex matrix model dis-
cussed here is simple: just replace one of the profiles �with

½2k=2� to account for the Hermitian matrix model propaga-
tor. There is then an identity that comes from setting
�tk ¼ �k2, known in the literature [23,31],

Zðftg;fsgÞ¼
Z
½dM�HN�Ne

�trðS�1MS�1MÞþP1
k¼1

tk trðMkÞ

¼
Z
½dZ�CN�Ne

�trðS�ð1=2ÞZS�ð1=2ÞZyÞþP1
k¼1

tk trðZkÞþtrðZy2Þ

¼
Z
½dF�CN�Ne

�trFFyþtrðA�1FSFyÞ2 : (60)

In the expansion of the Hermitian model in Feynman
diagrams, k-valent faces come with a coupling sk, while
k-valent vertices come with a coupling tk [23]. Graph
duality in this model [5] just exchanges ftg for fsg. The
identity with the Z model in the second line can be seen
directly since the trðZy2Þ term allows each propagator to
loop back to the holomorphic operator built out of Z’s,
which is then equivalent to the Hermitian matrix model
operator in the Hermitian correlation function. The differ-
ence in powers of S in the actions arises because there are
now two edges in the Z model for every edge in the
Hermitian model. The final line follows from the symmetry
in the character expansion (29); the identity between the

first and third line was proved in [23] using the same
techniques as used in Sec. II.10

Taking the limit described in Sec. IVC so that �	 !
�½2p� � 1

p! �
p
½2�, which for the F model means restricting to

only 4-valent vertices, the Hurwitz numbers become
double Hurwitz numbers. Double Hurwitz numbers have
two fixed branching profiles �;� for branch points at 0
and 1 and a remaining arbitrary number of simple branch
points (with profile [2]).11 In this limit the partition
function becomes the � function for the Toda lattice hier-
archy that appears in the Gromov-Witten theory of CP1

[58,59]12

Zðftg;f�tg;fsgÞ!X1
k¼0

X
�;�‘k

X1
p¼0

sk�2p
1 ð2s2Þp

k!p!
trð��ðA�1Þ�kÞ

� trð��ðB�1Þ�kÞ�ð���
p
½2���Þ

¼X1
k¼0

X
�;�‘k

X1
p¼0

sk�2p
1 ð2s2Þp

p!
trð��ðA�1Þ�kÞ

� trð��ðB�1Þ�kÞCovk
�
�;�;½2�;���½2�|fflfflfflfflffl{zfflfflfflfflffl}

p times

�
:

It should be possible to make this picture more precise:
the Z and F models compute relative Gromov-Witten
invariants for the topological A model on CP1 with two
points marked at 0 and1, cf. [60]. The holes in the Fworld
sheet corresponding to holomorphic Z operators wrap
around 0, while the holes corresponding to antiholomor-
phic Zy operators wrap around1. The parts of the cut-and-
join operator �	 then map to gravitational descendants
�	i

ðwÞ of the Kähler class w. The full details of this

correspondence require the technology of completed
cycles [60].
The appearance of CP1 n f0;1g is curious because of its

appearance both as an auxiliary curve for the normal
matrix model description of the c ¼ 1 string [14] and in
the topological B model setup for the c ¼ 1 string in [61].
The free energy of the c ¼ 1 string at the self-dual radius is
also known to agree with that for the topological A model
on the conifold resolved by a sphere in the limit where the
complexified Kähler class vanishes t ! 0 [2].

9There is a review of Hurwitz theory in [52]. The relation of
these cut-and-join operators and Hurwitz theory to integrable
hierarchies is summarized in [55].

10Holomorphic maps onto CP1 with just three branch points
are special. Belyi’s theorem [57] states that a nonsingular
Riemann surface is an algebraic curve defined over the algebraic
numbers �Q if and only if there is a holomorphic map of the
Riemann surface ontoCP1 with only three branch points. For the
Hermitian matrix model, where all the ramification orders over
one of the branch points are 2, the Belyi map is a special type
called ‘‘clean’’ [56].
11Single Hurwitz numbers occur when there is no branching at
the second point, i.e. � ¼ ½1k�. The generating function for single
Hurwitz numbers is obtained from the Z model with �tk ¼ �k1.
12The map to the variables in [59] is p� ¼ trð��ðA�1Þ�kÞ,
p0
� ¼ trð��ðB�1Þ�kÞ, q ¼ s1, and 
 ¼ 2s2

s2
1

.
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V. THE F MODEL AND THE CELL
DECOMPOSITION OF Mg;n

The (Deligne-Mumford-compactified) moduli space
Mg;n of Riemann surfaces of genus g punctured n times

can be extended to the space of ‘‘ribbon’’ or ‘‘fat’’ graphs
by replacing each puncture with a boundary of length ‘i for
i ¼ 1; . . . n. This extended decorated moduli space
Mg;n � Rnþ has real dimension 6g� 6þ 3n. As discov-

ered in the works of Mumford, Thurston, Strebel [62],
Harer [63], Penner [34], and others, any point in this
moduli space can be obtained by considering connected
graphs with lengths assigned to each edge.

The Penner Hermitian matrix model [34]Z
½dQ�HetrðQÞþtr logð1�QÞ ¼

Z
½dQ�He�

P1
k¼2

ð1=kÞtrðQkÞ (61)

gives a cell decomposition of Mg;n � Rnþ. Each graph of

the Penner model with n faces and genus g corresponds to
one of the cells. The top-dimensional cells in Mg;n � Rnþ
are swept out by the lengths of the 6g� 6þ 3n edges of
the Feynman graphs with only 3-valent vertices. Lower-
dimensional cells in the cell decomposition arise when we
shrink an edge, colliding two vertices into a higher-valency
vertex. Because of the extra factor of �1 from the vertices
with each lowering of dimension, the Penner model calcu-
lates the virtual Euler characteristic of Mg;n. The symme-

try factors of the Feynman graphs account for the fact that
Mg;n is an orbifold space.

Konstevich [3] adapted the 3-valent version of this
model to give a generating function for the correlators of
2D topological gravity, which calculate intersection num-
bers on Mg;n [64]. The couplings tn to the operators are

encoded in a matrix Z by the transformation tk ¼ 1
k trðZ�kÞ.

This constant matrix modifies the quadratic term in the
Kontsevich matrix modelZ

½dM�Hetrð�ð1=2ÞZM2þð1=6ÞM3Þ: (62)

In the expansion of this partition function, each Feynman
graph with n faces and genus g can be written as an integral
over the corresponding top-dimensional cell in
Mg;n � Rnþ using the Schwinger parameterization of the

propagators

hMi
jM

k
l i ¼ �i

l�
k
j

2

zi þ zj
¼ 2�i

l�
k
j

Z 1

0
dpee

�peðziþzjÞ:

(63)

By integrating over the 6g� 6þ 3n lengths pe of the
edges of the graph the whole of the cell is covered.
Separating out the integral over the boundary lengths Rnþ
(which correspond to sums of the edges around each
boundary) one is left with an integral over Mg;n corre-

sponding to the closed string correlation function [3] (see
[38,65] for concise summaries).

The F model only has vertices of even valency, which
suggests that it localizes on lower-dimensional cells in the
complex for Mg;n � Rnþ. The maximal-dimensional cell

for the F model, corresponding to all vertices of valency 4,
has dimension 4g� 4þ 2n corresponding to the number
of edges in the diagrams. This localization on degenerate
subspaces of the moduli space was noticed in [66,67] when
considering extremal four-point functions in N ¼ 4
SYM.
Following the example of the Kontsevich-Penner

Hermitian model of Chekhov and Makeenko [35] we will
write each generic F model graph as an integral over a
discrete version of a lower-dimensional cell inMg;n � Rnþ
[39]. In the continuum limit the Chekhov-Makeenko model
reduces to the Kontsevich model. In the continuum limit of
the F model we get a 4-valent model which is the complex
analogue of the Kontsevich model.

With discretization parameter " rewrite A ¼ ffiffiffiffi
N

p
e"L and

B ¼ ffiffiffiffi
N

p
e"M, i.e. ai ¼

ffiffiffiffi
N

p
e"li and bj ¼

ffiffiffiffi
N

p
e"mj . The

propagator (27) of the rescaled F model (26) can then be
written as

1

aibj � N
¼ 1

Ne"lie"mj � N
¼ 1

N

X1
p¼1

e�p"ðliþmjÞ: (64)

The sum is a discrete Schwinger parameterization of the
edge length for the propagator. Each summand comes from
an edge of the F graph with integer length p", correspond-
ing to a different number p of bunched propagators in the
dual Z model graph, cf. (25).13 The integer length ‘ of
the boundary of each face is the valency of the vertex of the
dual Z model graph, or in other words the power of the
operator trðZ‘Þ or trðZy‘Þ.
For an Fmodel graph with V vertices, E edges and faces

corresponding to Z vertices labeled by f (and color index
if) and Zy faces labeled by g (and color index jg) the

contribution is

cNV
X

fifg;fjgg

Y
Eedges

1

aifbjg � N

¼ cNV�E
X

fifg;fjgg

Y
Eedges

1

e
"lif e"mjg � 1

¼ cNV�E
X

fifg;fjgg

YE
r¼1

X1
pr¼1

e
�"prðlifþmjg Þ: (65)

c is the symmetry factor for the graph. The discrete sums
for each of its E propagators give a sum over discrete
points in an E-dimensional cell ofMg;n � Rnþ. Each point
corresponds to a different Z model graph with different

13Such a discrete metric on the moduli space also appears for
the Hermitian matrix model in [68,69], where the integer lengths
also correspond to the number of bunched propagators between
the vertices.
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numbers of bunched propagators between each set of
vertices, given by the integers pr. A given Z model corre-
lation function gets contributions from a finite number of
graphs, so the closed string correlation function must lo-
calize on only a finite number of points in the moduli
space.

The propagator in its discrete Schwinger parametriza-
tion (64) has a continuum limit as " ! 0

lim
"!0

X1
p¼1

"e�p"ðliþmjÞ ¼
Z 1

0
dpe�pðliþmjÞ ¼ 1

li þmj

:

(66)

The model with this propagator arises in a double-scaling
limit of the F model where we take N large N � 1

"2
.

Rescaling the F model matrix F ¼ ffiffiffi
�

p
G the action (26)

becomes

� trðAFBFyÞ þ N
X1
k¼1

1

k
trðFFyÞk

¼ �N"tr½ð1þ "LþOð"2ÞÞGð1þ "MþOð"2ÞÞGy�
þ N tr½"GGy þ "2

1

2
GGyGGy þOð"3Þ�

¼ �N"2 trðGyLGÞ � N"2 trðGMGyÞ
þ N"2

1

2
trðGGyGGyÞ þ NOð"3Þ

! �trðGyLGÞ � trðGMGyÞ þ 1

2
trðGGyGGyÞ: (67)

This G model is a complex analogue of the Kontsevich
model (62)

Z
½dG�CN�Ne

�trðGyLGÞ�trðGMGyÞþð1=2ÞtrðGGyGGyÞ: (68)

It has the propagator identified in (66), which is similar to
that of the Kontsevich model (63)

hGi
jG

yk
li ¼ �i

l�
k
j

1

li þmj

: (69)

Looking at an individual Feynman graph of the F model
we can also see that only 4-valent graphs survive in this
double-scaling limit. Suppose a graph has ik vertices of
even valency 2k. There are V ¼ P1

k¼2 ik vertices in total

and E ¼ 1
2

P1
k¼2 2kik ¼

P1
k¼2 kik edges. Setting N ¼ 1

"2

and taking the limit " ! 0 then the expression (65) is
only nonvanishing if there is a factor of " for each edge
[cf. (66)]

NV�E ¼ "E: (70)

This means that E ¼ 2V, which is satisfied if only i2 is
nonzero. In this case we get

lim
"!0

c
X

fifg;fjgg

YE
r¼1

�
"
X1
pr¼1

e
�"prðlifþmjg Þ

�

¼ c
X

fifg;fjgg

YE
r¼1

Z 1

0
dpre

�prðlifþmjg Þ (71)

¼ c
X

fifg;fjgg

Y
E edges

1

lif þmjg

: (72)

This comes from the corresponding graph of the G model.
The integrals over the world sheet boundary lengths Rnþ

must be decoupled with care, since there is at least one
relationship between the boundary lengths: the sum of the
Z boundary lengths must equal the sum of the Zy boundary
lengths. For example in Fig. 8 the three-point function has
only two independent boundary lengths, not three. Once
this is done, it is still not clear what quantity we are
integrating over (a subspace of) Mg;n.

The fact that the G model has only 4-valent vertices
relates it to the BMN limit from Sec. IVC, which arose
from limiting the F model to 4-valent vertices. However it
is still not clear what the G model is calculating in this
context. The obvious link would be if in the continuum
limiting process the discrete sum only got contributions

when p� 1
" ¼

ffiffiffiffi
N

p
(BMN-length operators propagating

between vertices of the Z model), but this is not the case.
This issue is left for the future.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have studied correlation functions that
correspond both to tachyon scattering for the c ¼ 1, R ¼ 1
noncritical string and to a half-BPS sector in free 4D
N ¼ 4 super-Yang-Mills. In the Z complex matrix model
the closed string insertions correspond to vertices of the
Feynman diagrams. The Z model is precisely dual to
another complex matrix model called the F model. In the
F model the closed string insertions are now associated to
the faces of its Feynman diagrams. This duality can be
shown using character expansions, or by integrating in and
out fields to see the graph duality dynamically, following
the program set out by Gopakumar [5].
Using the example of the Kontsevich model, the corre-

lation functions of the F model can be written as sums over
discrete points in subspaces of the moduli space of punc-
tured Riemann surfaces. These discrete points correspond
to ribbon graphs with integer-length edges.
This complex matrix model duality could provide a

prototype for understanding the AdS/CFT duality micro-
scopically. It may be possible to rewrite (perhaps just free)
N ¼ 4 super Yang-Mills as a dual theory, where local
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operators and interaction vertices from N ¼ 4 SYM
correspond to faces of the dual Feynman graphs. The
correlation functions of this dual theory would be easier
to write as string moduli space integrals, following the
Kontsevich schema. At nonzero coupling, summing over
the interaction vertex holes should remove the D3 branes
and alter the background to AdS5 � S5.

There is a long way to go to realize this goal. In contrast
to the program set out in [36–38], here we have dropped the
spacetime dependence of theN ¼ 4 correlation functions
to focus on the combinatorial index structure from which
the nonplanar expansion comes. Really the sector of
N ¼ 4 we have studied just computes a metric on multi-
trace half-BPS states and does not contain any spacetime
information. More general correlation functions not only
include more interesting spacetime dependence but should
also get contributions from the full moduli space of punc-
tured Riemann surfaces, not just subspaces.

As long as we keep the separation between holomorphic
and antiholomorphic operators, it should be straightfor-
ward to introduce other complex scalar fields into this
duality.14 The nonplanar expansion of the free theory in
terms of cut-and-join operators discussed in Sec. IV fol-
lows through with little modification [13]. Allowing the
scalars to be real, or introducing fermions and the gauge
boson, would introduce more complication.

From the string side, it is important to understand how
the reduction to the c ¼ 1 string from the full IIB string on
AdS5 � S5 works. Both contain a Liouville direction and it
is tempting to identify the R ¼ 1 limit with the small radius
limit of the bulk geometry corresponding to free SYM. The
c ¼ 1 string in this limit is known to have various topo-
logical coset descriptions [71–73], so perhaps it is possible
to use the cohomological reduction techniques of [74] for
sigma models with supersymmetric target spaces to reduce
the full bulk coset.

On the other hand, an alternative strategy would be to
take a topological description of the c ¼ 1, R ¼ 1 string
and try to include the full PUð2; 2j4Þ symmetry of free 4D
N ¼ 4 SYM. For example, it is known that the free
energy of the c ¼ 1, R ¼ 1 string agrees with that for the
t ! 0 limit of the topological A model on the resolved
conifold [2]. Once one understands how tachyon scattering
is reproduced in that setting, one can think about how to
include more of the spectrum of N ¼ 4. An A model
approach seems promising given that the correlation func-
tions were shown in Sec. IVD to count holomorphic maps
onto CP1. A tentative connection to the A model on CP1

was made at the end of that section.
Focusing now on the Fmodel there are several areas that

merit further study:

(i) A brane interpretation of the F model would be
welcome, perhaps along the lines of the relation
between the Kontsevich model and the open string
field theory of FZZT branes for 2D topological
gravity derived by Gaiotto and Rastelli [4]. Such
an interpretation of the W1 model has been dis-
cussed in [75,76].

(ii) What mechanism localizes the integral over the
moduli space to discrete points in Sec. V? Given
that this is also a feature of the Hermitian matrix
model [39,69], does it always arise in free theories?

(iii) The Z model and the F model capture tachyon
scattering for the c ¼ 1 string at the self-dual ra-
dius, but they do not include all of the discrete
states or the SUð2Þ symmetry at this particular
radius. Perhaps vortices appear in the F model as
holomorphic and antiholomorphic operators trðFkÞ
and trðFykÞ like their appearance in the similar
6-vertex model [77].

(iv) The Toda integrable hierarchy structure of the
c ¼ 1 string at the self-dual radius has not been
discussed here from the point of view of the F
model.

(v) An algebraic geometry interpretation of the Fmodel
might correspond to the limiting case discussed in
[78] for the c ¼ 1, R ¼ 1 string.

(vi) The authors of [61] reproduced both the Kontsevich
model and the c ¼ 1, R ¼ 1 tachyonic scattering
matrix by considering noncompact branes in the
topological B model in a deformed conifold back-
ground. A model similar to the Z model was also
studied in [79] for the c ¼ 1, R ¼ 1 string. Where
does the F model fit into this picture?
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APPENDIX A: EXAMPLES FOR THE
F MODEL

In this section we consider explicit examples of how the
F model Feynman diagrams reproduce the Z model corre-
lation functions. First we consider the F model expansion.
A single 4-valent vertex htrðFFyFFyÞi can only contract

with itself to form a planar graph that is dual to the planar
three-point function of the Z model, cf. Figure 8 and
Sec. A 1 for the full expansion.
For two 4-valent vertices htrðFFyFFyÞtrðFFyFFyÞi

there are several possible diagrams:

14See Appendix D for a sketch of how this might work with two
complex matrices.
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(1) Each vertex entirely contracted with itself is discon-
nected and corresponds to two disconnected three-
point functions.

(2) Each vertex with just one self-contraction each cor-
responds to the lollipop planar 1 ! 3 four-point
function, see Sec. A 3.

(3) The planar diagram with each propagator connect-
ing the two vertices corresponds to the planar 2 ! 2
four-point function all connected in a loop, see
Sec. A 4.

(4) The torus diagram with each propagator connecting
the two vertices corresponds to the torus two-point
function, see Sec. A 2.

All the cases for a single 6-valent vertex
htrðFFyFFyFFyÞi correspond to the collision of the two
4-valent vertices considered above:

(1) One way of contracting it in a planar way with four
faces corresponds to the 1 ! 3 four-point function
Y diagram, cf. Sec. A 3, that arises from colliding
the two vertices from case 2. above.

(2) A topologically distinct way of contracting it in a
planar way corresponds to the 2 ! 2 degenerate
htrðZpÞtrðZypþqÞtrðZyqþrÞtrðZrÞi from the collision
of vertices in 3. above, cf. Sec. A 4.

(3) The vertex contracted with itself on the torus has
two faces and isM1;2, cf. Sec. A 2. This results from

the collision of the vertices in 4. above.

1. M0;3

The leading planar term of the three-point function in
the Z model is

htrðZykÞtrðZk1ÞtrðZk2Þisphere ¼ k1k2kN
k�1; (A1)

where k ¼ k1 þ k2. This corresponds to the cut-and-join
operator �½2� which splits trðZykÞ into two pieces, cf. the

analysis in [13], where there are two bunches of homotopic
propagators, see Fig. 8.
The dual graph, drawn in Fig. 8 has one 4-valent vertex,

two propagators and three faces (which correspond to the
old vertices). Reading the term in the rescaled F matrix
model (26)

N

2
htrðFFyFFyÞi ¼ N

2

X
i1;i2;j1;j2

hFi1
j1
Fyj1

i2
Fi2
j2
Fyj2

i1
i

¼ N

2

X
i1;i2;j1;j2

ðhFi1
j1
Fyj1

i2
ihFi2

j2
Fyj2

i1
i

þ hFi1
j1
Fyj2

i1
ihFi2

j2
Fyj1

i2
iÞ: (A2)

Note that there are no nonplanar terms in this correlator
because of the configuration of the fields.15 Inserting the
propagator (27) and then Taylor expanding each one

N

2

X
i1;i2;j1;j2

� �i1
i2
�j1
j1

ðai1bj1 � NÞ
�i2
i1
�j2
j2

ðai2bj2 � NÞ þ
�i1
i1
�j2
j1

ðai1bj2 � NÞ
�i2
i2
�j1
j2

ðai2bj1 � NÞ
�

¼ N

2

X
i;j1;j2

X1
k1;k2¼1

Nk1þk2�2

ak1þk2
i bk1j1b

k2
j2

þ X
i1;i2;j

X1
k1;k2¼1

Nk1þk2�2

ak1i1 a
k2
i2
bk1þk2
j

¼ 1

2

X1
k1;k2¼1

½trðA�k1�k2ÞtrðB�k1ÞtrðB�k2Þ þ trðA�k1ÞtrðA�k2ÞtrðB�k1�k2Þ�Nk1þk2�1

¼ X
k1<k2

½tk1tk2 �tk1þk2 þ tk1þk2
�tk1 �tk2�k1k2ðk1 þ k2ÞNk1þk2�1 þ 1

2!

X
k1

½tk1tk1 �t2k1 þ t2k1 �tk1 �tk1�2k31N2k1�1:

This agrees with the expectation from (A1) where we get
contributions from the conjugate correlation function too.
Note that the generating function splits into two pieces
depending on whether k1 ¼ k2, in which case we get a
factorial from the exponential in the Z action (1).

2. M1;2

The torus two-point function for the Z model is

htrðZykÞtrðZkÞitorus ¼ hkjð�½3� þ�½2;2�ÞjkiNk�2

¼ k

�
k
3

� �
þ k

4

� ��
Nk�2: (A3)

Here we have used the cut-and-join notation of [13]. The
different cut-and-join operators correspond to bunching
homotopic propagators into either three or four bunches,
cf. Fig. 9 for the two possibilities.
The bunching of the propagators into three, the left-hand

diagram in Fig. 9, yields a dual graph with a single 6-valent
vertex, three edges, and two faces. Reading the appropriate
term in the F matrix model we compute the nonplanar
torus term for the 6-valent vertex

15In a Gaussian Hermitian matrix model htrðM4Þi does however
receive nonplanar contributions.
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N

3
htrðFFyFFyFFyÞitorus

¼ N

3

X
i1;i2;i3;j1;j2;j3

hFi1
j1
Fyj1

i2
Fi2

j2
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Now Taylor expand, using the binomial theorem
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This agrees with the expectation from (A5).
The bunching of the propagators into four, the righthand

diagram in Fig. 9, yields a dual graph with two 4-valent
vertices, four edges, and two faces16:
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There are two relevant nonplanar contractions
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These both give the same contribution so we get
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3. M0;4 1 ! 3

The leading planar term of the 1 ! 3 four-point function
in the Z model is

htrðZykÞtrðZk1ÞtrðZk2ÞtrðZk2Þisphere ¼ k1k2k3kðk� 1ÞNk�2;

(A8)

where k ¼ k1 þ k2 þ k3. This result is made up from con-
tributions from the two cut-and-join operators �½2;2� and
�½3�, corresponding to the lollipop diagram with four edges

and the Y diagram with three edges, as explained in
[13,66]. The lollipop comes from two 4-vertices of the F
model with a self-contraction each. The Y diagram comes
from one of the planar ways of contracting a single
6-vertex of the F model.

4. M0;4 2 ! 2

For k1 þ k2 ¼ k3 þ k4 and maxfkig ¼ k1 the planar
connected 2 ! 2 four-point function is

htrðZyk1ÞtrðZyk2ÞtrðZk3ÞtrðZk4Þiplanar; connected
¼ k1k2k3k4ðk1 � 1ÞNk1þk2�2: (A9)

For generic values of the fkig the Z graph has four bunched
edges corresponding to �½2;2� and the dual graph is the

planar contraction of two 4-vertices of the Fmodel with no
self-contractions. In a degenerate case where k1 � k3 ¼
k2 � k4 there are only three edges in the Z model skeleton
graph corresponding to�½3� and the dual graph has a single
6-valent vertex.
Note that this correlation function also receives contri-

butions at order Nk1þk2 and Nk1þk2�2 if k1 ¼ k3 from
disconnected two-point functions.

5. M0;2

The F model diagram dual to the planar two-point
function requires special treatment. The dual graph (see
the right-hand side of Fig. 8) must be take using the plain
Gaussian propagator (24) with the quadratic interaction
terms in the faces between the parallel propagators of the
Zmodel. The Fmodel diagram corresponds to taking these
quadratic interaction terms daisy chained with no self-
contractions
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16One might worry about disconnected nonplanar graphs where
each 4-vertex only contracts with itself. Fortunately this diagram
is not possible, cf. the M0;3 example.
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Here ikþ1 � i1 and similarly for jkþ1. There are ðk� 1Þ!
completely equivalent ways of daisy chaining the Wick
contractions. Now inserting the plain propagator (24)
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In this final step we have used the formula for the planar
two-point function.

Note that because we are using the plain version of the F
model there is no sum over topologically identical Z graphs
with bunched propagators; here the Z correlation functions
must be calculated separately for each k.

APPENDIX B: EXAMPLES FOR THE C, D MODEL

In this section are calculations for the C;D model (15)
with quartic vertex and propagator (16).

1. M0;3

For the specific three-point function

htrðZÞtrðZÞtrðZy2Þisphere ¼ 2N (B1)

exactly one C, D diagram contributes. This diagram is the
same as in Fig. 6(c) except that there are only two quartic
vertices. Proceeding with Einstein summation on ek; fk ¼
1; � � �N only
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2. M1;2

For the specific torus two-point function

htrðZ3ÞtrðZy3Þitorus ¼ 3N; (B3)

the relevant torus C, D diagram has three quartic vertices
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There are two ways of Wick contracting; one choice gives
half of the result
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APPENDIX C: RELATION OF THE F MODEL TO
THE W1 MODEL

In this section we show that the W1 model [41,42] can
be directly related to the F model by a change of varia-
bles.17 Take theW1 model with � ¼ �i� ¼ N, so that the
logM term is tuned away, and expand the exponentiated
operators in the same way as in Eq. (48)Z

½dM�Hþ
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�tk tr½ðMA�1Þk�

¼
Z
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�RðB�1Þ�RðMA�1Þ: (C1)

The eigenvalues ofMmust be positive semidefinite for this
integral to be well defined. Shortly we will see how this
condition is automatically implemented by the F model.
Make the change of variables M ¼ UDUy where U is
unitary and D is diagonal with eigenvalues m1; . . .mN � 0

Z
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�ðmiÞ is the standard Vandermonde determinant. In the
final line we have used the integral [53]Z

½dU�UN�N�RðUXUyYÞ ¼ �RðXÞ�RðYÞ
dimNR

: (C3)

We will now manipulate the F model in a similar way to
get the same answer (C2). The complex matrix F can be
written with two unitary matrices U, W and a diagonal
matrix D [22]

F ¼ W
ffiffiffiffi
D

p
Uy; Fy ¼ U

ffiffiffiffi
D

p
Wy: (C4)

The eigenvalues m1; . . .mn � 0 of the diagonal matrix D
are the real, non-negative eigenvalues of FFy. The mea-
sure is then

17The proof in this section was carried out in collaboration with
Hanna Grönqvist of the University of Helsinki.
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Character expanding the exponential with (48) and using (C3) on the ½dW� integral
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Next use (C3) on the ½dU� integral
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This already agrees with (C2) if we choose n ¼ N. For the case n � N, compare (C7) with the character expansion of the
F model (29) to see that

Z Yn
i¼1

dmi�
2ðmiÞe�trðDÞ�RðDÞ ¼ ½dimnR�2: (C8)

Inserting this into (C2) we get agreement with (29).

APPENDIX D: COMPLEX MATRIX MODEL DUALITY FOR TWO (OR MORE)

In this section we sketch how the duality might work for a V-type model with two N � N complex matrices X, Y,
corresponding to two of the three complex scalars of free 4D N ¼ 4 SYM:Z

½dX�C½dY�Ce
�trðXXyÞ�trðYYyÞþ P

�1 ;�2 ;½��
tf�1 ;�2 ;½��g trð�X�1Y�2 Þþ P
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:

The sum is over all the holomorphic single-trace operators built out of �1 X’s and �2 Y’s. � is a single k cycle � 2
½k� 	 S�1þ�2

where k ¼ �1 þ�2. The trace with a permutation is defined by

tr ð�X�1Y�2Þ ¼ Xi1
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It is unique up to conjugation �� ��1�� for � 2 S�1
� S�2

so we only sum over conjugacy classes ½�� for this relation.
The couplings t, �t can be encoded in a generalized Kontsevich-Miwa transformation

tf�1;�2;½��g ¼
1

jSymð�Þ \ S�1
� S�2

j trð�A
�1C�2Þ; �tf�1;�2;½��g ¼

1
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� S�2

j trð�B
�1D�2Þ: (D2)

The matrices A, B, C, D do not commute and are not diagonalizable, unlike the single complex matrix case. For a single
cycle Symð�Þ ffi Zk. Some examples are

ttrðXkÞ ¼
1

k
trðAkÞ; ttrðX2Y2Þ ¼ trðA2C2Þ; ttrðYkÞ ¼

1

k
trðCkÞ; ttrðXYXYÞ ¼ 1

2
trðACACÞ:

To get the dual model of the F type, the techniques of Sec. II using integration in-out look inapplicable. Character
expansions may work. A guess based on graph duality is
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Each F propagator is transverse to an X propagator and similarly for G and Y. This guess has only been checked for very
simple two- and three-point functions and should be treated with maximum suspicion. Here � is a single cycle permutation
in Sk where k ¼ P

4
i¼1 ki and the coupling is defined as

sfki;½��g ¼
N

jSymð�Þ \Q
i
Ski j

: (D4)
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