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We treat a model in which tensor perturbations of de Sitter spacetime, represented as a spatially flat

model, are modified by the effects of the vacuum fluctuations of a massless conformally invariant field,

such as the electromagnetic field. We use the semiclassical theory of gravity with the expectation value of

the conformal field stress tensor as a source. We first study the stability of de Sitter spacetime by searching

for growing, spatially homogeneous modes, and conclude that it is stable within the limits of validity of

the semiclassical theory. We next examine the modification of linearized plane gravity waves by the

effects of the quantum stress tensor. We find a correction term which is of the same form as the original

wave, but displaced in phase by �=2, and with an amplitude which depends upon an initial time. The

magnitude of this effect is proportional to the change in scale factor after this time. We discuss alternative

interpretations of this time, but pay particular attention to the view that this is the beginning of inflation.

So long as the energy scale of inflation and the proper frequency of the mode at the beginning of inflation

are well below the Planck scale, the fractional correction is small. However, modes which are trans-

Planckian at the onset of inflation can undergo a significant correction. The increase in amplitude can

potentially have observable consequences through a modification of the power spectrum of tensor

perturbations in inflationary cosmology. This enhancement of the power spectrum depends upon the

initial time, and is greater for shorter wavelengths.
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I. INTRODUCTION

Most versions of inflationary cosmology assume a pe-
riod of exponential expansion in which the universe is
approximately a portion of de Sitter spacetime. Quantum
fields in de Sitter spacetime play a crucial role in creating
the primordial spectrum of scalar and tensor perturbations.
In addition, quantum effects can potentially modify the
duration of inflation and possibly introduce instabilities.
Recently, there has been work on the possible effects of
quantum stress tensor fluctuations in inflation [1,2].

In the present paper, we examine some effects in the
semiclassical theory, where gravity is coupled to the re-
normalized expectation value of a matter field stress tensor,
the mean value around which stress tensor fluctuations
occur. The semiclassical theory has been extensively
studied and applied to scalar perturbations of de Sitter
spacetime. (See, for example, Ref. [3] and references
therein.) There seems to have been less attention paid to
tensor perturbations, which will be the topic of this paper.
A brief discussion was given by Starobinsky [4], and a
more detailed derivation of the equations for tensor per-
turbations was given by Campos and Verdaguer [5]. We
will treat a model in which the matter field is a conformal
field, such as the electromagnetic field, and address two

physical questions: the stability of de Sitter spacetime
under tensor perturbations, and the effects of one-loop
quantum matter field corrections upon the propagation of
gravity waves in de Sitter spacetime.
In Sec. II, we review the aspects of the semiclassical

theory needed for our analysis. Section III treats the geo-
metric terms in the stress tensor expectation value. Here we
find that these terms have no physical effect for our prob-
lems. The stability of the tensor perturbations is discussed
in Sec. IV. The one-loop correction to gravity wave modes
is derived in Sec. V, and the possible implications for
inflationary cosmology are discussed in Sec. VI. Our
results are summarized in Sec. VII.
We adopt the sign conventions of Ref. [6], and use units

in which ℏ ¼ c ¼ 1.

II.WEAKLYPERTURBEDDE SITTER SPACETIME

We will be concerned with the piece of global de Sitter
spacetime which can be represented as a spatially flat
Robertson-Walker universe with the metric

ds2 ¼ a2ð�Þð�d�2 þ dx2 þ dy2 þ dz2Þ; (1)

where að�Þ ¼ �1=ðH�Þ and �< 0 is the conformal time
coordinate. Wewish to consider tensor perturbations of this
geometry, which describe gravitational waves on the
de Sitter background. Let the perturbed metric be

g�� ¼ ��� þ h��; (2)
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where ��� is the background metric of Eq. (1) and h�� is

the perturbation. We will employ the transverse trace-free
gauge defined by

h��
;� ¼ 0; h ¼ 0; and h��u� ¼ 0: (3)

Here u� ¼ ��
t is the four-velocity of the comoving observ-

ers, covariant derivatives are taken with respect to the fixed
de Sitter background, and indices are raised and lowered by
the background metric. These conditions remove all of the
gauge freedom and leave only the two physical degrees of
freedom associated with the possible polarizations of a
gravity wave.

It was shown long ago by Lifshitz [7] that the mixed
components h�� satisfy the scalar wave equation

hsh
�
� ¼ 0; (4)

where hs is the scalar wave operator. One consequence of
this result is that de Sitter spacetime is classically stable
against tensor perturbations, as the solutions of Eq. (4) are
oscillatory functions. A second consequence is that grav-
itons in de Sitter spacetime behave as a pair of massless,
minimally coupled quantum scalar fields [8].

It is well known that such massless scalar fields exhibit
a type of quantum instability in that they do not possess a
de Sitter invariant vacuum state. As a result, the mean
squared field grows linearly in time [9–11] as h’2i �
H3t=ð4�2Þ. Similarly, the mean squared graviton field
also grows linearly: hh��h�� i �H3t=�2. However, this

growth does not produce any physical consequences, at
least in pure quantum gravity at the one-loop level. It was
shown in Ref. [12] that at this level, all of the linearly
growing terms cancel in the graviton effective energy
momentum tensor. Whether there is an instability at higher
orders is still unclear [13–15].

In this paper, we will study a model involving coupling
of the tensor perturbations to a matter field. As a prelude,
let us briefly recall the essential features of the renormal-
ization of hT��i, the expectation value of a matter stress

tensor on a curved background [16]. This quantity is for-
mally divergent, but under a covariant regularization, the
divergent terms are of three types. The first is proportional
to the metric tensor and can be absorbed in a cosmological
constant renormalization. The second is proportional to the
Einstein tensor and can be absorbed in a renormalization of
Newton’s constant. Finally, there are divergent terms pro-
portional to two geometric tensors, H�� and A��, which

arise from variation of R2 and C����C
���� terms in the

action, respectively. Here R is the scalar curvature and
C���� is the Weyl tensor. The explicit forms of these

tensors are expressible in terms of R, the Ricci tensor,
R��, and their second derivatives as

H��¼�2r�r�Rþ2g��r	r	R� 1
2g��R

2þ2RR��; (5)

and [17]

A�� ¼ �4r�r�C�
�
�
� � 2C�

�
�
�R��: (6)

The derivative terms lead to a potential problem of making
the Einstein equations fourth-order equations, leading to
unstable solutions. This effect is analogous to the runaway
solutions of the Lorentz-Dirac equation for classical
charged particles. Various solutions to this problem have
been suggested, including order-reduction approaches [18]
and criteria for the validity of the semiclassical theory
[3,17].
A well-known aspect of the quantum stress tensor is the

conformal anomaly. At the classical level, the stress tensor
of a conformally invariant field has a vanishing trace. This
no longer holds for the renormalized stress tensor, where
hT�

�i � 0. Furthermore, the anomalous trace for a free field
is a state independent local geometric quantity which is
quadratic in the Riemann tensor. In the case of a confor-
mally invariant field in a conformally flat spacetime, the
unambiguous part of the anomalous trace arises from a
geometrical term in hT��i of the form CB��, where C is a

constant which depends upon the specific field, and

B �� ¼ �2C����R
�� þ 1

2g��R��R
�� þ 2

3R��R

� R�
�R�� � 1

4g��R
2; (7)

where C���� is the Weyl tensor. The term containing the

Weyl tensor vanishes in conformally flat spacetime, but is
needed to give the correct generalization to nonconfor-
mally flat spacetimes. The tensor B�� was obtained by

Davies et al. [19] and by Bunch [20]. The conformal
anomaly is given by

hT�
� i ¼ CB�

� ¼ CðR��R
�� � 1

3R
2Þ: (8)

More generally, there can be a term proportional to
C����C

���� in the anomalous trace, but this term will

vanish for weakly perturbed conformally flat spacetimes,
such as we consider.
The semiclassical Einstein equations for gravity with a

cosmological constant� coupled to a quantum field can be
written as

R�� ��g�� ¼ 8�GNðhT��i � 1
2g��hT	

	iÞ; (9)

where GN is Newton’s constant. In addition to the local,
geometric terms in hT��i, in general, there are nonlocal

terms which are difficult to compute explicitly.
Fortunately, for the case of small perturbations around a
conformally flat spacetime, they have been found in
Refs. [4,5,21]. Here we will follow the coordinate space
formulation given by Horowitz and Wald [21], which is
based on earlier work by Horowitz [22] and by Horowitz
and Wald [23].
To first order in the perturbation h��, Horowitz and

Wald’s result can be written as

hT��i ¼ �H�� þ CB�� þ P�� þQ��: (10)
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Here

P�� ¼ �16��a�2@	@
½lnðaÞ ~C�	�
�; (11)

where ~C�	�
 is the Weyl tensor for perturbed Minkowski

spacetime with the perturbation ~h�� ¼ a�2h��, the partial

derivatives are performed with respect to the Minkowski
space coordinates, and � is another constant which de-
pends upon the quantum field. The most complicated term
in Eq. (10) is the nonlocal part given by

Q�� ¼ �a�2
Z

d4x0H�ðx� x0Þ ~A��; (12)

where

~A�� ¼ �4@	@
 ~C�	�
 (13)

is the first order form of A�� for perturbed Minkowski

spacetime with the perturbation ~h�� ¼ a�2h��. The action

of the distribution H�ðx� x0Þ on a function f can be
expressed in terms of radial null coordinates u ¼ t� r
and v ¼ tþ r and an angular integration as

Z
d4x0H�ðx�x0Þfðx0Þ¼

Z 0

�1
du

Z
d�

�
@f

@u

��������v¼0
lnð�u=�Þ

þ1

2

@f

@v

��������v¼0

�
: (14)

This expression is an integral over the past light cone of the
point x.

The result for hT��i, Eq. (10), contains two constants, C
and �, whose values can be determined explicitly, and are
given in Table I for several fields. The remaining two
constants, � and �, are undetermined. A shift in either of
these constants adds additional terms proportional to H��

and A�� ¼ a�2 ~A��, respectively. We could have added a

term of the form cAA�� to the right-hand side of Eq. (10).

The result would then be invariant under changes in � in
the sense that a shift in � would alter cA.

III. EFFECTS OF THE LOCAL
GEOMETRIC TERMS

Here we treat the local, geometric tensorsH�� andB��,

and show that they produce no effects on the tensor per-
turbations other than finite shifts of the cosmological and
Newton’s constants. Write Eq. (9) as

R�� ��0g�� ¼ 8�G0ðhT��i � 1
2g��hT	

	iÞ; (15)

where �0 and G0 are the cosmological and Newton’s
constants after all infinite renormalizations have occurred,
but before these finite shifts. Here we take

hT��i ¼ �H�� þ CB��: (16)

To zeroth order, that is, on the de Sitter background, we
have

ð0ÞB�� ¼ �1
3����

2;

ð0ÞB ¼ �4
3�

2; and ð0ÞH�� ¼ 0:
(17)

If we insert these relations in Eq. (9), we find

ð0ÞR�� ����� ¼ 0; (18)

where the shifted cosmological constant � is related
to �0 by

� ¼ �0 þ 8�

3
G0C�

2: (19)

In general, B�� is not of the form of a cosmological

constant term, but in de Sitter space, it produces an effec-
tive shift in�. Here we have written the second term on the
right-hand side of Eq. (19) in terms of the shifted cosmo-
logical constant �, but to the order we are working, we
could have equally well used �0.
Next we need to find the explicit forms for the various

tensors in Eq. (15) to first order in h�� in the transverse,

trace-free gauge, Eq. (3). The Ricci tensor has the first
order form

ð1ÞR�� ¼ �1
2h��;�

� þ 4
3�h��: (20)

Thus, if hT��i ¼ 0, Eq. (9) becomes h��;�
� � 2

3�h�� ¼ 0,

which is equivalent to Eq. (4). Note that in the presence of
sources, Eq. (3) is generally no longer a gauge condition,
but rather a physical restriction on the perturbation. Here
all the terms in the first order Einstein equations are trace-
less, so this condition is fulfilled. (Strictly speaking, it is
ð1ÞR�

� which is a gauge invariant quantity, whereas ð1ÞR��

and ð1ÞR�� are not necessarily gauge invariant [24].) The

first order form of H�� is

ð1ÞH�� ¼ 4�ðh��;�
� � 2

3�h��Þ; (21)

and that of B�� is

ð1ÞB�� ¼ �1
3�ðh��;�

� þ 1
3�h��Þ: (22)

The net contribution of B�� to the right-hand side of

Eq. (15) is proportional to

ð1ÞB�� � 1
2h��

ð0ÞB ¼ �1
3�ðh��;�

� � 5
3�h��Þ: (23)

If we use Eqs. (19)–(21) and (23), then we may write
Eq. (15) as

TABLE I. The coefficients C and � are listed for three differ-
ent massless fields, where the spin 1

2 field result refers to Weyl

fermions and becomes a factor of 2 larger for 4-component Dirac
fermions. This table is based on data from Refs. [16,22].

Field C �

Conformal scalar 1=ð2880�2Þ 1=ð3840�3Þ
Spin 1

2 11=ð5760�2Þ 1=ð1280�3Þ
Photon 31=ð1440�2Þ 1=ð320�3Þ
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�
1þ64�G0���16�

3
G0C�

�
ðð1ÞR����h��Þ¼0: (24)

This implies that once we introduce additional terms in the
stress tensor, the Einstein equation becomes Eq. (9), with
the shifted Newton’s constant given by

GN ¼ ‘2p ¼ G0

�
1þ 64�G0��� 16�

3
G0C�

��1
; (25)

where ‘p is the Planck length.

Now we may consider only the effects of the P�� and

Q�� terms on the tensor perturbations, which satisfy the

equation

hsh
j
i ¼ �16�‘2pðPj

i þQj
i Þ; (26)

in the transverse, trace-free gauge.

IV. SPATIALLY HOMOGENEOUS SOLUTIONS

In this section, we study the stability of the tensor
perturbations of de Sitter spacetime in the presence of
the quantum stress tensor of the conformal field. For this
purpose, it is sufficient to examine spatially homogeneous
solutions of Eq. (26), as these will be the most rapidly
growing modes if there is an instability. Note that the
tensor modes which we are considering are associated
with anisotropic perturbations, even when they are spa-
tially homogeneous. This follows from the fact that they
have a nonvanishing Weyl tensor. Thus, the results of this
section are distinct from, but complementary to, recent
results by Pérez-Nadal et al. [25], who demonstrate the
stability of de Sitter spacetime under isotropic perturba-
tions at the one-loop level in semiclassical gravity.

In order to find the tensors P�� and Q��, we first need
~C�	�
. Here we ignore spatial derivatives, and restrict our

attention to spatial components, which are the only non-

trivial ones in our gauge. Then we need ~Aij ¼ �4 ~Ci�j�;��.

The relevant components of the Riemann and Ricci tensors

associated with the Minkowski perturbation ~hij are ~Ri�j� ¼
� 1

2
~hij;�� and ~Rij ¼ 1

2
~hij;��. Note that although hij is a

gravity wave on de Sitter spacetime, ~hij is not a source-free

solution near flat spacetime. From these results, we obtain
~Ci�j� ¼ ~Ri�j� þ 1

2
~Rij ¼ � 1

4
~hij;�� and hence

~A ij ¼ @4� ~hij: (27)

We may express the local tensor Pij as

Pij ¼ 4��a�2½lnðaÞða�2hijÞ;���;��: (28)

The nonlocal term involves the distribution H�, and an
integral over the past light cone of the point x at which
the stress tensor is evaluated. Take r ¼ 0 at this point, in
which case we may write u ¼ �0 � �� r0 and v ¼ �0 �
�þ r0. The function on which the distribution acts
depends only upon �0, so f ¼ fð�0Þ ¼ f½12 ðuþ vÞ þ ��.

As a result, ð@f=@uÞv¼0 ¼ ð@f=@vÞv¼0 ¼ 1
2 f

0ð�0Þ, and we
may write Eq. (14) as

Z
d4x0H�ðx�x0Þfð�0Þ¼4�

Z 0

�1
d�0

�
f0ð�0Þ ln

�
2ð���0Þ

�

�

þ1

2
f0ð�0Þ

�
: (29)

The last term in the integrand may be absorbed in a re-
definition of �, and hence will be dropped. Thus we obtain

Qij ¼ 4��a�2
Z 0

�1
d�0@5�0 ~hijð�0Þ ln

�
2ð�� �0Þ

�

�
: (30)

We wish to look for a growing, spatially homogeneous
solution of Eq. (9). In particular, let

~h ij ¼ a�2hij ¼ hji ¼ eji ð��Þ�b; (31)

where eji is a constant tensor and b is a constant. A solution
for which b > 0 will grow as a power of conformal time as
� ! 0, or exponentially in comoving time.
If we insert Eq. (31) into Eq. (28), the result is

Pj
i ¼4��ejiH

4ð��Þ�bbð1þbÞ½2bþ5�ð2þbÞð3þbÞ
� lnð�H�Þ�: (32)

Similarly, Eq. (30) yields

Qj
i ¼ 4��ejiH

4ð��Þ�bbð1þ bÞð2þ bÞð3þ bÞ
� ½lnð�2�=�Þ � c ðbþ 4Þ � ��; (33)

where � is Euler’s constant and c is the digamma function.
Here, the scalar wave operator in de Sitter spacetime has
the form

hsh
j
i ¼ �H2�4 d

d�

�
��2 d

d�

�
hji : (34)

Equation (26) may now be written as

bð3þ bÞ ¼ ��ð2þ bÞð3þ bÞfbð1þ bÞ½c ðbÞ þ �

þ lnðH�=2Þ� þ 1þ 2bg; (35)

where � ¼ 64�2‘2pH
2�, and we have used the identity

c ðxþ 1Þ ¼ c ðxÞ þ 1=x. Thus the homogeneous solutions
in the absence of the quantum stress tensor (� ¼ 0) are
b ¼ 0 and b ¼ �3, which are both stable. The only pos-
sibility for an unstable solution which is within the domain
of validity of the semiclassical theory is one with a small
positive value of b. If we expand Eq. (35) for jbj � 1, we
find

bð3þ bÞ � ��f6½1þ lnðH�=2Þ�b
þ ½5þ �2 þ 11 lnðH�=2Þ�b2 þOðb3Þg: (36)

Thus b ¼ 0 is still a solution, but there are no solutions
with b > 0 so long as � � 1 and �j lnðH�=2Þj � 1. These
latter conditions can be considered to be criteria for the
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validity of the semiclassical theory. Hence we conclude
that de Sitter spacetime is stable in the semiclassical theory
against tensor perturbations. Here we should comment on
the explicit appearance of the parameter � in Eq. (35).
Although the theory is invariant under changes in �, so
long as there is a term proportional to A�� in hT��i, we
have set the coefficient of this term to zero, which is
analogous to a gauge choice. In any case, our conclusion
does not depend upon the value of � in Eq. (35), so long as
�j lnðH�=2Þj � 1. If this condition is not fulfilled, any
resulting instabilities can be viewed as a breakdown of
the semiclassical theory.

V. EFFECTS ON GRAVITY WAVES

A. The form of the correction

In this section, we will study the effect of the quantum
stress tensor on gravity waves in de Sitter spacetime. The
plane wave solutions of Eq. (4) are of the form

h�� ¼ c0e
�
�ð1þ ik�Þeiðk�x�k�Þ; (37)

where c0 is a constant and e
�
� is the polarization tensor. We

need to compute the quantum stress tensor in perturbed
de Sitter spacetime, with this plane wave perturbation. The
first step in finding the tensors P�� andQ�� is constructing
~C�	�
, the Weyl tensor associated with the conformally

transformed perturbation of flat spacetime, ~h��. Note that

mixed components of ~h�� coincide with those of the origi-

nal perturbation of de Sitter spacetime, h��. However, ~h
�
� is

not a vacuum solution of perturbed flat space, and has a
nonzero Ricci tensor

~R �
� ¼ �1

2
~h~h��; (38)

where ~h is the flat space wave operator. Similarly, we find
the associated Riemann tensor to satisfy

@	@
 ~R�	�
 ¼ �1
2
~h ~h ~h��: (39)

Hence the tensor ~A�� and the Weyl tensor satisfy

~A�� ¼ �4@	@
 ~C�	�
 ¼ ~h ~h ~h��: (40)

However, when we use the perturbation given by Eq. (37),

we find that ~A�� ¼ 0, so the nonlocal term vanishes:

Q�� ¼ 0: (41)

The tensor P�
� is nonzero and is given by

P�
� ¼ 8�i�H2e��c0k

3�a�2eiðk�x�k�Þ: (42)

In the presence of the quantum stress tensor, the modi-
fied gravity wave may be expressed as h�� þ h0�� , where

h0�� ðxÞ ¼ 16�‘2p
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
GRðx; x0ÞP�

�; (43)

where GRðx; x0Þ is the scalar retarded Green’s function in
de Sitter space. Note that we are performing a perturbation
expansion in powers of the squared Planck length ‘2p, or

equivalently Newton’s constant GN . Because this expan-
sion parameter has dimensions, the effective dimensionless
coupling constant is ð‘p=�PÞ2, where �P is a characteristic

physical length scale associated with the perturbation.
The retarded Green’s function vanishes for �< �0 and

satisfies

hsGRðx; x0Þ ¼ ��ðx� x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx0Þp : (44)

It is convenient to take a spatial Fourier transform and
write

GRðx;x0Þ¼ 1

a2ð�0Þð2�Þ3
Z
d3keik�ðx�x0ÞGð�;�0;kÞ; (45)

where Gð�;�0; kÞ satisfies
d2G

d�2
� 2

�

dG

d�
þ k2G ¼ �ð�� �0Þ: (46)

The explicit form for Gð�;�0; kÞ is given in Eq. (72) of
Ref. [1], and may be expressed as

Gð�;�0;kÞ¼ 1

k3ð�0Þ2 fð1þk2��0Þsin½kð���0Þ�

�kð���0Þcos½kð���0Þ�g; (47)

for �> �0.

B. Initial conditions and explicit results

One possible initial condition is to set h0�� ðxÞ ¼ 0 at

� ¼ �0. Now we may write the solution for h0�� ðxÞ, which
vanishes for �< �0, as

h0�� ðxÞ¼128�2ie��c0�H
2‘2pe

ik�x

�
Z �

�0

d�0fð1þk2��0Þsin½kð���0Þ�

�kð���0Þcos½kð���0Þ�ge
�ik�0

�0 : (48)

In the limit that �0 ! �1, that is, j�0j � j�j, the domi-
nant contribution to the integral will come from terms in
the integrand which are independent of �0. This leads to a
result proportional to j�0j,
h0�� ðxÞ�64�2ie��c0�H

2k‘2pj�0jð1þ ik�Þeiðk�x�k�Þ; (49)

which has the same functional form as does h��, but is out

of phase by �=2 due to the factor of i.
A more precise form for h0�� is obtained by replacing �0

by�0 � � in Eq. (49). Thus the modified wave is no longer
exactly a solution of the Lifshitz equation, Eq. (4). It is no
longer constant when the mode has a proper wavelength
larger than the horizon size, kj�j< 1. This is in contrast to
the unperturbed mode, Eq. (37), whose magnitude is ap-
proximately constant when it is outside the horizon.
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The most striking feature of the result, Eq. (49), is that
the correction term due to the quantum stress tensor is
proportional to j�0j, and hence is larger the earlier the
coupling between the quantum stress tensor and the metric
perturbation is switched on. This bears some similarities to
the results found in Refs. [1,2], where the effects of con-
formal stress tensor fluctuations in inflation were found to
depend upon powers of the scale factor change during
inflation. However, here we are concerned with an effect
of the stress tensor expectation value, and not with fluctua-
tions around this value.

One might think that the j�0j dependence is an artifact
of sudden switching at � ¼ �0. However, it is possible to
derive an equivalent result with a more gradual switching.

For example, introduce an additional factor of ep�
0
in the

integrand of Eq. (48) and let the lower limit of integration
become�1. This introduces a gradual switch-on in which
1=p plays the role of j�0j. The result is still Eq. (49), with
j�0j replaced by 1=p, showing that the more gradual
switching has no effect.

In all cases, the dependence upon j�0j might appear to
violate a theorem first introduced by Weinberg [26]. (See
also Ref. [27].) This result states that quantum loop effects
should grow no faster than logarithmically with the scale
factor during inflation. However, it was argued in Ref. [2]
that there is no real violation of this theorem, because the
quantum effects are not so much growing as always large,
and are due to very high frequency modes at � ¼ �0.

The same interpretation applies to our present result,
Eq. (49). We can write the ratio of the magnitude of the
correction to that of the original wave as

� ¼
��������
h0��
h��

��������¼ 64�2�H2k‘2pj�0j ¼ 64�2�HkP‘
2
p: (50)

Here kP ¼ k=að�0Þ ¼ kHj�0j is the physical wave num-
ber of the mode as measured by a comoving observer at
time � ¼ �0. If we require that the curvature of the
de Sitter spacetime be well below the Planck scale, then
we have

H‘p � 1: (51)

Similarly, if the mode in question is always below the
Planck scale while it interacts with the quantum stress
tensor, then

kP‘p � 1: (52)

These two conditions together imply that jh0��=h��j< 1,

and hence the quantum correction to the gravity wave is
smaller than the original wave.

However, if inflation lasts for a sufficiently long time,
then modes which are of cosmological interest today ap-
pear to have been above the Planck scale at the onset of
inflation. This is the cosmological version of the trans-
Planckian problem, which also arises in black hole physics.
Hawking’s derivation of black hole evaporation [28]

requires modes which start far above the Planck scale. It
is possible to obtain black hole evaporation without the use
of trans-Planckian modes [29,30], but only at the price of
introducing a nonlinear dispersion relation which violates
local Lorentz symmetry. An analogous choice arises in the
present problem. One option is to take the trans-Planckian
mode seriously, and allow their contributions. This option
has the advantage of being the simplest extrapolation of
known physics. It has the disadvantage of doubts about the
validity of perturbation theory as an expansion in powers of
ð‘p=�PÞ2, with �P the physical wavelength of the mode in

question. A second option is to apply Eq. (49) only to
modes which are below the Planck scale at � ¼ �0. This
option avoids the possible problems with trans-Planckian
modes, but seems to require a nonlocal cutoff when im-
plemented in coordinate space. This issue was discussed in
more detail in Ref. [2], where numerous references to
earlier papers on the trans-Planckian issue in cosmology
may be found.
In the remainder of this paper, we will explore the

consequences of adopting the first option. Wewish to study
the possible observational effects of the modification of
gravity wave modes, and their use as a possible probe of
trans-Planckian physics.

VI. TENSOR PERTURBATIONS IN
INFLATIONARY COSMOLOGY

One of the successes of inflationary cosmology is the
prediction of a Gaussian and nearly scale invariant spec-
trum of primordial density fluctuations [11,32–34], which
seems to be confirmed by measurements on the CMB [35].
Another prediction is a similar spectrum of tensor pertur-
bations [36–39], which might be found in polarization
measurements of the CMB, but at present, these perturba-
tions have not been detected.
The tensor perturbations from inflation are less model

dependent than are the density perturbations. The former
arise from vacuum modes of the quantized graviton field in
de Sitter spacetime which evolve according to the Lifshitz
equation, Eq. (4), until the last scattering surface. At this
time, they leave an imprint on the CMB in the form of a
power spectrum of tensor perturbations given by (see, for
example, Refs. [40,41])

�2
h � 8

�
‘2pH

2: (53)

This is an approximately flat spectrum. If H slowly de-
creases as inflation progresses, then the spectrum is slightly
enhanced for longer wavelengths. The numerical coeffi-
cient is fixed by the normalization of vacuum graviton

modes, which leads to c0 ¼ ‘p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�=k

p
in Eq. (37).

The effect of the conformal stress tensor is to modify the
amplitude of these modes by a factor of 1� i�, where � is
given by Eq. (50). This in turn multiplies the power spec-
trum by j1� i�j2 ¼ 1þ �2. In order to estimate this
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enhancement factor, we need to make some assumptions
about a model of inflation. Let ER be the reheating energy
and assume that most of the vacuum energy which drives
inflation is converted into radiation at reheating. Then
Einstein’s equations yield

H2 ¼ 8�

3
‘2pE

4
R: (54)

For this discussion, we assume that H is approximately
constant throughout the inflationary era. There is expan-
sion by a factor of about ER=ð1 eVÞ between the end of
inflation and last scattering and a further expansion
by a factor of 103 to the present. Let us choose the scale
factor to be unity at the end of inflation, so its present value
will be

anow ¼ 103
ER

1 eV
: (55)

Consider a scale which presently has a proper length of ‘0,
and hence a physical wave number of kP ¼ 2�=‘0. At the
end of inflation, its physical and comoving wave numbers
coincide and are given by

k ¼ 2�anow
‘0

: (56)

Recall that k is constant, so this form holds throughout the
cosmological expansion.

Let

S ¼ Hj�0j; (57)

which is the factor by which the universe expands from the
initial conformal time � ¼ �0 to the end of inflation. We
may combine the above relations to write

�2 ¼ 8�

3
ð128�3�Þ2‘6pE4

RS
2 a

2
now

‘20
: (58)

If we use the value of � ¼ 1=ð320�3Þ corresponding to the
electromagnetic field, then we may write

�2 ¼ 1:34� 10�78

�
1025 cm

‘0

�
2
�

ER

1015 GeV

�
6
S2: (59)

Recall that the present horizon size is of order 1028 cm, so
‘0 � 1025 cm corresponds to angular scales of the order of
1	 today.

If one has only the minimal inflation needed to solve the
horizon and flatness problems, so S � 1023, then the effects
of the one-loop correction on the tensor perturbation spec-
trum are negligible. However, larger values of S have the
potential to produce significant corrections. For example,
ER � 1015 GeV and S � 1039 would lead to an effect of
order unity at 1	 scales. One should expect the one-loop
approximation to begin to break down, but this can serve as

an order of magnitude estimate. In contrast to the nearly flat
spectrum, Eq. (53), due to free graviton fluctuations, the
one-loop effect is highly tilted toward the blue end of the
spectrum.
It is of interest to compare the magnitude of this effect

on the tensor perturbations with the stress tensor fluctua-
tion effect on density perturbations which was treated in
Refs. [1,2]. The latter effect becomes significant if
ER � 1015 GeV and S � 1033 [see Eq. (108) in Ref. [2]],
and is hence somewhat larger than the effect treated in the
present paper.

VII. SUMMARY

We have constructed the semiclassical Einstein
equation with a conformal matter field on a weakly per-
turbed de Sitter background, using the coordinate
space formulation of Horowitz and Wald [21–23], and
examined gravity wave solutions of this equation. We
found no growing, spatially homogeneous (but anisotropic)
solutions in a spatially, flat universe, which implies
that de Sitter spacetime is stable to tensor perturbations
at the one-loop level in the presence of conformal matter.
We further examined the effects of the one-loop correc-

tion on the propagation of finite wavelength gravity waves,
and found a correction term which depends upon the
interval over which the interaction with the quantummatter
field is switched on. One viewpoint is that this is the
duration of inflation. So long as the curvature of de Sitter
spacetime and the initial proper frequency of the mode are
below the Planck scale, the fractional correction is small.
The effect takes the form of both a phase shift and an
amplitude change. If one is concerned only with the form
of the gravity wave modes at late times, this effect can be
absorbed in a complex amplitude shift. However, gravity
wave modes are no longer exactly solutions of the Lifshitz
equation, Eq. (4).
The effect is potentially observable with a sufficient

amount of inflation through an increase in the amplitude
of the spectrum of tensor perturbations of the cosmic
microwave background. This possibility does require one
to take seriously the contribution of modes which were
trans-Planckian at the beginning of inflation.
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