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We obtain an explicit expression for the center-of-mass (CM) energy of two colliding general geodesic

massive and massless particles at any spacetime point around a Kerr black hole. Applying this, we show

that the CM energy can be arbitrarily high only in the limit to the horizon and then derive a formula for the

CM energy of two general geodesic particles colliding near the horizon in terms of the conserved

quantities of each particle and the polar angle. We present the necessary and sufficient condition for the

CM energy to be arbitrarily high in terms of the conserved quantities of each particle. To have an

arbitrarily high CM energy, the angular momentum of either of the two particles must be fine-tuned to the

critical value Li ¼ ��1
H Ei, where �H is the angular velocity of the horizon and Ei and Li are the energy

and angular momentum of particle ið¼ 1; 2Þ, respectively. We show that, in the direct collision scenario,

the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black

holes not only at the equator but also on a belt centered at the equator. This belt lies between latitudes

�acosð ffiffiffi
3

p � 1Þ ’ �42:94�. This is also true in the scenario through the collision of a last stable orbit

particle.
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I. INTRODUCTION

Bañados, Silk and West [1] discovered that the center-
of-mass (CM) energy can be arbitrarily high if two parti-
cles which begin at rest at infinity collide near the horizon
of a maximally rotating Kerr black hole [2] and if the
angular momentum of either particle is fine-tuned to the
critical value. They argue this scenario in the context of
the collision of dark matter particles around intermediate-
mass black holes. This scenario is generalized to charged
black holes [3], the Kerr-Newman family of black holes [4]
and general rotating black holes [5]. A general explanation
for the arbitrarily high CM energy is presented in terms of
the Killing vectors and Killing horizon by Zaslavskii [6].

The scenario by Bañados, Silk and West [1] was sub-
sequently criticized by several authors [7,8]. One of the
most important points is the limitations of the test particle
approximation upon which their calculation relies. The
validity of the test particle approximation is now under
investigation. However, as we can see for the exact analysis
of the analogous system [9], it is quite reasonable that the
physical CM energy outside the horizon is bounded from
above due to the violation of the test particle approxima-
tion. On the other hand, it is also reasonable that the upper
limit on the CM energy is still considerably high in the
situation where the test particle approximation is good.

To circumvent the fine-tuning problem of the angular
momentum, Harada and Kimura [10] proposed a scenario,
where the fine-tuning is naturally realized by the innermost
stable circular orbit (ISCO) around a Kerr black hole [11].

They discovered that the CM energy for the collision
between an ISCO particle and another generic particle
becomes arbitrarily high in the limit of the maximal rota-
tion of the black hole. Even for the nonmaximally rotating
black holes, Grib and Pavlov [12,13] proposed a different
scenario to obtain the arbitrarily high CM energy of two
colliding particles. In this case, the particle with a near-
critical angular momentum cannot reach the horizon from
well outside through the geodesic motion because of the
potential barrier. In their scenario, the angular momentum
of the particle must be fine-tuned to the critical value
through the preceding scattering near the horizon.
The geometry of a vacuum, stationary and asymptoti-

cally flat black hole is uniquely given by the Kerr metric
[2]. In the background of the Kerr spacetime, the expres-
sions for the CM energy and its near-horizon limit are
given for two colliding geodesic particles of the same
rest mass, different energies and angular momenta in [10]
and of different masses, energies and angular momenta in
[13], although both are restricted to the motion on the
equatorial plane. It is quite important to extend the analysis
to general geodesic particles not only because the analysis
applies to realistic collisions in astrophysics but also be-
cause we can get a deeper physical insight into the phe-
nomenon itself. The general geodesic motion of massive
and massless particles in the Kerr spacetime was analyzed
by Carter [14]. See also [15,16]. The last stable orbit (LSO)
is the counterpart of the ISCO for the nonequatorial motion
and defined by Sundararajan [17].
Based on Carter’s formalism, we generalize the analysis

of the CM energy of two colliding particles to general
geodesic massive and massless particles. In this paper,
we adopt the test particle approximation and hence neglect
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the effects of self-gravity and back reaction. We then
obtain an explicit expression for the CM energy of two
colliding general geodesic particles at any spacetime point
in the Kerr spacetime and derive a formula for the CM
energy of two general geodesic particles colliding near the
horizon of a Kerr black hole in terms of the conserved
quantities of each particle and the polar angle. We show
that the collision with an arbitrarily high CM energy is
possible only in the limit to the horizon. We present the
necessary and sufficient condition to obtain an arbitrarily
high CM energy and find that this condition is met only
through the three scenarios, the direct collision scenario
proposed by Bañados, Silk and West [1], the LSO (ISCO)
collision scenario by Harada and Kimura [10] and the
multiple scattering scenario by Grib and Pavlov [12,13].
We find that the collision with an arbitrarily high CM
energy is possible near the horizon of maximally rotating
black holes not only at the equator but also at the latitude

up to acosð ffiffiffi
3

p � 1Þ ’ 42:94� even if we do not admit the
multiple scattering scenario.

This paper is organized as follows. In Sec. II, we briefly
review general geodesic particles in the Kerr spacetime. In
Sec. III, we obtain an expression for the CM energy of two
general geodesic particles at any spacetime point and then
by taking the near-horizon limit obtain a general formula
for the near-horizon collision. In Sec. IV, we classify
critical particles, determine the region of the collision
with an arbitrarily high CM energy with and without
multiple scattering. Section V is devoted to conclusion
and discussion. We use the units in which c ¼ G ¼ 1
and the abstract index notation of Wald [18].

II. GENERAL GEODESIC MOTION
IN THE KERR SPACETIME

A. The Kerr metric in the Boyer-Lindquist coordinates

The line element in the Kerr spacetime in the Boyer-
Lindquist coordinates is given by [2,16,18]

ds2 ¼�
�
1�2Mr

�2

�
dt2�4Marsin2�

�2
d�dtþ�2

�
dr2

þ�2d�2þ
�
r2þa2þ2Mra2sin2�

�2

�
sin2�d�2; (2.1)

where a and M are the spin and mass parameters, respec-
tively, �2 ¼ r2 þ a2cos2� and � ¼ r2 � 2Mrþ a2. If

0 � a2 � M2, � vanishes at r ¼ r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
,

where r ¼ rþ and r ¼ r� correspond to an event horizon
and Cauchy horizon, respectively. Here, we denote
rþ ¼ rH. In this coordinate system, the time translational
and axial Killing vectors are given by �a ¼ ð@=@tÞa and
c a ¼ ð@=@�Þa, respectively. The surface gravity of the

Kerr black hole is given by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
=ðr2H þ a2Þ.

Thus, the black hole has a vanishing surface gravity and
hence is extremal for the maximal rotation a2 ¼ M2, while

it is subextremal for the nonmaximal rotation a2 <M2.
The angular velocity of the horizon is given by

�H ¼ a

r2H þ a2
: (2.2)

The Killing vector �a ¼ �a þ�Hc
a is a null generator of

the event horizon. We can assume a � 0 without loss of
generality.

B. The Hamilton-Jacobi equation
and the Carter constant

We here briefly review general geodesic particles in the
Kerr spacetime based on [15,16]. Let S ¼ Sð�; x�Þ be the
action as a function of the parameter � and coordinates x�,
or the Hamilton-Jacobi function. The conjugate momen-
tum is given by p� ¼ @S=@x�. Since the Hamiltonian for a
geodesic particle is given by H ¼ ð1=2ÞP	;
g

	
p	p
,

we can explicitly write down the Hamilton-Jacobi equation
with the metric (2.1) in the following form:

�@S

@�
¼ 1

2�2

�
� 1

�

�
ðr2 þ a2Þ@S

@t
þ a

@S

@�

�
2

þ 1

sin2�

�
@S

@�
þ asin2�

@S

@t

�
2 þ�

�
@S

@r

�
2 þ

�
@S

@�

�
2
�
:

(2.3)

Since �, t and� are cyclic coordinates, S is written through
the separation of variables as

S ¼ 1

2
m2�� Etþ L�þ SrðrÞ þ S�ð�Þ; (2.4)

where m, E and L are constants which correspond to the
rest mass, conserved energy and angular momentum
through m2 ¼ �pap

a, E ¼ �pt ¼ ��apa, and L ¼
p� ¼ c apa, respectively. Note that the proper time �

along the world line is given by d� ¼ md� and the four
velocity ua is given by pa ¼ mua for a massive particle.
Substituting Eq. (2.4) into Eq. (2.3), we obtain

��

�
dSr
dr

�
2 �m2r2 þ ½ðr2 þ a2ÞE� aL�2

�

¼
�
dS�
d�

�
2 þm2a2cos2�þ 1

sin2�
½L� aEsin2��2: (2.5)

It follows that both sides must be the same constant, which
we denote with K. That is to say,

K ¼ ��

�
dSr
dr

�
2 �m2r2 þ ½ðr2 þ a2ÞE� aL�2

�
; (2.6)

K ¼
�
dS�
d�

�
2 þm2a2cos2�þ 1

sin2�
½L� aEsin2��2:

(2.7)

Clearly, K � 0 follows from Eq. (2.7). The Carter
constant Q is a conserved quantity defined by Q �
K� ðL� aEÞ2 or
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Q ¼
�
dS�
d�

�
2 þ cos2�

�
a2ðm2 � E2Þ þ L2

sin2�

�
: (2.8)

Note thatQ can be negative butQþ ðL� aEÞ2 � 0must
be satisfied. On the other hand, we findQ � 0 if m2 � E2

from Eq. (2.8).
We integrate Eqs. (2.6) and (2.7) to give

S� ¼ ��

Z �
d�

ffiffiffiffiffi
�

p
; Sr ¼ �r

Z r
dr

ffiffiffiffi
R

p
�

;

where the choices of the two signs �� ¼ �1 and �r ¼ �1
are independent and

� ¼ �ð�Þ ¼ Q� cos2�

�
a2ðm2 � E2Þ þ L2

sin2�

�
; (2.9)

R ¼ RðrÞ ¼ PðrÞ2 ��ðrÞ½m2r2 þ ðL� aEÞ2 þQ�;
(2.10)

P ¼ PðrÞ ¼ ðr2 þ a2ÞE� aL: (2.11)

Thus, we obtain the Hamilton-Jacobi function. Note that
for the allowed motion both � � 0 and R � 0 must be
satisfied.

Using dx�=d� ¼ p� ¼ P
g

�p, we obtain

�2 dt

d�
¼ �aðaEsin2�� LÞ þ ðr2 þ a2ÞP

�
; (2.12)

�2 dr

d�
¼ �r

ffiffiffiffi
R

p
; (2.13)

�2 d�

d�
¼ ��

ffiffiffiffiffi
�

p
; (2.14)

�2 d�

d�
¼ �

�
aE� L

sin2�

�
þ aP

�
: (2.15)

C. Properties of geodesic particles
in the Kerr spacetime

From Eqs. (2.9) and (2.14), we can see Q ¼ 0 must be
satisfied for a particle moving on the equatorial plane
� ¼ �=2. As we can see in Eqs. (2.9) and (2.14), if
L � 0, the particle oscillates with respect to � and never
reaches the rotational axis � ¼ 0 or �. A special treatment
is needed for a particle which crosses the rotational axis
� ¼ 0 or �, which is a coordinate singularity. To have a
regular limit to the axis in Eq. (2.5), we impose L ¼ 0 to
such a particle. Only particles with L ¼ 0 can cross the
rotational axis.

Equation (2.13) imply

1

2

�
dr

d�

�
2 þ r4

�4
VeffðrÞ ¼ 0; (2.16)

where

VeffðrÞ � �RðrÞ
2r4

: (2.17)

Since r4=�4 is nonzero and finite outside the horizon, Veff

plays a role similar to the effective potential for the
motion on the equatorial plane, although there is a coupling
with � in Eq. (2.16). The allowed and prohibited regions
are given by VeffðrÞ � 0 and VeffðrÞ> 0, respectively.
Since VeffðrÞ ! ðm2 � E2Þ=2 as r ! 1, the sign of
(m2 � E2) governs the particle motion far away from the
black hole. A particle is bound, marginally bound and
unbound if m2 >E2, m2 ¼ E2 and m2 < E2, respectively.
Let us consider special null geodesics with K ¼ 0.

Then, L ¼ aEsin2�, Q ¼ �ðL� aEÞ2 ¼ �ðaEcos2�Þ2
and hence � ¼ 0. Thus, � ¼ const, P ¼ E�2 and R ¼
E2�4. Then, we obtain simple geodesics:

dt

d�
¼Eðr2þa2Þ

�
;

dr

d�
¼�rE;

d�

d�
¼ 0;

d�

d�
¼ aE

�
:

This means that for any value of �, there are always in-
going and outgoing null geodesics along which � ¼ const.
These geodesics are called outgoing (ingoing) principal
null geodesics for �r ¼ 1 (� 1).
Since we are considering causal geodesics parametrized

from the past to the future, we need to impose dt=d� � 0
along the geodesic. This is called the ‘‘forward-in-time’’
condition. In particular, as seen from Eq. (2.12), this con-
dition reduces to

E��HL � 0; (2.18)

in the near-horizon limit, where we have used Eq. (2.2).
Shortly, the angular momentum must be smaller than the
critical value Lc � ��1

H E. This condition is identical to the
forward-in-time condition near the horizon for particles
restricted on the equatorial plane. We refer to particles
with the angular momentum L ¼ Lc, L < Lc and L > Lc

as critical, subcritical and supercritical particles, respec-
tively. We can easily see that L � Lc is equivalent to the
condition

� �apa � 0;

for the horizon-generating Killing vector �a and the four-
momentum pa of the particle. This must clearly hold near
the horizon for the subextremal black hole because �a is
future-pointing timelike there and pa is future-pointing
timelike or null.

III. CM ENERGYOF TWO COLLIDING GENERAL
GEODESIC PARTICLES

A. CM energy of two colliding particles
of different rest masses

Let particles 1 and 2 of rest massesm1 andm2 have four-
momenta pa

1 and pa
2 , respectively. The sum of the two

momenta is given by
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pa
tot ¼ pa

1 þ pa
2 :

The CM energy Ecm of the two particles is then given by

E2
cm ¼ �pa

totptota ¼ m2
1 þm2

2 � 2gabp1ap2b: (3.1)

Clearly, this applies for both massive and massless
particles. Since Ecm is a scalar, it does not depend on the
coordinate choice in which we evaluate it. This is the
reason why we can safely determine the CM energy in
the Boyer-Lindquist coordinates in spite of the coordinate
singularity on the horizon.

B. CM energy of two colliding particles
in the Kerr spacetime

As seen in Sec. III A, the CM energy of two particles is
determined by calculating �gabp1ap2b. Using Eq. (2.1),
the CM energy is then calculated to give

E2
cm ¼ m2

1 þm2
2 þ

2

�2

�
P1P2 � �1r

ffiffiffiffiffiffi
R1

p
�2r

ffiffiffiffiffiffi
R2

p
�

� ðL1 � asin2�E1ÞðL2 � asin2�E2Þ
sin2�

� �1�

ffiffiffiffiffiffiffi
�1

p
�2�

ffiffiffiffiffiffiffi
�2

p �
; (3.2)

where and hereafterEi, Li,Qi,Ki,Pi ¼ PiðrÞ,Ri ¼ RiðrÞ
and �i ¼ �ið�Þ are E, L, Q, K, P ¼ PðrÞ, R ¼ RðrÞ and
� ¼ �ð�Þ for particle i, respectively. This is surprisingly
simple in spite of the generality of this expression. This is
due to the separability of the Hamilton-Jacobi equation in
the Kerr spacetime. From Eqs. (2.7) and (2.9) with � � 0
and �2 ¼ r2 þ a2cos2�, it follows that��������L� asin2�E

sin�

��������� ffiffiffiffiffiffi
K

p
;

ffiffiffiffiffi
�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQj þ a2jm2 � E2j

q
; r2H � �2 � r2 þ a2

outside the horizon. Moreover, in the limit r ! 1, we
obtain

E2
cm ! m2

1 þm2
2 þ 2ðE1E2

� �1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 �m2

1

q
�2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 �m2

2

q
Þ:

Therefore, Eq. (3.2) assures that if all conserved quantities
mi, Ei, Li, Ki are bounded from above, Ecm is also
bounded from above except in the limit to the horizon
where � ¼ 0. In other words, only if the collision occurs
near the horizon, the CM energy can be unboundedly high.

C. CM energy of two particles colliding
near the horizon

If �1r and �2r have different signs near the horizon, the
CM energy for two colliding particles necessarily diverges
in the near-horizon limit � ! 0 as

E2
cm � 4

ðr2H þ a2Þ2
r2H þ a2cos2�

ðE1 ��HL1ÞðE2 ��HL2Þ
�

;

where both particles are assumed to be subcritical.
However, �1r and �2r must not have different signs right
on the black hole horizon.
Then, we assume that �1r and �2r have the same sign.

In the near-horizon limit r ! rH, we can see that
ðP1P2 �

ffiffiffiffiffiffi
R1

p ffiffiffiffiffiffi
R2

p Þ vanishes. In fact, it is easy to show

lim
r!rH

P1P2 �
ffiffiffiffiffiffi
R1

p ffiffiffiffiffiffi
R2

p
�

¼ m2
1r

2
H þK1

2

ðr2H þ a2ÞE2 � aL2

ðr2H þ a2ÞE1 � aL1

þm2
2r

2
H þK2

2

ðr2H þ a2ÞE1 � aL1

ðr2H þ a2ÞE2 � aL2

;

where we have assumed subcritical particles. Therefore,
the CM energy of two general geodesic particles in the
near-horizon limit is written as

E2
cm ¼ m2

1 þm2
2 þ

1

r2H þ a2cos2�

	
�
ðm2

1r
2
H þK1ÞE2 ��HL2

E1 ��HL1

þ ðm2
2r

2
H þK2Þ

	E1 ��HL1

E2 ��HL2

� 2ðL1 � asin2�E1ÞðL2 � asin2�E2Þ
sin2�

� 2�1�

ffiffiffiffiffiffiffi
�1

p
�2�

ffiffiffiffiffiffiffi
�2

p �
; (3.3)

where we have used Eq. (2.2). We can now find that the
necessary and sufficient condition to obtain an arbitrarily
high CM energy is that

ðm2
1r

2
H þK1ÞE2 ��HL2

E1 ��HL1

þ ðm2
2r

2
H þK2ÞE1 ��HL1

E2 ��HL2

is arbitrarily large. It is also clear that the necessary con-
dition for the CM energy to be unboundedly high is that
ðE��HLÞ is arbitrarily close to zero for either of the two
particles. That is to say, either of the two particles must be
arbitrarily near-critical.
Furthermore, we can show ðm2r2H þKÞ is bounded

from below by a positive value for critical particles with
E � 0. This is trivial for massive particles. For the mass-
less case, from Eq. (2.7), we find for the critical particle

K � ½��1
H E� aEsin2��2

sin2�
¼

�
r2H þ a2cos2�

a sin�

�
2
E2

�
�
r2H
a

�
2
E2 > 0;

where we have used Eq. (2.2). Therefore, ðm2r2H þKÞ is
bounded from below by a positive value except for the case
where m ¼ E ¼ L ¼ 0. Although this exceptional case
might be physically meaningful, we do not need to deal
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with it for the present purpose. Note that since a null
geodesic is principal null if and only if K ¼ 0, no
principal null geodesic can be critical as a contraposition.
In fact, any principal null geodesic turns out to be sub-
critical because L ¼ aEsin2� � aE <��1

H E ¼ Lc.
Unless the critical particle is massless with vanishing

energy, the necessary and sufficient condition to obtain an
arbitrarily high CM energy reduces so that the ratio

E1 ��HL1

E2 ��HL2

is arbitrarily large or arbitrarily close to zero. If this ratio is
arbitrarily close to zero, Eq. (3.3) is approximated as

E2
cm � m2

1r
2
H þK1

r2H þ a2cos2�

E2 ��HL2

E1 ��HL1

:

For the particles moving on the equatorial plane, we set
� ¼ �=2 and Q ¼ 0. Then, Eq. (3.3) reduces to

E2
cm ¼ m2

1 þm2
2 þ

1

r2H

�
½m2

1r
2
H þ ðL1 � aE1Þ2�

	 E2 ��HL2

E1 ��HL1

þ ½m2
2r

2
H þ ðL2 � aE2Þ2�

	 E1 ��HL1

E2 ��HL2

� 2ðL1 � aE1ÞðL2 � aE2Þ
�
: (3.4)

If we further assume that the colliding particles have the
same nonzero rest mass m0, it is easy to explicitly confirm
that Eq. (3.4) coincides with the formula (3.5) of Harada
and Kimura [10] or

Ecm

2m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2m2

0½ðE1 ��HL1Þ � ðE2 ��HL2Þ�2 þ ðE1L2 � E2L1Þ2
16M2m2

0ðE1 ��HL1ÞðE2 ��HL2Þ

s

in the present notation.

IV. COLLISION WITH AN ARBITRARILY
HIGH CM ENERGY

A. Classification of critical particles

Since either of the two colliding particles must be arbi-
trarily near-critical to obtain an arbitrarily high CM energy,
we here study critical particles, i.e. particles with the
critical angular momentum L ¼ Lc � ��1

H E. Although
the critical particle may be prohibited to reach the horizon
or it can do so only after an infinite proper time, the critical
particle still characterizes near-critical particles as a limit
critical particle.

From Eq. (2.10), we find

RðrHÞ ¼ ðr2H þ a2Þ2ðE��HLÞ2:
Therefore, RðrHÞ � 0. In particular, only for critical parti-
cles, i.e. E��HL ¼ 0, RðrHÞ ¼ 0 holds. For the first
derivative, from Eq. (2.10), we find

R0ðrHÞ ¼ 4rHðr2H þ a2ÞEðE��HLÞ
� 2ðrH �MÞðm2r2H þKÞ:

As we have seen in Sec. III C, the factor ðm2r2H þKÞ is
positive for critical particles. Therefore, we conclude
R0ðrHÞ � 0 for the critical particle because rH � M.

If R0ðrHÞ ¼ 0 for the critical particle, the Kerr black
hole is necessarily extremal. In this case, R for the
critical particle becomes

R ¼ ðr�MÞ2½ðE2 �m2Þr2 þ 2ME2r�Q� (4.1)

and hence

R00ðrHÞ ¼ 2½ð3E2 �m2ÞM2 �Q�: (4.2)

Although one might expect a circular orbit of massive
particles on the horizon for R ¼ R0 ¼ 0 there, this is fake
as is proven in [10].
Suppose R0ðrHÞ ¼ 0 and R00ðrHÞ> 0, i.e. ð3E2 �

m2ÞM2 >Q. Then, RðrÞ> 0 at least in the vicinity of
the horizon for the critical particle. This class includes
what Bañados, Silk and West [1] originally assume and
we refer to this class as class I. A critical particle of class I
can reach the horizon along a geodesic from outside after
an infinite proper time.
The condition R0ðrHÞ ¼ 0 and R00ðrHÞ ¼ 0, i.e. ð3E2 �

m2ÞM2 ¼ Q, corresponds to the marginal case and this is
exactly the situation studied in Harada and Kimura [10] for
the equatorial case. This is of particular physical interest
because the sequence of the prograde ISCO particle con-
verges to this limit, where the fine-tuning of the angular
momentum is naturally realized in the astrophysical con-
text. Since the function R takes an inflection point at the
ISCO radius and hence R ¼ R0 ¼ R00 ¼ 0 there, the po-
tential of the limit critical particle should satisfy RðrHÞ ¼
R0ðrHÞ ¼ R00ðrHÞ ¼ 0. Hence, we treat this class as a sepa-
rate case and refer to this class as class II. For Q � 0, the
critical particle of this class corresponds to the limit critical
particle of the sequence of particles orbiting the inclined
LSO in the limit a ! 1 according to the definition
R ¼ R0 ¼ R00 ¼ 0 given by Sundararajan [17]. This means
that the scenario of the high-velocity collision of an ISCO
particle generalizes to the nonequatorial case, as the high-
velocity collision of an LSO particle.
We can also consider the case where R0ðrHÞ ¼ 0 and

R00ðrHÞ< 0, i.e. ð3E2 �m2ÞM2 <Q. Although this case
has not been mentioned so far in the literature in the present
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context, we refer to this class as class III. The behavior of
the critical particles of this class is similar to that of the
critical particles of class IV described below.

The possibility R0ðrHÞ< 0 for the limit critical particle
was first raised by Grib and Pavlov [12,13]. This is possible
only for the subextremal black hole. We refer to this class
as class IV. In the sequence approaching the critical
particle of this class, near-critical particles with an angular
momentum L ¼ Lc � � for sufficiently small �ð>0Þ can
approach the horizon along a geodesic only from the
vicinity of the horizon. Such near-critical particles are
possible only through multiple scattering because they
must be inside the potential barrier before the relevant
collision. All the critical particles in a subextremal black
hole belong to this class.

In principle, one might expect that there is a critical
particle with R0ðrHÞ> 0. Such particles should have simi-
lar characteristics to those of class I. However, as we have
seen, such a critical particle does not exist in the Kerr
spacetime.

The conditions for RðrHÞ, R0ðrHÞ and R00ðrhÞ are
easily converted to those for VeffðrHÞ, V 0

effðrHÞ and

V 00
effðrHÞ in terms of the effective potential VeffðrÞ defined

by Eq. (2.17). Table I summarizes the four classes of
critical particles and the three scenarios of the collision
with an arbitrarily high CM energy. Note that classes III
and IV belong to the same scenario so that we have four
classes in spite of three scenarios. Figure 1 shows the
examples of the effective potentials for the critical particles
of these four classes. Although the classification in this
subsection only concerns the signs of the function R and its
derivatives at the horizon, it turns out that critical particles
of class I with E2 � m2 correspond to the direct collision
scenario from infinity, as we will see in Sec. IVC.

B. The high-velocity collision belts on the extremal
Kerr black hole

It is not necessarily clear how the fine-tuning of the
angular momentum is realized near the horizon through
multiple scattering processes. Hence, hereafter we concen-
trate on the direct collision scenario and the LSO collision
scenario. Then, critical particles of classes I and II are
relevant, which are possible only if the black hole is
extremal and

ð3E2 �m2ÞM2 � Q (4.3)

is satisfied for the critical particle, as we have seen in the
previous section. Together with Eq. (2.8), Q must satisfy
the following condition:

cos 2�

�
M2ðm2 � E2Þ þ 4M2E2

sin2�

�
� Q � ð3E2 �m2ÞM2;

(4.4)

where a2 ¼ M2 and L ¼ Lc ¼ 2ME have been used. We
will see here whether this condition restricts the polar
angle. From Eq. (4.4), the following condition must be
satisfied:

ðm2 � E2Þsin4�þ 2ð4E2 �m2Þsin2�� 4E2 � 0: (4.5)

Conversely, if Eq. (4.5) holds, we can always findQwhich
satisfies Eq. (4.4).
For the marginally bound orbit m2 ¼ E2, we can easily

find from Eq. (4.5)

sin� �
ffiffiffi
2

3

s
:

This means that critical particles can occur only on the belt

between latitudes ð�=2� �Þ ¼ �acos
ffiffiffiffiffiffiffiffi
2=3

p ’ �35:26�.

TABLE I. Classification of critical particles and the collision scenarios.

Class RðrÞ at r ¼ rH Scenario Reference Parameter region

I R ¼ R0 ¼ 0, R00 > 0 direct collision [1] a2 ¼ M2, 3E2 >m2, Q< ð3E2 �m2ÞM2

II R ¼ R0 ¼ R00 ¼ 0 LSO collision [10] a2 ¼ M2, 3E2 � m2, Q ¼ ð3E2 �m2ÞM2

III R ¼ R0 ¼ 0, R00 < 0 multiple scattering - a2 ¼ M2, Q> ð3E2 �m2ÞM2

IV R ¼ 0, R0 < 0 multiple scattering [12,13] 0< a2 <M2

FIG. 1. The examples of the effective potential VeffðrÞ ¼
�RðrÞ=ð2r4Þ for the critical particles. The solid, long-dashed,
dashed and short-dashed curves show the potentials for
the particles of classes I (M ¼ a ¼ 1, m ¼ E ¼ 1, L ¼ 2,
Q ¼ 0), II (M ¼ a ¼ 1, m ¼ 1, E ¼ 1=

ffiffiffi
3

p
, L ¼ 2=

ffiffiffi
3

p
,

Q ¼ 0), III (M ¼ a ¼ 1, E ¼ 1=
ffiffiffi
3

p
, L ¼ 2=

ffiffiffi
3

p
, Q ¼ 1), and

IV (M ¼ 1, a ¼ 0:9, m ¼ E ¼ 1, L ¼ 2, Q ¼ 0), respectively.

TOMOHIRO HARADA AND MASASHI KIMURA PHYSICAL REVIEW D 83, 084041 (2011)

084041-6



It is also easy to generalize this bound to nonmarginally
bound particles because the left-hand side of inequality
(4.5) is only quadratic with respect to sin2�. The result is
that E2 must satisfy 3E2 � m2 and then � must satisfy the
following condition:

sin� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4E2 �m2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12E4 � 4E2m2 þm4

p

m2 � E2

s
: (4.6)

Therefore, the absolute value of the latitude must be lower
than the angle �ðE;mÞ, where

�ðE;mÞ ¼ acos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4E2�m2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12E4�4E2m2þm4

p

m2�E2

s �
:

The above applies to both bound (m2 > E2) and unbound
(m2 < E2) particles.

For 3E2 ¼ m2, Eqs. (4.4) and (4.5) imply � ¼ �=2 and
Q ¼ 0 so that the critical particle belongs to class II and it
is on the equatorial plane. This is an ISCO particle for the
maximal black hole spin. In the limit E2 ! m2, the right-

hand side of Eq. (4.6) approaches
ffiffiffiffiffiffiffiffi
2=3

p
and hence repro-

duces the result for the marginally bound particles. It is
quite intriguing to see the limit E2 ! 1. In this limit, the

right-hand side of Eq. (4.6) approaches
ffiffiffi
3

p � 1 and hence

sin� � ffiffiffi
3

p � 1:

Noting that the right-hand side of Eq. (4.6) is monotoni-
cally decreasing as a function of E2, the belt where critical
particles can occur becomes larger as the energy of the
particle is greater. However, the latitude limit of the belt

does not reach the poles but approaches �acosð ffiffiffi
3

p � 1Þ ’
�42:94� as the energy of the particle is increased to
infinity. In other words, no critical particle occurs with
the latitude higher than this angle. The highest absolute
value of the latitude is shown in Fig. 2 as a function of the
specific energy of the particle.

For a massless particle, i.e. m ¼ 0, Eq. (4.6) simply
reduces to

sin� � ffiffiffi
3

p � 1;

irrespective of the energy of the particle. Thus, the highest

absolute value of the latitude is acosð ffiffiffi
3

p � 1Þ ’ 42:94� if
the near-critical particle is massless.

The result is schematically shown in Fig. 3. This figure
shows the regions of high-velocity collision on the ex-
tremal Kerr black hole. The red (solid thick) line shows
the equator. The collisions with an arbitrarily high CM
energy occur on the belt colored with blue and cyan
(shaded darkly and lightly) if we allow all the critical
particles. On the other hand, such collisions occur on the
belt colored with blue (shaded darkly) if we only allow
bound and marginally bound massive critical particles. On
the uncolored (unshaded) region, the collision with an
arbitrarily high CM energy is prohibited.

FIG. 2. The highest absolute value of the latitude for the
critical particles of classes I and II to occur on the extremal
Kerr black hole as a function of the specific energy.

FIG. 3 (color online). The belts of high-velocity collision on
the extremal Kerr black hole. The red (solid thick) line shows the
equator. The collisions with an arbitrarily high CM energy occur
on the belt colored with blue and cyan (shaded darkly and
lightly) between latitudes �acosð ffiffiffi

3
p � 1Þ ’ �42:94� if we al-

low all the critical particles. On the other hand, such collisions
occur on the belt colored with blue (shaded darkly) between

latitudes �acos
ffiffiffiffiffiffiffiffi
2=3

p ’ �35:26� if we only allow bound and
marginally bound massive critical particles. On the uncolored
(unshaded) region, the collision with an arbitrarily high CM
energy is prohibited.
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C. Direct collision from infinity
with nonequatorial geodesics

Bañados, Silk and West [1] originally proposed a sce-
nario where a massive particle which is at rest at infinity,
i.e. E2 ¼ m2, with a near-critical angular momentum
L � Lc ¼ 2Mm falls towards an extremal Kerr black
hole on the equatorial plane and collides with another
particle near the horizon with an arbitrarily high CM
energy in the limit L ! Lc.

First, we only relax the restriction of the equatorial
motion in their scenario and see whether the CM energy
can still be arbitrarily high. In the original scenario by
Bañados, Silk and West [1], it is important that the geode-
sic motion from infinity to the horizon is allowed.
This means that the function RðrÞ must be positive for
rH < r <1, with which we have not been concerned in
Secs. IVA and IVB. As seen in Eq. (4.1) with E2 ¼ m2,
this is the case if and only if Q � 2m2M2. Then, margin-
ally bound particles with a near-critical angular momentum
L ¼ Lc � � for a sufficiently small �ð>0Þ can approach
the horizon from infinity and collide with another particle
near the horizon. Actually, the condition Q � 2m2M2 is
identical to that for the marginally bound critical particle
E2 ¼ m2 obtained in Sec. IVB and hence we obtain

sin� �
ffiffiffi
2

3

s
:

Thus, we can extend the original scenario by Bañados,
Silk and West [1] from the equator up to the latitude

�acos
ffiffiffiffiffiffiffiffi
2=3

p ’ �35:26�.
Moreover, we can also extend the analysis to include

both marginally bound and unbound particles. Also in this
case, as seen in Eq. (4.1), the geodesic motion of the critical
particle from infinity to the horizon is allowed if and only
if E2 � m2 and ð3E2 �m2ÞM2 � Q. In other words, the
condition obtained in Sec. IVB also applies to the direct
collision from infinity for both marginally bound and un-
bound particles. So the upper limit on the latitude for an

arbitrarily high CM energy rises up to �acosð ffiffiffi
3

p � 1Þ ’
�42:94� as the energy of the particle is increased to
infinity. Therefore, Fig. 3 still applies if the original sce-
nario by Bañados, Silk and West [1] is generalized to
nonequatorial motion.

We have proven that the consideration of the global
behavior does not change the condition for an arbitrarily
high CM energy for the marginally bound and unbound
critical particles in the Kerr black hole. However, it will not
necessarily be true in more general black hole spacetimes.

V. CONCLUSION AND DISCUSSION

We have presented an expression for the CM energy of
two general geodesic particles around a Kerr black hole.
This is the generalization of the formula obtained in the
previous paper [10] of the present authors, where the

analysis was restricted to two massive geodesic particles
of the same rest mass moving on the equatorial plane.
Applying this general expression, we have shown that an
unboundedly high CM energy can be realized only in the
limit to the horizon and derived a formula for the CM
energy for the near-horizon collision of two general geo-
desic particles. Then, we have written down the necessary
and sufficient condition for an unboundedly high CM
energy explicitly in terms of the conserved quantities of
each particle and found that this reduces to that the ratio
ðE1 ��HL1Þ=ðE2 ��HL2Þ is infinitely large or infinitely
close to zero for the energy Ei and angular momentum Li

of particle i (i ¼ 1, 2). Such a collision is possible at any
latitude for any Kerr black hole with 0< a � M if the
angular momentum is fine-tuned through multiple scatter-
ing in the vicinity of the horizon.
However, if we concentrate on the direct collision sce-

nario and the LSO collision scenario, the black hole in the
limiting case must be maximally rotating to obtain an
unboundedly high CM energy. Then, we find that the
collision with an unboundedly high CM energy can occur
only on the belt between latitudes �35:26� if we only
allow the bound and marginally bound critical massive
particles and �42:94� if we allow all the possible critical
particles. This also applies to the original scenario pro-
posed by Bañados, Silk and West [1]. It is suggested that
the collision with a very high CM energy might have
observational consequences in the contexts of the annihi-
lation of dark matter particles [1,19,20], the high-energy
hadron collision at the inner edge of the accretion disks and
the high-velocity collision of the compact objects around
supermassive black holes [10]. The present result strongly
suggests that if signals due to high-energy collision are to
be observed, such signals can be produced primarily on the
high-velocity collision belt centered at the equator of a
(nearly) maximally rotating black hole but not from the
polar regions.
We briefly discuss the possible limitations of our result

under the test particle approximation. Because of this
approximation, we have neglected the self-gravity and
back reaction effects. In fact, these effects on particles
orbiting a Kerr black hole have not been fully understood
yet. These effects are negligible and the inspiral will be
always adiabatic if the mass ratio � � m=M is sufficiently
small because these effects first appear at Oð�Þ. On the
other hand, when � is small but nonzero finite, the back
reaction effects due to a single high-velocity collision
would considerably reduce the spin of the black hole [7].
It is also discussed that infinite collision energy is attained
at the horizon after an infinite proper time and radiative
effects cannot be neglected for such near-critical particles
[7,8]. The effects of radiation reaction and conservative
self-gravity on the ISCO and LSO of a Kerr black hole
are studied [17,21–25]. Based on those studies, these
effects are argued on the near-critical particles around a
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near-maximally rotating black hole in a different context
[26]. We speculate that these effects should be responsible
for bounding the CM energy of the near-horizon collision.
This is supported by the fully exact analysis of a system
of charged spherical shells surrounding an extremal
Reissner-Nordstöm black hole [9]. It is clearly important
to evaluate the upper bound in terms of the mass ratio � for
the collision of particles on the equatorial plane. It will be
the next step to study these effects on the collision of
general particles in the present context.

Here, we discuss the possible extension of the present
analysis. Since E��HL ¼ ��apa for the horizon-
generating Killing vector �a ¼ �a þ�Hc

a in the Kerr
spacetime, we might extend the present analysis for the
Kerr spacetime to more general stationary and axisymmet-
ric spacetimes which admit a Killing vector �a and a
Killing horizonH , which is defined as a null hypersurface
on which the Killing vector �a is also null. It is clear
that the present analysis applies in a straightforward man-
ner if the analysis is restricted on the equatorial plane (e.g.
[3–5]). For the general geodesic orbits, the present analysis
is still applicable only if the spacetime possesses three
constants of motion and the geodesic equations can be
written in the first-order form. Note, however, that there
is no analogue of the Carter constant for more general
stationary and axisymmetric spacetimes (e.g. [27]) and
the present analysis will not immediately apply to such
general stationary and axisymmetric black holes.

Moreover, we may speculate that an arbitrarily high
CM energy can be attained for the near-horizon collision
even in the spacetime which is not stationary and axisym-
metric but admits a Killing horizon H associated with a
Killing vector �a. For a general geodesic particle, the
quantity A ¼ ��apa is conserved. A must be positive
in the vicinity of the horizon if �a is future-pointing
timelike there. This is the case for the nonmaximally
rotating Kerr black holes. In such a case, it is clear that
the critical particle, which has A ¼ 0, cannot approach
the horizon from outside. On the other hand, for the
maximally rotating Kerr black hole, this may not apply
and this is exactly what Bañados, Silk andWest [1] exploit.
Now, we conjecture that if and only if particles 1 and 2
collide near the Killing horizon and the ratio A1=A2 is
infinitely large or infinitely close to zero, the CM energy of
the two particles is unboundedly high possibly under some
genericity condition.
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