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We study Einstein gravity in dimensions D � 4 modified by curvature squared at critical point where

the theory contains only massless gravitons. We show that at the critical point a new mode appears leading

to a logarithmic gravity in the theory. The corresponding logarithmic solution may provide a gravity

description of logarithmic conformal field theories (CFT) in higher dimensions. We note also that for

special values of the parameters of the theory, the model admits solutions with nonrelativistic isometries.
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I. INTRODUCTION

Four-dimensional Einstein gravity modified by curva-
ture squared terms may provide a toy model to study
quantum gravity in four dimensions. The corresponding
action of the theory is given by [1,2]
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When the cosmological constant is zero,� ¼ 0, the theory
is renormalizable and contains massless gravitons, massive
spin 2, and a massive scalar field [1,2]. Nevertheless, the
theory has ghosts due to negative energy excitations of the
massive tensor. We note, however, that at the special values
of the parameters of the theory either the massive tensor or
the scalar would be absent. We note also that when � ¼ 0
the model is unitary but nonrenormalizable, while when the
curvature squared term is given by the Weyl tensor squared
the model is neither unitary nor renormalizable.

With nonzero cosmological constant, the model exhibits
new features. Although in this case the theory still contains
massless gravitons, massive spin 2, and a massive scalar
field, it is possible to tune the parameters such that only
massless gravitons remain in the spectrum.

More precisely, it has been shown [3] that for the special
values of � and � (critical point) given by

� ¼ �3� ¼ � ‘2

2
; (1.2)

the spin 2 field becomes massless and at the same time the
massive scalar is removed from the spectrum. As a result
we are left with four-dimensional gravity with only mass-
less gravitons.

In this paper, we would like to further study the model at
the critical point. In particular, we study AdS wave solu-
tions in the mode and we will show that at the critical point
it admits logarithmic solutions. These solutions may pro-
vide gravity descriptions for logarithmic conformal field
theories (CFT’s) in higher dimensions.

The paper is organized as follows. In the Sec. II, we
will consider anti-de Sitter (AdS) wave solutions in four-
dimensional theory at critical point. Generalization to
higher dimensions is presented in Sec. III. SectionIV is
devoted to conclusions.

II. ADS WAVE SOLUTION AND LOG GRAVITY

In this section, we will study AdS wave solutions in the
model given by the action (1.1). To proceed, we start with
the equations of motion of the action (1.1)

G �� þ E�� ¼ 0; (2.1)

where [3]
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Since E�� vanishes for any Einstein space in four dimen-

sions, with a negative cosmological constant (as we choose
here) the model admits an AdS4 vacuum solution, whose
radius is given by ‘2. This solution has been studied in [3].
Having an AdS vacuum solution, it is interesting to

study AdS wave solutions in the model.1 To proceed we
consider an ansatz for AdS wave solutions as follows

g�� ¼ �g�� þ Fk�k�; (2.2)

where k� is a null vector field with respect to the metric

�g��, with �g�� being the AdS4 metric parametrized as
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1AdS wave solutions for topologically massive gravity and
new massive gravity models have been studied in [4–6], where it
was shown that at the critical value of the parameters the solution
develops logarithmic behaviors. The same situation has also
been observed in bi-gravity and Born-Infeld gravity [7,8].
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ds2 ¼ ‘2

r2
ð�2dxþdx� þ dy2 þ dr2Þ: (2.3)

Note that F is an arbitrary function which is independent of
the integral parameter along k�. In other words, the ansatz

may be given by

ds2¼‘2

r2
ð�Fðxþ;y;rÞdxþ2�2dxþdx�þdy2þdr2Þ: (2.4)

Plugging this ansatz into the equations of motion (2.1), one
finds
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For simplicity, we assume that F is independent of y
coordinate. In this case the above equation reads
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(2.6)

It is clear that the most general solution of the above
differential equation is in the form of rx with constant x
satisfying the following characteristic equation

xðx�3Þ½�ðx�1Þðx�2Þ�8ð3�þ�Þþ‘2�¼0: (2.7)

Therefore a generic solution of the equations of motion is2

Fðxþ; rÞ ¼ f4ðxþÞ þ f3ðxþÞr3 þ f2ðxþÞr�þ þ f1ðxþÞr�� ;

(2.8)

where �� ¼ 3
2 �
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q
, and fi’s are undeter-

mined functions of xþ.
It is natural to look for a possibility of having multi-

plicities in the roots of the characteristic equation.
Actually, we observe that at the critical point where the
parameters � and � are given by the Eq. (1.2), the char-
acteristic equation degenerates, leading to new logarithmic
solutions as follows

Fðxþ;rÞ¼f4ðxþÞþf3ðxþÞr3þ½f2ðxþÞþf1ðxþÞr3� logðrÞ:
(2.9)

In other words, at the critical point, the model admits a new
vacuum solution which is not asymptotically locally AdS4.
Therefore, in order to accommodate the new solution, one
needs to change the asymptotic behavior of the metric.
More precisely, using the Fefferman-Graham coordinates
for the metric

ds2 ¼ dr2

r2
þ 1

r2
gijðxiÞdxidxj; (2.10)

the equations of motion give a possibility to have a wider
class of boundary conditions for the metric as follows

gij¼bð0Þ ij logðrÞþgð0Þ ijþgð3Þ ijr3þbð3Þ ijr3 logðrÞþ��� :
(2.11)

Typically when bð0Þ ij is nonzero, where the solution is not

an asymptotically locally AdS4, to maintain the variational
principle well posed with the Dirichlet boundary condition
one needs to modify the variational principle by imposing
an additional boundary condition [9]. Indeed, from the
above expression for the asymptotic behavior of the metric,
one finds

gð0Þ ij¼ lim
r!0

�
gij�rlogðrÞ@gij

@r

�
; bð0Þij¼ lim

r!0
r
@gij
@r

; (2.12)

showing that in order to fix the boundary conditions not
only one needs the value of the boundary metric but also its
radial derivative.
In the context of AdS/CFT correspondence [10], both

gð0Þ ij and bð0Þ ij may be treated as two sources for two

operators in the boundary three-dimensional CFT.We note,
however, that since in the presence of nonzero bð0Þ ij the

geometry is not asymptotically locallyAdS4, the parameter
bð0Þ ij should be considered as a source for an irrelevant

operator in the dual CFT (see for example [9]).
Nevertheless, for a sufficiently small bð0Þ ij, one could still

use the AdS/CFT correspondence to describe the dual
theory, which is expected to be a logarithmic CFT.3

As a result, the logarithmic solution of the action (1.1)
indicates that critical gravity gives a gravity description for
three-dimensional logarithmic CFT’s. Actually, the situ-
ation is similar to those in topologically massive gravity
and new massive gravity models, where it is believed that
the dual theory is logarithmic CFT [12,13] at critical point.
Following [9,14], it would be interesting to find two-point
functions and the corresponding new anomaly parameter in
this model using the holographic renormalization method.
As a final remark, we note that away from the critical

point and for a specific values of� and�, the model admits
another one parameter solution. Indeed, when

24� ¼ 2ð2n2 � n� 4Þ�þ ‘2; (2.13)

with n being a free parameter, for a specific choice of the
intergral constants one finds the following solution

2A y dependent solution can also be obtained as Fðxþ; y; rÞ ¼
ðc0ðxþÞ þ c1ðxþÞyÞFðxþ; rÞ.

3Logarithmic CFT’s in the context of AdS/CFT correspon-
dence have also been studied in [11]. We note, however, that in
this paper the authors have fixed the background to be AdS and
the logarithmic behavior comes for the specific action of the
fields in the bulk.
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ds2 ¼ ‘2
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We recognize this solution as a gravity solution whose dual
theory is a nonrelativistic field theory [15].4 In particular,
for n ¼ 2, the isometry of the metric is Schrödinger group
and the solution provide a gravity description for a non-
relativistic CFT.

It is worth mentioning that in our model the nonrelativ-
istic holographic solution is obtained in a pure gravita-
tional system, though the one studied in [15] has been
obtained in a model which contains a gravity coupled to
a massive gauge field. Of course we have not checked
whether this vacuum is stable in the sense that small
fluctuations above it have non-negative mass spectrum.

III. HIGHER DIMENSIONS

In this section we would like to extend our previous
discussions to higher dimensions. Recently D-dimensional
extended gravities have been studied in , where the authors
have considered the following gravitational action

I ¼ 1

�

Z
dDx

ffiffiffiffiffiffiffi�g
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þ 	ðR����R���� � 4R��R�� þ R2Þ�: (3.1)

The corresponding equations of motion are [19]
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For generic values of the parameters �, �, � and 	 the
model has two distinct vacua such that R�� ¼ 2�

D�2g��,
where � is a root of the following equation [18]

�0��¼2�2

�
ðD�þ�Þ D�4

ðD�2Þ2þ
ðD�3ÞðD�4Þ
ðD�1ÞðD�2Þ	

�
:

(3.3)

It is always possible to tune the parameters such that at
least one of the vacua will be an AdSD geometry. In this
case, the radius of the AdS geometry is given in terms of�
as follows5

‘2 ¼ �ðD� 1ÞðD� 2Þ
2�

: (3.4)

It was shown in [18] that for appropriate choice of the
parameters there exists a critical point where

� ¼ � 4ðD� 1Þ
D

�;

ðD� 1ÞðD� 2Þ
4ð��Þ ¼ ðD� 1ÞðD�þ �Þ þ ðD� 3ÞðD� 4Þ	;

(3.5)

at which the model has only massless tensor gravitons.

Following our discussions in the previous section it is
natural to look for AdS wave solutions in the model and, in
particular, to see if the model supports a logarithmic solu-
tion at the critical point. To proceed, we consider an ansatz
as follows

ds2 ¼ ‘2

r2
ð�Fðxþ; r; xiÞdu2 � 2dxþdx� þ dr2 þ ðdxiÞ2Þ:

(3.6)

Plugging this ansatz into the equations of motion one finds
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The equation may be simplified with the assumption that
the function F is independent of transverse directions xi’s.
In this case, a generic solution of the resultant equation will
be of the form rx for constant x. From the above equation,
the characteristic equation reads

�

D� 2
xðx�Dþ 1Þ

�
x2 � ðD� 1Þxþ A

�

�
¼ 0; (3.8)

where A ¼ l2 � 2ðD�þ �Þðd� 1Þ � 2ðD� 3ÞðD� 4Þ	.
Therefore the most general solution of the equations of

motion is

4Lifshitz black holes in Einstein gravity with curvature
squared terms have also been studied in [16,17].

5When the right hand side of the Eq. (3.3) vanishes with the
assumption of negative cosmological constant, � ¼ �0 < 0, the
model admits a unique AdS solution. In this case when D � 4
the parameters of the model have to obey the constraint D�þ
�þ ðD�2ÞðD�3Þ

D�1 	 ¼ 0.

D-DIMENSIONAL LOG GRAVITY PHYSICAL REVIEW D 83, 084052 (2011)

084052-3



Fðxþ;rÞ¼f4ðxþÞþf3ðxþÞrD�1þf2ðxþÞr�þ þf1ðxþÞr�� ;

(3.9)

where �� ¼ D�1
2 �
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ðD�1

2 Þ2 � A
�

q
, and fi’s are undeter-

mined functions of xþ.
We note that at the critical point (3.5) where A ¼ 0, the

characteristic equation degenerates, leading to new loga-
rithmic solutions as follows

Fðxþ;rÞ¼f4ðxþÞþf3ðxþÞrD�1þ½f2ðxþÞþf1ðxþÞrD�1�
� logðrÞ: (3.10)

As a result, following our discussions in the previous
section, the gravitational model based on the action (3.1)
at the critical point may provide a gravity description for
D� 1 dimensional logarithmic CFT’s.

The model also admits nonrelativistic solutions
when the parameters of the model obey the constraint
Aþ 2ðn� 1Þð2n�D� 1Þ� ¼ 0 for n � 1. In this case,
for special choice of the integral constants, one finds

ds2 ¼ ‘2

r2

�
� dt2

r2n�2
� 2dtd�þ dr2 þ ðdxiÞ2

�
: (3.11)

IV. CONCLUSIONS

In this paper, we have studied AdS wave solutions in
D-dimensional Einstein gravity with curvature squared
modification. At the critical point where the theory con-
tains only massless gravitons the model admits logarithmic
solutions.

We have also shown that for special values of the pa-
rameters of the model, one could have nonrelativistic
solutions. In particular the model admits solutions with
Schrödinger isometry. Therefore these models could pro-
vide gravity descriptions for nonrelativistic and logarith-
mic CFT’s.
It is important to note that the existence of these solu-

tions are due to the curvature squared terms in the action.
Actually restricting to four dimensions we note that any
Einstein solutions are the solutions of the model with
curvature squared action. In fact, black hole solutions of
the Eisntein kind have altready been discussed in [3],
where the authors have shown that the corresponding black
holes have zero mass and entropy!
It would be interesting to find other solutions in the

model which are not Einstein solutions. In particular, one
may seek for non-Einstein black hole solutions in the
model. These black holes could be of the logarithmic
solution, as well.
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