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We construct different neutral blackfold solutions in Anti-de Sitter and de Sitter background spacetimes

in the limit where the cosmological constant is taken to be much smaller than the horizon size. This

includes a class of blackfolds with horizons that are products of odd-spheres times a transverse sphere, for

which the thermodynamic stability is also studied. Moreover, we exhibit a specific case in which the same

blackfold solution can describe different limiting black hole spacetimes therefore illustrating the

geometric character of the blackfold approach. Furthermore, we show that the higher-dimensional

Kerr-(Anti)-de Sitter black hole allows for ultraspinning regimes in the same limit under consideration

and demonstrate that this is correctly described by a pancaked blackfold geometry. We also give evidence

for the possibility of saturating the rigidity theorem in these backgrounds.
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I. OPENING REMARKS

Recent research has revealed that the phase structure of
higher-dimensional black hole spacetimes is far more com-
plex and vast1 than what was a priori thought. Since only in
special cases with a high degree of symmetry exact ana-
lytic black hole solutions can be obtained, one is forced to
develop new approaches and methodologies in order to
probe the intricate space of possible solutions. In particu-
lar, if one restricts to asymptotically flat black holes with
D� 2 commuting Killing vectors in four or five dimen-
sions and to gravity theories which have an integrable
sector, it is possible to exploit the existent symmetries
and develop solution generating techniques. On the other
hand, if the spacetime has fewer symmetries, D � 6 or
different asymptotics, exact analytic methods are harder to
establish.

An approximate analytic method for constructing black
hole solutions in any spacetime dimensionD � 5 and for a
wide class of backgrounds was recently developed in [3,4].
The method, called the blackfold approach, is based on a
world-volume effective theory that describes how to bend
the world volume of a black brane in a given background
spacetime. A systematic scan of the landscape of black
holes in D � 5 was initiated in [5] where large classes of
neutral stationary black holes in a Minkowski background
were uncovered, exhibiting novel horizon topologies.
These include helical black strings and black rings, black
odd-spheres, for which the horizon is a product of a large
and a small sphere, and nonuniform black cylinders. It was
also shown how the blackfold description correctly recov-
ers the ultraspinning Myers-Perry (MP) black holes as
ellipsoidal even balls. Earlier works in which the blackfold

methodology was applied include [6–8] while recently the
method was used to find the thermal generalization of the
BIon solution [9] by means of the extension of the black-
fold method to charged black branes [10].
The purpose of this paper is then to begin a systematic

scan of similar blackfolds as those found in [5] but con-
sidering instead embeddings in an (A)dS background. The
case of thin black rings in (A)dS space was earlier consid-
ered in Ref. [7] following the construction of thin black
rings in flat space [6]. The former will be shown to be part
of a larger family of odd-sphere (A)dS blackfolds, just as
the latter were shown in [5] to be part of a family of odd-
sphere blackfolds in a Minkowski background. The ther-
modynamics of the odd-sphere (A)dS blackfolds will be
obtained and used in order to analyze the thermodynamic
stability.
In parallel with [3,5] we will also consider the case of

ellipsoidal even-ball blackfolds in (A)dS. For the AdS
case, depending on the value of �L (with L the (A)dS
scale), the resulting blackfold solution can be related to
either the ‘‘ultraspinning’’ limit of the higher-dimensional
Kerr-AdS black hole found in [7] or to a new ultraspinning
limit found in this paper. We also show that for the dS case
only the latter limit is relevant. We then turn to a study of
helical black rings in (A)dS, which, like helical rings [5] in
Minkowski space, provide evidence for the possibility of
saturating the rigidity theorem in (A)dS.
There are several motivations for our study. First of all, it

is interesting to see if and how the new families of asymp-
totically flat blackfold solutions found in [5] generalize to
different backgrounds, in this case (A)dS. More generally
it provides a wider arena in which to apply the blackfold
method and compare to exactly known neutral (A)dS
black hole solutions, such as the higher-dimensional
Kerr-(A)dS black holes [11,12] (henceforth denoted by
Kerr-ðAÞdSD). Also, as remarked above, constructing exact
black hole spacetimes in (A)dS backgrounds is generally
harder then in asymptotically flat spaces. In such cases, this
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makes the use of an alternate method, like the blackfold
approach, even more pertinent if one wishes to discover
new horizon topologies.

Another point worth mentioning is that knowledge
of possible black hole phases can provide indications
about classical instabilities and new inhomogeneous
(‘‘pinched’’) phases. The prototypical example of this is
the proposed connection [6] (see also [13]) between MP
black holes [14] and black rings through a merger transi-
tion involving pinched black holes [15] with spherical
horizon topology. The emergence of this new stationary
phase is related to the onset of the ultraspinning Gregory-
Laflamme (GL) instability of MP black holes found in
Ref. [15]. Indeed, this has been verified in [16] by numeri-
cal analysis. As a consequence, analysis of (A)dS black-
folds can likewise be used to argue for possible mergers
and connections between different black hole phases.

Finally black hole geometries in (A)dS backgrounds are
interesting in view of the AdS/CFT correspondence, nota-
bly the fluid/gravity correspondence [17] which provides a
fluid-dynamical description of AdS black holes. The stud-
ies in [18] have, however, not found evidence for new types
of large AdS black objects. Interestingly though, plasma
rings and plasma balls, including pinched plasma balls,
have turned up in the study of hydrodynamic solutions
in a theory with a confining vacuum [19]. Such solutions
correspond to large rotating black holes and black rings in
the dual Scherk-Schwarz compactified AdSD space. The
analysis of [7] and of the present paper does not pertain to
large AdS black objects, nor does it involve Scherk-
Schwarz compactification. Nevertheless, it is perhaps pos-
sible to extend the results on AdS blackfolds to make a
connection with these fluid-dynamical descriptions.

The outline of this paper is as follows. In Sec. II, we give
a general overview of the basic principles of the blackfold
approach and set up the necessary formalism and nota-
tional conventions for what follows. In Sec. III, we initiate
our search for new horizon topologies in (A)dS spacetime,
constructing a wide class of blackfolds whose horizon
topology is the product of odd-spheres times a transverse
sphere. These geometries generalize the thin (A)dS black
rings of Ref. [7] and are thermodynamically unstable in
AdS, although they can be stable for certain values of the
parameters in dS spacetime. In Sec. IV, we focus on singly-
spinning blackfolds with pancaked geometries, while in
Appendix A we deal with the multispinning case. We find
that these even-ball (A)dS blackfolds can be identified with
two limits of the Kerr-ðAÞdSD black hole. One of these
limits was previously found in [7], while the other de-
scribes a new ultraspinning limit of Kerr-ðAÞdSD black
holes in which the cosmological constant is taken to be
small compared to the transverse section of the horizon
(see Appendix B for this limit in the general multispinning
case). Our analysis predicts that Kerr-ðAÞdSD black holes
in D � 6 suffer from an ultraspinning GL-type instability

when �iL > 1. This is in agreement with the recent nu-
merical analysis of Ref. [20] for the singly-spinning case in
AdS. In Sec. V, we look for exotic topologies such as
helical black rings in (A)dS. We find equilibrium condi-
tions for these helical rings and, more generally, evidence
of black hole solutions that saturate the rigidity theorem
in any background with spherical symmetry. Finally, in
Sec. VI, we summarize and discuss the results found in this
paper and give directions for future work.

II. BRIEF TOUR ON THE BLACKFOLD METHOD

In this section, we give a general overview of the black-
fold approach and outline the basics of the blackfold
formalism developed in [3,4], which the reader should
consult if further clarification is needed. We also write
down our conventions for the metric of the backgrounds
under consideration.

A. Basic philosophy

A blackfold is essentially a thin black brane whose
world volume spans a curved submanifold of a back-
ground spacetime, and the blackfold theory developed in
Refs. [3,4] describes how to bend the world volume of a
black brane in a given background. The blackfold approach
is an effective theory that captures the existence of black
objects for which the horizon is characterized by (at least)
twowidely separated length scales such that near any small
enough region around the blackfold its geometry looks like
that of a boosted flat black brane. In particular, in the case
of neutral uniform black branes, to which we restrict
ourselves in this paper, the near-horizon metric is to lead-
ing order described by

ds2p�brane ¼
�
�ab þ rn0

rn
uaub

�
d�ad�b þ dr2

1� rn
0

rn

þ r2d�2
nþ1;

(2.1)

where �a, a ¼ 0 . . .p are the world volume coordinates.
Thus the local adjustable parameters are the horizon thick-
ness r0ð�aÞ and p independent spatial components of the
velocity field uið�aÞ, i ¼ 1 . . .p. The induced metric �ab

depends also on � via the embedding coordinates X�ð�aÞ
of the brane. The condition that the blackfold is locally
a flat black brane requires more formally that r0 � R,
where the scale R is determined by the smallest intrinsic
or extrinsic curvature radius of the world volume, i.e. the
curvature of the world volume cannot be felt locally.
Since in this paper we will be concerned in applying

these ideas to blackfolds in ðAÞdSD�5 backgrounds, which
naturally introduces its own length scale set by the cosmo-
logical constant �, we consider blackfolds in the regime

r0ð�aÞ � minðR; j�j�ð1=2ÞÞ; (2.2)

so that neither the curvature of the world volume nor the
curvature set by the (A)dS radius are felt locally at the
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blackfold. This implies, in particular, that locally the black-
fold is still described by the asymptotically flat neutral
black brane solution of (2.1). In the regime under consid-
eration, Ref. [7] considered the blackfold construction of
thin rotating black rings in (A)dS space with horizon
topology S1 � SD�3. Here, we will find more general
classes of stationary solutions. In order to do so, we review
the necessary formalism below.

B. Short review of the blackfold equations

A blackfold is specified by a set of collective coordinates
X�ð�aÞ that describe the embedding of the pþ
1-dimensional world volume W pþ1 of a black p-brane

into a specific D-dimensional background spacetime,
where the world volume W pþ1 is spanned by the set of

coordinates �a. Here the total spacetime dimension D and
p are related as D ¼ nþ pþ 3, with n � 1 being the
number of spatial dimensions of the transverse space to
the blackfold. The effective stress tensor T��, supported on
W pþ1, encodes the degrees of freedom associated with the

scale of the thickness of the p-brane, which are integrated
out. To leading order this stress tensor is of perfect fluid
form. Conservation of the stress tensor is equivalent to the
system [4]

T��K�
�� ¼ 0ðextrinsic equationsÞ; (2.3)

DaT
ab ¼ 0ðintrinsic equationsÞ; (2.4)

whereDa stands for the covariant derivative with respect to
the induced metric on the world volume �ab, T

ab is the
world-volume energy-momentum tensor, and K�

�� are the
components of the extrinsic curvature tensor (second fun-
damental form).2

For stationary blackfolds, to which we restrict ourselves
in this paper, the intrinsic equations are automatically
satisfied by aligning the fluid velocity field u� with a
background Killing vector field k that generates the isome-
tries of the world volume W pþ1. In general, if � is a

timelike Killing vector generator of the asymptotic time
translations of the background and �i are spacelike ones
generators of asymptotic rotations, then k takes the form

k ¼ �þX
i

�i�i: (2.5)

One can then define the redshift factor R0 between infinity
and the blackfold world volume and the proper radii Ri

of the orbits generated by �i along the world volume as
the norm of this set of commuting Killing vectors on the
world volume:

R0 ¼
ffiffiffiffiffiffiffiffiffiffi
��2

q
jW pþ1

; Ri ¼
ffiffiffiffiffiffi
�2
i

q
jW pþ1

: (2.6)

It follows from this that k can be expressed in a more
convenient way as

k ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
; (2.7)

where the velocity field V is defined as

V2 ¼ 1

R2
0

X
i

�2
i R

2
i : (2.8)

The horizon thickness r0 can then be written as

r0ð�aÞ ¼ nR0ð�aÞ
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2ð�aÞ

q
; (2.9)

where � is the surface gravity.

C. Action and physical quantities

Given the solution (2.7), (2.8), and (2.9) of the intrinsic
equations for stationary solutions, it was shown in Ref. [4]
that the extrinsic Eqs. (2.3) can be integrated to an action

I½X�ð�aÞ� ¼
Z
W pþ1

dpþ1�
ffiffiffiffiffiffiffiffi��

p jkjn

¼ 	
Z
Bp

dVðpÞR0jkjn; (2.10)

where � is the determinant of the induced metric �ab, 	
is an integration constant (that we will henceforth omit),
and Bp is the spatial part of the blackfold world volume

W pþ1. The physical properties of the resulting blackfold

solutions can then be easily computed. The total mass M
and angular momenta Ji read

M ¼ �ðnþ1Þ
16
G

�
n

2�

�
n Z

Bp

dVðpÞRnþ1
0

� ð1� V2Þððn�2Þ=2Þðnþ 1� V2Þ; (2.11)

Ji ¼
�ðnþ1Þ
16
G

�
n

2�

�
n
n�i

Z
Bp

dVðpÞRn�1
0 ð1� V2Þððn�2Þ=2ÞR2

i ;

(2.12)

while the entropy is given by

S ¼ �ðnþ1Þ
4G

�
n

2�

�
nþ1 Z

Bp

dVðpÞRnþ1
0 ð1� V2Þn=2: (2.13)

Furthermore, the total integrated tension [5] takes the form

T ¼ �ðnþ1Þ
16
G

�
n

2�

�
n Z

Bp

dVðpÞRnþ1
0

� ð1� V2Þððn�2Þ=2Þðp� ðnþ pÞV2Þ: (2.14)

Using the explicit expressions (2.11), (2.12), (2.13), and
(2.14) and also that T ¼ �

2
 one finds that these physical

quantities satisfy the Smarr relation3

2We refer to Appendix A of Ref. [4] for the details on how to
compute these quantities from a specific embedding X�ð�aÞ.

3This relation was first derived in [21] for flat black branes of
vacuum gravity in D dimensions.
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ðD� 3ÞM ¼ ðD� 2Þ
�X

i

�iJi þ TS

�
þT : (2.15)

For asymptotically flat black hole solutions of the vacuum
Einstein equations the tension T [21] must vanish (see
[5]), but this is generally not true in an ðAÞdSD background.
In fact, for the thin black rings constructed in [7] this is not
the case, nor, as we will see, for any of the other A(dS)
blackfold solutions found in this paper.

We furthermore note that all the solutions found in this
paper and in [5] not only obey the Smarr relation (2.15), but
we also empirically observe the following relation for the
Gibbs free energy G

G ¼ M�X
i

�iJi � TS ¼ TS

n
: (2.16)

The origin of this relation is explained in the recent paper
[22], which also provides a more general derivation of the
Smarr relation (2.15).

D. ðAÞdSD metric conventions

In this work, we will make use of the Anti-de Sitter
metric written in terms of two different coordinate
systems. We first write the metric for global AdSD space-
time in the form

ds2 ¼ �V ðrÞdt2 þ dr2

V ðrÞ þ r2d�2
D�2 ;

0 � r � 1 ; V ðrÞ ¼ 1þ r2

L2
:

(2.17)

It will also be convenient to work with a metric that high-
lights the existent Uð1Þ symmetries of the background
spacetime. This new metric can be obtained by introducing
a new radial coordinate � defined as

r ¼ �

1� �2

4L2

; (2.18)

thus bringing the AdSD metric (2.17) into homogenous
(spatially conformally flat) coordinates

ds2 ¼ �Fð�Þdt2 þHð�Þ�1ðd�2 þ �2d�2
D�2Þ ;

0 � � � 2L ;
(2.19)

Fð�Þ ¼
�1þ �2

4L2

1� �2

4L2

�
2

; Hð�Þ ¼
�
1� �2

4L2

�
2
: (2.20)

The AdS radius L is related to the cosmological constant�
by

� ¼ ðD� 2ÞðD� 1Þ
L2

; (2.21)

and thus the range of validity (2.2) of the results in this
paper can be recast as r0 � minðR; LÞ. The dSD metric in

both coordinate systems can be obtained by performing
a Wick rotation such that L ! iL in the metrics (2.17) and
(2.19).

III. BLACKFOLDS WITH ODD-SPHERE
HORIZON TOPOLOGY

In Ref. [5], the blackfold approach was used to con-
struct a class of novel black holes in D-dimensional flat
spacetime with horizon topology

ð�pa¼oddS
paÞ � snþ1 ;

Xl
a¼1

pa ¼ p: (3.1)

This class contains not only the family of thin black rings
with horizon topology S1 � snþ1 but also single (and the
product of) odd-spheres with S2kþ1 horizon geometry. In
this section, we generalize these results to ðAÞdSD space-
time, and furthermore study the thermodynamic stability of
these new solutions.

A. Black S2kþ1 folds in AdSD

The first step for constructing a stationary blackfold
solution is to embed the spatial world volume Bp,

p ¼ 2kþ 1 into the background space. In this case, we
want to wrap the spatial world volume on a S2kþ1-sphere
embedded into a ð2kþ 2Þ-dimensional spatially confor-
mally flat subspace of AdSD spacetime (2.19). The appro-
priate part of the background metric can be conveniently
expressed as

ds22kþ2 ¼ Hð�Þ�1

�
d�2 þ �2

Xkþ1

i¼1

ðd�2
i þ�2

i d�
2
i Þ
�
;

Xkþ1

�¼i

�2
i ¼ 1; (3.2)

so that the S2kþ1 is parameterized by kþ 1 Cartan angles
�i and k independent director cosines �i. It is then natural
to choose a gauge in which the world volume B2kþ1 is
specified by the embedding scalar � ¼ �Rðf�igÞ and the
spatial worldvolume coordinates

f�i; i ¼ 1; . . . ; kg; f�i; i ¼ 1; . . . ; kþ 1g: (3.3)

In order to construct the action for these blackfolds,
one needs the induced metric on the world volume. In
terms of the Cartan angles and director cosines, this metric
takes the form

ds22kþ1 ¼ Hð �Rð�iÞÞ�1
Xk
i;j¼1

��
�ij þ

�i�j

�2
kþ1

�
�Rð�iÞ2

þ @i �Rð�iÞ@j �Rð�jÞ
�
d�id�j

þHð �Rð�iÞÞ�1 �Rð�iÞ2
Xkþ1

i¼1

�2
i d�

2
i : (3.4)
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Since, in order to have a stationary blackfold, the corre-
sponding Killing vector must generate isometries of the
world volume, the horizon Killing vector takes the form

k ¼ @

@t
þ Xkþ1

i¼1

�i

@

@�i

: (3.5)

The redshift factor R0 and the proper radii Ri of
the orbits generated by @

@�i
are given, respectively, by

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð �Rð�iÞÞ

p
and Ri ¼ Hð �Rð�iÞÞ�ð1=2Þ �Rð�iÞ, while

the velocity field (2.8) becomes

Vð�iÞ2 ¼
�Rð�iÞ2

ð1þ �Rð�iÞ2
4L2 Þ2

Xkþ1

i¼1

�2
i�

2
i : (3.6)

We recall that the functions F and H entering the back-
ground metric are defined in (2.20).

For simplicity we restrict to round odd-spheres, so that
we take the scalar �R to be constant. Furthermore, we are
interested in the maximally symmetric case for which the
S2kþ1-sphere is rotating with equal angular velocity � in
all kþ 1 directions �i It follows that the action (2.10)
reduces to an �R-dependent potential of the form

I½ �R� ¼ �ðpÞ
ffiffiffiffiffiffiffiffiffiffiffi
Fð �RÞ

q
Hð �RÞ�ðp=2Þ �RpðFð �RÞ

��2Hð �RÞ�1 �R2Þðn=2Þ; (3.7)

where p ¼ 2kþ 1 and�ðpÞ is the area of the S2kþ1-sphere.

A nicer form of the action can be obtained by performing
the inverse transformation between the coordinate systems

(2.17) and (2.18). Thus defining R ¼ �R=ð1� �R2

4L2Þ, the ac-

tion (3.7) above becomes4

I½R� ¼ �ðpÞR0R
pðR2

0 ��2R2Þðn=2Þ; (3.8)

where now R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðRÞ

p
, with V defined in (2.17).

Varying this action with respect to R, we obtain the equi-
librium condition for �

�2 ¼ 1þR2

R2

pþR2ðnþ pþ 1Þ
ðnþ pÞ þR2ðnþ pþ 1Þ ; (3.9)

where we have defined the dimensionless parameter
R ¼ R

L . It is straightforward to check that the limit

L ! 1 gives the result obtained in [5] for S2kþ1 folds
constructed in a Minkowski background and that the spe-
cial case of a black ring in AdSD (p ¼ 1) agrees with the
one obtained in [7]. It should also be noted that the inverse
of the relation (3.9) above in terms of R is single valued for
a fixed value of � and is valid for all values of L.

B. Physical properties and thermodynamic stability

The physical properties for the odd-sphere AdS black-
folds are straightforwardly obtained using Eqs. (2.11),
(2.12), (2.13), and (2.14). Setting VðpÞ ¼ Rp�ðpÞ for the

volume of the S2kþ1-sphere, we find

M ¼ �ðnþ1ÞVðpÞ
16
G

rn0ð1þR2Þ3=2ð1þ nþ pÞ; (3.10)

S ¼ �ðnþ1ÞVðpÞ
4G

rnþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðnþ pÞð1þR2Þ

n

s
;

T ¼ n

4
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þR2Þ

ð1þR2Þðnþ pÞ þR2

s
;

(3.11)

Ji ¼ 2

pþ 1

�ðnþ1ÞVðpÞ
16
G

rn0R

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþRðnþ pþ 1ÞÞððnþ pÞ þR2ðnþ pþ 1ÞÞ

q
;

(3.12)

�i ¼ � ; i ¼ 1; . . . ; kþ 1: (3.13)

Moreover, the total tension T becomes

T ¼ ��ðnþ1ÞVðpÞ
16
G

rn0ð1þR2Þ1=2R2ðnþ pþ 1Þ;
(3.14)

showing explicitly that in AdS spacetime this quantity is
not necessarily zero. The physical quantities above can
be shown to satisfy the Smarr relation (2.15) and the
relation (2.16).
In order to study the thermodynamic stability of these

blackfolds, one needs to compute the specific heat at
constant angular momenta CJ and the spectrum of
the isothermal differential moment of inertia tensor ij,
given by

CJ ¼ T

�
@S

@T

�
J

; ij ¼
�
@Ji

@�j

�
T
: (3.15)

In the present case, the tensor ij is diagonal and has
all its diagonal elements equal to each other, so ii ¼ .
The condition for thermodynamic stability reads (see
e.g. [23])

CJ > 0 ; specðijÞ> 0; (3.16)

where ‘‘spec‘‘ denotes the spectrum of eigenvalues. We
will now proceed by computing these quantities for two
different cases:
(i) Flat case (L ! 1 limit)

CJ ¼ ��ðnþ1ÞVðpÞrnþ1
0

4G

ffiffiffiffiffiffiffiffi
nþp
n

q
ðnþ pþ 1Þ
ðpþ 1Þ ; (3.17)

4In fact, in this highly symmetrical case we could have simply
used the form of the metric (2.17) and obtained this action
straight away.
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 ¼ ��ðnþ1ÞVðpÞrn0ðpþ 1Þðnþ pÞR2

16
G
: (3.18)

Since both CJ < 0 and  < 0 we conclude that S2kþ1

folds in a Minkowski background are thermody-
namically unstable. This is expected since asymp-
totically flat black hole solutions generally show this
type of behavior.

(ii) AdS case (finite L)

CJ ¼ ��ðnþ1ÞVðpÞrnþ1
0 C1

C2

ð1þR2Þðnþ pþ 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þR2Þðnþ pÞ þR2

n

s
; (3.19)

with C1 ¼ ðpðnþ pÞ þ 2R2ðn2 þ 2npþ nþ
pðpþ 2ÞÞ þR4ðnþ pþ 1Þð2nþ pþ 3ÞÞ, C2 ¼
4Gðpðpþ 1Þðnþ pÞ þR2ðnþ pþ 1Þðnðpþ 2Þþ
pð3pþ 4ÞÞ þ C3Þ, C3 ¼ R4ðn þ p þ 1Þð2nðpþ
2Þ þ pð3p þ 8Þ þ 3Þ þ ðp þ 3ÞR6ðn þ p þ 1Þ2,
and

 ¼ ��ðnþ1ÞVðpÞrn0D1

D2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

p
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþR2ðnþ pþ 1Þ

ð1þR2Þðnþ pÞ þR2

s
ðR2

þ ðnþ pÞð1þR2ÞÞ;
(3.20)

with, D1 ¼ ðpðpþ 1Þðnþ pÞ þR2ðnþ pþ 1Þ�
ðnðpþ 2Þ þ pð3pþ 4ÞÞ þD3Þ, D2 ¼ 16
Gð1 þ
R2Þðpðn þ pÞ þ 2pR2ðn þ p þ 1Þ þ ð1 þ pÞð1þ
n þ pÞðR4Þ, D3 ¼ R4ðn þ p þ 1Þð2nðp þ 2Þ þ
pð3p þ 8Þ þ 3Þ þ ðp þ 3ÞR6ðn þ p þ 1Þ2. By
taking a closer look at C2, we see that since
L > 0 the denominator is always positive while all
other terms C1, C3 are positive, hence CJ is always
negative due to the negative overall minus sign.
Similarly, by looking at the expression for  we
conclude that all terms D1, D2, D3 are positive,
and hence  is D1, D2, D3 negative for all values
of L. Therefore these blackfolds are thermodynami-
cally unstable. This is also to be expected since
small black holes in AdS spacetime are known to
be unstable.

C. The general product of odd-spheres in AdSD

The class discussed above is part of a larger one in which
the spatial world volume Bp is a product of l round odd-

spheres embedded as in Sec. III A above. We label the
different spheres by an index a ¼ 1; . . . ; l and denote �Ra

as the corresponding (constant) radius of each Spa , where
pa is an odd integer. For the sake of simplicity we choose
for each sphere the angular velocity associated with each

Cartan angle direction to be equal

�ðaÞ
i ¼ �ðaÞ ; 8i ¼ 1; . . . ;

pa þ 1

2
: (3.21)

To embed Bp we consider a conformally flat

ðpþ lÞ-dimensional subspace of AdSD with the metric

ds2pþl ¼ Hð�Þ�1
Xl
a¼1

ðd�2
a þ �2

ad�
2
pa
Þ ;

�2 ¼ Xl
a¼1

�2
a ;

Xl
a¼1

pa ¼ p:

(3.22)

Again, we choose the Cartan angles and director cosines of
each Spa-sphere as the spatial world volume coordinates
and take �a ¼ �Ra as the embedding scalars. The transverse
space is ðnþ 2� lÞ dimensional; hence, we require that
l � nþ 2.
Defining �R2 ¼ P

l
a¼1

�R2
a, the action (3.7) can be gener-

alized to an �Ra-dependent potential

I½f �Rg� ¼ �l
b¼1�ðpbÞ

ffiffiffiffiffiffiffiffiffiffiffi
Fð �RÞ

q
�Rpb

b Hð �RÞ�ðpb=2ÞðFð �RÞ

�Hð �RÞ�1
Xl
a¼1

ð�ðaÞ �RaÞ2Þn=2: (3.23)

Introducing new scalars Ra as Ra ¼ �Ra=ð1� �R2
a

4L2Þ the pre-
vious action can be put in a simpler form

I½fRg� ¼ �l
b¼1�ðpbÞR0R

pb

b

�
R2
0 �

Xl
a¼1

ð�ðaÞRaÞ2
�
n=2

;

(3.24)

where R0 ¼ 1� R2

L2 , with R2 ¼ P
l
a¼1 R

2
a. Varying this ac-

tion with respect to each of the scalars Ra gives rise to l

coupled equations for each of the angular velocities �ðaÞ.
The equilibrium condition can then be found to be

ð�ðaÞÞ2 ¼ 1þR2

R2
a

pa þR2
aðnþ pþ 1Þ

ðnþ pÞ þR2ðnþ pþ 1Þ ; (3.25)

where we have definedRa ¼ Ra=L. It easy to check that in
the limit L ! 1 the above condition agrees with that of
[5], while the particular case l ¼ 1 agrees with (3.9).
The physical properties for these blackfolds are also

easily computed. In fact, the expressions for M;S; T;T
coincide with those in (3.10), (3.11), and (3.14), for a
single odd-sphere if we define the volume of Bp as

VðpÞ ¼ �aVðpaÞ, while the angular momenta and angular

velocities read

JðaÞi ¼ 2

paþ1

�ðnþ1ÞVðpÞ
16
G

rn0Ra

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpaþR2

aðnþpþ1ÞÞððnþpÞþR2ðnþpþ1ÞÞ
q

:

(3.26)
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The Smarr relation (2.15) and the relation (2.16) can also
be verified for this case.

D. Black S2kþ1 folds in dSD

The equilibrium condition for odd-sphere blackfolds in a
de Sitter background dSD can be easily obtained from
those in (3.9) by performing the Wick rotation L ! iL,
leading to

�2 ¼ 1�R2

R2

R2ðnþ pþ 1Þ � p

R2ðnþ pþ 1Þ � ðnþ pÞ : (3.27)

Since �2 might become negative for certain values of the
parameters we must impose the condition �2 � 0, which
implies that the ratioR should be constrained to the regionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ p

nþ pþ 1

s
� R � 1 _

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

nþ pþ 1

s
<R: (3.28)

Hence black S2kþ1 folds in dSD do not exist for all values
of R. Moreover, a static solution always exists if5

R 2 ¼ p

nþ pþ 1
: (3.29)

The physical properties of these solutions can be ob-
tained from those given in Sec. III A by taking into account
the same Wick rotation. A general analysis of the thermo-
dynamic stability of these blackfolds for all values of the
parameters is altogether cumbersome; therefore, we ana-
lyze in detail two particular cases.

(i) Black Ring in dS5 (n ¼ 1, p ¼ 1).
In this case an equilibrium value for � exists ifffiffiffi

2

3

s
� R � 1 _ 1ffiffiffi

3
p <R: (3.30)

Then the specific heat CJ and the spectrum of ij can
be computed to be

CJ ¼ �ð2ÞVð1Þ
3r20

ffiffiffiffiffiffiffiffiffiffiffi
1

2�3R2

q
ð�1þR2Þð�7R2 þ 9R4Þ

4Gð1� 6ðR2 þR4ÞÞ ;

(3.31)

¼�ð2ÞVð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

p
� r0ð2R�R3Þ3ð1�6R2þ6R4Þ
16G


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�9R2þ9R4

p ð1�4R2þ6R4�3R6Þ :

(3.32)

A detailed analysis leads us to the conclusion that
black rings in dS5 spacetime are thermodynamically
stable if

2

1þ ffiffiffiffiffiffi
13

p � R � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

3
pp : (3.33)

(ii) Black S3 fold in dS7 (n ¼ 1, p ¼ 3).
An equilibrium value for � can be found to exist if

ffiffiffi
4

5

s
� R � 1 _

ffiffiffi
3

5

s
<R: (3.34)

The specific heat and the spectrum of ij are
given by

CJ ¼
�ð2ÞVð3Þ5r20

ffiffiffiffiffiffiffiffiffiffiffi
1

4�5R2

q
ðR2 � 1Þð6� 23R2 þ 20R4Þ

4Gð6� 20R2 þ 15R4Þ ; (3.35)

 ¼
�ð2ÞVð3ÞR2r0ð4� 5R2Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

p
ð6� 20R2 þ 15R4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5R2�4
þ 1

q
16
Gð1�R2Þð6� 15R2 þ 10R4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12� 35R2 þ 25R4
p : (3.36)

Hence, black S3 folds in dS7 are thermodynamically stable
only if

ffiffiffi
2

5

s
� R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

10� ffiffiffiffiffiffi
10

p
s

: (3.37)

It would be interesting to examine the form of the
stability criteria for the general case and understand the
physical origin of the range of stability observed for these
odd-sphere dS blackfolds.

IV. ULTRASPINNING AND ‘‘ULTRASPINNING’’
KERR-ðAÞdSD BLACK HOLES AS BLACKFOLDS

Blackfold solutions in flat space with Bp an even-

dimensional ellipsoidal ball have been shown to exist in
Refs. [3,5]. These have event horizon with SD�2 topology
due to the fact that the transverse Snþ1 is nontrivially

5The case for whichR ¼ 1 leads to a blackfold with vanishing
horizon and vanishing physical properties.
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fibered over the ellipsoid, becoming zero size at the bound-
ary. In fact, the physical properties of these even-ball
blackfolds have been shown to exactly reproduce those
of ultraspinning MP black holes [15].

Despite the fact that ultraspinning regimes have not been
found for spinning black holes inAdSD, it has been pointed
out in [7] that the Kerr-AdSD black hole with an appro-
priate choice of mass and rotation parameters m, a has an
‘‘ultraspinning’’ regime which shares many of the same
properties with the ultraspinning regime of the MP black
hole. As an example, the transverse and parallel size of the
horizon of the single spinning Kerr-AdSD black hole in
D � 6 behave in the limit a ! L as

l? � rþ; lk �
�
r2þ þ a2

�

�
1=2

; �� 1� a2

L2
; (4.1)

where rþ is the event horizon radius. For fixed mass the

ratio
lk
l?

diverges like ���ððD�1Þ=2ðD�5ÞÞ, meaning that the

horizon pancakes out along the plane of rotation. Thus
this limit could in principle be captured by an even-
dimensional ellipsoidal ball Bp, in particular, a disk

in the case of one plane of rotation. Moreover, the
Kerr-AdSD solution has a Bogomol’nyi-Prasad–
Sommerfeld (BPS) bound J � LM [24] restricting the
rotation parameter in such a way that a � L. Thus it is
clear that at fixed mass M and fixed L one cannot simply
take a ! 1 and obtain an ultraspinning limit as in the
asymptotically flat case since the bound would be violated.
However, as we will show below, it is possible to take a
limit in which a ! 1 and simultaneously taking L ! 1
while keeping the ratio a

L constant. This limit amounts to

considering a very thin black hole compared to the scale L,
set by the cosmological constant, while keeping a of the
same order of magnitude as L, i.e., making the black hole
simultaneously thin compared to the parallel section of the
horizon. Thus the resulting limit is not asymptotically flat.
Furthermore, we will show that this limit can also be
captured by the same blackfold Bp.

In this section, we will start by solving the action for a
world volume with even-dimensional ball geometry in an
AdSD background and compute the physical properties of
these solutions. Subsequently we will identify the proper-
ties of this solution with both the ultraspinning and ‘‘ultra-
spinning’’ regimes of the Kerr-ðAÞdSD black hole. At the
end of this section, we will generalize these results to a dSD
background.

A. Even-ball blackfolds in AdSD

The starting point for constructing these blackfolds is to
consider a planar 2k fold embedded into a (2kþ 1)-
dimensional spatially conformally flat subspace of AdSD,
which can be equipped with the metric

ds22kþ1 ¼Hð�Þ�1

�
dz2þXk

i¼1

ðd�2
i þ�2

i d�
2
i Þþ

XD�2ðkþ1Þ

j¼1

dx2j

�
;

�2 ¼Xk
i¼1

�2
i þ

XD�2ðkþ1Þ

j¼1

x2j : (4.2)

It is then natural to choose the embedding of B2k as

z ¼ Zð�iÞ; xj ¼ 0; j ¼ 1; . . . ; D� 2ðkþ 1Þ;
f�i ¼ �i;�i ¼ �iþ1; i ¼ 1; . . . ; kg; (4.3)

with the function Zð�iÞ to be determined. The Killing
vector field that generates the isometries of the world-
volume is of the form

k ¼ @

@t
þXk

i

�i

@

@�i

: (4.4)

Thus the action (2.10) takes the simple form

I½Zð�iÞ� ¼ �ðpÞ
Z Yk

i¼1

d�iR0

Yk
j¼1

Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @�i

Zð�iÞ
q

�
�
R2
0 �

Xk
i¼1

R2
i�

2
i

�
n=2

; (4.5)

where R0 ¼
ffiffiffiffiffiffiffiffiffiffi
Fð�Þp

and Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð�Þ�1

p
�i. Varying this

action with respect to Zð�iÞ and analyzing the resulting
equation leads to the conclusion that Z ¼ 0 is a blackfold
solution. In the asymptotically flat case [5], any plane
Z ¼ const: is a valid solution, while in the present case
due to the AdSD potential only Z ¼ 0 is a solution.
In what follows, we will focus on the case of singly-

spinning blackfolds (k ¼ 1) with angular momentum along
the �1 direction and deal with the general case in
Appendix A. In this case, the world volume velocity field
is given by

Vð�Þ ¼ �

1þ �2

4L2

�; (4.6)

where R ¼ R1, � ¼ �1, and � ¼ �1. Since V cannot
exceed the speed of light V ¼ 1, we find that � is bounded
by the maximum value

�max ¼ 2LðL��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2�2 � 1

p
Þ: (4.7)

The other value for � at which V ¼ 1, which has a plus
sign in front of the square root, can be discarded since
in this coordinate system [see (2.19)] spatial infinity is
reached at � ¼ 2L.
Since the argument of the square root in (4.7) must be

positive definite, we obtain a constraint

0 � � � 1 ; � � ðL2�2Þ�1: (4.8)

In terms of the parameter � defined above we can now
distinguish three different situations:
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(i) � ¼ 0. In this case �max ! 1
� . This is the asymptoti-

cally flat space case, and so we correctly recover the
ultraspinning MP black hole where �max � a, so that
the blackfold has the shape of a disc with radius a
(see [3,5]).

(ii) � ¼ 1. In this case �max ! 2L, so the disc extends
all the way to spatial infinity. As we show below,
this corresponds to the ‘‘ultraspinning’’ limit taken
in [7] where a ! L.

(iii) 0<�< 1. In this case �max < 2L, so that the disc
is cut at some value of � and does not reach spatial
infinity. As we will see below, this corresponds to a
new ultraspinning limit of the Kerr-AdSD black
hole.

Before taking these limits it is useful to compute the
physical properties of this blackfold. These are easily
obtained using the Eqs. (2.11), (2.12), (2.13), and (2.14),
yielding

M ¼ �ðD�2Þ
8
G

r̂nþ
ð1� �Þ2

�
1þ ðnþ 1Þð1� �Þ

2

�
1

�2
; (4.9)

J ¼ �ðD�2Þ
8
G

r̂nþ
ð1� �Þ2

1

�3
;

S ¼ �ðD�2Þ
4G

r̂nþ1þ
ð1� �Þ

1

�2
;

(4.10)

T ¼ ��
�ðD�2Þ
8
G

r̂nþ
ð1� �Þ2

1

�2
; (4.11)

where we have defined r̂þ ¼ n
2� . It is worthwhile to notice

that the tension T vanishes only if � ¼ 0, in agreement
with the flat space result. Also, when � lies within the
region 0<� � 1 the tension is nonzero and hence the
blackfold does not describe an asymptotically flat
solution. Moreover, it is straightforward to check that the
quantities above satisfy the Smarr relation (2.15) and the
relation (2.16).

We also note that by defining r ¼ �=ð1� �2

4L2Þ the thick-
ness r0 becomes

r0 ¼ n

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2�2ð1� �Þ

q
; (4.12)

so that in terms of this coordinate we now have

rmax ¼ �max=ð1� �2
max

4L2 Þ. The thickness remains finite for

all values of � since when � ¼ 1 and rmax ! 1,
R0 ! 1 but r0 ! 0. Thus the blackfold is always in the
regime r0 � L.

We will now proceed to identify the physical properties
of the disc blackfold given above with those corresponding
to the two different limits of the Kerr-AdSD black hole.

1. � ¼ 1: the ‘‘ultraspinning’’ limit

This limit was found in Ref. [7] and amounts to taking
a ! L, and hence � ! 1

L ; � ! 1 while keeping �̂ ¼
2m

L2ð1��Þ2 finite, i.e., sending m ! 0. The resulting metric

near the rotation axis can be expressed in appropriately
rescaled coordinates as

ds2 ¼ �ð4=ðD�5ÞÞ
�
�
�
1� �̂

r̂D�5

�
dt̂2 þ

�
1� �̂

r̂D�5

��1
dr̂2

þ r̂2d�2
D�4 þ d�2 þ �2d�2

�
; (4.13)

where � is given in (4.1). This metric describes the
geometry of a flat black membrane with an overall con-
formal factor. Its physical properties can be summarized
as follows:

M ¼ �ðD�2Þ
8
G

�̂L2; (4.14)

S ¼ �ðD�2Þ
4G

rD�4þ
r2þ þ L2

ð1� �Þ ; T ¼ D� 5

4
rþ
; (4.15)

J ¼ �ðD�2Þ
8
G

�̂L3 ; � ¼ 1

L
; (4.16)

rþ ¼
�
2m

L2

�ð1=ðD�5ÞÞ
: (4.17)

It is easy to check that with the identification r̂þ ¼ rþ and
using � ¼ L�1 the blackfold physical properties (4.9),
(4.10), and (4.11) found above exactly reproduce the prop-
erties (4.14), (4.15), and (4.16) of this ‘‘ultraspinning’’ limit
(note that n ¼ D� 5). To see this one also needs to use the
fact that our blackfold is a valid solution only in the regime
L 	 rþ, i:e:, the entropy becomes6

S ¼ �ðD�2Þ
4G

rD�4þ
ð1� �ÞL

2: (4.18)

Moreover a straightforward computation shows that the
thickness for this solution behaves like r0ð�Þ ¼ rþ cos�.
However, since in this limit m ! 0, it follows from (4.17)
that this implies rþ ! 0 and thus r0 ! 0. This is actually a
prediction from the blackfold side since by taking
Eq. (4.12) we see that in the case � ¼ 1, r0 ¼ rþ except
when r ! rmax, in which case r0 ¼ 0; therefore, such
solution would only be regular if rþ ¼ 0, 8r.

2. 0 � �< 1: the ultraspinning limit

This limit resembles very closely that of the ultraspin-
ning MP black hole. To see this, start with the metric of the
singly-spinning Kerr-AdSD black hole [11] in spheroidal

6In fact, as a ! L, the horizon size rþ approaches zero and
hence S ! 0. The tension T remains finite in this limit.

BLACKFOLDS IN (ANTI)-DE SITTER BACKGROUNDS PHYSICAL REVIEW D 83, 084039 (2011)

084039-9



coordinates ðt; r; �; �;�D�4Þ (see Appendix B for
the multispin case). The ultraspinning limit of the
Kerr-AdSD black holes is defined as

a ! 1 ; L ! 1 ; m ! 1; (4.19)

keeping � ¼ a2=L2 and �̂ ¼ 2m=a2 fixed. Consider in
this limit the metric near the axis of rotation by defining
a new coordinate � ¼ a sin� which remains finite as the
axis is approached, i.e. as � ! 0. Then the metric takes the
form of that of a flat black membrane

ds2 ¼ �
�
1� �̂

rD�5

�
dt2 þ

�
1� �̂

rD�5

��1
dr2 þ r2d�2

D�4

þ 1

1� �
ðd�2 þ �2d�2Þ: (4.20)

The difference between this metric and the flat space case
(� ¼ 0) resides in the last term, which is multiplied by the
factor ð1� �Þ�1. In fact, since we are free to rescale the

coordinate � by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þ�1

p
, we can eliminate

the factor in front of the line-element of the two-plane
ð�;�Þ. However, we are only allowed to do this if
0 � �< 1 since if � ¼ 1 the metric diverges and if
�> 1 the metric changes signature. In summary, the limit
above is only valid if � lies within the range 0 � �< 1 as
claimed in the discussion below (4.8).

The physical properties of the Kerr-AdSD solution in the
limit (4.19) can be easily obtained from [25]

M ¼ �ðD�2Þ
8
G

�̂

ð1� �Þ2
�
1þ ðD� 4Þð1� �Þ

2

�
a2; (4.21)

S ¼ �ðD�2Þ
4G

rD�4þ
a2

ð1� �Þ ; T ¼ D� 5

4
rþ
; (4.22)

J ¼ �ðD�2Þ
8
G

�̂

ð1� �Þ2 a
3 ; � ¼ 1

a
; (4.23)

rþ ¼
�
2m

a2

�ð1=ðD�5ÞÞ
: (4.24)

It is then seen that with the identification r̂þ ¼ rþ and
using � ¼ a�1, we can reproduce from the blackfold
approach [Eqs. (4.9), (4.10), and (4.11)] the thermody-
namic quantities given in (4.21), (4.22), and (4.23).
Furthermore, the thickness of this black membrane is given
by r0ð�Þ ¼ rþ cos�. By looking at Eq. (4.12) and defining a

new coordinate � ¼ arcsinðr� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þ the two expres-
sions for the thickness exactly match.

We note that the resulting metric does not represent an
asymptotically flat solution. This is clear from the fact that
there is a nonvanishing tension, as seen in (4.11). Another
way is by looking at the quantum statistical relation that
these black holes must satisfy, this relation reads [25]

M� TS�X
i

�iJi ¼ TID; (4.25)

where the Euclidean action ID in this limit reduces to

ID ¼ 1

4T

�ðD�2Þ
ð1� �Þm: (4.26)

We can see that there is a factor of ð1� �Þ�1 in the
expression above, and one may check that only for
� ¼ 0 does one recover the Euclidean action for the
asymptotically flat case.7 This limit thus represents an
asymptotically AdSD solution.
The existence of the ultraspinning limit of Kerr-AdSD

black holes described above provides nontrivial informa-
tion on the stability properties of these black holes. In the
asymptotically flat case, Ref. [15] showed that ultraspin-
ning MP black holes become membranelike suggesting
that these should exhibit a GL-type instability [26],8 as
confirmed in [16]. Similarly, our analysis thus predicts that
Kerr-ðAÞdSD black holes for D � 6 suffer from an ultra-
spinning GL-type instability when �L > 1. This is in
agreement with the recent numerical analysis of Ref. [20]
for the singly-spinning case in AdS. More generally, it
follows from Appendix B that in the multispin case there
is an ultraspinning GL instability when �iL > 1.

B. Even-ball blackfolds in dSD

In this section, we want to generalize the results of
Sec. IVA to a dSD background. By performing a Wick
rotation L ! iL the action (4.5) takes the same form but
now with different functions Fð�Þ, Hð�Þ which transform
accordingly. Z ¼ 0 is still a valid blackfold solution and
the velocity field attains the velocity of light at a maximum
value of

�max ¼ 2Lð�L�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2�2 þ 1

p
Þ: (4.27)

There is thus no upper bound on the parameter
� ¼ ðL2�2Þ�1, and hence � is free to take any value in
the interval

� � 0: (4.28)

In terms of �, we can now distinguish two different
regimes:
(i) � ¼ 0. This is the flat space case as noted previously

in Sec. IVA.
(ii) �> 0. In this case �max � 2L, and so the disc is cut

at some value of � in general but reaching the
cosmological horizon when � ! 1 and hence
� ¼ 0, for which case the solution is static.9 As
we will see below, this case (�> 0) corresp¿onds to
the ultraspinning limit of the Kerr-dSD black hole.

We have not mentioned here any ‘‘ultraspinning’’ re-
gime. This is because the Kerr-dSD does not show such

7To compare this result with the one obtained in [3] note that
the parameter � in [3] is related to m by � ¼ 2m.

8See [27] for a review on the GL instability.
9We are grateful to Roberto Emparan for pointing this out to us.
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special behavior when a ! L. To see this it suffices to
look at Eq. (4.1) and keep in mind that the ratio
lk
l?
���ððD�1Þ=2ðD�5ÞÞ remains finite since now � ¼ 1þ

�, so that the event horizon does not pancake out along the
plane of rotation.

The ultraspinning limit of the Kerr-dSD black hole can
be obtained by performing the same Wick rotation on the
metric (4.20)

ds2 ¼ �
�
1� �̂

rD�5

�
dt2 þ

�
1� �̂

rD�5

��1
dr2 þ r2d�2

D�4

þ 1

1þ �
ðd�2 þ �2d�2Þ: (4.29)

It is then obvious that this metric is valid for all values of
� � 0. Moreover, it is also a straightforward exercise to
show that the physical properties of this solution matches
those of the even-ball blackfold. Finally, as in the AdS
case, it follows that Kerr-dSD black holes for D � 6 have
an ultraspinning GL instability.

V. RINGS AND HELICES

In [5], blackfold solutions were found in D � 5 with
exotic horizons and a single axial Uð1Þ isometry. These
helical black rings and helical black strings constitute the
first examples of asymptotically flat black holes that satu-
rate10 the rigidity theorem [29]. In this section, we address
the question whether helical rings can be attained as well in
ðAÞdSD spacetime. We will show that solutions describing
helical rings with these symmetries, which are valid in
the regime r0 � L, can also be constructed in these
backgrounds. On the other hand, the question wether
or not helical strings can be constructed in these back-
grounds remains open as it would require a different start-
ing point from that of an asymptotically flat black brane
[see Eq. (2.1)].

A. Helical black rings in ðAÞdSD

In order to construct the action for these blackfolds it is
convenient to write the metric of a (D� 1)-dimensional
spatially conformally flat subspace of ðAÞdSD spacetime in
such a way that all its Uð1ÞN symmetries are explicit

ds2D�1 ¼ Hð�Þ�1

�XN
i¼1

ð�2
i þ �2

i d�
2
i Þ þ

XD�ð2Nþ1Þ

j¼1

dx2j

�
;

�2 ¼ XN
i¼1

�2
i þ

XD�ð2Nþ1Þ

j¼1

x2j ; (5.1)

where we have the constraint n � ð2N � 1Þ. To embed the
black 1-fold world volume B1 we set xj ¼ 0, 8j and

choose the set of scalars �i ¼ �Ri and the spatial world
volume coordinate � such that

f�i ¼ ni�; 0 � � � 2
; i ¼ 1; . . . ; Ng; (5.2)

where we assume without loss of generality that ni � 0.
The numbers ni must be integers in order for the ring to
close up on itself and the smallest of them (nmin) must be
coprime with all the remaining ones to avoid multiple
covering of the ring. The Killing vector field must be
such that all the Uð1ÞN symmetries generate the isometry
of the world volume, giving

k ¼ @

@t
þXN

i¼1

�i

@

@�i

: (5.3)

The ratios between the angular velocities must be rational
such that ���������i

�j

��������¼ ni
nj

; 8i; j; (5.4)

and hence we can simply set j�ij ¼ �ni. The action then
takes the simple form

I½fRg� ¼ 2
R0RðR2
0 � R2�2Þn=2; (5.5)

with R2
0 ¼ Fð�Þ, R2 ¼ Hð�Þ�1

PN
i¼1 n

2
i
�R2
i and �2 ¼PN

i¼1
�R2
i . The general form of the action (5.5) was given

in Ref. [3]. The action depends on the single scalar R with
R0 a function of R, which should be taken into account
when varying as well as the fact that the variation should be
orthogonal to the helix. As a result one single equation is
found.
A more convenient action to work with can be obtained

by making the following redefinition

Ri ¼
�Ri

1

P

N
i¼1

�R2
i

4L2

: (5.6)

The action (5.5) then takes the same form but now with
R2
0 ¼ V ðrÞ, R2 ¼ P

N
i¼1 n

2
i R

2
i , and r2 ¼ P

N
i¼1 R

2
i . Varying

this with respect to R leads to [5]

�2 ¼ R2
0

R2

1þ ðnþ 1Þ dlnR0

dlnR

nþ 1þ dlnR0

dlnR

: (5.7)

In the case at hand for AdSD the solution becomes

�2 ¼ 1þR2

R2

ð1þR2Þðnþ 2Þ � ðnþ 1Þ
ð1þR2Þðnþ 2Þ � 1

; (5.8)

where we have defined R2 ¼ L�2
PN

i¼1 R
2
i . This agrees

with the result for planar black rings ni ¼ 1, 8i of (3.9)
with p ¼ 1. The equilibrium condition for helical rings
and planar rings is exactly the same but with a more
complicated expression for R in the former case. The
only difference resides in the fact that in the planar case
specifying R immediately specifies R0 for these back-
grounds while for the helical case one needs to specify R

10Ref. [28] found evidence for another example, in the context
of time-independent perturbations at the onset of instabilities of
higher-dimensional black holes.
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and R0 independently since the latter is a function ofP
N
i¼1 R

2
i . Note that it follows from (5.8) that static helical

black rings can exist in dSD provided

R 2 ¼ 1

nþ 2
; (5.9)

which is the same condition as for static planar rings
in dSD and hence independent of the integers ni.
Accordingly, (5.9) can also be obtained from (3.29) in the
special case of p ¼ 1.

We now proceed by describing the physical quantities of
the helical AdS black rings

M ¼ �ðnþ1Þ
8G

ðnþ 2Þrn0ð1þR2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

n2i R
2
i

vuut ; (5.10)

Ji ¼ 
�ðnþ1Þ
8G

rn0ðð1þR2Þðnþ 2Þ � 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

ð1þR2Þðnþ 2Þ � 1

s
niR

2
i ; (5.11)

S ¼ 
�ðnþ1Þ
2G

rnþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þR2Þðnþ 2Þ � 1

n

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

n2i R
2
i

vuut :

(5.12)

These quantities agree with the ones computed in [5] for
helical rings in flat space (when taking L ! 1) and with
the ones computed in [7] for planar rings in (A)dS
(when taking ni ¼ 1, 8i). For completeness, we also
give the tension for these helical rings

T ¼ ��ðnþ1Þ
8G

ðnþ 2Þrn0ð1þR2Þ1=2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

n2i R
2
i

vuut :

(5.13)

As expected, the tension vanishes only in the asymptoti-
cally flat case when R ! 0. It can be shown that these
physical properties satisfy the Smarr relation (2.15) and the
relation (2.16).

B. Helical rings in different backgrounds

We would now like to give a few comments on helical
rings in different background geometries. In fact it seems
likely that helical rings can exist in any spherically sym-
metric background of the form (2.17) since these can al-
ways be put into coordinates for which the potential V ðrÞ
is constant along the ring. As a matter of a fact, Eq. (5.7)
first derived in [5] holds for any 1 fold assuming only the
existence of a background timelike and spacelike Killing
vector, hence, a valid solution should exist for such back-
grounds. This leads us to the following conjecture.

Conjecture 5.1.— Neutral helical black ring solutions
exist in any background with spherical symmetry in the

regime r0 � j�j�ð1=2Þ.
As an example of a different spherically symmetric

background we take the Schwarzschild-Tangherlini solu-
tion in D dimensions (SchD) as the background and try to
construct a helical black Saturn.11 The SchD metric can be
written as in (2.17) but with

V ðrÞ ¼ 1�
�
�

r

�
D�3

; � � r � 1: (5.14)

By performing the transformation r ¼ ð1þ
�D�3

4�D�3Þð2=ðD�3ÞÞ� one can bring the Schwarzschild metric to

the form (2.19) with

Fð�Þ ¼
ð1� �D�3

4�D�3Þ2
ð1þ �D�3

4�D�3Þ2
; Hð�Þ ¼

�
1þ �D�3

4�D�3

�
2
;

�
5

4
�ððD�3Þ=2Þ

�ð2=ðD�3ÞÞ � � � 1: (5.15)

Using the embedding (5.2) the action reduces to (5.5)
but with R2

0 ¼ V ðrÞ given by (5.14). The solution can be

obtained from (5.7) and reads

�2 ¼ ð1�mnþ1Þ
R2

ð1�mnþ1Þð2� ðnþ 1Þ2Þ þ ðnþ 1Þ2
ðnþ 1Þmnþ1

;

(5.16)

where we have defined the parameter m ¼ �P
N
i
R2
i

and used

the fact that in this case D ¼ nþ 4. One can go even
further and perform the same calculation for a general
potential of the form V ðrÞ with r2 ¼ P

N
i¼1 R

2
i , the equi-

librium condition for � is given by the relation

�2 ¼ R2
0

R2

2R2
0 þ ðnþ 1ÞR20

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 R

2
i

q
2R2

0ðnþ 1Þ þ R20
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1 R

2
i

q ; (5.17)

where R2
0 ¼ V ðrÞ and R20

0 � @rR
2
0. This generalizes the

equilibrium condition obtained in [7] for planar rings in
backgrounds of this form.

VI. CONCLUDING REMARKS
AND FUTURE DIRECTIONS

Throughout the course of this work, we have used the
blackfold approach to scan for possible neutral black hole
solutions in ðAÞdSD spacetime with new horizon topolo-
gies. We emphasize that the blackfold Eqs. (2.3) and (2.4)
that we have solved are the zeroth order equations in which
the black brane is treated at the probe level. Using the

11The black Saturn solution in five dimensions was constructed
in Ref. [30]. See also Refs. [5–7,13] for results on black Saturns
in higher dimensions.

JAY ARMAS AND NIELS A. OBERS PHYSICAL REVIEW D 83, 084039 (2011)

084039-12



method of matched asymptotic expansion (MAE) one may
compute higher-order corrections in a perturbative series.
It may happen that backreaction makes it impossible for a
leading-order solution to remain stationary, and, with our
present knowledge, this has to be examined on a case-by-
case basis.

The next-to-leading order analysis has been successfully
performed for black rings [6] and black tori [5] in asymp-
totically flat space and black rings in (A)dS space [7]. In
fact, following [5] the analysis of [7] is probably easily
adapted to compute the next-to-leading order correction of
the black tori in (A)dS obtained in this paper (i.e. the case
pa ¼ 1,8a in Sec. III B). It is an interesting open problem
to do this for the higher odd-sphere solutions of [5] and
those in (A)dS obtained in Sec. III. Finally, we note that
further evidence for the regularity of the solutions pre-
sented here follows from the fact that we have shown
that the even-ball blackfolds reproduce exactly the thermo-
dynamical properties of certain limits of the Kerr-ðAÞdSD
black hole, which is in itself a regular solution.

On the other hand, the usefulness of the blackfold ap-
proach also resides in its ability to exclude possible horizon
topologies, at least in the regime of widely separated scales
in which the effective theory is valid. Thus, when a par-
ticular embedding does not solve the blackfold equations
one may straight away affirm that such horizon geometry
cannot be that of a solution of Einstein equations, in the
theory and regime under consideration, without any need
of checking further corrections. For this reason the black-
fold method is an excellent tool for probing new stationary
black hole solutions since besides giving a space of pos-
sible geometries, it allows one to exclude with little effort a
large number of other topologies.12

These ‘‘impossible’’ geometries, when determined, are
truths of the theory and hence can be stated as theorems.
An example of this is the uniform black cylinder found in
[5], which can be easily shown not to be a solution of the
blackfold equations in global (A)dS. But not only can the
blackfold approach ascertain such statements, it can also
provide a great deal of intuition as to why certain geome-
tries are not possible and as to which ones are more likely
to exist. In the case of the uniform black cylinder, the
physical reason for it not being a solution is that, contrary
to Minkowski space, in global (A)dS there is no extra
translational symmetry. However, the construction of
nonuniform black cylinders is a rather more difficult task
to accomplish in these backgrounds and remains an open
problem.

We also would like to give a few remarks on the geo-
metric character of this methodology. A blackfold solution
provides a possible geometry for the event horizon of a
black hole spacetime. Bearing this in mind, it is then not

surprising that there could be different spacetimes which in
some appropriate limit could be captured by the same
blackfold solution. However, a blackfold solution is not
merely of geometric character as it is also supplemented
with well defined physical properties, hence, a given space-
time has to not only match its geometric properties but also
its physical ones. An example of this is the construction of
even-ball (A)dS blackfolds in Sec. IV where to leading
order the horizon is extended along the plane z ¼ 0 and we
could identify it according to the values of the parameter�,
with an ultraspinning and an ‘‘ultraspinning’’ limit of the
Kerr-ðAÞdSD black hole.
We note that it does not follow from the above that these

are necessarily the only two possible identifications that
one can make with these even-ball blackfolds. As a matter
of fact, the case � ¼ 1 could in principle have another
possible identification, namely, that of another limit of the
Kerr-ðAÞdSD spacetime, which near the axis of rotation
looks like a rotating black hyperboloid membrane [7], with
metric

ds2 ¼ �fðrÞðdt� Lsinh2ð�=2Þd�Þ2 þ dr2

fðrÞ
þ L2

4

�
1þ r2

L2

�
ðd�2 þ sinh2�d�2Þ þ r2d�2

D�4;

(6.1)

where

fðrÞ ¼ 1� 2m

rD�5ðr2 þ L2Þ þ
r2

L2
: (6.2)

This is the metric obtained by taking a ! L as in the
‘‘ultraspinning’’ case but instead of requiring the mass to
be finite, one requires the horizon size to be finite. This
means that the physical properties of this solution are the
same as in the ‘‘ultraspinning’’ case (4.14), (4.15), (4.16),
and (4.17) but now the parameter �̂ diverges. The BPS
bound J � ML is not violated since both J and M diverge
with a constant ratio J=ML ! 1. For small values of m
(and hence rþ � L with rþ ¼ 2m

L2 ) the metric above (for

D � 6) actually reduces to the metric (4.13) near � ¼ 0.
However, the thickness for this solution varies as
r0ð�Þ ¼ rþ cos� with rþ � 0 since now m � 0. But we
have seen from (4.12) that the thickness must remain
constant and equal to zero if � ¼ 1, so that this limit
cannot be captured by the same blackfold solution.
This could have been foreseen since the metric (6.1) is a

solution of Einstein equations with a cosmological con-
stant, meaning that at least near the axis the Kerr-ðAÞdSD
solution in this limit is not locally flat, so it can not be
reproduced by the blackfold approach using (2.1) as the
starting point. Nevertheless, applying MAE to the case
under consideration would then give a metric which ac-
cording to a set of parameters would describe the two
distinct ultraspinning limits, and since all these regimes

12Possible horizon topologies have been considered from alter-
nate points of view in [31,32].

BLACKFOLDS IN (ANTI)-DE SITTER BACKGROUNDS PHYSICAL REVIEW D 83, 084039 (2011)

084039-13



found here are limits of the Kerr-ðAÞdSD black hole the
resulting metric from the MAE procedure would most
likely describe (i) a specific sector of the Kerr-ðAÞdSD
spacetime or (ii) a more general solution in the ðAÞdSD
background, which englobes all the possible limits
that reproduce the geometric and physical properties of
these blackfolds. Such investigation would be a worthy
endeavor.

We finally mention briefly several other open problems
that deserve further study. First of all, following [6,7,13] it
would be interesting to study in more detail the connection
between different phases for black objects in (A)dS.
Furthermore, the possibility of describing large black ob-
jects in (A)dS with the blackfold approach would be im-
portant to pursue. Another open direction would be to
consider charged blackfolds in (A)dS using the methods
developed in [10,22]. We also stress that the utility of the
blackfold approach is not only restricted to describing
novel classes of stationary black holes, but also enables
analyzing their dynamics (stability and time-evolution) in
specific physical situations [4,33]. This would be worth-
while to examine further for (A)dS blackfolds. In particu-
lar, it would be interesting to analyze in more detail using
the blackfold approach the GL instability predicted from
our results for the ultraspinning Kerr-ðAÞdSD black holes.
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APPENDIX A: MULTI-SPIN KERR-ðAÞdSD BLACK
HOLES AS BLACKFOLDS

In this Appendix, we generalize the even-ball (A)dS
blackfold construction of Sec. IVA, which focused
on the case of a spinning disc, to include the multi-
spinning case.

In this case, the ð2kÞ ball rotates rigidly in k independent
two-planes and the total velocity is given by

V ¼
�
1þ

P
N
i¼1 �

2
i

4L2

��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�2
i�

2
i

vuut : (A1)

The boundary of the ball is given by the locus where
V ¼ 1, which is solved by

Xk
i¼1

�2
i r

2
i ð1� �iÞ ¼ 1; (A2)

where we have defined ri ¼ �i=ð1�
P

N
i
�2
i

4L2 Þ and

�i ¼ ð�2
i L

2Þ�1. According to the parameters �i we can
distinguish three different cases:

(i) �i ¼ 0,8i. This corresponds to the even-ball black-
fold construction of the ultraspinning MP black hole
constructed and discussed in Refs. [3,5].

(ii) �i ¼ 1, 8i. This corresponds to the ‘‘ultraspin-
ning’’ limit �i ! L�1 given in [7].

(iii) 0<�i < 1, 8i. This corresponds to a new
ultraspinning limit of the Kerr-AdSD black hole
presented in Appendix B.

The physical properties of the even-ball blackfolds can
be computed from (2.11), (2.12), (2.13), and (2.14) and read

M ¼ �ðD�2Þr̂nþ
8
G

Q
j
ð1� �jÞ

�Xk
j¼1

1

1� �j

þ nþ 1

2

�Y
j

1

�2
j

;

(A3)

Ji ¼
�ðD�2Þr̂nþ

Q
j

1
�2

j

8
G
Q
j
ð1� �jÞ

1

1� �i

1

�i

; ;

S ¼ �ðD�2Þr̂nþ1þ
4G

Y
j

�
1

1� �j

1

�2
j

� (A4)

T ¼ � �ðD�2Þr̂nþ
8
G

Q
j
ð1� �jÞ

�Xk
j¼1

1

1� �j

� k

�Y
j

1

�2
j

; (A5)

where r̂þ ¼ n=2�. These expressions reduce to the
results (4.9), (4.10), and (4.11) for the for the singly-
spinning case. The quantities above can be shown to satisfy
the Smarr relation (2.15) and (2.16). The horizon thickness
r0 is given by

r0 ¼ n

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Xk

i¼1

�2
i r

2
i ð1� �iÞ

vuut : (A6)

We can identify these even-ball blackfolds with two differ-
ent limits of the Kerr-AdSD as follows:

1. �i ¼ 1;8i: the ‘‘ultraspinning’’ limit

A detailed study of this limit has been presented in
Ref. [7]. The limit amounts to taking ai ! L, 8i while
keeping �̂ � 2m

L2k
Q

k
i¼1

�i
finite. The resulting metric gives a

flat membrane with metric as in (4.13), where the horizon
size rþ shrinks to zero. Its physical properties are the
same as for the ultraspinning case (B8)–(B10) in the limit
rþ � L but now with ai ¼ L,8i. With the identifications

�i ¼ 1

L
;8i ; r̂þ ¼ rþ ¼

�
2m

L2k

�ð1=D�2k�3Þ
; (A7)

the physical properties of this solution exactly match those
of the blackfolds (A3) and (A4).
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2. 0 � �i < 1, 8i: the ultraspinning limit

A careful calculation of this limit is given in
Appendix B. It amounts to taking k number of spins to

infinity while keeping the ratios �i ¼ a2i
L2 and �̂ ¼ 2mQ

k
i¼1

a2i

finite. The resulting metric is presented in (B7) and has the
geometry of a flat black membrane near the axes of rota-
tion. With the identifications

�i ¼ 1

ai
; 8i ; r̂þ ¼ rþ ¼

�
2mQ
k
i¼1 a

2
i

�ð1=D�2k�3Þ
;

(A8)

the physical properties (B8)–(B10) match precisely those
of the blackfolds (A3) and (A4).

APPENDIX B: THE ULTRA-SPINNING
KERR-ðAÞdSD BLACK HOLE

In this Appendix, we take the ultraspinning limit of the
Kerr-ðAÞdSD black hole with an arbitrary number of spins
in D � 6. We focus here on the AdS case since we can
obtain its dS counterpart by performing a Wick rotation.

Defining N ¼ D�1
2 modulo 2 as the number of two

planes,  by the relation D ¼ 2N þ 1þ , with  being
either 1 for even dimensions or 0 for odd dimensions, and
introducing N þ  direction cosines �i obeying the con-
straint

P
Nþ
i¼1 �2

i ¼ 1, the metric of this spacetime can
be conveniently written in Boyer-Lindquist coordinates
as [12]

ds2 ¼ �W

�
1þ r2

L2

�
dt2 þ 2m

U

�
Wdt�XN

i¼1

ai�
2
i d’i

�i

�
2

þXN
i¼1

r2 þ a2i
�i

�2
i d’

2
i þ

Udr2

V � 2m

þ XNþ

i¼1

r2 þ a2i
�i

d�2
i �

1

L2Wð1þ r2

L2Þ

�
�XNþ

i¼1

r2 þ a2i
�i

�id�i

�
2
; (B1)

where

W ¼ XNþ

i¼1

�2
i

�i

; U ¼ r
XNþ

i¼1

�2
i

r2 þ a2i

YN
w¼1

ðr2 þ a2wÞ;

(B2)

V ¼ r�2

�
1þ r2

L2

�YN
i¼1

ðr2 þ a2i Þ ; �i ¼ 1� a2i
L2

:

(B3)

The horizon rþ sits at the largest positive real root of
V � 2m ¼ 0. We assume that the parameters are chosen
in a such a way that a horizon exists. In fact a horizon
always exists for oddD if any two of the spin parameters ai

vanish, while for even D its existence is guaranteed if only
one vanishes.
We now take an k number of spin parameters ai to be

very large as compared to the remaining N � k ones, i.e.,

aj !1; j¼ 1; . . . ; k; al finite; l¼ kþ 1; . . . ;N:

(B4)

Furthermore, we take L to be of an equal magnitude
as compared to the aj parameters such that the ratios

�j ¼ a2j=L
2 remain constant, i.e.

L ! 1; �j ! 1� �j ; �l ! 0: (B5)

Moreover, we take m ! 1 such that the ratio �̂ ¼ 2mQ
j
a2j

remains finite and define new coordinates �j ¼ aj�j that

remain finite as we approach �j ! 0. The remaining �l

stay finite and satisfy
P

l�
2
l þ�2

Nþ1 ¼ 1. In this limit, we

find that the metric function W behaves like W ! 1 while
the remaining metric functions become

U ! r
�2

l

r2 þ a2l

Y
l

ðr2 þ a2l Þ2
Y
j

a2j

� rF̂ �̂
Y
j

a2j ; V ! r�2
Y
l

ðr2 þ a2l Þ2
Y
j

a2j

� r�2�̂
Y
j

a2j ; (B6)

where we have assumed the summation convention over j
and l. The limiting metric then reads

ds2 ¼ �dt2 þ r2d2�Nþ1 þ ðr2 þ a2l Þðd�2
l þ�2

l d’
2
l Þ

þ �̂r�

F̂ �̂
ðdtþ al�

2
l ’

2
l Þ2 þ

r2F̂ �̂

�̂� �̂r2�
dr2

þ 1

1� �j

ðd�2
j þ �2

j’
2
j Þ: (B7)

This limit looks just like the ultraspinning limit of the MP
black hole [15] except for the extra factor ð1� �jÞ�1 in the

last term. Indeed since the parameters �j must lie within

the range 0 � �j < 1, since otherwise the metric either

changes signature or diverges, we can rescale �j such that

�j ! �̂j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �jÞ�1

q
�j, and hence the metric above

will be that of a rotating black 2k-brane with rotation along

the spherical SD�ð2kþ1Þ sections of the horizon.
The physical properties of this solution can be easily

computed from [25] with the result

M ¼ �ðD�2Þ�̂
8
G

Q
j
ð1� �jÞ

�Xk
j¼1

1

1� �j

�D� 2k� 1

2

�Y
j

a2j ;

(B8)
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S ¼ �ðD�2Þr
2ðN�kÞ�1þ
þ
4G

Y
j

a2j

1� �2
j

;

T ¼ 2ðN � k� 1Þ þ 

4
rþ
;

(B9)

Ji¼
�ðD�2Þ�̂

Q
j
a2j

8
G
Q
j
ð1��jÞ

ai
1��i

; �i¼ 1

ai
; (B10)

rþ ¼
�
2mQ
j
a2j

�ð1=D�2k�3Þ
; i ¼ 1; . . . ; k: (B11)

These correctly reduce to the results (4.21), (4.22), (4.23),
and (4.24) for the singly-spinning case. The quantities in
(B8)–(B11) obey the quantum statistical relation

M�X
j

�jJj � TS ¼ �ðD�2Þ
8
Q
j
ð1� �jÞ �̂

Y
j

a2j ; (B12)

and thus only when �j ¼ 0, 8j does one recover the flat

space result.

We conclude this Appendix by noting that there are only
three ways of making the Kerr-AdSD black hole ultraspin
in the sense that J ! 1. This is obvious by looking at the
general expression for Ji

Ji ¼
�ðD�2Þm
4


Q
N
w �w

ai
�i

: (B13)

One way is to send ai ! 1 but keeping �i finite since
otherwise Ji ! 0. This can only be done by simultaneously
sending L ! 1. Another way is to send ai ! L leading to
�i ! 0; if then one sends m ! 0, Ji remains finite and we
obtain the ‘‘ultraspinning’’ limit of (4.13). If otherwise we
keep m finite, we obtain the rotating hyperboloid mem-
brane of (6.1). This limit has the consequence that the
horizon size is kept finite but the mass diverges, i.e.,
M ! 1, and hence it is not ultraspinning in the sense
that J 	 M. A third possibility would be to naively send
m ! 1, but this results in a black hole with infinite hori-
zon radius, which is senseless unless we simultaneously
send ai ! 1 and L ! 1 and thus recover the limit taken
here. Moreover, since we have taken L ! 1while keeping
rþ finite, the ultraspinning limit of the Kerr-(A)dS black
hole exists only in the regime rþ � L and hence can be
fully captured by the blackfold approach.
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