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A four-dimensional asymptotic expansion scheme is used to study the next-order effects of the

nonlinearity near a spinning dynamical black hole. The angular-momentum flux and energy flux formula

are then obtained by constructing the reference frame in terms of the compatible constant spinors and the

compatibility of the coupling leading-order Newman-Penrose equations. By using the slow rotation and

small-tide approximation for a spinning black hole, the horizon cross-section we chose is spherical

symmetric. It turns out the flux formula is rather simple and can be compared with the known results.

Directly from the energy flux formula of the slow-rotating dynamical horizon, we find that the physically

reasonable condition on requiring the positivity of the gravitational energy flux yields that the shear will

monotonically decrease with time. Thus a slow-rotating dynamical horizon will asymptotically approach

an isolated horizon during late time.
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I. INTRODUCTION

Null infinity and the black hole horizon have similar
geometrical properties. They are both three-dimensional
hypersurfaces and have the gravitational flux across them.
The physical properties of null infinity can be studied in the
conformal space-time with a finite boundary. Thus the
conformal method provides an alternative way to study
Bondi-Sachs gravitational radiation near null infinity,
which was first proposed by Penrose [1]. The boundary
of a black hole is asymptotically nonflat and one may not
be able to apply the conformal method to study the bound-
ary problem of a dynamical black hole. Rather than using
the symmetry for the whole space-time to locate the bound-
ary of a black hole, Ashtekar et al. use a rather mild
condition on the symmetry of the three-dimensional hori-
zon [2,3]. This quasilocal definition for the black hole
boundary makes it possible to study the gravitational ra-
diation and the time evolution of the black hole.

In this paper, we use the Bondi-type coordinates to write
the null tetrad for a spinning dynamical horizon (DH). The
boundary conditions for the quasilocal horizons can be
expressed in terms of Newman-Penrose (NP) coefficients
from the Ashtekar’s definition of DH. Unlike Ashtekar
et al’s [2,3] three-dimensional analysis, we adopt a four-
dimensional asymptotic expansion to study the neighbor-
hoods of generic isolated horizons (IHs) and DHs.
Since the asymptotic expansion has been used to study

gravitational radiations near the null infinity [4,5], it offers
a useful scheme to analyze gravitational radiation ap-
proaching another boundary of space-time, black hole
horizons. We first set up a null frame with the proper gauge
choices near quasilocal horizons and then expand
Newman-Penrose (NP) coefficients, Weyl, and Ricci cur-
vature with respect to radius. Their falloff can be deter-
mined from NP equations, Bianchi equations, and exact
solutions, e.g., the Vaidya solution. This approach allows
one to see the next-order contributions from the nonline-
arity of the full theory for the quasilocal horizons.
We have shown that the quasilocal energy-momentum

flux formula for a nonrotating DH by using asymptotic
expansion yields the same result as Ashtekar-Krishman
flux [6,7]. For slow-rotating DH, we have presented our
results in [6], however, we use an assumption of vanishing
NP coefficient � on DH. Furthermore, the energy-
momentum flux formula has a shear (NP coefficient �)
and a angular-momentum (NP coefficient �) coupling
term. Since it is unclear whether the existence of this
term carries any physical meaning or it may due to our
assumptions, we thereby extend our previous work on IHs
and DHs into a more general case.
An algebraically general structure (Petrov type I) of

space-time is thought to be related with gravitational ra-
diation for an isolated source and can tell us more about the
inner structure of the gravitating source. The Weyl scalars
�k; k ¼ 0; ::; 4 can be expanded in terms of an affine
parameter r along each outgoing null geodesic based on
assumption of compatification of null infinity [1,8]. Here
�k ¼ Oðrk�5Þ, and one may find that it peels off more
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and more when moving inward along a null ray. From
Ashtekar’s definition of an isolated horizon, it implies
that �0, �1 vanishes on horizon. Therefore the space-
time is algebraically special on an isolated horizon.
However, space-time may not be algebraically special for
an arbitrary DH. The corresponding peeling theorem for an
arbitrary DH is crucial for our gravitational radiation study.
Because of the difficulties of knowing the falloff of Weyl
scalars, we use the Kerr-Vaidya solution to serve as our
basis for choosing the falloff of Weyl scalars, which is�0,
�1 vanishing on DH, in our previous work on a slow-
rotating DH [6]. So space-time structure on a slow-rotating
DH is still assumed to be algebraically special. However,
according to the gravitational plane-wave solutions, �0

and �4 indicate the ingoing and outgoing gravitational
waves, respectively. It seems physically unsatisfactory to
assume �0 vanishing on DH. Moreover, the algebraically
general space-time allows four roots of the equation, which
correspond to the principal null-directions of Weyl scalars,
and describes the gravitational radiation near the gravitat-
ing source. Therefore it would be more reasonable for one
to consider an algebraically general space-time on an
evolving DH. From the reduction and the decoupling of
the equations governing the Weyl scalars, instead of as-
suming �0, �1 ¼ 0 on DH, we set �1, �3 vanishing on a
spinning DH. This is a similar setting with the perturbation
method (See also Chandrasekhar [9]).

We present the results of asymptotic expansion for a
spinning DH in Sec. III. However, it may be too general to
yield some interesting physical results. By considering the
small-tide and slow rotation of the DH and using the slow-
rotating Kerr solution as a basis, we use two sphere con-
ditions of the DH cross section for our later calculation.
The NP coefficient �0 (shear for the incoming null tetrad n)
on DH is no longer assumed to be vanished when calculat-
ing the flux formula. The index 0 on NP coefficients
denotes their values on DH. Directly from nonradial NP
equations, we find that �0 and �0 coupling terms can be
transformed into �0 terms only, so the problems of our
previous work [6] are resolved.

Though the exact solution for a stationary rotating black
hole has been known for nearly 50 years, the space-time
with rotation remains its ambiguity and difficulty for qua-
silocal mass expressions and boundary condition. For ex-
ample, the existence of angular momentum will not change
the boundary condition for the null infinity, however, it will
affect the boundary condition of a black hole. Among the
well-known quasilocal mass expressions named Komar,
Brown-York and Dougan-Mason, only the Komar integral
of the quasilocal mass for an arbitrary closed two-surface
can go back to the unique Newtonian quasilocal mass [10].
Unfortunately, the Brown-York and Dougan-Mason mass
can return to the unique surface integration of the
Newtonian mass in the covariant Newtonian space-time
only for the spherically symmetry sources. In GR,

quasilocal mass expressions for the Kerr solution disagree
with one another [11]. Different quasilocal expressions
give different values of quasilocal mass for the Kerr black
hole. At null infinity, there is no generally accepted defi-
nition for angular momentum [12]. Unfortunately, no ex-
plicit expression for Bramson’s angular momentum in
terms of the Kerr parameters m and a is given [13]. We
use the Komar integral to calculate angular momentum
since it gives exactly ma for the Kerr solution. Although
different quasilocal expressions yield different results for
the Kerr solution, our main motivation is to analyze and
discuss the compatibility of the coupling NP equations
from asymptotic expansions. We both calculate quasilocal
mass and flux for a spinning DH based on two spinors
(Dougan-Mason) and Komar integral. It is found that these
two expressions yield the same result.
Bondi and Sachs use a no-incoming radiation condition

for the gravitational wave on null infinity [8,14]. However,
a no-incoming radiation condition is only true for linearized
theories, e.g., electrodynamics and linearized GR, as to
exclude the incoming rays. The incoming pulse waves do
not destroy the asymptotic conditions for null infinity since
they are admitted by formalism. Their existence may play
an important role in the interpretation of the new conserved
quantities (NP constants) [15,16]. The interpretation and
physical meaning of these constants have been a source of
debate and controversy until today. Some physical discus-
sions and application of them can be found in [17,18].
Despite the vagueness of the physical meaning of these
conserved quantities, in the full nonlinear gravitational
theory, the mass and momentum are no longer absolutely
conserved and can be carried away by the outgoing gravi-
tational wave, so as to give a positive energy flux at infinity.
Here we consider a space-time inner boundary, e.g., a
spinning DH in this paper. With the aid of using an asymp-
totic constant spinor to define the spin frame as the
reference frame for our observation, mass and angular-
momentum flux can be calculated. According to the
coupling NP equations from the asymptotic expansion
analysis, such a system will gain energy and will cause
the radius of the black hole to increase. From a similar
argument, the outgoing waves do not change the boundary
conditions of the quasilocal horizons (DHs or IHs) and
make no contribution to flux, while an incoming wave
will cross into DHs. The existence of an incoming wave
indicates the difference between IHs and DHs. The mass
and momentum are carried into the black hole by the
incoming gravitational wave.
Since the negative mass loss is unlikely to make a dy-

namical horizon grow with time, the physically reasonable
condition on gravitational energy flux should be positive.
Directly from our four-dimensional asymptotical expansion
scheme, we can observe that the physically reasonable
condition on requiring the positivity of the gravitational
energy flux yields that the shear �0 will monotonically
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decrease with time for a slow-rotating DH. It means that the
slow-rotating DHs will gradually settle down to IHs as �0

approach zero. This is similar to a physical assumption
saying that the mass loss cannot be infinitely large for null
infinity [5]. However, rather than assuming that mass gain
cannot be infinitely large we obtain this result directly from
asymptotic expansion analysis for a slow-rotating DH to-
gether with the positive gravitational energy flux condition.
Further from the commutation relations, we find that the
horizon radius of a slow-rotatingDHwill not accelerate. The
radius of a slow-rotating dynamical horizon increases with a
constant speed. There is onemore interesting point about the
peeling properties for a slow-rotating DH. It is known that
the peeling properties refer to different physical asymptotic
boundary conditions of a slow-rotating black hole. By com-
paring our current work to a previous one [7], which has
different peeling properties, and also due to the monotonic
decrease of�0, we propose that the setting ofWeyl scalars in
this work excludes the possibility of absorbing the gravita-
tional radiation from nearby the gravitating source.

The plan of this paper is as follows. In Sec. II, we review
the definition of DH and express Ashtekar-Krishnan’s
three-dimensional analysis of DH in terms of NP coeffi-
cients. The gauge choices and boundary conditions of a
spinning DH are applied to the asymptotic expansion in
Sec. III. In Sec. IV, we first examine the gauge conditions of
slow-rotating Kerr solution in Sec. IVA. Later we use the
two-sphere condition for a slow-rotating DH with small-
tide in Sec. IVB. The results of asymptotic expansion are
largely simplified by considering the DH’s cross section as
a two-sphere. Angular momentum and its flux for a slow-
rotating DH are calculated by using the Komar integral in
Sec. V. Energy-momentum and its flux of a slow-rotating
DH are obtained in Sec. VI. We first calculate mass and
mass flux by using the Komar integral in Sec. VIA. Then,
mass and mass flux of a slow-rotating DH are calculated by
using the two-spinor method in Sec. VIB. The time evolu-
tion of shear flux and its monotonic decrease is discussed
here. We find that either the Komar integral or the two-
spinor method yields the same result.

In this paper, we adopt the same notation as in [2,3] for
describing generic IHs and DHs. However, we choose the
different convention ðþ ���Þ, which is a standard con-
vention for the NP formalism [19]. The necessary equa-
tions, i.e., commutation relations, NP equations and
Bianchi identities, for asymptotical expansion analysis
can be found in pp. 45–p. 51 of [9]. We use ‘‘¼̂’’ to
represent quantities on a dynamical horizon (ignore
Oðr0Þ) and use ‘‘ffi’’ to represent quantities on a slow-
rotating horizon (ignore Oða2Þ).

II. ASHTEKAR DYNAMICAL HORIZON

A. The dynamical horizon

The generic IHs are taken as the equilibrium state of the
DHs. The DHs can be foliated by the marginally trapped

surface S. Therefore, the expansion of the outgoing tetrad
vanishes on DHs.

Definition

A smooth, three-dimensional, spacelike submanifold H
of space-time is said to be a dynamical horizon (DH) if it
can be foliated by a family of closed two-manifolds such
that (1) on each leaf, S, the expansion �ð‘Þ of one null

normal ‘a vanishes, (2) the expansion�ðnÞ of the other null
normal na is negative.
From this definition, it basically tells us that a dynamical

horizon is a spacelike hypersurface, which is foliated by
closed, marginally trapped two-surface. The requirement
of the expansion of the incoming null normal is strictly
negative since we want to study a black hole (future
horizon) rather than a white hole. Also, it implies

Re ½��¼̂0; Re½��< 0: (1)

B. Dynamical horizon in terms of
Newman-Penrose coefficients

If we contract the stress energy tensor with a timelike
vector, then in components Tk

0 represents the energy flux of

the matter field. Therefore we can use a timelike vector Ta

and contract it with the stress energy tensor to define the
flux of the matter energy. Here we are more interested in
the energy of the matter field associated with a null direc-
tion. One can thus calculate the flux of energy associated
with �a ¼ N‘a. The flux of matter energy across H along
the direction of ‘ is given by

Fmatter :¼
Z
H
TabT

a�bd3V: (2)

The dynamical horizon is a spacelike surface, the Cauchy

data ðð3Þqab; KabÞ on the dynamical horizon must satisfy the

scalar and vector constraints

HS :¼ ð3ÞRþ K2 � KabK
ab ¼ 16�TabT

aTb; (3)

Ha
V
:¼DbðKab�Kð3ÞqabÞ¼DbP

ab¼8�TbcTc
ð3Þqab (4)

where Pab :¼ Kab � Kð3Þqab.
If the dominate energy condition is satisfied, it turns out

that H has to be a spacelike hypersurface [3]. The unit
timelike vector that is normal toH is denoted by Ta and the
unit spacelike vector that orthogonal to the two-sphere and
tangent to H is denoted by Ra. In order to study them in
terms of Newman-Penrose quantities, they can be defined
by using the null normals ‘a and na. Therefore,

Ta ¼ 1ffiffiffi
2

p ð‘a þ naÞ; Ra ¼ 1ffiffiffi
2

p ð‘a � naÞ (5)

where TaTa ¼ 1, RaRa ¼ �1. The four-metric has the
form
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gab ¼ na‘b þ ‘anb þ ð2Þqab (6)

¼ TaTb � RaRb þ ð2Þqab: (7)

The three-metric ð3Þqab that is intrinsic to the dynamical
horizon H is

ð3Þqab ¼ gab � TaTb ¼ ð2Þqab � RaRb: (8)

The two-metric ð2Þqab that is intrinsic to the cross section
two-sphere S is

ð2Þqab ¼ ð3Þqab þ RaRb ¼ �ðma �mb þ �mambÞ: (9)

The induced covariant derivative on H can be defined in
terms of a four-dimensional covariant derivative ra by

D bVa :¼ ð3Þqb
cð3ÞqadrcVd; (10)

so the three-dimensional Ricci identity is then given by
ð3ÞRabc

dwd ¼ �½Da;Db�wc: (11)

The induced covariant derivative on cross section S can be
defined in terms of the four-dimensional covariant deriva-
tive ra by

ð2ÞDbVa :¼ qb
cð2ÞqadrcVd: (12)

The extrinsic three curvature Kab on H is

Kab ¼ ð3Þqða
cð3ÞqbÞ

drcTd ¼ raTb � Ta
ð3Þab

where ð3Þab ¼ TcrcTb. One can also introduce the extrin-

sic two curvature ð2ÞKab on S by
ð2ÞKab ¼ ð2Þqða

cð2ÞqbÞ
dDcRd ¼ DaRb þ Ra

ð2Þab;

where ð2Þab ¼ RcDcRb ¼ Rðcð2Þqb
dÞrcRd. After a

straightforward but tedious calculation, we can write the
extrinsic curvature in terms of NP spin coefficients. Here
we present the general extrinsic three curvature and two
curvature without any assumption of gauge conditions. The
extrinsic three curvature Kab is

Kab ¼ ð3Þqða
crcTbÞ ¼ ð2Þqða

crcTbÞ � RðaRcrcTbÞ

¼ Að2Þqab þ Sab þ 2WðaRbÞ þ BRaRb (13)

where

Sab ¼ 1ffiffiffi
2

p ½ð ��� �Þmamb þ C:C:�;

A ¼ �Re�� Re�ffiffiffi
2

p ;

Wa :¼ �ð2ÞqacKcbR
b

¼ 1

4
½ ��þ �� �	� �� 2ð
þ ��Þ�ma þ C:C:;

B ¼ � ffiffiffi
2

p ðRe�� Re
Þ;
and C:C: denotes the complex conjugate terms. The

extrinsic two curvature ð2ÞKab is

ð2ÞKab ¼ ð2Þqða
cDcRbÞ ¼ ð2Þqða

cqc
dqbÞ

erdRe

¼ ð2Þqadqb
erdRe ¼ 1

2
ð2ÞKð2Þqab þ ð2ÞSab

where
ð2ÞK ¼ � ffiffiffi

2
p ðRe�þ Re�Þ; (14)

ð2ÞSab ¼
1ffiffiffi
2

p ð ��þ �Þmamb þ C:C: (15)

The calculation of two acceleration ð2Þaa yields
ð2Þaa ¼ RbDbRa ¼ Rðcð2ÞqadÞrcRd ¼ Cma þ �C �ma;

where

C ¼ � 1

4
ð ��� �þ �� �	Þ; (16)

so the two acceleration is tangent to S.
We now perform 2þ 1 decomposition to study the

various quantities on H. The curvature tensor intrinsic to
S is given by

� ð2ÞRabc
d ¼ �ð2Þqafð2Þqb

gð2Þqckð2Þqjdð3ÞRfgk
j

� ð2ÞKac
ð2ÞKb

d þ ð2ÞKbc
ð2ÞKa

d;

which is the Gauss-Codacci equation. This leads to the

relation between the scalar three curvature ð3ÞR and the

scalar two curvature ð2ÞR

� ð3ÞR ¼ �ð2ÞR� ð2ÞK2 þ ð2ÞKab
ð2ÞKab � 2Da


a (17)

where 
a :¼ RbDbR
a � RaDbR

b ¼ ð2Þaa � Rað2ÞK.
From (17), we obtain the Einstein tensor on H

� 2ð3ÞGabR
aRb ¼ �ð2ÞRþ ð2ÞK2 � ð2ÞKab

ð2ÞKab: (18)

The expansion of the outgoing tetrad ‘a can be calculated
to yield

�ð‘Þ :¼ � 1

2
ð�þ ��Þ ¼ 1

2
ffiffiffi
2

p ½K þ ð2ÞK þ B�: (19)

Now we use the following relations (20)–(23) to calculate
HS þ 2RaH

a
V , where HS and Ha

V are the scalar and vector
constraints defined in (3) and (4).

K ¼ 2A� B; (20)

ð2ÞK ¼ �K � Bþ 2
ffiffiffi
2

p
�ð‘Þ ¼ �2Aþ 2

ffiffiffi
2

p
�ð‘Þ; (21)

KabK
ab ¼ 2A2 þ SabS

ab � 2WaW
a þ B2; (22)

ð2ÞKab
ð2ÞKab ¼ 1

2
ð2ÞK2 þ ð2ÞSab

ð2ÞSab: (23)

From the momentum constraint (4) and use integration by
parts, we get

RbDaP
ab ¼ Da�

a � PabDaRb (24)
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where �a :¼ KabRb � KRa. Thus,


a :¼ 
a þ �a ¼ RbDbR
a �Wa � 2

ffiffiffi
2

p
�ðlÞRa: (25)

For a general space-time, the matter energy flux can be
calculated as following

Hsþ2RaH
a
V ¼ð3ÞRþK2�KabK

abþ2RaDbP
ab

¼ð2ÞRþð2ÞK2�ð2ÞKab
ð2ÞKabþK2

�KabK
ab�2PabDaRbþ2Da


a ðUse17ÞÞ
¼ ð2ÞR��ab ��

abþ2WaW
a�2Wað2Þaa

þ4�ð‘Þð�ð‘Þ �
ffiffiffi
2

p
BÞþ2Da


a:

By applying the 2þ 1 decomposition on the covariant
derivative D and using integration by parts, we have

2Da

a ¼ 2Daðð2Þaa�Wa�2

ffiffiffi
2

p
�ð‘ÞRaÞ

¼ 2ðð2Þaað2Þaa�Wað2Þaa�Da�ð‘ÞRaþ1

2
ð2ÞK�ð‘ÞÞ;

where the termDaðð2Þaa �WaÞ has been discarded since it
will vanish due to the integration over a compact two-
surface S, and then

2ðWaW
a �Wa

ð2Þaa þDa

aÞ

¼ 2ðWa � ð2ÞaaÞðWa � ð2ÞaaÞ � 2Da�ð‘ÞRa � ð2ÞK�ð‘Þ:

Here we can define

�a :¼ Wa � ð2Þaa ¼ � ffiffiffi
2

p
qðda RcÞrc‘d

¼ 1

2
½ ��� �	� ð
þ ��Þ�ma þ C:C: (26)

Finally, we get

Hs þ 2RaH
a
V ¼ ð2ÞR� �ab�

ab þ 2�a�
a � 2Da�ð‘ÞRa

þ�ð‘Þð�ð2ÞK þ 4�ð‘Þ � 4
ffiffiffi
2

p
BÞ

where

�ab ¼ 1ffiffiffi
2

p ðSab þ ð2ÞSabÞ ¼
ffiffiffi
2

p
��mamb þ C:C:

is the shear of null normal ‘a. This equation is completely
general. On the dynamical horizon, the outgoing expansion
�ð‘Þ vanishes. It then becomes1

Fmatter ¼ 1

16�

Z
�H

Nðð2ÞR� �ab�
ab þ 2�a�

aÞd3V: (27)

If the gauge condition

�¼̂�� �	 ¼̂�� ð
þ ��Þ¼̂0 (28)

is satisfying, where ¼̂ denotes the equating on DH, then
�a ¼ ��ma þ C:C: and �a�

a ¼ �2� ��. So the flux for-
mula in terms of NP in this gauge is

Fmatter ¼ 1

16�

Z
�H

Nðð2ÞR� 4� ��� 4� ��Þd3V: (29)

C. Angular-momentum flux and energy fluxes

By contracting the vector constraint Ha
V with the rota-

tional vector field c a, which is tangential to S, we can
obtain angular momentum of a black hole. Then we inte-
grate the resulting equation over the region of �H and use
the integration by parts together with the identity

Lc
ð3Þqab ¼ 2Dðac bÞ. It leads to

�dJ ¼ JS1 � JS2

¼ 1

8�

I
S2

Kabc
aRbdS� 1

8�

I
S1

Kabc
aRbdS

¼
Z
�H

�
TabT

ac b þ 1

16�
PabLc

ð3Þqab
�
d3V: (30)

The angular momentum associated with cross section S is

JcS ¼ � 1

8�

I
S
Kabc

aRbdS (31)

where c a need not be an axial Killing field. The flux of

angular momentum due to matter fields Fc
matter and gravi-

tational waves Fc
grav are

Fc
matter ¼ �

Z
�H

TabT
ac bd3V; (32)

Fc
grav ¼ � 1

16�

Z
�H

PabLð3Þ
c qabd

3V; (33)

and the balance equation JcS2 � JcS1 ¼ Fc
matter þ Fc

grav,

which describes the difference of angular momentum be-
tween two cross sections, is due to the matter radiation and
gravitational radiation.
Each time evolution vector ta defines a horizon energy

Et
�. From Eq. (27), we find the total energy flux is the

combination of the matter flux and gravitational flux

Fmatter þ Fgrav ¼ 1

16�

Z
�H

Nð2ÞRd3V (34)

where the matter flux is Eq. (2) and the gravitational flux is

Fgrav ¼ 1

16�

Z
�H

Nð�ab�
ab � 2�a�

aÞd3V: (35)

If we use the gauge conditions in (29), we then have

Fgrav ¼ 1

4�

Z
�H

Nðj�j2 þ j�j2Þd3V: (36)

The matter flux expression (2) of Vaidya solution would be

Fmatter :¼
Z
H
TabT

a‘bNd3V ¼ 1

4�

Z
�00Nd3V (37)

where we use 4�Tab‘
a‘b ¼ �0

00. The total flux of

Ashtekar-Krishnan then becomes

1Our expression has some minus sign different from
Ashtekar’s expression because of convention.
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Ftotal ¼ 1

4�

Z
½j�j2 þ j�j2 þ�00�Nd3V: (38)

Further, the integral of Nð2ÞR can be written as

Z
�H

Nð2ÞRd3V ¼
Z R2

R1

dR
I ð2ÞRd2V ¼ 8�ðR2 � R1Þ

where R1 and R2 are the radii of the horizon at the bound-
ary cross sections. For a rotating nonspherical symmetric
dynamical horizon, we find the relation of the change in the
horizon area in the dynamical processes can be written as

Z dR

2
¼ðR2�R1Þ

2
¼ 1

16�

Z
�H

Nð2ÞRd3V

¼FmatterþFgrav

¼
Z
�H

TabT
a�bd3Vþ 1

16�

Z
�H

Nð�ab�
ab�2�a�

aÞd3V:
(39)

Hence, from this equation we can relate the black hole area
change with energy and angular-momentum change. This
gives a more general black hole first law in a dynamical
space-time. If we now define the effective surface gravity
[3] as

�R :¼ 1

2R
; (40)

then the area of horizon is A ¼ 4�R2 and the differential of
the area is dA ¼ 8�RdR, therefore

�R

8�
dA ¼ 1

2
dR: (41)

For the time evolution vector ta ¼ N‘a ��c a ¼ �a �
�c a, the difference of the horizon energy Et

S can be

expressed as [3]

dEt ¼ Et
S2
� Et

S1

¼
Z

TabT
atbd3V þ 1

16�

Z
Nð�ab�

ab � 2�a�
aÞd3V

� 1

16�

Z
�H

�PabLcqabd
3V: (42)

By using (30) together with the linear combination of

Z dR

2
¼

Z
�H

TabT
a�bd3V

þ 1

16�

Z
�H

Nð�ab�
ab � 2�a�

aÞd3V; (43)

we can obtain a generalized black hole first law for dy-
namical horizon

�R

8�
dAþ�dJ ¼ dEt: (44)

III. ASYMPTOTIC EXPANSION FOR A SPINNING
DYNAMICAL HORIZON

A. Frame setting and gauge choice

We choose the incoming null tetrad na ¼ rav to be the
gradient of the null hypersurface v ¼ const. We then
have gabv;av;a ¼ 0. It gives us the gauge conditions

� ¼ �� �� ¼ 
þ �
 ¼ �
þ �� �� ¼ 0. Then we fur-
ther choose the na flag plane parallel; it implies 
 ¼ 0.
For the setting of outgoing null tetrad ‘, we first choose ‘ to
be a geodesic and use null rotation type III to make
�� �� ¼ 0. We choose m, �m tangent to the cross section
S, and thus �¼̂ �� , �¼̂ �	 .2 From the boundary conditions
of a spinning DH ( see Eq. (1)), recall

�¼̂0; ��̂0; ��̂0 (45)

on DH. We summarize our gauge choices and boundary
conditions

� ¼ �� �� ¼ � ¼ �� �� ¼ 
 ¼ �� 
� �� ¼ 0;

�¼̂0; �¼̂ �	 : (46)

In order to preserve orthonormal relations, we can choose
the tetrad as

‘a¼ð1;U;X2;X3Þ; na¼ð0;�1;0;0Þ; ma¼ð0;0;�2;�3Þ
in the Bondi coordinate ðv; r; x2; x3Þ.
Now we make a coordinate transformation to a new

comoving coordinate ðv; r0; x2; x3Þ where r0 ¼ r� R�ðvÞ
and R�ðvÞ is radius of a spinning DH. Here

‘a ¼ ð1; U� _R�; X
2; X3Þ; na ¼ ð0;�1; 0; 0Þ;

ma ¼ ð0; 0; �2; �3Þ;
where _R�ðvÞ is the rate of changing effective radius
of DH. From this coordinate, we may see that the
dynamical horizon is a spacelike or null hypersurface.
Here, the tangent vector of the DH is Ra ¼ ‘a �
_R�n

a¼̂ @
@v where _R� � 0. Therefore, it implies RaRa � 0

and U, Xk ¼ Oðr0Þ.

B. The peeling properties and falloff of the Weyl scalars

Since we use � ¼ � ¼ 0, � � 0, � � 0, then we have

ð ��� 4
þ �Þ�0 � ðD� 2�Þ�1¼̂0; (47)

ð�þ�Þ�0 � ð�� 4 ��� 2�Þ�1¼̂3��2; (48)

ðDþ 2�Þ�¼̂�0; (49)

ðDþ 4�Þ�4 � ð ��þ 4�þ 2
Þ�3¼̂ � 3��2; (50)

2This also implies !¼̂0. The Kerr solution preferred gauge on
the horizon is �¼̂ �� , �¼̂
þ �� ¼̂ �	 .
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ð�þ 4�� 	Þ�4 � ð�þ 4�Þ�3¼̂0; (51)

ð�þ 2�Þ�¼̂ ��4 (52)

in vacuum. Therefore, one can set �1¼̂�3¼̂0 as peeling
properties for a spinning DH. This is similar to the
perturbation method and one may refer to p. 175 and
p. 180 in [9].

The falloff of the Weyl scalars is algebraically general
(this is a more general setting than [6,7]) on the DH where

�1 ¼ �3 ¼ Oðr0Þ; �0 ¼ �2 ¼ �4 ¼ Oð1Þ: (53)

By considering the Vaidya solution as our compared basis
for the matter field part, the falloff of the Ricci spinor
components are

�00 ¼ Oð1Þ;
�22 ¼ �11 ¼ �02 ¼ �01 ¼ �21 ¼ Oðr0Þ: (54)

C. From the radial equations

� ¼ �0 þ ð�2
0 þ �0

��0Þr0 þOðr02Þ;
� ¼ �0 þ ð2�0�0 þ�0

4Þr0 þOðr02Þ;

 ¼ 
0 þ ½�0ð ��0 þ �0Þ þ 
0�0�r0 þOðr02Þ;
� ¼ �0 þ ½�0 ��0 þ �0�0 þ 
0

��0�r0 þOðr02Þ;
� ¼ ½�0

2 � �ð0 ��0 þ �0 ��0 þ �0�0�r0 þOðr02Þ;
� ¼ �0 þ ð�ð0 ��0 � ��2

0 þ�0�0Þr0 þOðr02Þ;
� ¼ �0 þ ½2�0�0 þ 2�0 ��0�r0 þOðr02Þ;
� ¼ �0 þ ½2
0 ��0 þ 2�0�0 þ ��0�0�r0 þOðr02Þ;
�k ¼ �k0 þ ½ ��0

��k0 þ�0�
k0�r0 þOðr02Þ;

U ¼ 2�0r
0 þOðr02Þ;

Xk ¼ 2ð�0�
k0 þ ��0

��k0Þr0 þOðr02Þ:
�0 ¼ �0

0 þ ð�0�
0
0 � 3�0�

0
2 þ ��0�

0
00Þr0 þOðr02Þ;

�1 ¼ ð��0�
0
2 þ 3 ��0�

0
2Þr0 þOðr02Þ;

�2 ¼ �0
2 þ ð3�0�

0
2 � �0�

0
4Þr0 þOðr02Þ;

�3 ¼ ½��0�
0
4 þ ð ��0 � 4�0Þ�0

4�r0 þOðr02Þ:
�00 ¼ �0

00 þ 2�0�
0
00r

0 þOðr02Þ;
�11 ¼ 1

2
_R��

0
22r

02 þOðr03Þ;
�01 ¼ � _R��

0
12r

02 þOðr03Þ;
�22 ¼ �0

22r
02 þOðr03Þ;

�12 ¼ �0
12r

02 þOðr03Þ;
�02 ¼ �0

02r
02 þOðr02Þ:

D. From the nonradial equations

The following equations refer to the equation numbers
from pp. 45–p. 47 in [9]. We relabel (304)–(306) as (NC1),
(NC2), (NC3).

ðNC1Þ�0�0 ¼ 0;

ðNC2Þ _P ¼ _R�½�0Pþ ��0
�P� þ �0

�P;

ðNC3Þ �Pr
�c

lnP ¼ 
0 � ��0;

(55)

where

Pðv;xkÞ :¼�20¼�i�30; Pr
c
:¼�0; r

c
:¼ @

@x2
þ i

@

@x3
:

We relabel (a), (b), (c), (g), (d), (e), (h), (k), (m), (l) as
(NR1), (NR2), (NR3), (NR4), (NR5), (NR6), (NR7),
(NR8), (NR9), (NR10).

ðNR1Þ � _R�ð�0
2� �ð0 ��0þ�0 ��0þ�0�0Þ

¼�0 ��0þ�0
00;

ðNR2Þ _�0¼ _R�½�ð0 ��0� ��2
0þ�0�0�þ2�0�0þ�0

0;

ðNR3Þ _�0¼ _R�½2�0�0þ2�0 ��0�þ2 ��0 ��0;

ðNR4Þ _�0¼ _R�½2�0�0þ�0
4�þ �ð0�0þ�2

0�2�0�0

þ�0 ��0;

ðNR5Þ _
0¼ _R�½
0�0þ�0ð ��0þ�0Þ�þ ��0�0;

ðNR6Þ _�0¼ _R�½
0
��0þ�0ð ��0þ�0Þ�þ�0ð
0þ�0Þ;

ðNR7Þ _�0¼ _R�ð�2
0þ�0

��0Þþð0�0þ�0 ��0þ�0�0

�2�0�0þ�0
2;

ðNR8Þ�ð0�0¼ 0;

ðNR9Þ�0�0� ��0�0¼�0�0þ�0ð �
0�3�0Þ;
ðNR10Þð0�0� �ð0 ��0¼ 2Imð0�0¼�2Imð�0�0Þ�2Im�0

2;

ðNR10ÞRe�0
2¼�Re½�0ð
0� ��0Þ��Reð�0�0Þ
þð �
0��0Þð
0� ��0Þ:

The following equations refer to the equation numbers (a),
(b), (c), (d) on p. 49 of [9]. Here, we relabel (a), (b), (c), (d)
as (NB1), (NB2), (NB3), (NB4).

ðNB1Þ � ��0�
0
0 þð4
0 ��0Þ�0

0 � _R�½��0�
0
2 þ 3 ��0�

0
2�

¼��0�
0
00 þ ��0�

0
00;

ðNB2Þ _�0
2 ¼ _R�ð3�0�

0
2 ��0�

0
4Þ��0�

0
0 þ�0�

0
00;

ðNB3Þ� ��0�
0
2 � 3�0�

0
2 ¼ _R�ð��0�

0
4 þð ��0 � 4�0Þ�0

4Þ;
ðNB4Þ _�0

4 ¼ _R��
1
4 � 3�0�

0
2 � 4�0�

0
4:
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E. Compatible constant spinor conditions for a rotating
dynamical horizon

In this section, we adopt a similar idea of Bramson’s
asymptotic frame alignment for null infinity [13] and apply
it to set up spinor frames on the quasilocal horizons. We
define the spinor frames as

ZA
A ¼ ð�A;�AÞ (56)

where �A ¼ �1oA � �0�A, �A ¼ �1oA ��0�A. We
expand �1, �0 as

�1 ¼ �0
1ðv; �;�Þ þ �1

1ðv; �;�Þr0 þOðr02Þ; (57)

�0 ¼ �0
0ðv; �;�Þ þ �1

0ðv; �;�Þr0 þOðr02Þ: (58)

Here �1 is type ð�1; 0Þ and �0 is type (1,0).
First, we require the frame to be parallelly transported

along the outgoing null normal ‘a.

lim
r0!0

DZA
A ¼ 0: ) ‘arað�1oA � �0�AÞ ¼ 0: (59)

Then it gives the condition þ�0
0 ¼ 00 on DH. The compat-

ible conditions are

þ�0
0 ¼ 0; ) _�0

0 � �0�
0
0 ¼ 00 (60)

ð0�
0
0 þ �0�

0
1 ¼ 0; (61)

ð0�
0
1 ��0�

0
0 ¼ 0; (62)

þ�0
1 ¼ ��ð0�

0
0:0 (63)

IV. SLOW-ROTATING BLACK HOLE AND
SETTINGS ON ATWO-SPHERE

A. Slow-rotating Kerr horizon in the Bondi coordinate

The Kerr metric in the Eddington-Finkelstein coordinate
ðv; r; �; �Þ is

ds2 ¼ �� a2sin2�

�
dv2 � 2dvdr

þ 2asin2�ðr2 þ a2 � �Þ
�

dvd�þ 2asin2�d�dr

� �d�2 � ðr2 þ a2Þ2 � �a2sin2�

�
sin2�d�2: (64)

By changing the coordinate from ðv; �; �Þ to ðv; �; �0Þ
d� ¼ ��dvþ d�0 (65)

where �� ¼ a
r2
�
þa2

is the angular velocity on the horizon

and r� is the horizon radius of the Kerr solution, we can
make the term gv�dvd� vanish in the 3-D metric. The 3-D

metric in the new coordinate ðv; �; �0Þ will be

ds2¼̂ � a2sin2�

��

dv2 þ 2
a2sin2�

��

��1
� dvd����d�

2

���2
�

a2sin2�

��

d�2 (66)

¼̂0 � dv2 � ��d�
2 ���2

�

a2sin2�

��

d�02 (67)

ffi 0 � dv2 � r2�ðd�2 þ sin�2d�02Þ: (68)

Here the surface area of slow-rotating Kerr is AKerr ffi
16�r2�.
Now, we consider the case of slow rotation so that a is

small and we ignore the a2 terms. Thus the tetrad compo-

nents in the Bondi coordinate ð~v; ~r0; ~�; ~�Þ are
‘a ¼

�
1; Ur0; 0;

a

r2�
þDr0

�
(69)

na ¼ ð0;�1; 0; 0Þ (70)

ma ¼ 1ffiffiffi
2

p
��

�
0; 0; 1� r0

��

;
�i

sin�

�
1� r0

��

��
(71)

where U :¼ r��M
r2
�

and D :¼ að2r��MÞ
r4
�

. The NP coefficients

and Weyl tensors are

� ¼ � ¼ � ¼ � ¼ 0; (72)

� ¼ Uð�r� þ r0Þr0
ð�� � r0Þð ��� � r0Þ ¼̂0; (73)

� ¼ �r� þ r0

ð�� � r0Þð ��� � r0Þ ¼̂ � r�
��

ffi � 1

r�
; (74)

� ¼ �	 ¼ i
ffiffiffi
2

p
D�2

� sin�

4ð�� � r0Þ ¼̂ i
ffiffiffi
2

p
D�� sin�

4
ffi i3

ffiffiffi
2

p
a

2r2�
; (75)

�¼U½ðr0 � r�Þ2 þa2cos2�þ iacos�r0�
2½ðr0 � r�Þ2 þa2cos2�� ¼̂U

2
ffi 1

4r�
; (76)


¼̂ � ia cos�

2��

; 
þ �
 ¼̂ 0; (77)

� ¼ 
þ ��; (78)

�0 ¼ 0; �1 ¼ Oðr0Þ; (79)

Im�2¼̂ � iD cos�

��

ðr2� þ a2cos2�� a2sin2�Þ; (80)

�3¼̂ i
ffiffiffi
2

p
sin�r���

4�3
�

½D�2
� þ 2ia2cos2��; (81)
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�4 ¼ 0: (82)

Remark. In this approximate Kerr tetrad in the Bondi
coordinate, the NP coefficients satisfy

� ¼ �� �� ¼̂�� 
� �� ¼̂
þ �
 ¼̂ �� �� ¼̂ 0;

� ¼ �	; �¼̂ ��; � < 0:
(83)

By examining the approximate Kerr tetrad in the Bondi
coordinates, we found it is compatible with our frame
setting for the asymptotic expansions.

B. Setting on a two-sphere: on horizon cross section

Solving the coupling equations from nonradial NP equa-
tions would be rather complicated and may be too general
to yield some interesting physical results. By considering
the small-tide and slow rotate of the DH and considering
the slow rotate Kerr solution as a basis from the previous
subsection, we use two-sphere conditions of the DH cross
section for our later calculation. On a sphere with horizon
radius R�ðvÞ, one can set

�0 ¼ � 1

R�

: (84)

Let P, �0 on a sphere with radius R�, then P / 1
R�

. From

(NC2), _�k0 ¼ _R�ð�0�
k0 þ ��0

��k0Þ þ �0
��k0 which de-

pends on the next-order nonlinear effect offhorizon, we
obtain

�0 ¼ � ��0

_R�

; (85)

and

_P ¼ _R��0P ¼ � _R�P

R�

: (86)

Moreover, the effective surface gravity is ~� ¼ 2�0 ¼
1

2R�
, and then �0 ¼ �4�0 (recall Eq. (40)).

Check the commutation relation ½�0; D0��0 and
½�0; D0��0, it implies

€R � ¼ 0: (87)

This means that the horizon radius will not accelerate (no
inflation). The dynamical horizon will increase with a
constant speed. We note here that if the two-sphere condi-
tion does not hold, then this result is no longer true.

After applying these conditions, we list the main equa-
tions that will be used in the later Secs. V and VI:

ðNR10Þ _R�

�
� 1

2
ð�0

2 þ ��0
2Þ þ

1

2
ðð0�0 þ �ð0 ��0Þ � �0 ��0

�

¼ �0
00;

ðNR20Þ _�0 ¼ _R�½�ð0 ��0 � ��2
0 þ �0�0� þ 2�0�0 þ�0

0;

ðNR30Þ _�0 ¼ 2 _R��0�0;

ðNR40Þ ��0
€R0 � _R�

_��0

ð _R�Þ2
¼ _R��

0
4 þ �ð0�0 þ �2

0

þ 2
��0�0
_R�

��0 ��0;

ðNR50Þ _
0 ¼ _R�
0�0 � ��0 ��0;

ðNR60Þ _�0 ¼ _R��0ð ��0 þ �0Þ þ �0�0;

ðNR70ÞRe�0
2 ¼ 2�0�0 � �0 ��0 � Reð0�0;

Im�0
2 ¼ �Imð0�0;

ðNR80Þ �ð0�0 ¼ 0;

ðNR90Þ � 2 ��0 ��0 ¼ _R��0�0;

�0
�ð0�0 ¼ � 1

2
_R��0

�ð0 ��0;

ðNB20Þ _�0
2 ¼ _R�½3�0 � �0�

0
4� þ ��0�

0
0 þ�0�

0
00;

ðNR10Þ þ ðNR70Þ 2Reð0�0 ¼ �0
00

_R�

þ 2�0�0:

V. ANGULAR MOMENTUM AND ANGULAR-
MOMENTUM FLUX OFA SLOW-ROTATING DH

Here we use an asymptotically rotating Killing vector
�a for a spinning DH where �a � 0. It coincides with a
rotating vector �
¼̂c a on a DH and is divergent free. It
implies �a�

a :¼ Saa0S
b0
a rb0�

a0 ¼ 0. Therefore,

�ma��
a ¼ �ma

���a: (88)

Let �a ¼ Ama þ B �ma; we get A ¼ �B. Therefore, there
exists a function f such that

�a ¼ ��fma � �f �ma; (89)

which is type (0, 0). Since f is type (0, 0), therefore
�f ¼ ðf.
By using the Komar integral, the quasilocal angular

momentum on a slow-rotating DH is

JðR�Þ ¼ 1

8�

�I
S
ra�bdSab

����������

¼ 1

8�

I
S
Imð ��0

�ð0fÞdS� ðuse integration by partÞ

¼ � 1

4�

I
S
f Imð0�0dS�

¼ � 1

4�

I
S
f Im�0

2dS�: (90)
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From (NB2’), we get Im _�0
2¼3

_R�

R�
Imð0�0¼�3

_R�

R�
Im�0

2.

Together with @
@v dS� ¼ 2

_R�

R�
dS�, the angular-momentum

flux for a slow-rotating DH is

_JðR�Þ ¼ � 1

4�

I
S

�
_f� _R�

R�

f

�
Im�0

2dS�

¼ 1

4�

I
S
Im

��
_f� _R�

R�

f

�
ð0�0

�
dS�: (91)

We note that from d
dv (NR7’), it yields the same result.

Here if �0 � 0 and fðv; �;�Þ ¼ Gð�;�ÞR�ðvÞ, then
_JðR�Þ ¼ 0. It then returns to the stationary case. If
�0 ¼ 0, i.e., Im�0

2 ¼ 0, then J and _J ¼ 0. It then returns

to the nonrotating black hole.
Now, we compare with Ashtekar-Krishnan’s results in

Sec. II C and try to give some physical interpretation for �a.
From our gauge conditions (46) of a spinning DH, we have
Wa¼̂ � �ma þ C:C:, ð2Þa0¼̂0 and �a¼̂Wa. Then, one
can calculate the angular momentum (31) (recall J ¼
� 1

8=�

H
S Kab�

aRbdS) from Ashtekar-Krishnan’s con-

struction where

Kab�
aRb ¼ 2WðaRbÞ�aRb ¼ �Wa�

a ¼ ��a�
a

¼ ��ma�
a þ C:C: ¼ ��ðfþ �� �ð f: (92)

We make the following notes:
(1) Angular-momentum of Ashtekar-Krishnan’s con-

struction (31) yields the same result with our
angular-momentum computation from the Komar
integral (90) on the DH cross section.

(2) Under our gauge condition (46), if �a¼̂0 then �¼̂0,
i.e., J¼̂0, dJ¼̂0 angular momentum vanishes, and
vice versa.

(3) For the IH, we first rewriteI
Kab�

aRb ¼
I

Danb‘
b�a (93)

then take Da to be the induced derivative on the
degenerate metric on the IH. It goes back to the
angular-momentum expression of the IH. Here we
have I

!a�
a ¼

I
f Imð� ¼

I
f Im�2 (94)

where !a is the connection one-form from
Ashtekar’s isolated horizon construction and we
use integration by parts in [19]. More on angular
momentum of the IH can be found in [20–22].

VI. THE QUASI-LOCAL ENERGY-MOMENTUM
AND FLUX OFA SLOW-ROTATING DH

A. Mass and mass flux from the Komar integral

The asymptotic time Killing vector on a DH can be
expressed as ta0 ¼ @

@v ¼ ½‘a þ ðU� _R�Þna�j� in a corotat-

ing coordinate. The Komar mass on a DH is then

M� ¼ 1

8�

I
S
ratb0NdSab ¼ 1

4�

I
�0NdS�

¼ 1

4�

I 1

4R�

NdS�; (95)

where �0 ¼ ��0=4. This yields the same with Eq. (i) in
Sec. VIB from the two-spinor calculation when one choo-
ses N ¼ �0

0
��0
00 .

We then obtain that the mass flux on a DH from the
Komar integral is

_M � ¼ 1

4�

I _R�

R2
�

NdS�; (96)

and later we shall see that it agrees with Eq. (97) from two-
spinor method.

B. Mass and mass flux from the two-spinor method

By using the compatible constant spinor conditions for a
spinning dynamical horizon (61) and (62) and the results of
the asymptotic expansion, we get the quasilocal energy-
momentum integral on a slow-rotating dynamical

IðR�Þ ¼ � 1

4�

I
�0�

0
0
��0
00dS� ðiÞ

¼ � 1

4�

I Re

2�0
½�0

2 þ�0�0 þ 2�0�0��0
0
��0
00dS�: ðiiÞ

In order to calculate flux we need the time-related condi-
tion (60) of the constant spinor of the dynamical horizon in
Sec. III E and rescale it. Then _�0

0 ¼ 0. It is tedious but
straightforward to calculate the flux expression. It largely
depends on the nonradial NP equations and the second-
order NP coefficients. By using Sec. IVB, we substitute
them back into the energy-momentum flux formula to
simplify our expression.
From (i) Apply the time derivative to (i), and then we

obtain the quasilocal energy-momentum flux for the dy-
namical horizon

_IðR�Þ ¼ 1

4�

I
_�0�

0
0
��0
00dS�; (97)

where it is always positive. Here _�0 is the news function of
DH that always has mass gain.

From the choice of �0 ¼ � 1
R�

, we have _�0 ¼ _R�

R2
�

¼
_R�

2
ð2ÞR where the two-scalar curvature is ð2ÞR ¼ 2

R2
�

. (The

metric of a two-sphere with radius R� is d~s2 ¼
�R2

�ðd�2 þ sin2�d�2Þ.) Integrate the above equation

with respect to v and use _�0 ¼ _R�
ð2ÞR=2; we then have [6]

dIðR�Þ ¼ 1

8�

Z ð2ÞR�0
00
��0
0dS�dR�: (98)
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From (ii) We first apply @=@v on (NR7) to get

_� 0 ¼
_�0
2 þ _�0�0 þ �0 _�0 þ 2 _�0�0 þ 2�0 _�0

2�0
��0 _�0

�0
:

(99)

Now, we apply the time derivative on (ii) and use
Sec. IVB, which yields

_IðR�Þ ¼ 1

4�

I 1

2�0

�
1

R�

�0
00 � 2

�0 ��0

_R�

�
@

@v
lnðR2

��0 ��0Þ
�

þ 3
_R��0 ��0

R�

�
�0
0
��0
00dS� (100)

where the total energy-momentum flux Ftotal is the left-
hand side of (100) and is equal to the matter flux plus
gravitational flux Ftotal ¼ Fmatter þ Fgrav. We can write the

gravitational flux equal to the shear flux plus angular-
momentum flux.

Fgrav ¼ F� þ FJ (101)

where the shear flux F� is the second term of the right-
hand side of (100) and the angular-momentum flux FJ is
the third term of the right-hand side of (100). The coupling
of the shear�0 and�0 can be transformed into�0 terms by
using (NR9’). We then integrate the above equation with
respect to v, and we have

dIðR�Þ ¼ 1

8�

Z R�

_R�

�
1

R�

�0
00 � 2

�0 ��0

_R�

�
@

@v
lnðR2

��0 ��0Þ
�

þ 3
_R��0 ��0

R�

�
�0
0
��0
00dS�dR�; (102)

where dv ¼ dR�
_R�
. Here we note that if one wants to observe

a positive shear flux � @
@v lnðR2

��0 ��0Þ � 0, it implies that

_� 0 � 0; (103)

where _R�, R� > 0 have been considered. So the shear on a
spinning DH is monotonically decreasing with respect to
v.

By recalling the total flux of Ashtekar-Krishnan (38), we
compare our expression with Ashtekar’s expression. If we
choose N ¼ �0

0
��0
00 , then (102) together with (98) gives

dIðR�Þ ¼ 1

8�

Z ð2ÞRNdS�dR�

¼ 1

8�

Z R�

_R�

�
1

R�

�0
00 þ 2k

�0 ��0

_R�

þ 3
_R��0 ��0

R�

�
NdS�dR� (104)

where we define @
@v lnðR2

��0 ��0Þ :¼ �k for convenience.

This is the relation between the change in DH area (recall
(39)) and the total flux including the matter flux and
gravitational flux.

Shear flux: In the special case @
@v lnðR2

��0 ��0Þ :¼ �k

where k is a constant, we then have

R2
��0 ��0 ¼ Ae�kv: (105)

If k > 0, �0 & . If k < 0, �0 % . Therefore, if we want to
get a positive gravitational flux, the shear �0 must decrease
with time v and k > 0. On the contrary, the negative
gravitational flux implies the shear must grow with time.
That the negative mass loss from the shear flux will make
the dynamical horizon grow with time is physically un-
reasonable. Therefore, the second term of the right-hand
side in Eq. (100) should be positive. This says that the shear
on a spinning DH will decay to zero when time v goes to
infinity and the amount of shear flux F� is finite.

�0 ! 0; jvj ! 1; (106)

F� <1: (107)

Hence a slow-rotating dynamical horizon will settle down
to an equilibrium state, i.e., isolated horizon at late time.

1. Discussion

(1) If �0 ¼ 0 and the shear does not vanish �0 � 0 we
have

_IðR�Þ ¼ 1

4�

I 2R�

_R�

½�0
00 þ 2k�0 ��0�NdS�:

This goes back to the result of the flux of the non-
rotating dynamical horizon. When k ¼ 1

2 , it goes

back to the result of the nonrotating DH in [7].
(2) If both shear and �0 vanish, we have

_IðR�Þ ¼ 1

4�

I R��
0
00

_R�

NdS�:

This result can be compared with the dynamical
horizon of the Vaidya solution.

(3) We chose the cross section of the DH to be two-
sphere, however, it still implies that the shear term
cannot make it to zero. This is because the contri-
bution of the shear comes from the next-order non-
linear effect of the equations.

2. Laws of black hole dynamics

The left-hand side of Eq. (104) can be written as

dIðR�Þ
2

¼ ~�

8�
dA ¼ dR�

2
(108)

where A ¼ 4�R2
�. For a time evolution vector ta ¼ N‘a �

��a, the difference of horizon energy dEt can be calcu-
lated as follows:

dEt ¼ 1

16�

Z R�

_R�

�
1

R�

�0
00 þ 2k

�0 ��0

_R�

�
N þ 3N�0 ��0

� 4
�
_R�

Im

��
ð0 _f� _R�

R�

ð0f

�
�0

�
dV
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and the generalized black hole first law for a slow-rotating
dynamical horizon is

~�

8�
dAþ�dJ ¼ dEt: (109)

VII. CONCLUSIONS

Since �0, �4 are gauge-invariant quantities in a linear
perturbation theory, it allows us to choose a gauge, in
which �1, �3 vanish on DH. This choice of gauge is
crucial for the coupling of the NP equations and the con-
sequence of physical interpretation. In this paper, we use a
different peeling property from our earlier work [6,7]. This
leads to a physical picture that captures a collapsing slow-
rotating star and formation of a dynamical horizon that
finally settles down to an isolated horizon at late time.
Further from the peeling property, if the shear flux is
positive, it excludes the possibility for a slow-rotating
DH to absorb the gravitational radiation from nearby
gravitational sources. The mass and momentum are carried
in by the incoming gravitational wave and cross into the
dynamical horizon. We shall see that though an outgoing
wave may exist on the horizon, it will not change the
boundary condition or make the contribution to the energy
flux. A dynamical horizon forms inside the star and eats up
all of the incoming wave when it reaches the equilibrium
state, i.e., isolated horizon.

The NP equations are simplified by using two-sphere
conditions for a slow-rotating DH with small-tide. By
using the compatibility of the coupling NP equations and

the asymptotic constant spinors, the energy flux that
crosses into a slow-rotating DH should be positive.
The mass gain of a slow-rotating DH can be quantitatively
written as matter flux, shear flux and angular-momentum
flux. Further, the result that the shear flux must be positive
implies that the shear must monotonically decay with
respect to time. This is physically reasonable since the
black hole cannot eat an infinite amount of gravitational
energy when there is no other gravitational source near a
slow-rotating DH.We further found that the mass and mass
flux based on the Komar integral can yield the same result.
Therefore, our results are unlikely expression dependent.
For other quasilocal expressions remains the open question
for future study. It would be interesting if one can free the
two-sphere conditions, then obtain the metric distorted by
the gravitational wave.
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