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Recently it was shown that kink baryons and kink-antikink scattering in the massless Gross-Neveu

model are closely related to one- and two-soliton solutions of the sinh-Gordon equation. Here we

generalize these findings to the case of n kinks and antikinks. Using the known n-soliton solution of

the sinh-Gordon equation, we solve the general n kink-antikink scattering problem in the large N Gross-

Neveu model analytically, mapping the time-dependent Hartree-Fock approach onto inverse scattering

theory.
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I. INTRODUCTION

In this paper, we continue our study of the simplest
Gross-Neveu (GN) model [1], a 1þ 1 dimensional model
field theory ofN species of massless, self-interacting Dirac
fermions with Lagrangian

L ¼ XN
k¼1

�c ki6@c k þ g2

2

�XN
k¼1

�c kc k

�
2
: (1)

We restrict ourselves from the outset to the ’t Hooft limit
N ! 1, Ng2 ¼ const. Semiclassical methods have re-
vealed a number of fascinating properties of this model
over the years (see the review articles [2–4] and references
therein). A key quantity in these studies is the scalar mean
field S. It plays a role similar to Witten’s ‘‘master field’’ in
large N gauge theories [5], namely, as saddle point of the
functional integral from which all observables can be
computed. For fermions in the large N limit, it can be
identified with the self-consistent Hartree-Fock (HF)
potential.

Most of the results for S obtained so far are related to
static problems. In the vacuum, the HF potential is homo-
geneous and can be interpreted as dynamical fermion mass
[1]. Localized, spatially varying HF potentials describe
individual baryons [6]. Spatially periodic solutions appear
in investigations of baryonic matter, both at zero [7] and
finite temperature [8]. The most difficult problem is to find
solutions of the time-dependent Hartree-Fock approach
(TDHF), at least nontrivial solutions which are not simply
boosted, static solutions. The only known analytical solu-
tions of this type to date are the breather [6] and kink-
antikink scattering [9]. Since both are related by analytical
continuation, there is in fact only one nontrivial time-
dependent solution known. This reflects the lack of system-
atic methods to derive time-dependent, self-consistent
mean fields for fermions.

Recently, it was pointed out that the situation is more
favorable for a class of particularly simple TDHF

solutions, classified as ‘‘type I’’ in [9]. They are defined
as those solutions where the scalar density of each single
particle level is proportional to the full self-consistent
potential S,

�c �c � ¼ ��S; (2)

where �� may vanish for some states. If property (2) is
satisfied, the TDHF problem reduces to the classicalN ¼ 1
GN model, for which Neveu and Papanicolaou have un-
covered a relationship with the sinh-Gordon equation some
time ago [10]. As a consequence, the self-consistent TDHF
potential of the GN model (1) can be shown to satisfy the
classical sinh-Gordon equation [9]. This is surprising at
first sight, as the sinh-Gordon equation possesses only
singular solitons. Owing to a nonlinear field transformation
however, these singularities are mapped onto zeros of S,

huþ 4 sinhu ¼ 0; u ¼ lnS2; (3)

so that the scalar mean field S is perfectly regular. One can
easily check that the mean fields for the kink baryon [11],
kink-antikink scattering [6,9] and the kink crystal, the
ground state of the GN model at finite density [7], are
indeed all related to known soliton solutions of the sinh-
Gordon equation.
This raises immediately the question: Are there other

soliton solutions of the sinh-Gordon equation which might
yield physically sensible, new TDHF solutions of the GN
model? If one thinks about this problem, one encounters
two potential obstacles. The first has to do with the singu-
larities of all sinh-Gordon solitons, the second with the fact
that the sinh-Gordon equation is a necessary condition for
type I solutions, but perhaps not sufficient.
The first difficulty can be handled as follows. If one

inspects the available solutions of the sinh-Gordon equa-
tion in the literature, one finds in all cases that the argument
of the logarithm in Eq. (3) has either zeros or poles, or both.
This reflects the fact that all solitons are singular. In order
to get a bounded S, we should only allow for zeros. As
already pointed out in [9], the most interesting solution of
this type is presumably the n-soliton solution constructed
by the inverse scattering method [12–14] (throughout this
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paper we use N to denote the number of flavors and n to
denote the number of baryons, to avoid confusion). In the
GN model the n-soliton solution is expected to describe
time-dependent scattering of n kink and antikink baryons.

The second difficulty simply means that solutions of the
sinh-Gordon equation should only be taken as candidates
for TDHF potentials in the GN model. Given any such
solution, one still has to solve the Dirac equation for all
continuum states in the Dirac sea and the valence bound
states and verify self-consistency of the mean field.

In this paper, we propose to do just this for the n-soliton
solution. Our main goal is to find the most general type I
solution of the TDHF equations for the GN model. From
the particle physics point of view, one is rarely interested in
scattering problems involving more than two incident par-
ticles. A time-dependent n-soliton solution on the other
hand describes a scattering process involving n incident
and n outgoing objects. As a purely theoretical problem,
we find it nevertheless challenging to solve the dynamics of
n composite, relativistic bound states at the elementary
fermion level, in full generality. Our motivation is not
primarily particle physics phenomenology, but the desire
to find new exact, analytical solutions of a relevant model
quantum field theory.

Finally, let us try to relate our work to another important
property of the GN model, integrability. As is well known,
the GN model (1) is an example of an integrable quantum
field theory for any value of N. The exact S matrix,
including kinks and antikinks, has been constructed some
time ago [15–17]. Nevertheless we find it worthwhile to
attack this problem with entirely different methods
in the large N limit. First of all, the S matrix for the finite
N GN model is only known in principle. The examples
worked out in the original references deal with low values
of N (2–8 Majorana flavors, corresponding to 1–4 Dirac
flavors) and few particles only. Since the algebraic com-
plexity rapidly increases with increasing number of flavors
and participants, it is not easy to infer the large N limit of
the collision of n bound states from the published Smatrix.
Second, the full dynamical TDHF solution has more infor-
mation than the S matrix which encodes only asymptotic,
on-shell scattering information. Finally, although integra-
bility certainly helps to find the TDHF solution, it is
apparently not a prerequisite. Thus for instance, although
the massive version of the GN model is not integrable, HF
solutions have been found for baryons [18,19] and bar-
yonic crystals [20,21] in closed analytical form. For all of
these reasons we have decided to make a dedicated effort to
solve the n kink-antikink scattering problem in the large N
limit of the GN model.

The paper is organized as follows. In Sec. II, we give a
rather detailed introduction into the single kink baryon in
an arbitrary Lorentz frame and set up our notation in
light-cone coordinates. Section III briefly recalls the
n-soliton solution of the sinh-Gordon equation. In

Sec. IV we describe how we get to the TDHF spinors
and prove self-consistency. Section V is needed to put the
formal results into a form better suited for practical appli-
cations, which then follow in Sec. VI. Here we characterize
the general n baryon scattering process qualitatively and
exhibit a few illustrative examples involving dynamics of
up to eight solitons. We end with a concluding section.

II. REVIEW OF THE KINK BARYON

The kink baryon of the GN model, originally discovered
by Callan, Coleman, Gross and Zee (cited in [11]), is at the
same time the simplest and the most exotic baryon. Its
properties are well studied [6,22–25]. We review it here
because of its role as main actor in the dynamical n baryon
problem addressed in this work. An important aspect in
which we differ from all previous works except [25] is the
fact that we consider the kink in an arbitrary Lorentz
frame, not just its rest frame. This is of course a prereq-
uisite for treating scattering processes.
The outline of this chapter is the following: We will

introduce light-cone coordinates and present first the vac-
uum and then the boosted kink in the TDHF approach. The
scalar HF potential S and the self-consistency issue will be
addressed. We then compute expectation values of other
relevant fermion bilinears, namely, the density � ¼ c yc ,
the pseudoscalar density c yi�5c and the axial charge
density �5 ¼ c y�5c , resolving contributions from the
Dirac sea and the bound state. Next we briefly recall the
derivation of the sinh-Gordon equation from Ref. [9] for
type I TDHF solutions, of which the kink is a paradigm.
Finally we summarize the essential physics properties of
the kink. This section presents no new results, but serves to
introduce light-cone coordinates and set up the notation
to be used in later chapters for the n baryon problem.
The starting point is the TDHF equation of the GN

model, expected to become exact in the large N limit,

ði��@� � SÞc � ¼ 0; S ¼ �g2
Xocc
�

�c �c �: (4)

The sum over occupied states runs over the whole Dirac sea
as well as possible valence states and includes flavor
degrees of freedom. A nonvanishing scalar mean field S
signals breakdown of the Z2 chiral symmetry c ! �5c ,
�c c ! � �c c . We choose a chiral basis for the Dirac
matrices, �0 ¼ �1, �

1 ¼ i�2, where �5 ¼ �0�1 ¼ ��3

is diagonal. In conjunction with light-cone coordinates

z¼x� t; �z¼xþ t; @0¼ �@�@; @1¼ �@þ@; (5)

this simplifies the Dirac equation in (4) to

2i �@c 2 ¼ Sc 1; 2i@c 1 ¼ �Sc 2 (6)

in terms of upper, left-handed (c 1) and lower, right-handed
(c 2) spinor components.
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Consider first the vacuum problem where S ¼ m ¼ 1 is
the dynamical fermion mass in natural units. Here, the
TDHF equation reduces to the free, massive Dirac equation
with solutions

c � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p 2�
�1

� �
eið� �z�ðz=4�ÞÞ (7)

labeled by a spectral parameter � . This parameter
contains the information on momentum k and energy

! ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
via

k ¼ � � 1

4�
; ! ¼ �� � 1

4�
; (8)

a relation which allows us to cast the plane wave factor in
(7) into the standard form

eið� �z�ðz=4�ÞÞ ¼ eiðkx�!tÞ: (9)

(If �z is interpreted as light-cone time, then � is the light-
cone energy, but we shall not use this language in the
following.) The gap equation arises from the self-
consistency equation for the scalar condensate in the vac-
uum. The continuum spinor c � yields the scalar density

�c �c � ¼ � 4�

1þ 4�2
: (10)

The (cutoff regularized) summation over the Dirac sea can
be performed conveniently after the following change of
integration variables,Z �=2

��=2

dk

2�
!

Z �=2

1=2�

d�

2�

1þ 4�2

4�2
: (11)

The resulting gap equation,

1 ¼ Ng2
Z �=2

1=2�

d�

2�

1

�
¼ Ng2

�
ln�; (12)

yields the relation between bare coupling and cutoff char-
acteristic for dimensional transmutation.

We now turn to the simplest baryon solution of Eq. (4),
the kink or antikink. Without loss of generality, we con-
sider the antikink moving with velocity v1. In ordinary
coordinates it is given by

S¼�tanhð�1ðx�v1tÞþ�1Þ; �1¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

1

q (13)

interpolating between the vacua S ¼ 1 at x ! �1 and
S ¼ �1 at x ! þ1 (the results for the kink �S can
simply be generated by a �5 transformation).

In what follows, it will be advantageous to express S
through exponentials,

S ¼ 1� 	1
1þ 	1

; 	1 ¼ expf2�1ðx� v1tÞ þ 2�1g: (14)

Switching to light-cone coordinates, the basic building
block, 	1, can be seen to be closely related to a ‘‘plane
wave’’ with imaginary spectral parameter,

ffiffiffiffiffi
	1

p ¼ eið�1 �z�ðz=4�1ÞÞþ�1 ; �1 ¼ � i

2
�1ð1� v1Þ: (15)

This structural element will be important later on. The
TDHF spinors for the antikink can easily be found. In
light-cone notation, the continuum states read

c � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p 2�ð1� 
1Þ
�ð1þ 
1Þ

� �
eið� �z�ðz=4�ÞÞ

1þ 	1
; (16)

where 
1 and 	1 differ only by a constant, complex phase,


1 ¼
�
�1 � �

�1 þ �

�
	1: (17)

As is well known, the potential S is reflectionless, a crucial
property for everything we shall do in this work. The kink
at rest possesses one normalizable zero energy bound state,
in agreement with the expectation based on its topological
properties. The corresponding boosted bound state can be
obtained from the continuum spinor by setting � ¼ �1 (i.e.,
analytic continuation to imaginary spectral parameter) and
normalizing,

c ð1Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2i�1

p 2�1
�1

� � ffiffiffiffiffi
	1

p
1þ 	1

: (18)

The scalar densities for continuum and bound states,

�c �c � ¼ � 4�

1þ 4�2
S; �c ð1Þc ð1Þ ¼ 0; (19)

show that we are dealing with a type I solution according to
the classification of Ref [9]—every occupied state yields a
contribution to the scalar condensate proportional to the
full HF potential S. The self-consistency condition simply
reduces to the vacuum gap equation (12),

S¼�Ng2
Z �=2

1=2�

d�

2�

1þ4�2

4�2
�c �c � ¼S

Ng2

�
ln�: (20)

Consider the expectation value of the fermion density in
the kink next. It consists of two contributions, one from the
continuum states (the Dirac sea) and one from the bound
state. An individual continuum state c � gives the follow-

ing (vacuum subtracted) contribution to the density:

c y
� c � � 1 ¼ 4�2ð1� 4�21 Þ

ð1þ 4�2Þð�21 � �2Þ
	1

ð1þ 	1Þ2
: (21)

Performing the d� integration and multiplying by the
number of flavors (each state is fully occupied), we find
the continuum fermion density

�cont ¼ N
Z 1

0

d�

2�

1þ 4�2

4�2
ðc y

� c � � 1Þ

¼ �N�1

	1
ð1þ 	1Þ2

¼ 1

4
N@xS (22)

and hence the following contribution from the Dirac sea to
the total fermion number,
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Z
dx�cont ¼ �N

2
: (23)

This result can be understood heuristically as follows: The
midgap state receives one-half of its strength from the
negative, the other half from the positive energy contin-
uum. This half missing state in the Dirac sea manifests
itself in the peculiar value of the induced fermion number
(23). This effect has been discussed extensively in the
context of fractional fermion number and gives rise to
observable consequences in condensed matter systems,
such as unusual spin-charge assignments in solitonic ex-
citations of polymers [26–28].

Next we turn to the contribution to the fermion density
from the bound state, assuming that the valence level is
filled with N1ð� NÞ fermions. The bound state fermion
density is

�ð1Þ ¼ N1c
ð1Þyc ð1Þ ¼ 2N1�1

	1
ð1þ 	1Þ2

; (24)

normalized to the number of fermions in the valence state,Z
dx�ð1Þ ¼ N1: (25)

The continuum and bound state densities (22) and (24) are
proportional to each other, so that the total fermion density
becomes

h�i ¼ �cont þ �ð1Þ ¼
�
N1 � N

2

�
2�1

	1
ð1þ 	1Þ2

: (26)

The total fermion number N1 � N=2 of the kink lies be-
tween�N=2 andþN=2. In particular, if the bound state is
half filled, the density vanishes identically. We are then
dealing with a time-dependent excitation of the scalar
condensate, a pure ‘‘domain wall’’ moving with constant
velocity v1. If the bound state is fully occupied or empty,
the kink carries �N=2 fermions and may be thought of
somewhat loosely as half a baryon or antibaryon.

For the sake of completeness, let us also evaluate the
pseudoscalar condensate along similar lines, once again
assuming N1 valence fermions,

h �c i�5c i ¼
�
N1 � N

2

�
2	1

ð1þ 	1Þ2
: (27)

This quantity is finite and vanishes in the vacuum,
so that no subtraction is needed. Finally, the last indepen-
dent bilinear is the axial density (or vector current)
�5 ¼ c y�5c , where we must once again subtract the
vacuum contribution,

h�5i ¼
�
N1 � N

2

�
2�1v1

	1
ð1þ 	1Þ2

: (28)

Notice that in all 3 cases (26)–(28) the sum over con-
tinuum states is proportional to the contribution from the
bound state, with identical relative weights (discrete and
continuum parts can be identified via the factors N1 and N,

respectively). This fact can be understood with the help of
the divergence of vector and axial vector currents [29],

@�j
� ¼ 0; @�j

�
5 ¼ �2g2 �c c �c i�5c : (29)

Invoking large N factorization and using

j0 ¼ j15 ¼ �; j1 ¼ j05 ¼ �5; (30)

characteristic for 1þ 1 dimensions, we get

@0h�iþ@1h�5i¼0; @0h�5iþ@1h�i¼2Sh �c i�5c i; (31)

showing that the three bilinears �, �5, �c i�5c are linearly
related. As a test of the above calculations, one can verify
that the kink results for the bilinears do satisfy Eq. (31).
The evaluation of mass, energy and momentum of the

kink baryon is delicate due to vacuum subtraction and
subtleties in the counting of modes. We refer to Ref. [25]
where it was shown in detail that the TDHF approach gives
a covariant energy-momentum relation for the baryon in
the GN model,

M ¼ N

�
; E ¼ �1M; P ¼ �1v1M (32)

(in natural units). The mass of the kink is independent of
the number of fermions carried by it, since the bound state
has zero energy in the rest frame and vanishing chiral
condensate.
So far, we have only dealt with the Dirac equation

involving �@c 2 and @c 1. As shown in [9,10], the other
two derivatives, �@c 1 and @c 2, can also be expressed
linearly in c 1, c 2 with coefficients depending on S and
its first derivatives. The result, valid for type I solutions if S
approaches a vacuum value �1 for x ! �1, is a kind of
‘‘extended Dirac equation’’

�@c ¼ C1c ; @c ¼ C2c (33)

with

C1 ¼
S�1 �@S �2i�2S�1

�iS=2 0

 !
;

C2 ¼
0 iS=2

i
8�2

S�1 S�1@S

 !
:

(34)

The integrability condition of the system (33),

@C1 � �@C2 þ ½C1; C2� ¼ 0; (35)

yields the sinh-Gordon equation for u ¼ lnS2,

@ �@u� sinhu ¼ 0 (36)

or, in normal coordinates,

huþ 4 sinhu ¼ 0: (37)

The linearized form of this last equation is the Klein-
Gordon equation for a scalar field with mass 2 which
may be identified with the well-known � meson of the
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GN model. Hence the kink can be thought of as a large
amplitude excitation of the � field, thereby extending the
Skyrme picture to the case of a discrete chiral symmetry.
Finally, it is easy to check that Eqs. (33) and (34) hold for
continuum states (real �) as well as for the bound state
(imaginary � , � ¼ �1).

Summarizing, let us enumerate some properties of the
kink which will turn out to be important for the case of n
interacting kinks as well:

(1) The TDHF solution is reflectionless and of type I.
(2) There is a single bound state with vanishing scalar

density, related to the continuum states by analytic
continuation in the spectral parameter.

(3) The contributions to the fermion density from the
continuum states and the bound state have the same
functional form. The fermion density vanishes iden-
tically for a half filled valence level.

(4) Shape, mass and motion of the kink are independent
of the number of fermions it carries—in this sense,
there is no backreaction of the fermions.

We should like to point out that in spite of the solvability of
the model and the peculiar properties of the kink, we are
dealing with a relativistic, composite object with an inter-
esting internal structure reminiscent of hadrons. In
Ref. [25], the structure function, derived analytically
from the fermion momentum distribution in the infinite
momentum frame, was shown to display nontrivial contri-
butions from ‘‘valence quarks,’’ ‘‘sea quarks’’ and ‘‘anti-
quarks,’’ with a slight abuse of language. It is therefore a
nontrivial question to ask how such composite, relativistic
objects interact with each other.

III. MULTISOLITON SOLUTION
OF THE SINH-GORDON EQUATION

As discussed above, the kink of the GN model is akin to
the one-soliton solution of the sinh-Gordon equation.
Similarly, the kink-antikink scattering problem can be
mapped onto the two-soliton solution [9]. If the n baryon
TDHF solution S of the GN model is of type I, then lnS2

must also be a solitonic solution of the sinh-Gordon equa-
tion. An obvious candidate is the known n-soliton solution
of the sinh-Gordon equation, constructed with inverse
scattering methods [12–14]. Here we collect all formulas
needed to solve the n baryon problem later on. We closely
follow the notation of Jevicki and Jin [14]. Since the focus
of our work is not on classical soliton theory itself but
rather on the role solitons play in the TDHF approach, we
postpone the discussion of the physics to Sec. VII.

It is inherent in the inverse scattering method that
the soliton solution of a nonlinear partial differential
equation is accompanied by a linear problem involving
2-component ‘‘spinors’’. These auxiliary spinors depend
on a spectral parameter � . In the case of the sinh-Gordon
equation, they are given in light-cone coordinates (5) by

’1ð�; z; �zÞ ¼ ��Tð�Þ 1

1� a2
�eið� �z�ðz=4�ÞÞ;

’2ð�; z; �zÞ ¼
�
1þ�Tð�Þa 1

1� a2
�

�
eið� �z�ðz=4�ÞÞ:

(38)

Here, � and � are n component vectors,

�k ¼
ffiffiffiffiffiffiffiffiffiffiffi
ckð0Þ

q
eið�k �z�ðz=4�kÞÞ; �kð�Þ ¼ �k

� þ �k
; (39)

whereas a is the symmetric n� n matrix

akl ¼ �k�l

�k þ �l
: (40)

The spinor ’ satisfies the system of differential equations

�@’ ¼ U’; @’ ¼ V’ (41)

with

U¼ �i� 1
2
�@u

1
2
�@u i�

 !
; V¼ i

4�

coshu �sinhu
sinhu �coshu

� �
: (42)

u is the solution of the sinh-Gordon equation

@ �@u� sinhu ¼ 0; (43)

as can be shown with the help of the integrability condition

@U� �@V þ ½U;V� ¼ 0; (44)

and is related to ’ via

u ¼ ln

�
4�

i

@ð’1 þ ’2Þ
’1 � ’2

�
: (45)

It does not depend on the spectral parameter � , as can be
seen more easily from the equivalent expression

u ¼ ln

�
det

�
1� a

1þ a

��
2
: (46)

Like all soliton solutions of the sinh-Gordon equation, the
function u of Eqs. (45) and (46) is singular—in fact the
n-soliton solution has n singularities. We identify eu with
S2, the square of the TDHF potential, and will derive the
TDHF wave functions from ’1, ’2. In this process, singu-
larities of u are mapped onto zeros of S which is bounded.
By comparing eu with S2 in the one-soliton case, we can
identify the parameters �k, ckð0Þ as follows [see Eq. (15)],

�k¼� i

2
�kð1�vkÞ; �k¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�v2
k

q ; ckð0Þ¼2�ke
2�k :

(47)

vk is the (asymptotic) velocity of the kth soliton, �k is
related to its initial position. Hence the solution is general
enough to describe the n-soliton problem with arbitrary
initial positions and velocities of the solitons. Furthermore,
one can verify that ’1, ’2 satisfy

j’1j2 � j’2j2 ¼ �1 (48)
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for all n. Indeed, by differentiation one finds that the left-
hand side is independent of z, �z, using Eqs. (41) and (42).
The integration constant can be taken from the asymptotic
region. Property (48) will be crucial for the proof of self-
consistency in the following section.

IV. TDHF SOLUTION FOR n BARYON
SCATTERING VIA GAUGE TRANSFORMATION

The sinh-Gordon equation provides us with candidates
for the simplest class of TDHF solutions (type I) of the
large N GN model. In each case one still has to verify self-
consistency of the result. To this end one has to solve the
Dirac equation with the scalar potential inferred from
soliton theory. Furthermore, summation of the scalar con-
densates of all continuum states in the Dirac sea and the
partially filled bound states must be performed to check
self-consistency. Since the n-soliton solutions are rather
complicated, this might seem hopeless. Remarkably, as we
shall show in this section, soliton theory provides us with
exactly the information needed to perform this task in
closed analytical form.

The TDHF Dirac spinor c for any type I solution
satisfies the extended Dirac equation (33) and (34). On
the other hand, the auxiliary spinor ’ in the inverse scat-
tering problem of the sinh-Gordon equation solves
Eqs. (41) and (42). As originally exploited in [10] for the
classical N ¼ 1 GN model and applied to type I solutions
of the large N GN model in [9], this implies that the two
problems are related by a non-Abelian gauge transforma-
tion. The language of gauge transformations is adequate
here because the integrability conditions have the mathe-
matical form of a vanishing non-Abelian field strength
tensor. Similar ideas have been used recently to map the
sinh-Gordon theory onto string theory in anti–de Sitter
space AdS3 [14], or the GN model onto string theory [9].
We introduce a gauge transformation � relating ’ and c
as follows,

c ¼�’; C1¼�ðU� �@Þ��1; C2¼�ðV�@Þ��1:

(49)

Upon identifying u with lnS2, we find (modulo an arbitrary
normalization factor)

� ¼ 2� 2�
S �S

� �
: (50)

With the TDHF spinors at hand, we are now in a position to
address the issue of self-consistency. Let us start with the
continuum spinors. Using the gauge transformation (49)
and (50), we first write

c 1 ¼ N 2�’þ; c 2 ¼ N S’�; (51)

with ’� ¼ ’1 � ’2. Notice that the linear combinations

’� ¼
�
�1��tð�Þ 1

1� a
�

�
eið� �z�ðz=4�ÞÞ (52)

are actually simpler than’1;2. The normalization factorN
will be chosen such as to recover the free Dirac spinor (7)
at x ! �1. Using

lim
x!�1’1 ¼ 0; lim

x!�1’2 ¼ eið� �z�ðz=4�ÞÞ; (53)

this yields

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p : (54)

The scalar density can now easily be evaluated with the
help of Eq. (48),

�c c ¼ c �
1c 2 þ c �

2c 1 ¼ 4�

1þ 4�2
S: (55)

Owing to the vacuum gap equation, the self-consistency
condition is fulfilled by the negative energy continuum
states alone [see Eqs. (11) and (12)]. It remains to be shown
that the bound states do not destroy this result. If the
solitons are far apart, each of them possesses a normal-
izable bound state. One therefore expects the presence of n
bound states in the n baryon problem. Following an ob-
servation made in Sec. II in the one-soliton case, we try to
generate the bound state spinors from the continuum
spinors by analytical continuation to imaginary spectral
parameters. We find that the bound state originating from
the kth soliton can indeed be obtained by setting � ¼ �k,

eið� �z�ðz=4�ÞÞ ! �kffiffiffiffiffiffiffiffiffiffiffi
ckð0Þ

p ;

�lð�Þ!akl
�k

;

’þ! 1ffiffiffiffiffiffiffiffiffiffiffi
ckð0Þ

p �
1

1þa
�

�
k
;

’�!� 1ffiffiffiffiffiffiffiffiffiffiffi
ckð0Þ

p �
1

1�a
�

�
k
:

(56)

The fact that the �1 terms in (52) have disappeared is
instrumental for the normalizability of the bound states.
For x ! �1, � vanishes so that the spinor also vanishes.
For x ! þ1, � increases exponentially but a behaves
as �2, so that again the spinor vanishes. According to
Eqs. (39) and (47), �k and ckð0Þ have the phase (� i), �k

has the phase
ffiffiffiffiffiffi�i

p
and akl is real. This shows already that

’þ and ’� are in phase. The components of the Dirac-HF
spinor for � ¼ �k,

c ðkÞ
1 ¼ N k2�k’þ; c ðkÞ

2 ¼ N kS’�; (57)

then differ by a phase i so that the scalar density indeed
vanishes for the bound states. Hence the situation is the
same as for the single kink: The valence fermions play no
role for the issue of self-consistency. The explicit spinors

c ðkÞ will be needed nevertheless to evaluate the fermion
density. The only missing piece is the normalization
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constant N k, to be determined from the integral over the
density, Z

dxðjc ðkÞ
1 j2 þ jc ðkÞ

2 j2Þ ¼ 1: (58)

It can easily be found by considering times when the
solitons are well separated, where it reduces to the one-
soliton case [cf. Eq. (18)],

N k ¼ e�kffiffiffiffiffiffiffiffiffi
2i�k

p : (59)

This completes the proof that the n-soliton solution of
the sinh-Gordon equation yields a self-consistent solution
of the TDHF equation in the GN model. It covers the kink
baryon reviewed in Sec. II and the kink-antikink scattering
solution of [9] as special cases. The n baryon solution
describes the general scattering problem of an alternating
succession of n kinks and antikinks. Each one can carry an
arbitrary number of fermions in the allowed range and has
arbitrary initial positions and velocities, parametrized by
the constants �k, vk. The fact that this problem can still be
solved in closed analytical form, including the polarization
of the Dirac sea, is remarkable. In the remaining sections
we will first cast the results in a form more suitable for
applications and then discuss the physics of the n baryon
collision in more detail.

V. USEFUL EXPRESSIONS FOR SCALAR
POTENTIAL, SPINORS AND DENSITY

The preceding section contains all the ingredients
needed for the full TDHF solution of n interacting kinks
and antikinks. Yet these results are not yet in a form well
suited for practical computations with computer algebra. If
one tries to evaluate them, for example, with MAPLE, one
notices that the number of terms increases rapidly with n
and algebraic manipulations become prohibitive for rather
small n values already. The aim of the present section is to
present an alternative formulation which has proven more
convenient for applications. It is adapted from a work of
Bowtell and Stuart on the sine-Gordon equation [30] and
makes the structure of the n-soliton solution more trans-
parent. It also facilitates the computations of time delays in
Sec. VI and has proven to be a prerequisite for practical
calculations of a sizeable number of solitons to be dis-
cussed in Sec. VII. Besides developing this approach for
both scalar potential and TDHF spinors in a general case,
we have also included in this section the proof that the total
fermion density is proportional to the bound state contri-
bution, generalizing Eq. (26) to n baryons. This will also be
of great help for the computations described in Sec. VII.

We start with the construction of the n-soliton potential
S. Since S and�S differ only by a �5 transformation, they
describe the same physics and we can choose

lim
x!�1S ¼ 1 (60)

without loss of generality. The single antikink can been
written in the form

S ¼ 1� 	1
1þ 	1

(61)

[see Eq. (14)]. Following the approach of Bowtell and
Stuart in the sine-Gordon case [30], we first note that n
noninteracting solitons are described by simply taking the
product of n one-soliton solutions,

S ¼ Yn
k¼1

�
1� 	k
1þ 	k

�
; (62)

with

	k ¼ expf2�kðx� vktÞ þ 2�kg: (63)

Clearly, this 2n-parameter ansatz will solve the sinh-
Gordon equation as long as all solitons are far apart.
Physically it may be thought of as the initial or final
configuration of an n baryon scattering process. S exhibits
an alternating sequence of n kinks and antikinks. Its be-
havior at spatial asymptotics for fixed time is

lim
x!�1S ¼ 1; lim

x!1S ¼ ð�1Þn: (64)

Next, we expand the numerator and denominator of S.
To explain the general construction of the interacting soli-
ton solution, it is sufficient to consider n ¼ 3,

S¼1�	1�	2�	3þ	1	2þ	1	3þ	2	3�	1	2	3
1þ	1þ	2þ	3þ	1	2þ	1	3þ	2	3þ	1	2	3

: (65)

Numerator and denominator are multivariate polynomials
of order n in the 	k. In order to arrive at the interacting
soliton solution, inspect each monomial of numerator and
denominator. If it contains 	k and 	l, multiply it by v2

kl

where vkl is the relative velocity of solitons k and l (more
precisely, the velocity of soliton k in the center-of-velocity
frame of solitons k and l):

vkl ¼
1� vkvl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� v2

kÞð1� v2
l Þ

q
vk � vl

: (66)

In our example (n ¼ 3), this prescription yields

S ¼ 1� 	1 � 	2 � 	3 þ v2
12	1	2 þ v2

13	1	3 þ v2
23	2	3 � ðv12v13v23Þ2	1	2	3

1þ 	1 þ 	2 þ 	3 þ v2
12	1	2 þ v2

13	1	3 þ v2
23	2	3 þ ðv12v13v23Þ2	1	2	3

: (67)
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This is already the full 3-soliton solution. In other words,
lnS2 solves the sinh-Gordon equation for all values of ðx; tÞ.
Notice that the velocities vi all have to be chosen differ-
ently. If vi ¼ vj, the result collapses to the n� 1 soliton
solution. More generally, we write the n-soliton scalar
potential as

SðnÞ ¼ AðnÞ� ð	Þ
AðnÞ

þ ð	Þ (68)

with

Að1Þ
� ð	Þ¼1�	1; Að2Þ

� ð	Þ¼1�ð	1þ	2Þþv2
12	1	2;

Að3Þ
� ð	Þ¼1�ð	1þ	2þ	3Þþv2

12	1	2þv2
13	1	3

þv2
23	2	3�ðv12v13v23Þ2	1	2	3; (69)

etc. The relationship between this notation and the one in
previous sections is made by the following useful equa-
tions:

vkl¼
�
�l��k
�lþ�k

�
; 	k¼ �2

k

2�k
¼ exp

�
2i

�
�k �z� z

4�k

�
þ2�k

�
;

akl¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k	k�l	l

p
�kþ�l

: (70)

One can now check that the functions A� can equiva-
lently be expressed as determinants,

A ðnÞ
� ð	Þ ¼ detð1� aðnÞÞ; (71)

where aðnÞ is the matrix a of Eq. (70) for the n-soliton case.
Thus we recover the result (46), confirming that ln½SðnÞ�2
with SðnÞ from Eq. (68) is the n-soliton solution of the sinh-
Gordon equation. The advantage of the present algorithm
is the fact that it is very easy to implement in computer
algebra and makes the structure of the potential more
transparent.

A similar procedure works for the TDHF spinors as well.
The continuum spinors for the n-soliton problem can be
written as

c � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p 2�AðnÞ� ð
Þ
�AðnÞ

þ ð
Þ
 !

eið� �z�ðz=4�ÞÞ

AðnÞ
þ ð	Þ (72)

with


i ¼
�
�i � �

�i þ �

�
	i: (73)

To get the bound state which belongs to the kth
soliton, replace the normalization factor in (72) by (59)
and � by �k,

c ðkÞ ¼ e�kffiffiffiffiffiffiffiffiffi
2i�k

p 2�AðnÞ� ð
Þ
�AðnÞ

þ ð
Þ
 !

eið� �z�ðz=4�ÞÞ

AðnÞ
þ ð	Þ

���������¼�k

: (74)

This is significantly simpler than the continuum state, since
all monomials in the numerators containing a factor 
k

vanish.

If one evaluates the fermion densities with MAPLE

for small n values, one finds that the simple relation
between induced and valence fermion density found in
the one- and two-soliton cases generalizes to n solitons

(�ðkÞ ¼ c ðkÞyc ðkÞ),

h�i ¼ Xn
k¼1

�
Nk � N

2

�
�ðkÞ: (75)

Hence one can reconstruct the full fermion density from
the discrete states alone. Equation (75) can be proven for
general n with the help of Cauchy’s theorem. Since the
analytic structure of the fermion density is rather compli-
cated, we demonstrate the corresponding relation for the
simpler case of the pseudoscalar condensate. As pointed
out in Sec. II, the divergence of the vector and axial
currents establishes a close relationship between various
fermion bilinears. Eliminating the axial density h�5i from
Eq. (31), we can express the fermion density directly in
terms of the pseudoscalar condensate,

@�@
�h�i ¼ �@12Sh �c i�5c i; (76)

so that it is sufficient to prove the analogue of Eq. (75) for
h �c i�5c i. The pseudoscalar density for a single orbit reads

�c i�5c ¼ iðc �
1c 2 � c �

2c 1Þ: (77)

For a continuum state [see Eq. (72)], we get

�c i�5c ¼ � 2i�

1þ 4�2
ðAðnÞ� ð
ÞÞ�AðnÞ

þ ð
Þ
ðAðnÞ

þ ð	ÞÞ2 þ c:c: (78)

Note the useful relations

ðAðnÞ� ð
ÞÞ� ¼ AðnÞ� ð
�Þ; 
�
i ¼

�
�i þ �

�i � �

�
	i: (79)

We perform the sum over modes as an integral over the
spectral parameter, using the residue theorem in the com-
plex � plane. The integrand is an analytic, even function of
� falling off like 1=�2 at infinity, so that we can extend the
d� integration from �1 to þ1 and apply Cauchy’s theo-
rem. In the lower half-plane there are simple poles at

� ¼ �k arising from 
�
k. Since AðnÞ� ð
�Þ is linear in each


�
k, we can evaluate the kth residue by setting

AðnÞ� ð
�Þ ! 
�
k

@

@
�
k

AðnÞ� ð
�Þ

¼ 
�
kA

ðn�1Þ� ð��
1;k; . . . ; �

�
n;kÞ;

��
j;k ¼ v2

k;j

�
j

(80)

(the argument ��
k;k is missing in Aðn�1Þ� ). When applying

the residue theorem, Aðn�1Þ� in this expression has to be
evaluated at the pole � ¼ �k,


�
j ¼

�
�j þ �

�j � �

�
	j !

�
�j þ �k
�j � �k

�
	j ¼ 1

vkj

	j; (81)
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so that

��
j;k ! vkj	j ¼ 
jj�¼�k : (82)

This amounts to substituting

A ðnÞ� ð
�Þ !
�

2�k
�k � �

�
	k½AðnÞ� ð
Þ��¼�k : (83)

Inserting the nonsingular factors evaluated at the pole and
summing over all poles at � ¼ �k, the residue theorem
gives the following contribution from the continuum states
to the pseudoscalar condensate

h �c i�5c icont ¼ �N
Xn
k¼1

	k
AðnÞ� ð
ÞAðnÞ

þ ð
Þj�¼�k

ðAðnÞ
þ ð	ÞÞ2 : (84)

For the bound states on the other hand, a straightforward
evaluation of the pseudoscalar condensate using the wave
functions (74) yields

h �c i�5c ibound ¼ 2
Xn
k¼1

Nk	k
AðnÞ� ð
ÞAðnÞ

þ ð
Þj�¼�k

ðAðnÞ
þ ð	ÞÞ2 ; (85)

so that the total condensate becomes

h �c i�5c i ¼ Xn
k¼1

�
Nk � N

2

�
h �c i�5c iðkÞ; (86)

where Nkh �c i�5c iðkÞ denotes the kth term in the sum of
Eq. (85). Because of Eq. (76) this also proves (75).

Summarizing this section, we note that the most impor-
tant results are Eqs. (68) for the scalar mean field, (72) for
the continuum spinors and (74) for the bound state spinors,
together with the constructive algorithm illustrated in
Eq. (69) and the final expression for the fermion density,
Eq. (75). This is the basis for all the concrete applications
discussed in Sec. VII. Moreover, Eq. (68) is helpful for
deriving the asymptotics in Sec. VI.

VI. ASYMPTOTICS FOR t ! �1, PHASE
SHIFTS AND TIME DELAYS

The only observable in an elastic scattering process in
1þ 1 dimensions is the time delay. Here we shall compute
the time delay experienced by each of the n baryons. In
order to determine the time delay, we need the asymptotics
of the scalar potential S for t ! �1. As a by-product, this
will teach us how to translate the parameters ð�k; vkÞ into
initial positions and velocities of the baryons.

We order the solitons according to the velocities vi,

v1 > v2 > . . .> vn: (87)

Then for t ! �1, S describes n incoming (anti)solitons
with the functional form (only valid in the vicinity of the
corresponding soliton)

Sð1Þin ¼1�	1
1þ	1

; SðkÞin ¼ð�1Þkþ1 1�	k
Q

k�1
i¼1 v

2
ik

1þ	k
Q

k�1
i¼1 v

2
ik

(88)

(k ¼ 2; . . . ; n). They are ordered from left to right, starting
with an antisoliton. For t ! 1, S describes n outgoing
(anti)solitons with the functional form (again only valid in
the vicinity of each soliton)

Sð1Þout ¼ 1� 	n
1þ 	n

;

SðkÞout ¼ ð�1Þkþ1
1� 	nþ1�k

Q
n
i¼nþ2�k v

2
nþ1�k;i

1þ 	nþ1�k

Q
n
i¼nþ2�k v

2
nþ1�k;i

(89)

(k ¼ 2; . . . ; n). They are also ordered from left to right,
starting with an antisoliton. If one follows the baryon
density, one finds that it is exchanged in each two-body
collision. This is a direct consequence of the fact that the
scalar potential is transparent. Hence a particular fermion
cluster gets transferred from the incoming soliton k to the
outgoing soliton nþ 1� k; the spatial order is inverted.
Physically relevant is presumably only the time delay for
the fermion clusters, not the (anti)kinks. This is equivalent
to computing the time delay from the asymptotic form of S,
comparing kinks with the same 	k at t ! �1. The result
for k ¼ 2; . . . ; n� 1 is

ð�tÞk ¼ lnðQn
i¼kþ1 v

2
kiÞ � lnðQk�1

i¼1 v
2
ikÞ

2�kvk

: (90)

For k ¼ 1 and k ¼ n, one finds

ð�tÞ1¼ lnðQn
i¼2v

2
1iÞ

2�1v1

; ð�tÞn¼�lnðQn�1
i¼1 v

2
inÞ

2�nvn

: (91)

In the special case of two solitons in the center-of-velocity
frame, we recover the result of [9]

v1¼v; v2¼�v; v12¼v; ð�tÞ1¼ð�tÞ2¼ lnv2

2�v
: (92)

In the soliton literature, one also introduces a ‘‘phase shift’’
related to the time delay by [31]

�k ¼ �2�kvkð�tÞk: (93)

The total phase shift is the sum of the phase shifts induced
by independent collisions with all other solitons. The �k

satisfy

Xn
k¼1

�k ¼ 0: (94)

To specify the initial conditions, it is helpful to note the
equation of motion of the kth incoming soliton,

x¼vkt��kþ lnCk

2�k

; C1¼1; Ck¼
Yk�1

i¼1

v2
ik; k¼2; . . . ;n:

(95)
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Similarly, the equation of motion of the kth outgoing
soliton (numbered in inverse order, i.e., according to the
fermion clusters each soliton carries) reads

x¼vkt��kþ lnC0
k

2�k

; C0
n¼1; C0

k¼
Yn

i¼kþ1

v2
ki;

k¼1; . . . ;n�1:
(96)

Denoting the initial time by t ¼ �T, the initial positions of
the solitons are given by

xðkÞ0 ¼ �vkT � �k þ lnCk

2�k

: (97)

This tells us how to choose the parameters �k, given the
initial soliton velocities and positions, namely, as

�k ¼ � lnCk � 2�kðxðkÞ0 þ vkTÞ (98)

with Ck from Eq. (95).

VII. ANATOMY OF THE n BARYON COLLISION
AND ILLUSTRATIVE EXAMPLES

What happens if one prepares n alternating, well sepa-
rated kinks and antikinks with different initial velocities,
carrying different numbers of fermions or antifermions?
We are now in a position to predict the time evolution of
this initial configuration in the GN model. In general, it
would be very hard to characterize such a complex colli-
sion process. In our case there are several simplifying
features which enable us to draw a full picture.

The initial and final states of an n-body collision may be
described as in the previous section—the solitons are
widely spaced and ordered according to their velocities,
the fastest one being leftmost in the incoming and right-
most in the outgoing state. We illustrate such a process
schematically in Fig. 1 for the case of n ¼ 4 solitons, in a
frame where all velocities vi are positive. Since a kink and
an antikink cannot pass through each other, it looks as if the

solitons repel and stay in the same order. However, due to
the fact that the self-consistent potential is transparent, the
fermions carried by each kink or antikink can only move
forward. In every two-soliton collision, the fermions get
exchanged as discussed in [9]. Inelastic processes are sup-
pressed due to the integrability of the GN model. In Fig. 1,
the fermions move roughly along the straight lines (ignor-
ing interaction effects). The intersection points of two
straight lines signal two-body collisions. Obviously, every
baryon interacts with every other one exactly once. The
complete time evolution of S including interaction effects
is shown in Fig. 2, where one recognizes time delays.
Figure 3 shows the corresponding time evolution of the
fermion density. To simplify the picture, we have assumed
that solitons 1 and 4 have maximal fermion number N=2,
whereas solitons 2 and 3 carry no fermions at all. We see
that the fast, Lorentz contracted fermion cluster of soliton 1
passes through the collision zone almost unaffected. The
wider peak corresponding to the slower fermions of soliton
4 suffers stronger interaction effects, being also scattered
by the ‘‘empty’’ solitons 2 and 3. If we had loaded any of

FIG. 1. Schematic drawing of generic multisoliton collision
for n ¼ 4. Time t runs vertically, the x axis is horizontal.
Fermions travel approximately along the straight lines, intersec-
tion points denote two-soliton collisions. Every soliton scatters
exactly once from every other soliton.
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FIG. 2. Time evolution of scalar mean field S for the 4-soliton
case sketched in Fig. 1. Parameters: � ¼ f50:5; 25:2; 21:8; 14:1g,
v ¼ f0:9; 0:7; 0:4; 0:1g.
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FIG. 3. Like Fig. 2, but fermion density shown. Solitons 1 and
4 have maximal fermion number N=2, solitons 2 and 3 are
empty.
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the solitons with antifermions by choosing an occupation
of the valence level<N=2, we would observe that fermions
and antifermions also pass through each other, due to the
absence of annihilation processes. Note also that the graph
shown in Fig. 2 is independent of the fermion content of the
solitons. It would even hold in the case where all solitons
have vanishing fermion number, so that neither baryons nor
bosons are involved. Nevertheless we would be dealing
with a valid solution of a quantum field theory. This under-
lines the nonperturbative character of the whole approach.

Let us now consider some further illustrative examples.
Our original motivation for studying the GN model came
from strong interaction physics. In real life, natural many-
baryon problems would involve nuclei. If the 2-soliton
scattering is taken as a toy model for nucleon-nucleon
scattering, one would like to address next nucleon-nucleus
or nucleus-nucleus collisions at the elementary fermion
level. Unfortunately, the GN model has no ‘‘nuclei,’’ i.e.,
bound states of baryons. The baryon-baryon interaction is
repulsive. ‘‘Nuclear matter’’ exists in the form of a soliton
crystal, but it is not self-boundnor does it saturate. Scattering
problems with more than two incident particles on the other
hand have no obvious analogue in particle physics.
Therefore, the best we can do to mock up nuclear targets
or projectiles in our toy world is to use ‘‘trains’’ of solitons
with nearly equal velocities. Although unstable, such a
configuration will stay together for a time long enough to
study scattering processes. These trains of solitons may be
thought of as chunks of soliton crystals (‘‘nuclear matter’’).
In applications of the present model to other fields like
condensed matter physics, the interest would presumably
be in a different kind of n-soliton problem. The formulas
given in Sec. V should enable the reader to produce easily
any desired result by choosing appropriate parameters.

Proceeding in this spirit, we show in Figs. 4 and 5 an
example of the analogue of a baryon-nucleus collision for

1þ 5 solitons, in the (approximate) rest frame of the target
‘‘nucleus.’’ The kinks behave much like classical hard
spheres; i.e., the incoming projectile gets stopped when it
hits the first target baryon, and the last target baryon leaves,
carrying away the momentum. This can be inferred from
the scalar potential in Fig. 4. To illustrate the fate of the
fermions, we fully load the projectile and target baryons
with N=2 fermions each. As shown in Fig. 5, the fast
projectile fermions then hop from one soliton to the next
one repeatedly during the collision, until they emerge in
the emitted, rightmost soliton and move along with it.
Owing to the relativistic invariance of the formalism we

can study these collision processes in any desired Lorentz
frame. In our last example, we choose the center-of-mass
frame of two nuclei, each one consisting of 4 solitons
carrying the maximal number of fermions. This is the
closest we can come to simulate a ‘‘relativistic nucleus-
nucleus collision’’ in the GN model. Figures 6 and 7 show
again that the solitons repel each other, whereas the
fermions keep moving forward. A combination of
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FIG. 5. Like Fig. 4, but fermion density shown. All projectile
and target solitons carry the allowed maximum of N=2 fermions.
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FIG. 4. Relativistic ‘‘proton-nucleus’’ collision simulated by
the collision of a single soliton with a train of 5 solitons,
approximately at rest (‘‘laboratory frame’’). Time evolution of
scalar potential is shown. Solitons behave like hard spheres.
Parameters: �i ¼ 0, v ¼ f0:9; 0:02; 0:01; 0;�0:01;�0:02g.
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FIG. 6. Relativistic ‘‘nucleus-nucleus’’ collision simulated by
the collision of two trains of 4 solitons each, in the center-of-
mass frame. Scalar potential shown. Parameters: �i ¼ 0, v ¼
f0:95; 0:94; 0:93; 0:92;�0:92;�0:93;�0:94;�0:95g.
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integrability and transparent mean field is behind this
simple scenario.

By comparing Fig. 6 for the scalar potential and Fig. 7
for the density, one may be tempted to conclude that both
figures show multisoliton collisions. Indeed, in both cases
all the lumps emerge unchanged from the collision process.
However, this interpretation is only valid for S and the
underlying sinh-Gordon equation. That the density has no
solitonic character already follows from the fact that the
normalization of each fermion cluster can be arbitrarily
chosen. Formally, whereas S is the solution of a nonlinear
differential equation, the density can be thought to arise
from a linear equation where S enters as an external field,
similar to the spinors in the TDHF equation. In any case,
the fact that our solitons carry fermions is an interesting
aspect not shared by standard applications of solitons in
physics, but reminiscent of early soliton bag models [32] in
3þ 1 dimensions.

VIII. SUMMARYAND OUTLOOK

The observation that solitons share some properties with
elementary particles is as old as soliton theory. In the GN
model, this relationship can now be made very precise. The
underlying quantum field theory is purely fermionic. It
produces dynamically multifermion bound states. In the
large N limit, the appropriate semiclassical setting is the
relativistic HF approach. The scalar HF potential is a
classical field with solitonic character, but the bound fer-
mions are also relevant for understanding the structure of
‘‘hadrons.’’ This has of course been well known for a long

time. The new insight which we can add now is the fact that
for a certain class of particularly simple solutions (called
type I), the whole dynamics can be decoupled from the
fermions and cast into the form of a nonlinear differential
equation for the scalar mean field. This equation turns out
to be the sinh-Gordon equation. Apparently one can bypass
the complicated self-consistency issue for these particular
solutions and arrive at the self-consistent solution by just
solving a single, nonlinear differential equation for the
‘‘master field’’ S. The fermions then follow the motion of
the solitons, but do not react back in any way. Since the
relevant soliton equation is well known, this enabled us to
solve a rather involved problem in closed analytical form,
namely, the dynamics of n kink and antikink baryons with
arbitrary fermion number, initial positions and velocities.
We have analyzed this type of scattering process and found
that it has many unrealistic features from the point of view
of particle physics. However, here we have no choice since
we are not dealing with a phenomenological model, but the
solution of a given quantum field theory, Eq. (1), in the
large N limit. Actually, examples in theoretical physics
where the dynamics of a number of composite particles
can be analyzed exactly at the elementary constituent level
are extremely rare, even in nonrelativistic many-body
physics. In our case, Lorentz covariance is strictly main-
tained and the polarization of the Dirac sea fully taken into
account.
The methods developed here in a concrete example may

have some potential for generalizations. One striking ob-
servation is the fact that the TDHF spinors are apparently
closely related to auxiliary spinors introduced in soliton
theory when one looks for solutions via the inverse scat-
tering method. It is very likely that there is a more general
principle behind this apparent coincidence. It was certainly
important that we restricted ourselves to type I solutions of
the TDHF equations. All other analytically known solu-
tions of the massless or massive GN model are actually
type II and therefore related to the N ¼ 2 classical GN
model. It would be interesting to generalize our approach
to this more general case, thereby extending the pool of
exact solutions, perhaps even to nonintegrable field theo-
ries like the massive GN model.
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