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We apply a hybrid approach which combines loop and Fock quantizations to fully quantize the linearly

polarized Gowdy T3 model in the presence of a massless scalar field with the same symmetries as the

metric. Like in the absence of matter content, the application of loop techniques leads to a quantum

resolution of the classical cosmological singularity. Most importantly, thanks to the inclusion of matter,

the homogeneous sector of the model contains flat Friedmann-Robertson-Walker solutions, which are not

allowed in vacuo. Therefore, this model provides a simple setting to study at the quantum level interesting

physical phenomena such as the effect of the anisotropies and inhomogeneities on flat Friedmann-

Robertson-Walker cosmologies.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1–4] is a quantization
of cosmological models inspired in loop quantum gravity
ideas and methods [5,6], in which the geometry has a
discrete quantum nature. The first model successfully
quantized to completion in LQC was the flat Friedmann-
Robertson-Walker (FRW) model minimally coupled to a
massless scalar field, whose dynamical analysis shows that
a quantum bounce replaces the initial singularity [7]. The
resolution of the cosmological singularity is a robust prop-
erty of the theory [8,9], owing to the polymeric represen-
tation adopted for the geometry, and it is also achieved in
the rest of homogeneous models quantized so far in LQC
(see for instance [10–18] and references therein).

In order to allow for the presence of inhomogeneities
within the framework of LQC, recently a hybrid approach
to the quantization has been developed in the example of
the simpler case: the Gowdy T3 model with linear polar-
ization [19–22]. This is a midisuperspace with three-torus
spatial topology that contains inhomogeneities varying in a
single direction [23].

The introduced hybrid approach combines the tech-
niques of LQC with those of the Fock quantization for
reduced models in which only global constraints remain to
be imposed at the quantum level. The phase space is split in
homogeneous and inhomogeneous sectors. The former is
described by the degrees of freedom that parametrize the
subset of homogeneous solutions, and the second one is
formed by the rest of degrees of freedom. In the quantum
theory, the inhomogeneous sector is represented à la Fock,
in order to deal with the field complexity, while the homo-
geneous sector is represented following LQC, with the aim
at obtaining a quantum model with no analog of the

classical cosmological singularity. The approach assumes
a hierarchy of quantum phenomena, so that the most
relevant effects of the loop quantum geometry are those
that affect the homogeneous degrees of freedom. In the
case of the quantized Gowdy model, the homogeneous
sector coincides with the phase space of the Bianchi I
model, which has been extensively studied in LQC
[14–16,24]. Concerning the inhomogeneous sector, the
requirement that the conventional description for the in-
homogeneities should be recovered when the quantum
geometry effects of the homogeneous sector are negligible
and that this description respect unitarity selects the Fock
quantization of Refs. [25–27] without ambiguity. In fact,
with the commented requirement, it has been shown that
this is the unique satisfactory Fock quantization that the
totally deparametrized Gowdy T3 model admits [28,29].
Our aim is to further analyze inhomogeneous cosmolo-

gies in LQC by means of this hybrid quantization, now
allowing for the presence of matter. In order to do this, we
will include in the Gowdy T3 model a minimally coupled
massless scalar field with the same symmetries of the
geometry. Choosing suitable field parametrizations for
the inhomogeneities of both gravitational waves and mat-
ter, the corresponding field contributions appear in the
constraints in the same way [30,31]. As a consequence,
the uniqueness results of Refs. [28,29] for the Fock quan-
tization apply to the nonvacuum case as well, and hence we
have at our disposal a preferred Fock description also for
the inhomogeneities of the matter field.
The interest of this work lies not only in the fact that it

provides a complete quantization of a cosmological model
with an inhomogeneous matter field in the framework of
LQC, but also in that it means a further step towards the
quantum analysis of physical inhomogeneities in cosmol-
ogy, in the sense that these inhomogeneities propagate on a
geometry not very different from that of our universe.
Indeed, thanks to the inclusion of matter, now the homo-
geneous sector of the model (nonvacuum Bianchi I) admits
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flat FRW cosmologies as a subset of solutions, namely, the
isotropic ones, and it is widely known that the observed
universe can be approximated at large scales by a space-
time of this type. Therefore, it is natural to compare the
dynamics of our inhomogeneous model with that of the
flat isotropic model, and analyze the quantum effects that
anisotropies and inhomogeneities produce over a hypo-
thetical FRW-like background. In particular, this setting
would allow us to investigate questions like the robustness
of the quantum bounce scenario of LQC when inhomoge-
neities are included, or modifications to the evolution of the
matter inhomogeneities when quantum geometry effects
are taken into account.

Let us mention that, owing to the isometries of the
Gowdy model, this family of spacetimes presents a par-
ticular subset of solutions with local rotational symmetry
(LRS), in which the two scale factors of the directions of
homogeneity coincide. Therefore, in order to simplify
the analysis, it is convenient to focus on this kind of
solution, which we will call LRS-Gowdy cosmologies in
the following. We will carry out this LRS reduction at the
quantum level using an adaptation of the (so-called)
projection procedure introduced in Ref. [16] to pass from
the loop quantized Bianchi I model to the loop quantized
FRW model.

This work is intended as a first contribution to the
analysis of the Gowdy system with matter. Specifically,
here we quantize to completion the model, putting special
attention to the new features that the consideration of the
matter field introduces in comparison with the vacuum
case. We also present a general discussion of the lines of
attack that can be pursued to extract the physics from our
quantum model. We leave for a future work a more rig-
orous and deeper study of this underlying physics and its
consequences. The structure of this paper is as follows. The
classical model is described in Sec. II. In Sec. III, we carry
out its quantization, promoting the constraints to operators
and characterizing the physical Hilbert space. We also
show how to reduce the quantum model to the correspond-
ing LRS-Gowdy counterpart. Finally, in the concluding
Sec. IV, we point out the possibilities that this model
provides to analyze quantum phenomena in cosmology
and to reach physical predictions.

II. CLASSICAL MODEL

The linearly polarized Gowdy T3 cosmologies are glob-
ally hyperbolic spacetimes with three-torus spatial topol-
ogy and two axial and hypersurface orthogonal Killing
vector fields [23]. We provide this system with a minimally
coupled massless scalar field, �, with the same symme-
tries. We use global coordinates ft; �; �; �g, where �, �,
� 2 S1, such that the Killing fields are @�, @�. Then, all the
fields (metric and matter) only depend on the coordinates t
and �. We reduce the system by performing a partial gauge
fixing, as in Refs. [20,21,26]. As a result, the gravitational

sector of the phase space turns out to be described by two
pairs of canonically conjugate point-particle variables
(they do not depend on �) and by one field, together with
its canonical momentum. We expand the fieldlike variables
in Fourier series in the coordinate � and split the phase
space into two sectors: one formed by all the homogeneous
degrees of freedom (the two point-particle gravitational
variables and the zero modes of both matter and gravita-
tional fields, together with their momenta) and the other
formed by the nonzero modes of the two fields of the
system and of their conjugate momenta. We call them
homogeneous and inhomogeneous sectors, respectively.
In the totally deparametrized model, there is a particular

field parametrization of the metric in which the gravita-
tional wave content is described by a field which behaves
exactly as the matter field �, namely, as a massless scalar
field propagating in 2þ 1 gravity [32]. Nonetheless, this
description does not admit any Fock quantization with
unitary dynamics [29,33,34]. For that, it is necessary to
apply a time dependent canonical transformation on both
fields [26,29]. The resulting gravitational and matter fields,
which we call � and ’ respectively, follow the equation of
motion of a free scalar field with a time dependent mass in
a static spacetime of 1þ 1 dimensions. Consistent with our
restriction to the inhomogeneous sector, we consider both
fields already devoid of zero modes. Now, introducing for
these fields creation and annihilationlike variables defined
like one would naturally do in the case of free massless
scalar fields, one reaches a Fock quantization whose evo-
lution is indeed unitary [25,26] and such that the vacuum is
invariant under S1 translations, which is the gauge group of
the reduced system. Moreover, it has been shown that these
two natural properties of unitary dynamics and vacuum
invariance in fact pick up this Fock quantization as the
unique acceptable one, up to unitary equivalence [28,29].
So, taking into account this result for the totally deparame-
trized model, we adopt the suitable field parametrization of
Refs. [25,26] both for the gravitational and matter inho-
mogeneities of our current model, and describe them in
terms of the creation and annihilationlike variables men-
tioned above, in order to eventually carry out the corre-
sponding Fock quantization of the inhomogeneous sector.

We will call these variables ðað�Þ�m ; að�Þm Þ, with m 2 Z� f0g
and � ¼ �, ’.
On the other hand, the homogeneous sector describes

Bianchi I cosmologies with spatial three-torus topology
and with a minimally coupled homogeneous massless
scalar field, given by the zero mode of �. From now on,
we call � this homogeneous matter field and P� its mo-

mentum. Since the homogeneous sector is to be quantized
using LQC methods, we describe the gravitational varia-
bles of this sector in the Ashtekar-Barbero formalism.
Using a diagonal gauge, the nontrivial components of the
densitized triad are pj=4�

2, with j ¼ �, �, �, whereas

those of the suð2Þ connection are cj=2� (see e.g. [15]).
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These variables satisfy fci; pjg ¼ 8�G��ij, where � is the

Immirzi parameter and G is the Newton constant (through-
out the text, we set the speed of light equal to the unity).

Two global constraints still remain on this reduced
system: the spatial average of the densitized Hamiltonian
constraint, C, and the generator of S1 translations, C�.
On the one hand, C can be split into two terms, C ¼
Chom þ Cinh, the former involving only the homogeneous
sector. Then, Cinh couples the homogeneous gravitational
sector with both the gravitational and matter inhomoge-
neous sectors through two identical terms, one per field,

Cinh ¼ C�inh þ C’inh, where C�inh denotes the corresponding

coupling term for the vacuum case [20]. The homogeneous
term Chom is the densitized Hamiltonian constraint of the
Bianchi I model minimally coupled to a homogeneous
massless scalar field [15,16]. Thanks to the presence of
matter, the classical Bianchi I model admits solutions of
the FRW type. On the other hand, as it happens to be the
case with the inhomogeneous term Cinh, C� is the sum of

two identical contributions, C� ¼ C�� þ C’� , where C�� de-

notes the analog constraint in vacuo [20]. We see that, with
our choice of variables, matter and gravitational inhomo-
geneities contribute in the same way to the constraints, and
then it is straightforward to promote C� and C to operators
following the hybrid quantization developed for the
vacuum case.

III. QUANTUM MODEL

A. Kinematics and constraint operators

The quantization of the system starts with the introduc-
tion of a kinematical Hilbert space where the basic varia-
bles are represented as operators and where the constraints
are imposed quantum mechanically. For this kinematical
Hilbert space, H kin, a natural selection is the tensor prod-
uct of the kinematical Hilbert space of the gravitational
sector H grav

kin times the kinematical Hilbert space of the

matter sector H matt
kin . Both of these spaces are in turn the

tensor product of two spaces corresponding to homogene-
ous and inhomogeneous sectors, respectively. Physically,
the nontriviality of the system comes from the couplings
introduced at the moment of imposing the quantum
constraints.

For the gravitational sector, then, we carry out the hybrid
quantization of Refs. [21,22], namely H grav

kin is the tensor

product of the kinematical Hilbert space of the Bianchi I
model in LQC [16,22], H BI

kin, times the standard Fock

space for the inhomogeneities, F �, defined in terms of
the annihilation and creation variables previously de-
scribed for the field �. The homogeneous matter sector,
on the other hand, is formed by the zero modes of the
massless scalar field and its momentum, determined by �
and P�. In analogy with the nonvacuum cases analyzed in

homogeneous LQC (in particular the Bianchi I model
minimally coupled to a massless scalar [16]), we take the

standard representation for these variables, choosing
L2ðR; d�Þ as the Hilbert space. Finally, since matter and
gravitational inhomogeneities have identical behavior, the
kinematical Hilbert space accounting for the matter
inhomogeneities, F ’, is totally analogous to F �.
Summarizing,

H kin ¼ H BI
kin � L2ðR; d�Þ �F � �F ’: (3.1)

For the inhomogeneous sector, the chosen representation

is obtained by promoting the classical variables að�Þ�m and

að�Þm , with m 2 Z� f0g and � 2 f�;’g, to creation and

annihilation operators, âð�Þym and âð�Þm , respectively. With
them, it is straightforward to construct the quantum coun-
terpart of the constraint C�, for which we choose normal
ordering. The result is [20,21]

Ĉ � ¼
X1
m¼1

mX̂�
m þ X1

m¼1

mX̂’
m;

X̂�
m ¼ âð�Þym âð�Þm � âð�Þy�m âð�Þ�m:

(3.2)

The same strategy is adopted when representing the
inhomogeneous contributions to the coupling terms C�inh.
It turns out that the inhomogeneities of the field � (� or ’)
appear in C�inh only via two different quadratic combina-

tions, H�
0 and H�

int, whose normal ordered quantum coun-

terparts are [20,21]

Ĥ �
0 ¼ X1

m¼1

mN̂�
m;

Ĥ�
int ¼

X1
m¼1

1

m
ðN̂�

m þ âð�Þym âð�Þy�m þ âð�Þm âð�Þ�mÞ;
(3.3)

with N̂�
m ¼ âð�Þym âð�Þm þ âð�Þy�m âð�Þ�m. The above operators

X̂�
m, Ĥ

�
0 , and Ĥ�

int act nontrivially on F � and have as a
common dense domain the space of n-particle states.
We call n�m the number of particles of the field � in the
mode m.
On the other hand, for the homogeneous sector, the basic

matter variables are represented by the operators �̂, which

acts by multiplication, and P̂� ¼ �iℏ@�, while for the

gravitational part we adopt the operator representation
discussed in detail in Ref. [21] (see also Ref. [22]), adher-
ing to the improved dynamics scheme put forward by
Ashtekar and Wilson-Ewing [16] (and which was called
‘‘case B’’ in Ref. [21]). Let us briefly review this quantiza-
tion scheme. First we recall that, onH BI

kin, the operators p̂i

(i ¼ �, �, �), which represent the nontrivial coefficients of
the densitized triad of the Bianchi I model, have a discrete
spectrum equal to the real line. The corresponding eigen-
states, jp�; p�; p�i, form an orthonormal basis (in the
discrete norm) of H BI

kin. Owing to this discreteness, there

is no well-defined operator representing the connection,
but rather its holonomies. The representation of the matrix
elements of these holonomies incorporates the so-called
improved dynamics prescription, which states that there
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exists a dynamical (state dependent) minimum length �	i

for the straight edges in the ith-direction along which the
holonomies are computed. We use the specific improved
dynamics prescription put forward in Ref. [16]. Then, the
elementary operators which represent the matrix elements

of the holonomies, called N̂ �	i
, produce all a constant shift

in the physical Bianchi I volume [16,21]. The resulting

action of N̂ �	i
on the states jp�; p�; p�i is quite involved.

In order to simplify the analysis, it is convenient to relabel
the basis states in the form jv; 
�; 
�i, where v is an
affine parameter proportional to the volume of the compact

spatial section, such that any of the operators N̂ � �	i

(i ¼ �, �, �) causes a unit (positive or negative) shift on
it. The parameters 
i are all equally defined in terms
of the corresponding parameters pi, and verify that
v ¼ 2
�
�
� (see the explicit definitions in Ref. [16]).

Employing the basic homogeneous gravitational opera-

tors p̂i and N̂ � �	i
, we can complete the construction of

the constraint operator Ĉ ¼ Ĉhom þ Ĉinh exactly in the
same way as in the vacuum case [21]. This densitized
Hamiltonian constraint operator is formed by

Ĉ hom ¼ �X
i�j

X
j

�̂i�̂j

16�G�2
� ℏ2

2

�
@

@�

�
2
; (3.4)

Ĉinh ¼ 2�ℏdjp�jðĤ�
0 þ Ĥ’

0 Þ

þ ℏ
d�
1

jp�j1=4
�2 ð�̂� þ �̂�Þ2

16��2

d�
1

jp�j1=4
�2
ðĤ�

int þ Ĥ’
intÞ;

(3.5)

with i, j 2 f�; �; �g. Here, d½1=jp�j1=4� is a regularized triad
operator which has a diagonal action on the considered

basis of states. On the other hand, the operator �̂i is the
quantum counterpart of the classical quantity cipi and its
action on the basis states is highly nontrivial. In particular,

�̂i and �̂j do not commute for i � j. We will not give here

the explicit action of these operators on our basis states
(which can be found in Ref. [21]). Instead, in the following
section, we will write down explicitly the general equation
that must be satisfied by the solutions of the quantum
densitized Hamiltonian constraint.

The above constraint operator leaves invariant certain
subspaces of H kin, which provide superselection sectors

[4,21]. When symmetrizing Ĉ, we have chosen a specific
factor ordering which leads to superselection sectors which
are particularly simple and with most convenient proper-
ties. More precisely, instead of considering H BI

kin, we can

restrict the homogenous gravitational sector to be the
completion with respect to the discrete norm of the space
spanned by the states jv; 
�; 
�i such that v, 
�, and 
�

belong to an octant, for instance v, 
�, 
� > 0 (the case on
which wewill focus our attention from now on), and with v

belonging then to any semilattice L� of step four included
in Rþ:

L � ¼ f�þ 4k; k 2 Ng: (3.6)

In this expression, � is any number in the interval ð0; 4�,
and provides the minimum value that v takes. In addition,
given �, the labels 
a (a ¼ � or �) are restricted to sectors
of the form 
a ¼ 
?

a!�, where the 

?
a ’s are any two fixed

positive numbers and !� runs over the following numer-
able and dense subset of Rþ:��

�� 2

�

�
zY

k

�
�þ 2mk

�þ 2nk

�
pk
�
: (3.7)

Here mk, nk, pk 2 N, and z 2 Z when � > 2, while z ¼ 0
otherwise [21].
Once we restrict the study to any of the above super-

selection sectors, the null eigenspace of the homogeneous
densitized triad operator (which is a proper subspace of
H BI

kin) ceases to be included in our theory. As a conse-

quence, there is no analog of the classical cosmological
singularity in the quantum model anymore. In this sense, it
is ensured that the singularity is resolved, already at the
kinematical level.

B. Physical Hilbert space

Once we have constructed the constraint operators, we
can proceed to determine the physical states, which must
be annihilated by these constraints. Notice that the two
constraint operators commute and can hence be imposed
consistently.
Let us consider first, e.g., the S1 symmetry generated by

Ĉ�, which amounts to the following condition

X1
m¼1

mðX�
m þX’

mÞ ¼ 0; X�
m ¼ n�m � n��m; �¼ �;’:

(3.8)

The states that satisfy this condition form a proper sub-
space of F � �F ’, which we call F p.

The Hamiltonian constraint operator imposes a more
complicated condition, mainly because of the nontrivial

actions of both �̂i on the homogeneous gravitational sector

and Ĥ�
int on the inhomogeneous sector [21,22]. For our

purposes here, it suffices to make explicit the action of
the Hamiltonian constraint operator on just the homoge-
neous sector. With this aim, it proves convenient to intro-
duce an alternate labeling of the basis states of H BI

kin. The
new labeling is given by jv;�;�i, where � ¼ lnð
�
�Þ
and � ¼ lnð
�=
�Þ. Next, we expand a general state j�i
in this basis:

j�i ¼ X
�v; ��; ��

j�ð �v; ��; ��Þi � j �v; ��; ��i: (3.9)

Here, �v, ��, and �� take values in the corresponding super-

selection sectors. Let us clarify that the kets j�ð �v; ��; ��Þi
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are actually not wave function coefficients, but rather
states inasmuch as we have not expanded j�i in a basis
of the whole kinematical Hilbert space, but only of the
homogeneous gravitational sector. On the other hand,
based on our experience with other similar cosmological

models, the states j�ð �v; ��; ��Þi for the solutions of the
Hamiltonian constraint are not expected to be normalizable
in L2ðR; d�Þ �F � �F ’, but rather to belong to a larger
space from which one should construct the physical

Hilbert space of the theory. Acting with Ĉ on j�i and
projecting over hv;�;�j, we obtain:

� 8

�G

�
@

@�

�
2j�ðv;�;�Þi

þ X
�2f0;4g

X
s2fþ;�g

xs�ðvÞj�s
�ðs�þ v;�;�Þi

� 4
e2�b2ðvÞ½Ĥ�
int þ Ĥ’

int�
X

�2f0;4g

X
s2fþ;�g

b2ðs�þ vÞ

� s�þ v

v
xs�ðvÞj�s0

� ðs�þ v;�;�Þi

þ 8




v2

e2�
½Ĥ�

0 þ Ĥ’
0 �j�ðv;�;�Þi ¼ 0: (3.10)

Here, 
 ¼ ½Gℏ=ð16�2�2�Þ�1=3, with� denoting the mini-
mum nonzero eigenvalue allowed for the area in loop
quantum gravity [16,21], and we have defined

bðvÞ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvþ 1j

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv� 1j

p
j; (3.11)

xs�ðvÞ ¼ � ei��=4

2
js2þ vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjs�þ vj

p
�

�
1þ sgn

�
s

�
2þ �

2

�
þ v

��
: (3.12)

On the other hand, the objects j�s
�ðs�þ v;�;�Þi, are

linear combinations of six contributions in the form

j�s
�ðs�þ v;�;�Þi

¼ X
r2f1;�1g

ðj�ðs�þ v;�þwvðs2Þ;�þ rwvðs2ÞÞi

þ j�ðs�þ v;�þwvðs�Þ;�þ rwvðs�Þ � 2rwvðs2ÞÞi
þ j�ðs�þ v;�þwvðs�Þ �wvðs2Þ;�þ rwvðs�Þ
� rwvðs2ÞÞiÞ; (3.13)

wherewvðsnÞ ¼ lnðsnþ vÞ � lnðvÞ. The three last lines of
Eq. (3.10) correspond to the action produced by Ĉinh, where
we have introduced the notation

j�s0
� ðs�þv;�;�Þi

¼ X
r2f1;�1g

ðj�ðs�þv;�þwvðs�Þ;�þ rwvðs�ÞÞi

þ j�ðs�þ v;�þwvðs�Þ;�þ rwvðs�Þ � 2rwvðs2ÞÞiÞ:
(3.14)

Condition (3.10), coming from the constraint, is a differ-
ence equation in the variable v and can be seen as an
evolution equation in this variable. In the vacuum
model, it has been proven that, formally, a(n infinite but
countable) set of initial data on the section given by the
minimum value of v, vmin ¼ � 2 ð0; 4�, completely
determines a solution of the densitized Hamiltonian
constraint [21,22]. Since the Hamiltonian constraint of
our model and the one in vacuo have identical structure,
the above result applies also to our case. This property
allows us to identify the physical Hilbert space of the
system, that we call H phys, as the Hilbert space of these

initial data.
The resulting physical Hilbert space, taking into

account condition (3.8) as well, is given by H phys ¼
H BI

phys � L2ðR; d�Þ �F p, where H BI
phys is the physical

Hilbert space of the Bianchi I model determined in
Ref. [22]. As discussed in that reference, the inner product
that provides this Hilbert space structure on the space of
initial data is obtained by the requirement that the complex
conjugation relations between a complete set of classical
observables turn into adjoint relations between the corre-
sponding operators.

C. Projection to LRS-Gowdy

The Gowdy T3 model with linear polarization is
symmetric under the interchange of the directions
coordinatized by � and �. Owing to this, it has a subset
of classical solutions with local rotational symmetry, in
which the scale factors of these two directions can be
identified during the entire evolution. We can then restrict
the Gowdy model, both in vacuo and with matter, to the
LRS-Gowdy model in which every solution is of this kind.
The restriction can be performed classically, prior to
quantization, or starting with the quantized model. We
will focus our attention on the latter approach, passing
from quantum Gowdy to quantum LRS-Gowdy, and leave
for the interested reader the proof that the quantum model
obtained in this way is indeed recovered by a direct quan-
tization of the classical LRS-Gowdy spacetimes along the
lines explained in this work.
In analogy with the discussion of Ref. [16], in

which the quantum FRW model is obtained from
quantum Bianchi I, we define the following map from
(generalized) states associated with the Gowdy model to
those of the LRS-Gowdy cosmologies, denoted by
jc ðv;�Þi:

j�ðv;�;�Þi ! X
�

j�ðv;�;�Þi � jc ðv;�Þi: (3.15)

The sum is carried out over all values of � in the consid-
ered superselection sector. Applying this map in the
Hamiltonian constraint (3.10), we obtain
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� 4
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where jc s
�ðs�þ v;�Þi are the combinations

jc s
�ðs�þ v;�Þi ¼ jc ðs�þ v;�þ wvðs�Þ � wvðs2ÞÞi

þ jc ðs�þ v;�þ wvðs�ÞÞi
þ jc ðs�þ v;�þ wvðs2ÞÞi: (3.17)

As we have already remarked, the result agrees with the
constraint obtained by a suitable hybrid quantization of
the classical LRS-Gowdy model. It is worth noting that the
introduced map works because the coefficients appearing
in Eq. (3.10) do not depend on the variable �, over which
one sums to perform the projection. Indeed, this kind of
map only makes sense if the classical model admits the
imposition of an additional symmetry which allows its
reduction into a dynamically stable submodel. A similar
projection summing over � is not viable because the
coefficients of the inhomogeneous contributions in the
constraint depend explicitly on this variable, reflecting
the fact that the associated kind of isotropic solutions exist
just when the inhomogeneities are unplugged.

IV. DISCUSSION

We have completely quantized the Gowdy T3 model
with linearly polarized gravitational waves provided with
a minimally coupled massless scalar field as matter con-
tent. The description adopted for the matter inhomogene-
ities is such that they can be treated in exactly the sameway
as the gravitational ones, the former just duplicating the
contributions of the latter in the constraints. In this situ-
ation, we have been able to apply the hybrid quantization
methods developed in Refs. [19–22] almost straightfor-
wardly to this system with local physical degrees of free-
dom both in the matter content and in the gravitational
field. To our knowledge, it is the first time that a model with
these properties has been quantized to completion in the
framework of LQC.

Since the structure of the constraints when the matter
field is present is the same as in vacuo, all the results
obtained in Ref. [21] for the vacuum Gowdy model apply
as well to our model. Thus, in particular, we recover on
physical states the standard quantum field theory descrip-
tion of both the matter and the gravitational inhomogene-
ities, living on a cosmological background quantized using
LQC methods and consisting of a Bianchi I universe with a

homogeneous massless scalar field. In addition, it is guar-
anteed that the states which are the analog of the classical
singularity decouple naturally in the quantum model, so
that, to this extent, the initial singularity is resolved at the
kinematical level.
Conceptually, the hybrid quantization of the present

family of inhomogeneous cosmologies has introduced no
technical complication with respect to the vacuum case.
Nonetheless, the situation is radically different when one
considers the interest of the quantum model from a physi-
cal point of view. In fact, thanks to the inclusion of the
massless scalar field, the homogeneous sector of the
Gowdy T3 model, namely, the Bianchi I model, admits
now isotropic flat solutions of the FRW type, while in
vacuo only the trivial Minkowskian solution is allowed.
On the other hand, the analysis of the classical solutions

of the linearly polarized Gowdy T3 model in vacuo [35] and
the study of the effective dynamics obtained from the
hybrid quantization of this model [36] show that small
inhomogeneities do not increase arbitrarily in the evolution.
Then, if we consider initial data which are sufficiently close
to homogeneity, the corresponding solution would remain
approximately homogeneous during the evolution. Besides,
in the nonvacuum model, matter and gravitational inhomo-
geneities evolve in identical ways. This strongly indicates
that initial data in a sufficiently small neighborhood of
those with isotropy and homogeneity have to lead to ap-
proximately isotropic and homogeneous solutions. There-
fore, it is natural to compare the dynamics of our Gowdy
model with that of the flat FRW model (with three-torus
topology) in order to see how the inclusion of anisotropies
and inhomogeneities affects the evolution of a flat FRW
background. Moreover, we are now in a perfect situation to
carry out this comparison at the quantum level, since here
we have accomplished the full quantization of the Gowdy
T3 model in the presence of the massless matter, and the
loop quantization of the FRW model coupled to the homo-
geneous massless field is well known [7,9]. Even though the
inhomogeneities in our model are not all those allowed in a
universe like the one which we observe (but just a subfam-
ily with the symmetries of the Gowdy T3 cosmologies),
their analysis should shed light on the kind of quantum
effects affecting the evolution and on the consequences of
the quantum geometry on the primordial fluctuations.
For these purposes, it is preferable to focus on the LRS-

Gowdy model derived in Sec. III C. Indeed, the considera-
tion of the 2 degrees of freedom of anisotropy that the
homogeneous sector of the general Gowdy model pos-
sesses would only complicate the equations unnecessarily.
The presence of either 2 degrees or just 1 degree of
anisotropy does not seem to have any conceptual relevance
for the proposed analysis.
In order to face this analysis, the idea is to add and

subtract in Eq. (3.16) the term corresponding to the FRW
model, which coincides with the first line of Eq. (3.16) but
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keeping the variable � unchanged. We can then rewrite
Eq. (3.16) as the constraint equation of the FRW model
coupled to a homogeneous massless scalar field plus a
number of contributions coming from all other terms.
These contributions contain the inhomogeneities and the
difference between the gravitational parts of the constraints
for LRS-Bianchi I and FRW, a difference which is due
to the anisotropies. In this way, the resulting expression
modifies the densitized Hamiltonian constraint of the
FRW model by the effects of the anisotropies and inhomo-
geneities, so that it is no longer equal to zero. As we have
commented, we are interested in comparing the FRW
model with the inhomogeneous LRS-Gowdy model
when these inhomogeneities and anisotropies are small.
In this regime, it makes sense to apply a type of Born-
Oppenheimer approximation, similar to others commonly
employed in cosmology (see e.g. [37,38]), and assume that

the variations of the isotropic degrees of freedom and those
of the rest of degrees have considerably different typical
scales, therefore giving them a different status. Then, in
this approximation, it is easier to derive effectively the
influence that anisotropies and inhomogeneities produce
on the isotropic background. We leave for future research
this detailed analysis.
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