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Proposed space-based gravitational-wave detectors such as BBO and DECIGO can detect�106 neutron

star (NS) binaries and determine the luminosity distance to the binaries with high precision. Combining

the luminosity distance and electromagnetically derived redshift, one would be able to probe cosmological

expansion out to high redshift. In this paper, we show that the Hubble parameter as a function of redshift

can be directly measured with monopole and dipole components of the luminosity distance on the sky. As

a result, the measurement accuracies of the Hubble parameter in each redshift bin up to z ¼ 1 are 3–14%,

1.5–8%, and 0.8–4% for the observation time 1 yr, 3 yr, and 10 yr, respectively.

DOI: 10.1103/PhysRevD.83.084045 PACS numbers: 04.30.�w, 95.36.+x, 98.80.�k

I. INTRODUCTION

Future space-based gravitational-wave detectors such as
DECI-hertz Interferometer Gravitational-wave Obser-
vatory (DECIGO) [1,2] and Big-Bang Observer (BBO)
[3] (see also [4] for updated information) are the most
sensitive to a gravitational wave (GW) in 0.1–1 Hz band
and will aim at detecting a cosmological GW background
generated during the inflationary epoch, the mergers of
intermediate-mass black holes, and a large number of
neutron star (NS) binaries in an inspiraling phase. These
GW sources enable us to measure the cosmological expan-
sion with unprecedented precision [4], to investigate the
population and formation history of compact-binary
objects, and to test alternative theories of gravity [5,6].

It has been known that the continuous GW signal from a
compact-binary object provides a unique way to measure
the luminosity distance to the source with high precision.
Such binary sources are often referred to as standard siren
(analogous to the electromagnetic standard candle). With
the redshift information determined by an electromagnetic
follow-up observation, the standard siren can be an accu-
rate tracer of the cosmic expansion [7]. The feasibility of
the standard siren relies on the determination of the redshift
of each binary. The identification of a host galaxy by
follow-up observation is thus crucial, indicating that a
high-angular resolution is generally required for GW de-
tector. In the case of DECIGO and BBO, the detectors orbit
the Sun with a period of one sidereal year, and constitute
four clusters, each of which consists of three spacecrafts
exchanging laser beams with the others. The two of the
four clusters are located at the same position to enhance
correlation sensitivity to a gravitational-wave background,
and the other two are separated on the Earth orbit in order

to enhance the angular resolution so that we can easily
identify the host galaxy of each NS binary via the electro-
magnetic follow-up observations. Based on this setup,
Cutler and Holz [4] have shown that cosmological parame-
ters can be accurately measured by DECIGO and BBO
with a precision of �1%, assuming a large number of
neutron star (NS) binaries, �106.
In this paper, we show that the space-based GW detec-

tors can also measure the Hubble parameter HðzÞ from the
GW standard sirens [8]. In this method, the measured
quantity is independent of that in the usual method of a
standard siren, in which an observable is the luminosity
distance as an integrated quantity of H�1ðzÞ. The method
to measure the Hubble parameter at each redshift has been
proposed by Bonvin et al. [9,10], who originally developed
this idea in the observation of distant type Ia supernovae. In
general, a large number of samples is necessary for the
accurate measurement of HðzÞ, and they concluded that
105–106 supernovae are needed to achieve a few percent
accuracy. In contrast to the supernovae observation which
requires an unrealistically large number of the samples and
suffers from relatively large systematics, DECIGO and
BBO are expected to detect a million NS binaries with
smaller systematic errors. Thus, the measurement of the
Hubble parameter at high redshifts becomes even more
feasible with standard sirens.
The Hubble parameter HðzÞ can be also measured by

estimating the differential age of the oldest galaxies in each
redshift bin [11] and using the baryon acoustic oscillation
(BAO) along the line-of-sight direction from the spectro-
scopic galaxy samples (e.g., [12,13]). In this respect, the
present method with GW observation is complementary,
and useful for an independent cross-check.
This paper is organized as follows. In Sec. II, we briefly

review the basic idea to measure the Hubble parameter via
dipole of the luminosity distance dL, originally proposed*anishi@yukawa.kyoto-u.ac.jp
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by Bonvin et al. [9,10], and derive the basic equations to
estimate the accuracy of the Hubble parameter. In Sec. III,
the method is applied to the GW observation. We briefly
describe the GW standard siren and calculate the measure-
ment accuracy of the Hubble parameter. In Sec. IV, system-
atic errrors are discussed and compared with the
uncertainty coming from instrumental noise in GW obser-
vation. Finally, Sec. V gives a brief summary and discus-
sions on the feasibility of our method. Throughout the
paper, we adopt units c ¼ G ¼ 1, and assume a flat
Universe.

II. HUBBLE PARAMETER FROM THE DIPOLE
ANISOTROPY OF LUMINOSITY DISTANCE

Consider the luminosity distance to some astronomical
objects measured at redshift z and angular position n. In
principle, the observations of many objects over the sky
enables us to map out the angular distribution of luminosity
distance, dLðz;nÞ, and no directional dependence appears
if the observer is at cosmological rest-frame (i.e., CMB
rest-frame) in a homogeneous universe. However, there
certainly exist tiny anisotropies in dL arising from the
matter inhomogeneities of the large-scale structure and/or
the local motion of the observer [14]. As it has been shown
in Ref. [10], the dominant component of anisotropies is the
dipole induced by the peculiar velocity of the observer, and
the contribution to the higher multipoles coming from the
weak gravitational lensing effect is basically small [15].
Then, we can expand the luminosity distance as

dLðz;nÞ ¼ dð0ÞL ðzÞ þ dð1ÞL ðzÞ cos�; (1)

dð0ÞL ðzÞ � 1

4�

Z
dndLðz;nÞ;

dð1ÞL ðzÞ � 3

4�

Z
dnðn � eÞdLðz;nÞ; (2)

where we define cos� ¼ n � e, and the quantity e is the unit
vector directed toward the dipole.

In the expression (1), the first term in the right-hand side
is the direction-averaged luminosity distance, which is
identified with the one defined in the homogeneous and
isotropic universe:

dð0ÞL ðzÞ ¼ ð1þ zÞ
Z z

0

dz0

Hðz0Þ ; (3)

with the Hubble parameter given by

HðzÞ ¼ H0

�
�mð1þ zÞ3 þ ð1��mÞð1þ zÞ3ð1þw0þwaÞ

� exp

�
�3wa

z

1þ z

��
1=2

: (4)

Here we assumed the flat Universe, and the dark energy
equation-of-state parameter wðaÞ ¼ P=� parametrized by
wðaÞ ¼ w0 þ wað1� aÞ. For later analysis of the error

estimation, we adopt a fiducial set of cosmological para-
meters: �m ¼ 0:3, w0 ¼ �1, wa ¼ 0, and H0 ¼
72 km s�1 Mpc�1.
On the other hand, the second term on the right-hand-

side of Eq. (1) arises from the Doppler effect due to the

motion of the observer. To derive the expression for dð1ÞL ,
we approximate the propagation of GW or light following
the trajectory of a null geodesic. Writing the luminosity
distance to an astronomical object as a function of the
conformal time � at which the source emits GW or light,
the Doppler effect leads to [9,10]

dLð�;nÞ ¼ dð0ÞL ð�Þ½1� n � v0�; (5)

where the vector v0 indicates the peculiar velocity of a
local observer, which is small enough relative to the light
velocity. Note that the motion of the local observer also
induces the Doppler effect in the redshift, z ¼ �zþ �z,
where the unperturbed redshift �z is defined as �z ¼
a�1ð�Þ � 1. To first order in v0, we have

�z ¼ �ðn � v0Þð1þ �zÞ: (6)

Rewriting Eq. (5) in terms of the redshift z, then expanding

dð0ÞL ðz� �zÞ up to the first order, and using Eqs. (3) and (6)
give

dLðz;nÞ ¼
�
dð0ÞL ðzÞ � @dð0ÞL ðzÞ

@z
�z

�
½1� n � v0�

¼ dð0ÞL ðzÞ þ ð1þ zÞ2
HðzÞ ðn � v0Þ: (7)

Comparing the above expression with Eqs. (1) and (2), we
arrive at

dð1ÞL ðzÞ ¼ jv0jð1þ zÞ2
HðzÞ (8)

with the direction of the dipole specifically chosen as e ¼
v0=jv0j. In the expression (8), the magnitude of dipole
anisotropy is inversely proportional to the Hubble parame-
ter at the source redshift, because the perturbed luminosity
distance corresponds to the derivative of Eq. (3). Recalling
the fact that the motion of the local observer also induces
the same size of dipole anisotropy in the CMB and its
amplitude is estimated as jv0j ¼ 369:1� 0:9 km s�1 [16].
Then the dipole anisotropy in the luminosity distance to
high-z objects gives a direct measure of HðzÞ.
Now, let us discuss the statistical error in the measure-

ment of the Hubble parameter. We add the measurement
error of the luminosity distance �dLðz;nÞ into Eq. (1):

dLðz;nÞ ¼ dð0ÞL ðzÞ þ dð1ÞL ðzÞðn � eÞ þ �dLðz;nÞ:

Then the measurement error of dð1ÞL is estimated from the

definition of dð1ÞL , and is expressed as
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�dð1ÞL ðzÞ ¼ 3

4�

Z
dnðe � nÞ�dLðz;nÞ:

The variance of this becomes

½�dð1ÞL ðzÞ�2 � h½�dð1ÞL ðzÞ�2i

¼
�
3

4�

�
2 Z

dn
Z

dn0 � ðe � nÞðe � n0Þ

� h�dLðz;nÞ�dLðz;n0Þi; (9)

where the bracket represents the ensemble average over the
sources given at z. Assuming that the distance errors
measured from each GW source are statistically indepen-
dent and isotropic, we have

h�dLðz;nÞ�dLðz;n0Þi ¼ 4�½�dð0ÞL ðzÞ�2�2ðn� n0Þ
where the quantity ½�dð0ÞL ðzÞ�2 is the variance of dð0ÞL .
Substituting this into Eq. (9), we obtain

½�dð1ÞL ðzÞ�2 ¼ 9

4�
½�dð0ÞL ðzÞ�2

Z
dnðe � nÞ2;¼ 3½�dð0ÞL ðzÞ�2:

(10)

From this and the expression (8), the measurement error of
the Hubble parameter at a given redshift z is related to the
error of the direction-averaged luminosity distance,

�dð0ÞL ðzÞ, and is given by

�HðzÞ
HðzÞ ¼ �dð1ÞL ðzÞ

dð1ÞL ðzÞ ¼ ffiffiffi
3

p �
dð1ÞL ðzÞ
dð0ÞL ðzÞ

��1
�
�dð0ÞL ðzÞ
dð0ÞL ðzÞ

�
: (11)

Here we ignored the velocity error in CMB observation. In
fact, the contribution is negligible, as we will show

in Sec. IV. The factor ½dð1ÞL =dð0ÞL ��1 is typically very large
in the present casewith jv0j � 1. In Fig. 1, we plot the ratio

of the dipole to the monopole in the luminosity distance.
The figure implies that even a negligibly small error in the

averaged distance dð0ÞL can produce a large scatter in HðzÞ.
Note that the mean error on the Hubble parameter is

reduced to �H=
ffiffiffiffi
N

p
if we observe N independent sources

at a given redshift bin. Thus, for a precision measurement
of Hubble parameter, we need not only an accurate
determination of averaged distance to each source,

�dð0ÞL =dð0ÞL � 1 but also a large number of sources. In the
case of the type Ia supernovae as standard candles, the
averaged distance error is related to the intrinsic magnitude

error �m as �dð0ÞL =dð0ÞL ¼ ðln10=5Þ�m. Adopting an opti-

mistic value �m ¼ 0:1, it yields the error �dð0ÞL =dð0ÞL 	
0:05, but to achieve a few percent accuracy in the Hubble
parameter, we need an unrealistically large number of
samples of the order 106. In other words, for a reasonable
number of 104 samples (see, e.g., [17,18]), the systematics
in the averaged distance should be reduced to �m< 0:01,
which seems very difficult from the empirical calibration.

III. GW STANDARD SIRENS

In this section, we consider the GW standard sirens as an
alternative probe to measure the Hubble parameter from
the dipole anisotropy of luminosity distance. The advan-
tage of using the standard sirens observed by space-based
GW detectors is that the expected number of sources (NS
binaries) is much larger than that of the type Ia supernovae,
and the sources are distributed deeply enough at higher
redshifts. Moreover, the NS binary would be a clean GW
source, and with DECIGO or BBO, the luminosity distance
dLðz;nÞ can be accurately measured with less systematics.

A. Luminosity distance error

Let us first estimate the distance error of the standard
siren, taking account of the instrumental noise of the GW
detector. Possible systematic errors will be discussed later.
In GWexperiments, a direct observable is the waveform of
the GW signal, and comparing it with a theoretical tem-
plate, we not only determine the system parameters of GW
source but also extract the cosmological information.
For a single binary system, the Fourier transform of the

GW waveform is expressed as a function of frequency
f [19,20],

~hðfÞ ¼ A

dLðzÞM
5=6
z f�7=6ei�ðfÞ; (12)

where dL is the luminosity distance, and the quantityMz ¼
ð1þ zÞ�3=5Mt is the redshifted chirp mass with the total
mass Mt ¼ m1 þm2 and the symmetric mass ratio � ¼
m1m2=M

2
t . Here, the constant A is given by A ¼

ð ffiffiffi
6

p
�2=3Þ�1, which is multiplied by the factor

ffiffiffiffiffiffiffiffi
4=5

p
for a

geometrical average over the inclination angle of a binary
[21]. The function �ðfÞ represents the frequency-

FIG. 1. Ratio of dð1ÞL ðzÞ to dð0ÞL ðzÞ, in which the CMB dipole of
jv0j ¼ 369:1� 0:9 km= sec measured by Wilkinson Microwave
Anisotropy Probe (WMAP) [16] is used.
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dependent phase arising from the orbital evolution, and at
the order of the restricted 1.5 post-Newtonian (PN) ap-
proximation, it is given by [19,20]

�ðfÞ ¼ 2�ftc ��c � �

4
þ 3

128
ð�MzfÞ�5=3

�
�
1þ 20

9

�
743

336
þ 11

4
�

�
��2=5ð�MzfÞ2=3

� 16���3=5ð�MzfÞ
�
; (13)

where tc and �c are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the post-Newtonian-order cor-

rections in powers of v� ð�MzfÞ1=3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter HðzÞ can be also
measured from this term [1,22]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expansion in the subse-
quent analysis.

In Eqs. (12) and (13), there are five unknown parameters
to be determined observationally, i.e., Mz, �, tc, �c, and
dL. Except for the luminosity distance, the four parameters
merely carry the information on the individual property of
the binary system. For simplicity, we consider the equal-
mass NS binaries with 1:4M
, which lead to Mz ¼
1:22ð1þ zÞM
 and � ¼ 1=4, and set the other parameters
to tc ¼ 0 and �c ¼ 0.

Since the GW observation can only determine the red-
shifted chirp massMz, the redshift of each binary has to be
measured from an electromagnetic counterpart. According
to Cutler and Holz [4], the angular resolution of BBO is
�1–100 arcsec2, with which we can identify the host gal-
axy of the binary. We thus suppose that the redshift of any
binary system is obtained from the electromagnetic obser-
vations. Note that the Doppler effect by the local motion
also affects the redshifted chirp mass, and the dipole an-
isotropy might be measured through the spatial distribution
of the observed chirpmass if the intrinsic scatter in themass
distribution of NS binaries is very small. The feasibility to
measure the dipole anisotropy from the chirpmass might be
interesting, but we need a more detailed study on the
formation history of NS binaries, and we here simply
ignore this effect in the parameter estimation.

The fundamental basis to estimate the distance error for
a single binary is the Fisher matrix formalism. The Fisher
matrix for a single binary is given by [19,23]

�ab ¼ 4
X8
i¼1

Re
Z fmax

fmin

@a ~h
�
ðiÞðfÞ@b ~hðiÞðfÞ

PðfÞ df; (14)

where @a denotes a derivative with respect to a parameter

�a; Mz, �, tc, �c, and dL. The quantity ~hðiÞ represents the
GW signal obtained from the i-th interferometer. Since two
independent signals are obtained for each cluster [24],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum PðfÞ. The analytical fit
of noise spectrum [25] is given by

PðfÞ ¼ 4:21� 10�50

�
f

1Hz

��4 þ 1:25� 10�47

þ 3:92� 10�49

�
f

1Hz

�
2
Hz�1:

In Fig. 2, the noise spectrum of DECIGO is shown,
together with the evolutionary tracks of the NS binary
located at three different redshifts, z ¼ 0:1, 1, and 5. In
each track, the symbols indicate the frequency at the 10, 3,
and 1 yr before the time of binary coalescence (from left to
right). In this respect, the lower cutoff of the frequency fmin

should be incorporated into the integration in Eq. (14), and
is given by the function of observation time Tobs as well as
the redshift and mass:

fmin ¼ 0:233

�
1M

Mz

�
5=8

�
1 yr

Tobs

�
3=8

Hz: (15)

Note that the coalescence frequency of the NS binary is
typically�kHz, and thus the upper cutoff of the frequency
naturally arises from the noise curve. For the computa-
tional purpose, we set fmax ¼ 100 Hz.
Given the numerically evaluated Fisher matrix, the

marginalized 1-sigma error of a parameter, ��a, is esti-
mated from the inverse Fisher matrix

FIG. 2 (color online). Sky-averaged DECIGO noise curve.
(Arm angle 60� is taken into account.) Diagonal lines represent
frequency evolutions of an NS-NS binary at z ¼ 5 (solid red
line), z ¼ 1 (dotted green line), and z ¼ 0:1 (dashed blue line).
Diamonds on the lines from the right to the left denote the
frequency of the binary 1 yr, 3 yr, and 10 yr before the merger.
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��a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f��1gaa

q
: (16)

In Fig. 3, the resultant error of the luminosity distance for a
single binary, �inst, is plotted against a source redshift,
assuming the observation time 1 yr (solid curve), 3 yr
(dotted curve), and 10 yr (dashed curve). The overlap of
these three curves indicates that�inst hardly depends on the
observation time, because the observation time appears
only through the cutoff frequency fmin with the fractional
power of 3=8 and the improvement of the precision is
generally slow. Even for a single binary system, the preci-
sion of a few percent levels is easily achievable for the
distance measurement in the absence of systematic errors,
and this is also true for a rather high-z binary.

B. Accuracy of Hubble parameter

Given the uncertainty of the averaged luminosity dis-
tance for each binary, the accuracy of the Hubble parame-
ter is estimated from Eq. (11), and with the ensemble over
the�NðzÞ independent binary systems in the vicinity of the
redshift z, we can get an improved constraint on the Hubble
parameter at each redshift bin.

Here, to derive the measurement error of the Hubble
parameter, we adopt the following fitting form of the NS-
NS merger rate given by Ref. [26]:

_nðzÞ¼ _n0rðzÞ; rðzÞ¼

8>>><
>>>:
1þ2z ðz1Þ
3
4ð5�zÞ ð1<z5Þ
0 ð5<zÞ

; (17)

where the function rðzÞ is estimated based on the star
formation history inferred from the UV luminosity [27].
The quantity _n0 represents the merger rate at present.
Though it is still uncertain, we adopt the most recent
estimate, _n0 ¼ 10�6 Mpc�3 yr�1, as a reliable and confi-
dent estimate based on extrapolations from the observed
binary pulsars in our Galaxy [28]. Then, the number of NS
binaries in the redshift interval ½z��z=2; zþ �z=2�
observed during Tobs, �NðzÞ, is given by [26]

�NðzÞ ¼ Tobs

Z zþ�z=2

z��z=2
dVcðz0Þ _nðz0Þ

1þ z0
(18)

where dVc means the comoving volume element defined as
dVcðzÞ ¼ 4�r2ðzÞdz=HðzÞ with the comoving radial dis-
tance rðzÞ ¼ dLðzÞ=ð1þ zÞ.
In Fig. 4, observed redshift distribution of NS binaries

�NðzÞ is plotted, assuming the 3 yr observation and the
redshift width �z ¼ 0:1. The total number of NS binaries
is�106, which is much larger than the expected number of
type Ia supernovae. Note that the number of merger events
increases with Tobs, and thus the accuracy of the Hubble

parameter is improved by a factor T1=2
obs . Combining this and

the distance error in previous subsection, Fig. 5 shows the
expected errors for the Hubble parameter measured from
the dipole anisotropy. The three different error bars in each
redshift bin represent the results from the 1-, 3-, and 10-yr
observations (from large to small sizes). The figure implies
that up to the redshift z ¼ 1, the Hubble parameter can be
accurately measured with a precision of 2–5%, 1–3%, and
0.7–1.5% for the observation time of 1, 3, and 10 yr,
respectively. Even at z ¼ 2, the Hubble parameter can be
measured with a precision of 18%, 10%, and 6% for the

FIG. 3 (color online). Measurement accuracy of the luminosity
distance with a single binary as a function of redshifts. The
curves tagged �inst are those determined only by instrumental
noise and with the observation time 1 yr (solid red curve), 3 yr
(dotted green curve), and 10 yr (short-dashed blue curve),
respectively. The lensing error and the peculiar-velocity error
are represented by magenta (long-dashed) and light blue (dash-
dotted) curves.

FIG. 4. Number of NS-NS binaries (in the unit of 104) that
would be observed by DECIGO in each redshift bin of �z ¼ 0:1
at a redshift z during 3 yr observation. As is manifest from
Eq. (18), the number of the binaries scales linearly with Tobs.
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observation time of 1, 3, and 10 yr, respectively. This is
quite impressive in the sense that a GW standard siren has a
nearly equal sensitivity to the Hubble parameter with other
complementary methods such as BAO. Another noticeable
point using the standard sirens is that we can trace the
redshift evolution of Hubble parameter even at higher
redshift z * 1. Although the number of high-z NS binaries
is highly uncertain, the standard sirens would be poten-
tially powerful to probe the early-time cosmic expansion,
and deserves further investigation.

IV. SYSTEMATIC ERRORS

So far, we have discussed the accuracy of the Hubble
parameter taking only an account of the distance error
associated with the instrumental noise. However, there are
several effects which may systematically affect the mea-
surement of dipole anisotropies in the luminosity distance,
leading to increasing the error in the Hubble parameter.
Among them, a dominant contribution may come from the
gravitational lensing magnification induced by the matter
inhomogeneities of large-scale structure along the line of
sight (e.g., [29–32]), which systematically changes the
luminosity distance to each binary system. Another im-
portant effect would be the peculiar velocity of the binary
along the line of sight, which randomly contributes to
measurement error via Doppler effect. These systematic
errors to the averaged luminosity distance are summarized
as

�
�dð0ÞL ðzÞ
dð0ÞL ðzÞ

�
2 ¼ �2

instðzÞ þ �2
lensðzÞ þ �2

pvðzÞ; (19)

where �inst is the error associated with the GW experi-
ment in Sec. III A, �lens is the lensing error, and �pv is the

peculiar-velocity error.
There are several studies on the effect of lensing mag-

nification, particularly focusing on the distance measure-
ment from the type Ia supernovae. Holz and Linder [30]
estimated the lensing error on the distance measurement by
using Monte Carlo simulation, and, assuming the Gaussian
form of lensing magnification probability, they derived a
fitting formula for the systematic error. Later, the signifi-
cance of the non-Gaussian tail has been recognized
[33,34], and it turns out that this effect reduces the lensing
error by a factor of 1.5–2, compared to the Gaussian
distribution. More recently, Hirata, Holz, and Cutler [33]
adopted a log-normal distribution for the magnification
probability and obtained the fitting formula for the (aver-
aged) distance error:

�lensðzÞ ¼ 0:066

�
1� ð1þ zÞ�0:25

0:25

�
1:8
: (20)

In what follows, we adopt the lensing error in Eq. (20).
As for the peculiar-velocity error, the clustering of gal-

axies induced by the gravity leads to a coherent and/or
virialized random motion, which gives rise to the Doppler
effect and affects the determination of cosmological red-
shift via the spectroscopic measurement. In addition, bi-
nary barycentric motion itself in the host galaxy also leads
to the Doppler effect, which causes random fluctuations in
the luminosity distance. These two systematic effects can
be of the same order and can be translated into the distance
error as [35]

�pvðzÞ ¼
��������1� ð1þ zÞ2

HðzÞdLðzÞ
���������v;gal:

Here, �v;gal is the 1-dimensional velocity dispersion of the

galaxy. Taking account of the nonlinear effect of gravity, it
often set to �v;gal ¼ 300 km s�1, mostly independent of

the redshifts [36].
In Fig. 3, the distance errors for a single binary system

from the lensing magnification,�lens, and peculiar velocity,
�pv, are overlaid, together with the uncertainty from the

GW observations. It turns out that the lensing magnifica-
tion could dominate the distance error, and exceeds the
error from the GW experiments at z * 0:2. Thus, the
lensing magnification could be potentially a main source
of the distance error, and the accuracy of the Hubble
parameter might be somewhat degraded.
In Fig. 6, the size of the measurement error for the

Hubble parameter, �HðzÞ=HðzÞ, is plotted as function of
redshift, taking account of all the systematics and the
binary distribution. Compared with the case without lens-
ing error (dotted curves), the resultant accuracy of Hubble
parameter are degraded. Nevertheless, even including the
lensing systematics, the Hubble parameter up to z & 1 can

FIG. 5 (color online). The Hubble parameter calculated with
our fiducial cosmological parameters (solid curve) and 1�-error
bars estimated in the cases that we use all binaries observed by
DECIGO during the observation time, 1 yr (red), 3 yr (green),
and 10 yr (blue). Long observation time corresponds to the
smaller error bar.
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be accurately measured with the precision 3–14%, 1.5–8%,
and 0.8–4%, for Tobs ¼ 1 yr, 3 yr, and 10 yr, respectively.
Although the lensing effect is potentially crucial for the
cosmological application of standard sirens, the technique
to reduce the lensing effect has been recently exploited
[33,34,37,38], and the feasibility of the method has been
discussed. With an improved technique developed in the
near future, the lensing systematics would be removed, and
one could approach the limit determined by the instrumen-
tal noise.

We briefly comment on the uncertainty in the amplitude
of dipole v0. The current constraint on the motion of the
local observer comes from the CMB observation, and the
estimated error of v0 directly affects the accuracy of
Hubble parameter in Eq. (11). However, the current obser-
vation produces

�HðzÞ
HðzÞ ¼ �jv0j

jv0j 	 2:44� 10�3:

Therefore, the systematics in the dipole from the CMB
observation give a tiny contribution, and can be ignored.

Finally, note that the results obtained here rely on the
fact that we can successfully identify the redshifts of all
host galaxies. In practice, the identification would be as
difficult as increasing the redshift, because galaxies at high
z are fainter and the time required for a spectroscopic

measurement is much longer than that for low-z galaxies.
The resultant accuracy of the Hubble parameter measure-

ment would be degraded, being proportional to 1=
ffiffiffiffiffiffiffiffiffiffi
NðzÞp

,
whereNðzÞ is the number of galaxies in a bin at the redshift
z. Thus, the measurement accuracy depends on the capa-
bility of galaxy redshift survey available in the future.
Another important issue is detector calibration, which

would potentially affect the measurement accuracy of the
luminosity distance. It is rather crucial not only for the
Hubble parameter measurment, but also for the subtraction
of the neutron star binary foreground in order to achieve
the detection of an inflationary gravitational-wave back-
ground as a primary science goal of DECIGO/BBO.
Although this is beyond the scope of this paper, the issue
should be considered seriously and addressed in the future.

V. SUMMARY

In this paper, we have shown that the redshift evolution
of Hubble parameter can be measured by utilizing a large
number of NS binaries observed by space-based GW de-
tectors such as DECIGO and BBO. Although this method
requires a large number of samples 105–106 to measure
HðzÞwith the accuracy of a few%, DECIGO and BBO will
detect enough numbers of samples up to high redshifts.
Including the lensing magnification, the Hubble parameter
as a function of redshift up to z ¼ 1 can be determined with
the accuracy of 3–14%, 1.5–8%, and 0.8–4%, for the
observation time Tobs ¼ 1, 3, and 10 yr, respectively.
With a technique to remove the lensing magnification,
we can further improve the accuracy by a factor of �2:7
at z ¼ 1. Although the feasibility of the method, particu-
larly on the redshift identification of the host galaxies and
the detector calibration, still needs to be investigated in
more detail, the present method puts forward an interesting
possibility to enlarge the science with standard sirens as a
by-product, and it is complementary to other methodolo-
gies to measure the Hubble parameter.
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FIG. 6 (color online). Measurement accuracy of the Hubble
parameter with all observed binaries. We plot the measurement
accuracies, including the lensing error, with the observation time
Tobs ¼ 1 yr, 3 yr, and 10 yr from the top to the bottom,
respectively (solid curves), and those without the lensing error
(dotted curves).
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