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Constraint analysis of the three-dimensional massive gravity, the so-called new massive gravity, is

studied in the Palatini formalism. We show that amongst 6 components of the metric, 2 are dynamical,

which is compatible with the existence of one vector massive graviton in the linearized theory

(Fierz-Pauli theory).

DOI: 10.1103/PhysRevD.83.084040 PACS numbers: 04.60.Kz, 04.50.Kd

I. INTRODUCTION

It is well known that theories with general covariance are
constrained systems [1–4]. In other words, their equations of
motion in Lagrangian formalism lead to acceleration-free
relations. On the other hand, constructing the Hamiltonian
formulation for such theories needs care in order to consider
the constraints. The primary constraints emerge in the phase
space whenever the momenta are not independent functions
of velocities. The secondary constraints come out as the
result of the consistency of primary constraints.

The most difficulty in Hamiltonian treatment of general
covariant theories is that the action depends on the second
derivatives of the metric, as well. In this situation a well-
behaved Hamiltonian system is not recognized, or at least is
not agreed upon, even when a system is not constrained.
However, for Einstein-Hilbert gravity [5] or, for instance,
Hořava gravity [6] one may use the Arnowitt-Deser-Misner
variables [7]whose advantage is that the Lagrangian does not
contain accelerations when written in terms of these varia-
bles. This may not happen for an arbitrary general covariant
Lagrangian.

The other possibility is using the so-called Palatini
formalism in which the Christoffel symbols are considered
as independent variable. For Einstein-Hilbert gravity, this
approach does work well. The reason is the relation be-
tween the Christoffel symbols and the derivatives of the
metric results naturally from the equation of motion of
Christoffel symbols. It was shown recently [8] that for a
gravitation theory of the Lovelock-type, the Palatini for-
malism is fine. However, for an arbitrary model the equa-
tions of motion give no guaranty about the relations of
Christoffel symbols and derivatives of the metric.
Therefore, one needs to add them to the Lagrangian using
Lagrange multipliers, which should be considered as addi-
tional variables in the Lagrangian formalism.

The three-dimensional gravity has attracted intensive
interest in recent years. One reason is that it is possible
to construct nontrivial renormalizable models in three

dimensions. Among so many attractive features, investigat-
ing the Hamiltonian structure of the models is noticeable.
The topological massive gravity (TMG) [9], which is gen-
erally covariant on a closed manifold, is one of the most
important ones. The Hamiltonian structure of TMG is
discussed in some papers [10].
Recently, Begshoeff, Hohm, and Townsend proposed

a model [11] for three-dimensional massive gravity (the
so-called new massive gravity) which preserves parity and
possesses general covariance on an arbitrary manifold.
Linearization around the flat metric of this model leads
to a Pauli-Fierz action describing massive graviton. Then
Deser [12] showed that this model is finite and ghost-free.
Oda and Nakasone [13] showed afterward that the model is
unitary and renormalizable. Clemènt also gave some black
hole solutions of the model [14].
The Lagrangian of new massive gravity (NMG), at one

hand, includes accelerations (i.e. second order derivatives
of the metric), which make it necessary to use Christoffel
symbols (or combinations of them) as auxiliary fields. On
the other hand, the model is not of the Lovelock-type.
These peculiarities make the Hamiltonian treatment and
constraint structure of NMG much more difficult.
Moreover, the existence of quadratic terms with respect
to R�� makes it difficult to use the Arnowitt-Deser-Misner

variables. However, in spite of complicated calculations,
the Hamiltonian treatment of the theory can be followed
carefully. This is what we have done in this paper.
Our main task in this work is counting the physical

degrees of freedom of this model. Since the Einstein grav-
ity in three dimensions has zero degrees of freedom, one
expects roughly that the NMG action, which contains two
more derivatives, should have 2 degrees of freedom; in the
same way as TMG with one more derivative than Einstein-
Hilbert action possesses 1 degree of freedom. This result is
in agreement with the number of massive gravitons in the
linearized model. However, from a theoretical point of
view, it is better to check the validity of such rough argu-
ments by a careful Hamiltonian analysis.
In Sec. II we introduce the model in the Hamiltonian

formalism and find the primary constraints. In Sec. III we
follow the consistency conditions of the constraints and

*m.sadegh@ph.iut.ac.ir
†shirzad@ipm.ir

PHYSICAL REVIEW D 83, 084040 (2011)

1550-7998=2011=83(8)=084040(7) 084040-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.084040


find the secondary constraints of system. Section IV is
devoted to our conclusions.

In our work we use Greek indices for space-time com-
ponents and Latin indices for space components.

II. LAGRANGIAN AND HAMILTONIAN

The action of NMG is given as

S¼ 1

16�G

Z
d3x

ffiffiffi
g
p �

R�2�þ 1

m2

�
R��R

���3

8
R2

��
;

(2.1)

where g is the metric determinant, R�� is the Ricci tensor,

and R is the Ricci scalar. We assume that 3d space-time is
torsion-free and the Christoffel symbols ��

�� are symmetric

with respect to � and �. This allows us to introduce new
variables ��

�� via

��
�� ¼ ��

�� � 1
2ð��

��
�
�� þ ��

��
�
��Þ; (2.2)

as in Ref. [15]. The Ricci tensor in terms of � variables
contains derivatives in the form of total 3-divergence as

R �� ¼ ��
��;� � ��

���
�
�� þ 1

2�
�
���

�
��: (2.3)

This is, in fact, the advantage of using�’s in comparisonwith
�’s. In this way, �0

�� are the only variables whose velocities

are present in the Lagrangian. As is well known, in 3 dimen-
sions an action containing higher order derivatives can not be
of the Lovelock-type. So the Palatini approach cannot be
used without imposing explicitly the relation between
the metric g�� and auxiliary variables ��

��. Using the

Eq. (2.2) and the definition of Christoffel symbols as

��
�� ¼ 1

2g
��ðg��;� þ g��;� � g��;�Þ; (2.4)

we have

�	�
 � g��ð��
	
 � 1

2ð��
	��


� þ �
�

�

�
	�ÞÞ

� 1
2ðg�
;	 þ g�	;
 � g	
;�Þ ¼ 0: (2.5)

Expressions �	�
 should be considered as external

Lagrangian constraints which should be put by hand in the
Lagrangianwith Lagrangemultipliers. These Lagrangemul-
tipliers then should be taken into account as new variables in
addition to g�� and ��

��. In this way, the following action

should be considered instead of the original one (2.1):

S ¼
Z

d3xL

¼
Z

d3x
ffiffiffi
g
p �

R� 2�þ 1

m2

�
R��R

�� � 3

8
R2

��

þ
Z

d3xA	�


�
g��

�
�
�
	
 �

1

2
ð��

	��

� þ �

�

�

�
	�Þ

�

� 1

2
ðg�
;	 þ g�	;
 � g	
;�Þ

�
; (2.6)

where A	�
 is the Lagrange multiplier. Let us enumerate
different degrees of freedombefore considering the details of
the dynamics of the system. We have 6 degrees of freedom
g�� and 3� 6 ¼ 18 auxiliary variables ��

��, taking into

account the�$ � symmetry in both cases. In other words,
by adding the auxiliary variables, the number of Lagrangian
degrees of freedom are multiplied by 4 to avoid higher order
derivatives (greater than 2) in the equations of motion. We
have also introduced 18moredegrees of freedomA	�
, since
Eq. (2.5) is symmetricwith respect to indices	 and
 andwe
haveA	�
 ¼ A
�	. Putting all these points togetherwe have
a priory 18þ 18þ 6 ¼ 42 Lagrangian variables which is
equivalent to 84 phase space variables. Now we proceed to
the Hamiltonian formalism. The canonical momenta conju-
gate to g��, �

�
�� and A

	�
 are defined, respectively, as

���
� ¼ @L

@ _��
��

¼ ffiffiffi
g
p

�0
�

�
g�� þ 2

m2
G�	�
R	


�
; (2.7)

��� ¼ @L
@ _g��

¼ � 1

2
ðA0�� þ A0�� � A�0�Þ; (2.8)

P	�
 ¼ @L

@ _A	�

¼ 0: (2.9)

where G�	�
 is the generalized metric defined by

G�	�
 ¼ g�	g�
 � 3
8g

��g	
: (2.10)

From Eq. (2.7), with � ¼ 0, we have

R �� ¼ 1
2m

2G�	�
ðg�1=2�	

0 � g	
Þ; (2.11)

whereG�	�
 is the inverse of the generalized metricG�	�


such thatG�	�
G
���� ¼ ��

	�
�

. Hence, using (2.3) we find

_� 0
�� ¼ 1

2m
2g�1=2G�	�
�

	

0 þ 4m2g�� � �i

��;i

þ ��
���

�
�� � 1

2�
�
���

�
��: (2.12)

Using Eqs. (2.11) and (2.12) the canonical Hamiltonian
density can be derived in the usual way as HC ¼R
d2xH C, where

H C ¼ ��� _g�� þ���
�

_��
�� þ P	�


_A	�
 �L

¼ 1
4m

2g�1=2G�	�
�
	

0 ���

0 þ 2
ffiffiffi
g
p ð�� 3m2Þ

þ 1
2ðAi�� þ Ai�� � A�i�Þg��;i

����
0 ½�i

��;i � ��
���

�
�� þ 1

2�
�
���

�
���

� A	�
g��ð��
	
 � 1

2ð��
	��


� þ �
�

�

�
	�ÞÞ: (2.13)

In deriving the canonical Hamiltonian the following primary
constraints resulted from Eqs. (2.7), (2.8), and (2.9) are
imposed:
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��� :¼ ��� þ 1
2ðA0�� þ A0�� � A�0�Þ � 0;

�
��
i

:¼ �
��
i � 0; ���� :¼ P��� � 0;

(2.14)

where the symbol ‘‘�’’meansweak equality, i.e., equality on
the constraint surface. We recall that primary constraints are
identities amongst coordinates and momenta which follow
directly from the definition of canonical momenta. The total
Hamiltonian reads

HT¼
Z
d3xH T;

H T¼H CþU���
��þ�i

���
��
i þV�	���	�;

(2.15)

where U��, �i
��, and V�	� are Lagrange multipliers

(in the context of Hamiltonian constrained systems)
corresponding to the primary constraints (2.14), respectively.
The fundamental Poisson brackets of field
variables are

fg��ðxÞ; �	
ðyÞg ¼ �	

���ð3Þðx� yÞ;

f��
��ðxÞ;�	


� ðyÞg ¼ ��
��

	

���ð3Þðx� yÞ;

fA	�
ðxÞ; P���ðyÞg ¼ ��
��

	

���ð3Þðx� yÞ;

(2.16)

where �	

�� � 1

2 ð�	
��



� þ �	

��


�Þ.

III. CONSTRAINT DYNAMICS AND COUNTING
PHYSICAL DEGREES OF FREEDOM

The number of primary constraints as well as
their corresponding Lagrange multipliers are as
follows:

#��� corresponding to U�� ¼ 6;

#�
��
i corresponding to �i

�� ¼ 2� 6 ¼ 12;

#���� corresponding to V��� ¼ 3� 6 ¼ 18;

# total primary constraints ¼ 36:

As in all constrained systems, the primary constraints
should be valid in the course of time. This means
that their Poisson brackets with the total Hamiltonian,
which is responsible for the dynamics of the system,
should vanish. This process is the so-called ‘‘consistency
of the constraints.’’ It is important to remind the reader
that at each step of consistency, two main things may
happen. If a given constraint has a nonvanishing Poisson
bracket with some primary constraints, the corresponding

Lagrange multiplier would be determined in terms of phase
space variables. This is the case when the related constraint
is second class.1 The other possibility is that a new con-
straint emerges as the consistency of the given constraint
and corresponding Lagrange multiplier is not determined.
These constraints at different levels of consistency are
called second level, third level, and so forth, which alto-
gether are remembered as secondary constraints. The pro-
cess of consistency will continue up to the last level in
which either a Lagrange multiplier is determined (when we
have a chain of second class constraints) or the consistency
is established identically (when the constraints in the cor-
responding chain are first class). Now, we follow the con-
sistency procedure for our problem.
Consistency of ���

i ’s causes the following expressions
to vanish:



��
i � f���

i ; HTg
¼ �1

2ð@i���
0 � 1

2�
��
0 ��

���
�
i � 1

2ðg�iA���

� g��A
�����

i Þ þ 2���
0 ��

�iÞ þ� !�: (3.1)

Since ���
i have vanishing Poisson brackets with all pri-

mary constraints, no term containing Lagrange multipliers
has appeared in Eq. (3.1). Therefore, consistency of 12
primary constraints �

��
i gives 12 second level constraints



��
i . The consistency of 


��
i will be investigated

afterward.
For ���� we have

f����; HTg ¼ g��ð��
�� � 1

2ð��
���

�
� þ ��

���
�
�ÞÞ

� 1
2ðg��;i�

i
� þ g��;i�

i
� � g��;i�

i
�Þ

� 1
2ðU���

0
� þU���

0
� �U���

0
�Þ: (3.2)

The last term above includes Lagrange multipliers U��.

For � ¼ i, � ¼ j, and � ¼ k this term vanishes and the
consistency of constraints �ikj lead to the following sec-

ond level constraints:

�ikj¼gk�ð��
ij� 1

2ð��
i��

�
j þ��

j��
�
i ÞÞ� 1

2ðgki;jþgkj;i�gij;kÞ:
(3.3)

The constraints �ikj are in fact the same as �ikj given in

Eq. (2.5). We should investigate the consistency of �ikj ’s

in the next level of consistency. Let us come back to
Eq. (3.2). The Lagrange multipliers U	
 have appeared

in the last term due to Poisson brackets f����;�
	
g with

one of indices � or � or � considered as zero. This is a
(12� 6) rectangular matrix of rank 6. So it is possible to
divide ����’s with at least one zero index into two

6-member sets, as follows:

1Remember that a set of constraints are second class if the
matrix of their mutual Poisson brackets is nonsingular. On the
other hand, first class constraints have vanishing Poisson brack-
ets with all of the constraints (at least on the constraint surface).
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�ð1Þ ¼

8>>>>>>>><
>>>>>>>>:

B1 � �001

B2 � �002

B11 � 1
2�011 þ�101

B22 � 1
2�022 þ�202

B12 � 1
2ð�012 þ�021Þ þ�102

B012 ¼ �012 ��021

; �ð2Þ ¼

8>>>>>>>><
>>>>>>>>:

C0 � �000

C1 � �010

C2 � �020

C11 � �011 � 1
2�101

C22 � �022 � 1
2�202

C12 � 1
2ð�021 ��012 � 2�102Þ

: (3.4)

The constraints of the set �ð1Þ commute (i.e. has vanishing Poisson brackets) with �	
’s and the other set, �ð2Þ,
constitutes a second class system with �	
’s, so that the 6� 6 matrix f�ð2Þ; �g is nonsingular. We can redefine
the Lagrange multipliers V��� corresponding to the division of the constraints ���� into the sets �ikj, �ð1Þ. and �ð2Þ,
such that

X
V����

��� ¼X
Vikj�

ikj þX
Vð1Þ�ð1Þ þ

X
Vð2Þ�ð2Þ: (3.5)

This gives

Vð1Þ ¼

8>>>>>>>>><
>>>>>>>>>:

V1
ð1Þ � V001

V2
ð1Þ � V002

V11
ð1Þ � 2

5ð2V101 þ V011Þ
V22
ð1Þ � 2

5ð2V202 þ V022Þ
V12
ð1Þ � V012 þ V021

V012ð1Þ ¼ V012 � 1
2V

102

; Vð2Þ ¼

8>>>>>>>>><
>>>>>>>>>:

V0
ð2Þ � V000

V1
ð2Þ � V010

V2
ð2Þ ¼ V020

V11
ð2Þ � 2

5ð2V011 � V101Þ
V22
ð2Þ � 2

5ð2V022 � V202Þ
V12
ð2Þ � V012 þ V021 � V102

: (3.6)

If we consider at this point the consistency of ���’s, we get

f���;HTg ¼ �1
4m

2g	
g
�1=2ð�	�

0 �
�
0 � 3�	


0 ���
0 Þ þ 1

16m
2g�1=2g��G	�
��

	

0 ���

0 � 2m2���
0 �

ffiffiffi
g
p

g��ð�� 3m2Þ
þ 1

2A
	�
ð��

	
 � 1
2ð��

	��
�

 þ ��


��
�
	ÞÞ � 1

2ðAi�� � 1
2A

�i�Þ;i þ 1
2ðV0�� � 1

2V
�0�Þ þ� !�: (3.7)

It can be seen easily that the last term in Eq. (3.7)
contains Lagrange multipliers Vð2Þ corresponding to the
constraints in the set �ð2Þ which have nonvanishing
Poisson brackets with ���’s. In this way the set of
constraints

�$ �ð2Þ (3.8)

constitute a one-level 12-member family of second class
constraints which is constructed of two cross-conjugate
chains that determine 12 Lagrange multipliers U	
 and
Vð2Þ. In this description, we have used the language of
Ref. [16] in classifying the families of constraints.
We just recall here that a family of constraints are
determined as a set of constraints which results from the
consistency of a limited subset of primary constraints and
make a close algebra of Poisson brackets among them-
selves, and with the canonical Hamiltonian. Consistency of
the set �ð1Þ gives 6 other constraints of the next level as
follows:

�ð1Þ ¼

8>><
>>:
D11 � 1

2�011 þ�101

D22 � 1
2�022 þ�202

D12 � 1
2ð�012 þ�021Þ þ�102

;

�ð2Þ ¼
�
Dj � �0j0j ¼ 1; 2 j ¼ 1; 2

D012 ¼ �012 ��021

;

(3.9)

where �	�
 are Lagrangian constraints given in Eq. (2.5).
We should continue to investigate consistency of the above
constraints in the next level. This will make the meaning of
the classification given in Eq. (3.9) more clear. As can be
seen, second level constraints �ikj, �

ð1Þ, and �ð2Þ are 12
out of 18 Lagrangian constraints (2.5). The remaining 6
Lagrangian constraints correspond to expressions (2.5) in-
cluding Lagrange multipliers U��. In fact, the equations of
motion of g�� give _g�� ¼ U��. Putting this into Eq. (3.2)
gives the corresponding Lagrangian constraints (2.5) for the
cases which include time derivatives of the metric.
Now we proceed to the next level by considering the

consistency of 
��
i ’s,�ikj’s, and the sets�

ð1Þ and�ð2Þ. For
�ikj’s we find
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f�ikj;HTg¼m2

4
½gk0ðG	i
jþG	j
iÞ�1

2
ðgkiðG	j
0þG	0
jÞþgkjðG	i
0þG	0
iÞÞ��	


0 �gk0

�
�l
ij;l���

i��
�
j�þ

1

2
��
i��

�
j�

�

þ1

2

�
gki

�
�l
j0;l���

j��
�
0�þ

1

2
��
j��

�
0�

�
þgkj

�
�l
i0;l���

i��
�
0�þ

1

2
��
i��

�
0�

��
þ4m2

�
gk0gij�1

2
ðgkig0jþgkjg0iÞ

�

þ
�
��
ij�

1

2
ð��

j��
�
i þ��

i��
�
j Þ
�
Uk��1

2
ðUkj;iþUki;j�Uij;kÞþgkl�

l
ij�

1

2
ðgki�l

jlþgkj�
l
ilÞ: (3.10)

Since U�� are determined previously, the Eq. (3.10) should be considered as equations to find �l
mn. It is easy to check that

the matrix of coefficients of �l
mn’s, i.e., f�ikj;�

mn
l g, is nonsingular and these Lagrange multipliers can be determined

completely. Consistency of constraints in the set �ð2Þ gives

fDj;HTg¼ 1
8m

2g�1=2ðg00ðG0�j�þGj�0�Þ�2g0jG0�0�Þ���
0 �1

2ðg00ð�i
0j;i���

0��
�
j�þ1

2�
�
0��

�
j�Þ

�2g0jð�i
00;i���

0��
�
0�þ1

2�
�
0��

�
0�ÞÞ�1

2ðg00�i
jiþg0j�

i
0i�2g0i�

i
0jÞ; j¼1;2; (3.11)

fD012; HTg ¼ 1
8m

2g�1=2g10ðG0�2� þ G2�0�Þ���
0 � 1

2g10ð�i
02;i � ��

0��
�
2� þ 1

2�
�
0��

�
2�Þ

� 1
2ðg10�i

2i þ g20�
i
1i � 2g1i�

i
02Þ � 1 !2: (3.12)

Since Lagrange multipliers �i
jk are already determined, Eqs. (3.11) and (3.12) are three equations for seven unknowns V1

ð1Þ,
V2
ð1Þ, V

012
ð1Þ , and �

i
j0’s. Therefore, we should keep these equations in mind and wait to find four other equations which should

be solved together with (3.11) and (3.12) to find the above unknowns. Anyhow, the consistency ofD1,D2, andD
0
12 does not

go further. Hence, we have a 6 member family of second class constraints as

B1 B2 B012
# # #
D1 D2 D012

: (3.13)

Consistency of 

��
i ’s leads the following expression to vanish:

f
��
i ;HTg¼ ð���

0 ð��
�0���

���
�
0ÞÞ;i� 1

2ðg�0A����g��A
�����

0Þ;i� 1
4m

2g�1=2ððG	�
iþG	i
�Þ��
0

� 1
2ðG	�
0þG	0
�Þ��

i Þ���
0 �	


0 �4m2ðg�i��
0� 1

2g�0�
�
i Þ���

0 þð���
0 ��

�0þ���
0 ��

�0Þ��
�i

� 1
2ð�	


0 ��

i�

�
0 þ�	�

0 ��
0iÞ��

	�� 1
2ð�	


0 ��
	0þ�	�

0 �

	0Þ��


��
�
i þð�j

	i;j���
	���

i�þ 1
2�

�
	���

i�Þ�	�
0 ��

0

� 1
4ð��	

0 ��
	��

�
0 þ�

��
0 ��

0�Þ��
����

i � 1
2ð�j

�0;j��
�
���

�
0�þ 1

2�
�
���

�
0�Þ���

0 ��
i �g�0ð��

�i� 1
2�

�
���

�
i ÞA���

þg�	ðA	����
�i�

�
0 þA	����

0i� 1
2ðA	����

���
�
0 þA	����

0�Þ��
i Þ��

��
0 ð�j

�i�
�
j � 1

2�
j
�j�

�
i Þ

þ 1
2ðA���Ui��A���U���

�
i Þþ 1

2ðg�iV����g��V
�����

i Þþ�$�: (3.14)

Let us first consider 6 equations concerning the cases
� ¼ j and � ¼ k in Eq. (3.14). It can be seen that the 6� 6
matrix of the coefficients of Lagrange multipliers Vikj is
nonsingular. Moreover, the corresponding equations do not
include the yet undetermined Lagrange multipliers �i

0j and

�i
00. They include, however, the Lagrange multipliers U��,

Vð2Þ, and �i
lm which are determined previously. Therefore,

the Eq. (3.14) for the cases considered can be used to
determine 6 Lagrange multiplier Vikj. Nonsingularity of

the (6� 6) submatrix f
jk
i ;�lmng has an interesting mean-

ing in the terminology of ref. [16] on classifying the
constraint families. To this end, the set of constraints

�ikj -% �jk
i

�ikj .& 
jk
i ; (3.15)

constitute a family of a 24-member, 2-level and cross-
conjugate second class system in which the consistency
of constraints of the first row gives the constraints of the
second row, while the constraints at the end of any chain
have nonvanishing Poisson brackets with the constraints at
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the top of the other chain. We can check that f�ikj;�mlng
as well as f�jk

i ; 

mn
l g vanish.

Let us come back to Eq. (3.14) and consider the case
(� ¼ i, � ¼ 0) or (� ¼ 0, � ¼ i). We have four equations
in this case again for seven unknowns V1

ð1Þ, V
2
ð1Þ, V

012
ð1Þ , and

�i
j0’s. These equations are in fact, 4 equations which we

were expecting, after Eq. (3.12). Hence, we have 7 inde-
pendent equations for 7 unknowns. In this way the con-

straints 
0j
i and their parents �0j

i constitute an 8-member,
2-level family of second class constraints shown as

�0j
i

#

0j
i

: (3.16)

The only remaining case in Eq. (3.14) is� ¼ � ¼ 0. No
term containing �i

00 appears in Eq. (3.14). This corresponds

to two constraints 
00
i for which the term including

Lagrange multipliers �00
i vanishes. Consistency of 
00

i

leads to third level constraints 	00
i as

	00
i ¼ �2ð��0

0 �j
�jÞ;i � ððg�0A0�0 � g��A

��0ÞÞ;i � 8m2g�i�
�0
0 þ 2ð���

0 �0
�0 þ��0

0 ��
�0Þ�0

�i

� 1

2
m2g�1=2ðG	�
i þ G	i
�Þ��0

0 �	

0 þ 2ð�j

	i;j � �
�
	���

i� þ 1
2�

�
	���

i�Þ�	0
0 � ð�	


0 �0

i þ�	0

0 �0
0iÞ��

	�

� 2ðg�0�0
�iA

��0 � g�	ðA	���0
�i þ A	�0�0

0iÞÞ þ A0�0Ui� þ g�iV
0�0: (3.17)

Direct calculation shows that f	00
i ;�00

j g is a nonsingular
matrix. Therefore, consistency of 	00

i determines two
Lagrange multipliers �00

i and shows that the constraints
	00

i as well as their parents in the corresponding chain are
second class. In this way we have derived a 6-member
family of second class constraints gathered in three-level
chains as

�00
i

#

00
i

#
	00

i

: (3.18)

Hence, 12 second class constraints in families (3.8)
determine 12 Lagrange multipliers U	
 and Vð2Þ at first
level of consistency; 38 second class constraints in families
(3.15), (3.16), and (3.18), determine 19 Lagrange multi-

pliers �jk
i , �

0j
i , V

ikj, V1
ð1Þ, V

2
ð1Þ, and V 012ð1Þ at second level of

consistency; and 6 second class constraints in family (3.18)
determine 2 Lagrange multipliers �00

i at the third level of
consistency. We have a total of S ¼ 12þ 38þ 6 ¼ 56
second class constraints which determine 12þ 19þ 2 ¼
33 Lagrange multipliers. There remain 36� 33 ¼ 3
undetermined Lagrange multipliers which are V11

ð1Þ, V
22
ð1Þ,

and V12
ð1Þ corresponding to primary constraints B11, B22, and

B12 given in (3.4).
Let us recall that consistency of primary constraints B11,

B22, and B12 gave us the second level constraints D11, D22,
and D12 as in (3.9). Straightforward calculations show that
the Poisson brackets of D11, D22, and D12 with the total
Hamiltonian vanishes. Therefore, we collect the following
constraints:

B11 B22 B12

# # #
D11 D22 D12

(3.19)

as a 6-member, 2-level and first class family of constraints.
So the number of first class constraints in the form of
family (3.19) is F ¼ 6.
For the number of dynamical variables, using the famous

formula [17]

D ¼ N � S� 2F; (3.20)

where N is the number of initially introduced variables in
phase space, we have D ¼ 84� 56� 2� 6 ¼ 16. This is
in Hamiltonian formalism. In Lagrangian formalism, we
have half of this number as dynamical variables. By dy-
namical variables, we mean those variables which obey
differential equations containing accelerations. Taking a
look on the complete action (2.6) shows that the auxiliary
variables A	�
 are not within these variables. Therefore,
Eq. (3.20) says that after eliminating the redundant varia-
bles by using the constraints and gauge fixing conditions,
we have 8 dynamical equations for g��’s and �

�
��’s. As we

mentioned before, the total number of variables g�� and

��
�� is 4 times greater than the number of the principle

variable g��. Therefore, we conclude that the number of

dynamical variables is 8=4 ¼ 2 out of six g��.

Notice that throughout our calculations concerning the
constraint structure of the NMG model we have kept the
cosmological constant term up to end. Hence, it is easy to
find the constraint structure of the model without the
cosmological model just by putting � ¼ 0. It should be
noted that although the main structure of the constraints
and the number of degrees of freedom is the same, the
cosmological constant has a serious effect on the form of
constraints [see Eq. (3.7)] as well as the final Hamiltonian,
after imposing the derived forms of Lagrange multipliers in
the total Hamiltonian (2.13). Therefore, it can be expected
that the dynamics of the remaining physical degrees of
freedom in the reduced phase space is affected deeply by
the presence of the cosmological constant. Specially,
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particular solutions of the equations of motion appear
when � � 0 which are forbidden in the absence of cos-
mological constant. However, our purpose in this paper is
not investigating the properties of particular solutions,
which stand beyond studying the constraint structure of
the system, although it could be interesting in turn.

IV. CONCLUDING REMARKS

In this paper we studied the Hamiltonian structure of the
new massive gravity model. This is a complicated model in
3d gravity that contains higher order derivatives as well as
higher than quadratic terms. We used some form of the
Palatini formalism in which combinations of Christoffel
symbols, i.e., the variables ��

��, are used as independent

variables while their relation with derivatives of the metric
is imposed as additional conditions in the Lagrangian using
the auxiliary variables A	�
. As is expected, the system is
highly constrained with 36 primary and 26 secondary
constraints, where 56 of them are second class and 6 are
first class. This classification makes the system suitable to
be studied more carefully in the context of constrained
systems. For example, one may be interested in finding

the generator of gauge transformations in terms of first
class constraints and studying more carefully the gauge
symmetries of the system. Moreover, if one decides to fix
the gauges, one needs to know carefully which gauge
fixing conditions should be imposed. As is well known
[16,18], for this proposes it is necessary to know the
constraint structure of the system. We showed, finally, in
phase space that there remain 16 physical variables. This
means that there are 8 dynamical Lagrangian variables
composed of the metric and Christoffel symbols. If one
eliminates the Christoffel symbols, there remain 2 dynami-
cal degrees of freedom out of 6 components of the metric.
This conclusion is in agreement with the result that the
NMG model constitute 2 gravitons under linearization of
the equations of motion.
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