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We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin

of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which

naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by

spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We

show that under a charge-conjugation transformation this term changes sign relative to the mass term. A

classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the

presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry.

Such a difference is significant only at extremely high densities that existed in the very early Universe. We

propose that this difference caused a mechanism, according to which heavy fermions existing in such a

Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles

decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the

Universe remained zero.
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It has been proposed that two mysteries of modern
physics, the abundance of baryons over antibaryons in
the observable Universe and the existence of dark matter,
may be related to one another [1–6]. While the total baryon
number of the Universe is conserved and equal to zero, the
observed baryon asymmetry was caused by the separation
of the baryon number between ordinary matter in the
visible sector and dark matter in the hidden sector.
Accordingly, dark matter is in fact hidden antimatter.

This scenario seems reasonable; however, the physical
mechanism causing such a separation must be identified.
Possible candidates for such a mechanism include sponta-
neous baryon-number symmetry breaking at high tempera-
tures [1], CP-violating nonthermal decay of a heavy
colored particle into a dark-matter fermion [2], particle-
antiparticle asymmetry of dark-matter sneutrinos trans-
ferred to baryons through the electroweak anomaly [7],
CP-violating decay of a particle which couples to
quarks via beyond-the-standard-model operators [3],
CP-violating decays of heavy right-handed Majorana neu-
trinos [4], first-order phase transition with CP violation in
the dark sector [5], CP-violating nonthermal decay of a
massive Dirac fermion carrying a conserved baryon num-
ber into two dark-matter particles [6], and CP-violating
interaction between the two sectors [8]. More mechanisms
are listed, for example, in [6,8].

All these models obey two of the three Sakharov con-
ditions for baryogenesis [9]: violation of the charge-
conjugation (C) and the charge-conjugation plus parity
(CP) symmetries, and deviation from thermal equilibrium
(provided by the expansion of the Universe). The last
condition, nonconservation of the baryon number, is not

necessary in the above scenario; the number of antibaryons
in the dark sector is equal to the number of baryons in the
visible sector [1]. These models must also use the physics
beyond the standard model since CP violation within the
standard model, involving the weak force, is too small to
account for the observed matter-antimatter imbalance.
In this paper, we propose the torsion of spacetime within

the Einstein-Cartan-Sciama-Kibble (ECSK) theory of
gravity [10,11] as the origin of the matter-antimatter asym-
metry in the Universe. This theory is based on the
Lagrangian density for the gravitational field that is pro-
portional to the curvature scalar R, as in Einstein’s general
relativity (GR) [12]. However, it removes the constraint in
GR that the torsion tensor is zero by promoting this tensor
to a dynamical variable like the metric tensor [10,11,13].
The torsion is then given by the principle of stationary
action, and in many physical situations it turns out to be
zero. In the presence of spinor fields, however, the torsion
tensor does not vanish. The ECSK theory of gravity there-
fore naturally extends GR to include matter with intrinsic
half-integer spin, which produces torsion, providing a more
complete account of local gauge invariance with respect to
the Poincaré group [13]. The Riemann spacetime of GR is
generalized in the ECSK theory to the Riemann-Cartan
spacetime with torsion.
The Einstein-Cartan field equations of the ECSK gravity

can be written as the general-relativistic Einstein equations
with the modified energy-momentum tensor [13]. Such a
tensor has terms which are quadratic in the spin density.
These terms are significant only at densities of matter that
are much larger than the density of nuclear matter. Thus, in
almost all physical situations, the ECSK gravity gives the
same predictions as GR. But at extremely high densities
that existed in the very early Universe or exist inside black
holes, torsion becomes important and manifests itself as a*nikodem.poplawski@gmail.com
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force that counters gravitational attraction, preventing the
collapsing matter with spin (spin fluid) from reaching a
singularity [14,15]. Accordingly, torsion replaces the big
bang by a nonsingular big bounce from a contracting
universe [15,16]. The above high-density regime is not,
however, the only one in which the ECSK theory differs
from GR. The spin density, in addition to modifying the
energy-momentum tensor, introduces magneticlike terms
in the gravitational field, providing a testable [17] differ-
ence between the ECSK theory and GR in a noncosmo-
logical context [18].

Torsion may introduce an effective ultraviolet cutoff in
quantum field theory for fermions [19]. Moreover, torsion
in the very early Universe can explain why the present
Universe appears spatially flat, homogeneous, and iso-
tropic without cosmic inflation that requires additional
fields [16]. Finally, the gravitational interaction of con-
densing fermions in the presence of torsion may be the
origin of the small and positive cosmological constant
which is the simplest explanation for dark energy that
accelerates the Universe [20]. Such an interaction could
also be the source of a right-handed neutrino condensate
that generates baryogenesis [21].

The coupling between the torsion tensor and spinor
fields in the classical Dirac Lagrangian generates the
Dirac equation with an additional cubic term, as shown
by Hehl and Datta [22]. A nonlinear equation for fermions
of this form has been proposed earlier by Heisenberg and
Ivanenko [23]. In this paper, we show that the cubic Hehl-
Datta term is C asymmetric relative to the mass term. A
classical Dirac field and its charge conjugate therefore
satisfy different field equations. After the big bang pro-
duces equal amounts of matter and antimatter, this differ-
ence causes the decay asymmetry between particles and
antiparticles which then leads to baryogenesis [2,3,6].
Since the cubic term is significant only at extremely high
densities that existed in the very early Universe, baryo-
genesis occurs only during this stage of the Universe until
C asymmetry of classical Dirac Lagrangians becomes
negligible.

In the Riemann-Cartan spacetime, the classical Dirac
Lagrangian density for a spinor with mass m is given by

L ¼ i

2
ee

�
a ð �c�ac ;� � �c ;��

ac Þ �me �c c ; (1)

where the semicolon denotes a full covariant derivative
with respect to the affine connection, e

�
a is the tetrad, and

e ¼ detðea�Þ. Greek letters represent the coordinate indices,
while Latin letters represent the local Lorentz indices.
Varying L with respect to spinor fields gives the Dirac
equation with a full covariant derivative. Varying the total
Lagrangian density � Re

2� þ L with respect to the torsion

tensor gives the relation between the torsion and the Dirac
spin density which is quadratic in spinor fields
[10,11,13,22]. Substituting this relation to the Dirac

equation gives the cubic Hehl-Datta equation for a spinor
field c (in units in which ℏ ¼ c ¼ kB ¼ 1, � ¼ m�2

Pl )

[22]:

ie�a �ac :� ¼ mc � 3�

8
ð �c�5�ac Þ�5�ac ; (2)

where the colon denotes a covariant derivative with respect
to the Christoffel symbols. For a spinor with electric charge
q in the presence of the electromagnetic potential A�, we

must replace c :� by c :� � iqA�c . The Hehl-Datta equa-

tion (2) is then generalized to

ie�a �ac :�þqe�a A��
ac ¼mc �3�

8
ð �c�5�ac Þ�5�ac :

(3)

The Hehl-Datta equation (2) and its adjoint conjugate
can be obtained by varying, respectively, over �c and c , the
following Lagrangian density [10,22]:

Le ¼ i

2
ee

�
a ð �c�ac :� � �c :��

ac Þ �me �c c

þ 3�e

16
ð �c�5�ac Þð �c�5�ac Þ; (4)

without varying it with respect to the torsion tensor.
Although the Kibble-Hehl-Datta four-fermion axial-axial
interaction term in (4) appears nonrenormalizable, we
emphasize that Le is an effective Lagrangian density in
which only the metric tensor and spinor fields are dynami-
cal variables. The original Lagrangian density L (1), in
which the torsion tensor is also a dynamical variable, is
quadratic in spinor fields and thus it is renormalizable [20].
The charge conjugate c c of a spinor c is defined as

[24,25]

c c¼�i�2c �; c � ¼�i�2c c: (5)

The double charge-conjugation transformation is equivalent
to the identity transformation: ðc cÞc¼�i�2ðc cÞ�¼c .
Throughout this paper, all indices of the Dirac matrices �a

correspond to the local Lorentz frame. Using f�a; �bg ¼
2�abI (where�ab is theMinkowski tensor and I is the 4� 4
identity matrix), �ay ¼ �0�a�0, �5y ¼ �5, f�a; �5g ¼ 0,
and �c ¼ c y�0 gives the reality of the Lorentz pseudovec-
tor �c�5�ac ,

ð �c�5�ac Þ� ¼ ðc y�0�5�ac Þy ¼ c y�y
a�5y�0yc

¼ �c�5�ac : (6)

The complex conjugate of (3) is thus, using �5� ¼ �5,

� ie�a �a�c �
:� þ qe�a A��

a�c �

¼ mc � � 3�

8
ð �c�5�ac Þ�5�a�c �: (7)

Substituting (5) and �a� ¼ �2�a�2 into (7) gives [25]
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� ie
�
a �2�a�2ð�i�2Þc c

:�þqe
�
a A��

2�a�2ð�i�2Þc c

¼mð�i�2Þc c�3�

8
ð �c�5�ac Þ�5�2�a�2ð�i�2Þc c (8)

or

e�a �2�ac c
:� þ iqe�a A��

2�ac c

¼ �im�2c c þ 3i�

8
ð �c�5�ac Þ�2�5�ac c: (9)

Multiplying (9) by �i�2 from the left brings this equation
to [25]

ie�a �ac c
:��qe�a A��

ac c¼mc c�3�

8
ð �c�5�ac Þ�5�ac c:

(10)

Finally, we must express ð �c�5�ac Þ in (10) in terms
of c c. The Hermitian conjugate of (5) gives

c T ¼ c �y ¼ ic cy�2y ¼ �ic cy�2: (11)

Thus we obtain, using (6),

�c�5�ac ¼ ðc y�0�5�ac Þ�
¼ c T�2�0�2�5�2�a�

2c �

¼ ð�ic cy�2Þ�2�0�2�5�2�a�
2ð�i�2c cÞ

¼ �c cy�0�2�5�2�ac
c

¼ � �c c�5�ac
c: (12)

Substituting this relation into (10) gives the Hehl-Datta
equation for the charge-conjugate spinor field c c:

ie�a �ac c
:��qe�a A��

ac c

¼mc cþ3�

8
ð �c c�5�ac

cÞ�5�ac c: (13)

Comparing (3) with (13) shows that c and c c corre-
spond to the opposite values of q: the charge-conjugation
transformation changes the sign of the electric charge of a
spinor [25]. However, the classical field equations for c
and c c in the ECSK theory of gravity are different because
of the opposite signs of the corresponding Hehl-Datta
cubic terms relative to the mass term. This asymmetry is
related to the fact that a classical scalar Dirac bilinear
�c c changes sign under the charge-conjugation transfor-
mation ( �c cc c ¼ � �c c [26]), whereas the Lorentz square
of �c�5�ac does not change sign [ð �c c�5�ac cÞ�
ð �c c�5�ac

cÞ ¼ ð �c�5�ac Þð �c�5�ac Þ]. The first two
terms in the (classical) Lagrangian density (4) are C anti-
symmetric [26], while the Kibble-Hehl-Datta four-fermion
term is C symmetric. If, however, classical fermion fields
are replaced by fermion field operators, one can show that
�c c and the kinetic term in (4) do not change sign under
the C transformation [24]. This difference arises from the
fermion anticommutation which must be used to calculate
the charge conjugate of a Dirac bilinear [24]. Accordingly,

a quantum-field-theoretical Dirac Lagrangian is C sym-
metric. Nevertheless, to calculate particles’ dispersion
relations and energy levels, we must use the classical
Hehl-Datta equation, which leads to C asymmetry between
fermions and antifermions.
The nature of gravitational effects on Dirac particles

from the spin-torsion coupling can be clarified by solving
the Hehl-Datta equation for fermion plane waves in the
approximation of Riemann flatness and constant, exter-
nally applied background torsion. For a fermion, the en-
ergy levels are ! ¼ m� 3

8�n, where n is the number

density of spin-aligned background fermions producing
torsion [27]. The plus (minus) sign corresponds to the
spin of the fermion aligned with (opposed to) the back-
ground. Equation (13) shows that for an antifermion, the
energy levels are ! ¼ m� 3

8�n, where n is the number

density of spin-aligned background antifermions and the
plus (minus) sign corresponds to the spin of the antifer-
mion aligned with (opposed to) the background. Thus the
corrections from the Hehl-Datta term to the energy levels
of a Dirac spinor in a constant background torsion are C
antisymmetric.
Since the spin of a Dirac spinor is aligned with itself, the

energy levels for a free fermion resulting from the classi-
cal, self-interacting Hehl-Datta term are

! ¼ mþ ��N; (14)

where N is the inverse normalization of the spinor’s wave
function and �� 1 is a constant. These levels are higher
than for the corresponding antifermion:

! ¼ m� ��N: (15)

The torsion of spacetime therefore generates an asymmetry
between a spinor particle and its charge conjugate (anti-
particle). In GR, to which the ECSK gravity reduces in
almost all physical situations, the Hehl-Datta term vanishes
and the field equations are C symmetric.
We propose that C asymmetry of the classical Hehl-

Datta equation could cause baryogenesis. Suppose that
the big bang produced equal amounts of heavy fermions
X carrying the baryon number (‘‘archaeons’’) and antifer-
mions �X (‘‘antiarchaeons’’) with the conserved total
baryon number equal to zero. Since fermions have higher
energy levels than antifermions due to the C-violating
Hehl-Datta term, they are effectively more massive and
decay faster. If the dominant decay mode of an archaeon is
through the strong interaction into lighter baryons (and
eventually into nucleons) and the other mode is through
the weak interaction into stable dark-matter particles,
then the decay rate of the strong mode for fermions is
larger than for antifermions [6]. Therefore, archaeons
produce more nucleons than their antiparticles produce
antinucleons. Because of the CPT invariance of the strong
and weak interactions, the total decay rates of particles
and antiparticles are equal. Accordingly, antiarchaeons
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produce more dark antiparticles than archaeons produce
dark particles [6].

As the Universe expands and the spin density decreases,
the torsion-induced Hehl-Datta term becomes negligible,
C symmetry of the classical field equations is restored, and
the decays become symmetric: both fermions and antifer-
mions produce equal amounts of particles/antiparticles.
When the decays of antiarchaeons into stable dark-matter
antibaryons freeze out, the Universe has a relic asymmetry
in the composition between baryons and antibaryons.
Eventually, matter and antimatter in the dark sector anni-
hilate to photons, leaving substantial amounts of residual
dark antimatter (antibaryons). Matter and antimatter in the
visible sector also annihilate to photons, resulting in sub-
stantial amounts of residual nucleon matter (baryons). The
total baryon number in the Universe remains zero. The
observed ratio of � for baryonic visible matter and anti-
baryonic dark matter is reproduced if the masses of the
above stable dark-matter particles are about 4–5 GeV
[2,3,5,6].

Other models with spinors coupled to gravity can also
generate the matter-antimatter asymmetry. A formulation
of gravity based on the maximum four-dimensional Yang-
Mills gauge symmetry with torsion predicts that the gravi-
tational force inside fermionic matter is different from that
inside antimatter [28]. Fermions and antifermions coupled
to the curvature of a background gravitational field in an
early anisotropic Universe have different dispersion rela-
tions, leading to their asymmetry at equilibrium [29]. We
favor the ECSK theory, however, because it also allows us
to avoid the big-bang singularity, to replace cosmic infla-
tion [16], and to explain dark energy [20].

We now estimate the conditions that lead to the observed
baryon-to-entropy ratio �n=s ¼ 0:92þ0:06

�0:04 � 10�10 [30],

where �n ¼ nb � n �b is the difference between the baryon
(nb) and antibaryon (n �b) number densities and s is the
entropy density of the Universe. Such a difference is equal
to the difference between the archaeon (nX) and antiarch-
aeon (n �X) number densities at the freeze-out temperature
Tf. In thermal equilibrium, we have [31]

nX � n �X ¼ g

ð2�Þ3
Z

d3p

�
1

1þ eEX=T
� 1

1þ eE �X=T

�
; (16)

where g is the number of spin states of X. In the ultrarela-
tivistic limit valid at Tf, we generalize (14) and (15) to the

dispersion relations:

EX ¼ jpXj þ ��N; E �X ¼ jp �Xj � ��N: (17)

Thus nX � n �X � �NT2. Since the inverse normalization N
of a Dirac spinor is on the order of the cube of its energy
scale and such a scale in the early Universe is given by the
temperature of the Universe, we have N � T3. Using s ¼
gð2�2=45ÞT3 [31] gives �n=s� �T2

f ¼ T2
f=m

2
Pl, where

mPl is the reduced Planck mass, or

Tf ¼
ffiffiffiffiffiffiffi
�n

s

s
mPl � 1013 GeV: (18)

This temperature is 2 orders of magnitude lower than the
freeze-out temperature proposed in [29].
The freeze-out temperature corresponds to the epoch at

which the weak-decay rate of an archaeon �X and the
Universe expansion rate _a=a are on the same order. We
estimate this decay rate, in analogy with the decay rate of a
muon, by �X ¼ m5

XG
2
F=ð192�3Þ, where GF is the Fermi

coupling constant. A similar form ��m5
XG

2
F was used in

[3]. The expansion rate is given by the Friedmann equation
_a2 þ k ¼ ��a2=3 (the spatial curvature k is negligible at
Tf) and the energy density of the Universe in the radiation

epoch � ¼ gð�2=30ÞT4 (we take g ¼ 1 for simplicity).
The condition �X ¼ _a=ajT¼Tf

gives the mass of an ar-

chaeon:

mX ¼ 14:4 TeV: (19)

This mass scales with Tf and �n=s as mX � T2=5
f �

ð�n=sÞ1=5, so its estimation is more accurate than that of
Tf. Thus we predict mX ¼ m �X � 10 TeV, which is on the

order of the masses of heavy particles proposed in [2,6]. To
compare, the maximum energy of a proton beam at the
LHC is 7 TeV. An experimental verification of the pro-
posed mechanism of generating the observed matter-
antimatter asymmetry in the Universe may therefore be
possible in future experiments.
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