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The Belinskii, Khalatnikov, and Lifshitz conjecture [V. A. Belinskii, I.M. Khalatnikov, and

E.M. Lifshitz, Adv. Phys. 19, 525 (1970)] posits that on approach to a spacelike singularity in general

relativity the dynamics are well approximated by ‘‘ignoring spatial derivatives in favor of time

derivatives.’’ In A. Ashtekar, A. Henderson, and D. Sloan, Classical Quantum Gravity 26, 052 001

(2009), we examined this idea from within a Hamiltonian framework and provided a new formulation of

the conjecture in terms of variables well suited to loop quantum gravity. We now present the details of the

analytical part of that investigation. While our motivation came from quantum considerations, thanks to

some of its new features, our formulation should be useful also for future analytical and numerical

investigations within general relativity.
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I. INTRODUCTION

Originally formulated in 1970, the Belinskii-
Khalatnikov-Lifshitz (BKL) conjecture states that as one
approaches a spacelike singularity, ‘‘terms containing time
derivatives in Einstein’s equations dominate over those
containing spatial derivatives’’ [1]. This implies that
Einstein’s partial differential equations are well approxi-
mated by ordinary differential equations (ODEs), whence
the dynamics of general relativity effectively become local
and oscillatory. The time evolution of fields at each spatial
point is well approximated by that in homogeneous cos-
mologies, classified by Bianchi [2]. The simplest of these
are the Bianchi I metrics which have no spatial curvature
and the Bianchi II metrics which have ‘‘minimal’’ spatial
curvature. According to the BKL conjecture, the dynamics
of each spatial point follow the ‘‘mixmaster’’ behavior—a
sequence of Bianchi I solutions bridged by Bianchi II
transitions. Finally, with the significant exception of a
scalar field, matter contributions become negligible—to
quote Wheeler, ‘‘matter doesn’t matter.’’

In the beginning, the conjecture seemed to be coordinate
dependent and rather implausible. However, subsequent
analysis by a large number of authors has shown that it
can be made precise and by now there is an impressive
body of numerical and analytical evidence in its support
[3]. It is fair to say that we are still quite far from a proof of
the conjecture in the full theory. But there has been out-
standing progress in simpler models. In particular, Berger,
Garfinkle, Moncrief, Isenberg, Weaver, and others showed
that, in a class of models, as the singularity is approached
the solutions to the full Einstein field equations approach

the ‘‘velocity term dominated’’ (VTD) ones obtained by
neglecting spatial derivatives [3–7]. Andersson and
Rendall [8] showed that for gravity coupled to a massless
scalar field or a stiff fluid, for every solution to the VTD
equations there exists a solution to the full field equations
that converges to the VTD solution as the singularity is
approached, even in the absence of symmetries. These
results were generalized to also include p-form gauge
fields in [9]. In these VTD models the dynamics are
simpler, allowing a precise statement of the conjecture
that could be proven. In the general case, the strongest
evidence to date comes from numerical evolutions. Berger
and Moncrief began a program to analyze generic cosmo-
logical singularities [10]. While the initial work focused on
symmetry reduced cases [11], more recently Garfinkle [12]
has performed numerical evolution of space-times with
no symmetries in which, again, the mixmaster behavior
is apparent. Finally, additional support for the conjecture
has come from a numerical study of the behavior of
test fields near the singularity of a Schwarzschild black
hole [13].
With growing evidence for the BKL conjecture, it is

natural to consider its implications to quantum gravity. The
conjecture predicts a dramatic simplification of general
relativity near spacelike singularities, which are precisely
the places where quantum gravity effects are expected to
dominate. A promising approach to analyze this issue is
provided by loop quantum cosmology (LQC) [14] where
there are now several indications that the quantum gravity
effects become important only when curvature or matter
density are about a percent of the Planck scale. Therefore it
is quite possible that, generically, spatial derivatives be-
come negligible compared to the time derivatives already
when the universe is sufficiently classical. In this case a
quantization of the effective theory with ODEs, which
descends from techniques applicable in the full theory,
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could provide a reliable qualitative picture of quantum
gravity effects near generic spacelike singularities. If, on
the other hand, the BKL behavior sets in only in the Planck
regime, this strategy would not be viable. But since there is
no reason to trust Einstein’s equations in this regime, then
the conjecture would also not have a physically interesting
domain of validity.

LQC is the result of application of the principles of
loop quantum gravity (LQG) [15–17] to symmetry
reduced cosmological models. Initial study of the k ¼ 0
Friedmann-Lemaitre-Robertson-Walker models revealed
that the quantum geometry effects underlying LQG pro-
vide a natural mechanism for the resolution of the big bang
singularity [18]. Subsequent more complete analysis led to
a detailed understanding of the physics in the Planck
regime and also showed that although these effects are
very strong there—capable of replacing the big bang
with a quantum bounce—they die extremely rapidly so
as to recover general relativity as soon as the curvature
falls below Planck scale [19]. These results were then
extended to include spatial curvature in [20] and a cosmo-
logical constant in [21]. More recent investigations reveal
that if matter satisfies a nondissipative equation of state
P ¼ Pð�Þ, LQC resolves all strong curvature singularities
of the Friedmann-Lemaitre-Robertson-Walker models, in-
cluding, e.g., those of the ‘‘big-rip’’ or ‘‘sudden death’’
type [22]. Also, it is now known in LQC that the Bianchi I
and II and IX singularities are resolved [23–25].

In view of the BKL conjecture, these results, together
with further support from the ‘‘hybrid’’ quantization of
Gowdy models [26], suggest that there may well be a
general theorem to the effect that all spacelike singularities
of the classical theory are naturally resolved in LQG.
However, it is difficult to test this idea using the current
formulations of the BKL conjecture since these approaches
are motivated by the theory of partial differential equations
rather than by Hamiltonian or quantum considerations
(see, e.g., [27,28]). In particular, most approaches perform
a rescaling of their dynamical variables by dividing by the
trace of the extrinsic curvature. It is difficult to promote the
resulting variables to operators on the LQC Hilbert space.
In the analysis presented here, we reformulate the BKL
conjecture in a way better suited to LQC and explore the
resulting system both analytically and numerically.

In LQG one begins with a first order formalism where
the basic canonical variables are a density-weighted triad
and a spin connection [15–17]. In Sec. II we will begin by
recalling this Hamiltonian formulation of general relativ-
ity. In Sec. III we rewrite this theory using a set of variables
that are motivated by the BKL conjecture. Rather surpris-
ingly, the core of this theory can be formulated using
(density-weighted) fields with only internal indices;
space-time tensors never feature. To understand the impli-
cations of the BKL conjecture to LQG, we need to express
the conjecture using this Hamiltonian framework. This task

is carried out in Sec. IV. We provide a weak and a strong
version of the conjecture. The key idea is to say that, as one
approaches spacelike singularities, the exact system is well
approximated by a truncated system which features only
time derivatives. Nontriviality of the formulation lies in the
choice of variables and specification of how limits are
taken. Our procedure satisfies a number of stringent re-
quirements. In particular, one can either first truncate the
Hamiltonian and then obtain the equations of motion or
first obtain the full equations of motion and then truncate
them; the two procedures commute. In Sec. V we study the
truncated Hamiltonian system and explore its dynamics
in some detail. We show that it exhibits all the known
features such as the ‘‘u map’’ and spikes. Thus, the
Hamiltonian framework we were led to by LQG consid-
erations successfully captures the mixmaster dynamics
faithfully. Therefore, in addition to providing a viable point
of departure to analyzing the fate of generic spacelike
singularities in LQG, it should also be useful in analytical
and numerical investigations of the BKL conjecture in
classical general relativity itself. In Sec. VI we summarize
the main results and comment on their relation to those of
other works.
The two appendixes contain more technical material.

Appendix A introduces densities in a coordinate-free man-
ner. This notion is important because the basic variables in
our formulation of the BKL conjectures are scalar densities
of weight 1. In the main text, for simplicity we have set the
shift and the Lagrange multiplier of the Gauss constraint
equal to zero. Appendix B contains the full equations
without these restrictions. Main results of this paper were
reported in a fast-track communication [29].

II. PRELIMINARIES

Wewill consider space-times of the form 4M ¼ R� 3M
where 3M is a compact, oriented three-dimensional mani-
fold (without boundary).1 We will formulate general rela-
tivity in terms of first order variables, the point of departure
of LQG [30]. These consist of pairs of fields consisting of a
(density-weighted) orthonormal triad, ~Ea

i , and its conjugate
momentum Ki

a which on solutions will correspond to
extrinsic curvature. The fundamental Poisson bracket is
given by

f ~Ea
i ðxÞ; Kj

bðyÞg ¼ �j
i�

a
b�

3ðx� yÞ: (2.1)

Herein, early letters, a, b, c, denote spatial indices while i,
j, k denote internal indices which take values in soð3Þ—the
Lie algebra of SOð3Þ. Tildes are used to capture density
weights of quantities; a tilde above indicates that the

1The restriction on topology is made primarily to avoid having
to specify boundary conditions and having to keep track of
surface terms. There is no conceptual obstruction to removing
this restriction (following, for example, the Hamiltonian frame-
work underlying LQC).
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quantity transforms as a (tensor) density of weight 1 and a
tilde below will denote a (tensor) density of weight �1.
The internal indices can be freely raised and lowered using

a fixed kinematical metric q
�
ij on soð3Þ. The phase space

spanned by smooth pairs ð ~Ea
i ; K

i
aÞ will be denoted by P .

These phase space variables are related to their
Arnowitt, Deser, and Misner (ADM) [31] counterparts by

~E a
i
~Eb
jq

� ij ¼ ~~qqab; (2.2)

Ki
a
~Eb
i ¼ fffiffiffiqp Ka

b; (2.3)

where qab is the metric on the leaf 3M, q its determinant,
and Kab the extrinsic curvature of 3M. In terms of
these variables we perform a 3þ 1 decomposition of
space-time to obtain as Hamiltonian a sum of constraints
with Lagrange multipliers [30,32]:

H½ ~E;K� ¼
Z

3M
� 1

2
N�
~~S� 1

2
Na ~Va þ�i

~Gi: (2.4)

The Lagrange multipliers N� , N
a, the lapse and shift, are

related to the choice of slicing and time in the standard
fashion, and �i is related to rotations in the internal space.

Phase space functions ~~S, ~Va, and ~Gk are the scalar, vector,
and Gauss constraints (with density weights 2, 1, 1,
respectively), given by [30,32]

~~Sð ~E;KÞ � �~~qR� 2 ~Ea
½i ~E

b
j�K

i
aK

j
b; (2.5)

~V að ~E;KÞ � 4D½aðKi
b� ~E

b
i Þ; (2.6)

~G kð ~E;KÞ � �jki ~Ea
jK

i
a; (2.7)

where R is the scalar curvature of the metric qab. The
overall sign and numerical factors in the constraints are
chosen so they reduce to the standard ADM constraints
upon solving the Gauss constraint. R can be written in
terms of the triad and its inverse or in terms of the triad and
the connection �i

a compatible with the triad, which is
defined by

Da
~Eb
i þ �ijk�

j
a ~Ebk ¼ 0; or �j

a ¼ � 1

2
E�bkDa

~Eb
i �

ijk:

(2.8)

(Note that Da acts only on tensor indices; it treats the
internal indices as scalars.) Although �i

a is determined
entirely by ~Ea

i , for now it is convenient to use all three
fields �i

a, K
i
a, and ~Ea

i in our classical analysis: In our
formulation of the BKL conjecture �i

a and Ki
a will be the

relevant degrees of freedom near the singularity, so it is
natural to express the theory in terms of them.

The equations of motion are obtained by taking Poisson
brackets with the Hamiltonian on the phase space P :

_~E a
i ¼ f ~Ea

i ; H½ ~E;K�g; (2.9)

_K i
a ¼ fKi

a; H½ ~E;K�g: (2.10)

P is the phase space underlying LQG. The basic variables
ðAi

a; E
a
i Þ used there are obtained by a simple canonical

transformation on P [30]:

ð ~Ea
i ; K

i
aÞ ! ðAi

a; �
�1 ~Ei

aÞ with Ai
a ¼ �i

a þ �Ki
a;

(2.11)

� being the Barbero-Immirzi parameter of LQC. (In clas-
sical general relativity, space-time equations of motion are
independent of the value of this real parameter.) For sim-
plicity of presentation we will introduce our formulation
of the BKL conjecture using ð ~Ea

i ; K
i
aÞ, although it will

be clear that our framework can be readily recast in terms
of ð ~Ea

i ; A
i
aÞ.

III. VARIABLES MOTIVATED
BY THE BKL CONJECTURE

In order to formulate the BKL conjecture in this system,
one needs to specify two things: What kind of derivatives
are to dominate as one approaches the singularity and what
kind are to become negligible? And what are the quantities
whose derivatives are to be treated as negligible? In this
section we first motivate and introduce a set of variables
and a derivative operator and then use them to formulate
the conjecture. The main idea is as follows. The accumu-
lated evidence to date suggests that the spatial metric qab
becomes degenerate at the spacelike singularity whence its
determinant q vanishes there. (In particular, this is borne
out in the numerical simulations of solutions with two
commuting Killing fields—the so-called G2 space-times
which include Gowdy models [33].) We will focus on the
class of singularities where this occurs. In this case one
would expect that if we rescaled fields which are ordinarily
divergent at the singularity with appropriate powers of q,
the rescaled quantities would have well-defined limits.
Now, the density-weighted triad ~Ea

i is obtained by re-
scaling of the orthonormal triad eai , which is divergent at
the singularity, by

ffiffiffi
q

p
. In examples, not only does the

factor of
ffiffiffi
q

p
give ~Ea

i a well-defined limit, but the limit in

fact vanishes. Therefore, contraction by ~Ea
i can serve to

tame fields which would otherwise have been divergent at
the singularity. This consideration leads us to construct
scalar densities by contracting ~Ea

i with Ki
a, and �i

a. As
noted above, since contraction with ~Ea

i will suppress the
divergence of Ki

a and �i
a, the combination is expected to

remain finite at the singularity. Let us then set

~P i
j :¼ ~Ea

i K
j
a � ~Ea

kK
k
a�i

j; (3.1)

~C i
j :¼ ~Ea

i �
j
a � ~Ea

k�
k
a�i

j: (3.2)

These two fields, ~Pi
j and ~Ci

j, will turn out to be the
relevant variables near the singularity in our BKL frame-
work. In particular, we will show below that the constraints
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of general relativity can be expressed in terms of polyno-
mials of these basic variables and their derivatives.
Therefore if the basic variables and their derivatives remain
finite at the singularity, the constraints will also continue to
hold there. Since the Hamiltonian of the theory is a linear
combination of these constraints, dynamics of the basic
variables will meaningfully extend to the singularity.

Beyond the possibility of being bounded at the singu-
larity, an important feature of these variables is that they
have only internal indices which can be freely raised and

lowered using the fixed, kinematic, internal metric q
� ij
; the

dynamical metric qab which diverges at singularities is not

needed. Under diffeomorphisms ~Pi
j and ~Ci

j transform as
density-weighted scalars on 3M. Because of this feature,
statements about their asymptotic properties can be formu-
lated much more easily than would be possible if they were
tensor fields. (For a coordinate-free introduction to den-
sities, see Appendix A.)

To illustrate why these variables are likely to be well
defined at the singularity, let us consider the Bianchi I
model. Because of spatial flatness, we can work in an

internal gauge in which ~Ci
j ¼ 0 everywhere. What about

~Ea
i and ~Pi

j? In terms of the commonly used proper time �,
the metric is given by ds2 ¼ �d�2 þP

i�
2pidx2i and the

singularity occurs at � ¼ 0. Since
P

pi ¼ 1, we have
q ¼ �2 in the Bianchi I chart. In addition, due to the
second constraint on the exponents,

P
p2
i ¼ 1 whence

the density-weighted triad ~Ea
i vanishes at the singularity

as �1�pi and ~Pj
i is finite there for each i.

We further introduce a derivative operator ~Di defined by
the contraction of Da with ~Ea

i :

~D i :¼ ~Ea
i Da: (3.3)

The expectation is that this contraction will have the effect
of suppressing terms containing ~Di as we approach the
singularity. Thus, ~Di will be the spatial derivatives we were
seeking which, when acting on certain quantities, will
be conjectured to be negligible near the singularity.2

The variable ~Pij is related to the momentum ~Pab (conjugate

to the 3-metric) in the ADM phase space by ~~q ~Pab ¼
~Ea
i
~Eb
j
~Pij. ~Cij encodes information in the ~Di spatial deriva-

tives of the triad ~Ea
i :

~C ij ¼ �E�
i
a�

klj ~Dk
~Ea
l : (3.4)

Note that, although the ~Cij depend on spatial derivatives of

the triad and are often subdominant to ~Pij, it turns out that

they are not always negligible in the approach to the
singularity. Indeed, this behavior is observed in the trun-

cated system, which is discussed in Sec. IV. It is ~Cij rather
than the triads themselves that will feature directly in our
formulation of the conjecture.
For simplicity of notation, from now on we will drop the

tildes. Thus, from now on each of Ea
i , Ci

j, Pi
j, Di carries a

density weight 1, while the lapse field N carries a density
weight�1. The scalar and the vector constraint functions S
and Vi (introduced below) carry density weight 2 while the
Gauss constraint Gk carries density weight 1.
By making use of (3.1) and (3.4), functions of ðEa

i ; K
i
aÞ

and their covariant derivatives can be rewritten in terms of
ðEa

i ; Ci
j; Pi

jÞ and their Di derivatives. The scalar curvature
R for example can be expressed entirely in terms of Ci

j

and its Di derivatives:

qR ¼ �2�ijkDiðCjkÞ � 4C½ij�C½ij� � CijC
ji þ 1

2
C2:

(3.5)

Consequently, the constraints can be reexpressed entirely
in terms of Ci

j, Pi
j, and theirDi derivatives (with no direct

reference to Ea
i or even the determinant q of the 3-metric):

S ¼ 2�ijkDiðCjkÞ þ 4C½ij�C½ij� þ CijC
ji

� 1

2
C2 þ PijP

ji � 1

2
P2; (3.6)

Vi ¼ �2DjPi
j � 2�jklPi

jCkl � �ijkCP
jk þ 2�ijkP

jlCl
k;

(3.7)

Gk ¼ �ijkPji: (3.8)

Here we have converted the covector index on the vector
constraint Va to an internal index by contracting it with E

a
i .

Since the Ea
i is assumed to be nondegenerate away from

the singularity, the constraint Vi defines the same constraint
surface as the original vector constraint introduced in (2.5).
Notice here that the constraint can be easily decomposed
into those terms that contain the derivative Di and those
that do not.
The equations of motion for Ea

i , Ci
j, Pi

j can be written
in a similar form. These can be obtained using the full
Poisson brackets (2.9) and (2.10) or by directly com-
puting Poisson brackets of Pi

j and Ci
j with the scalar/

Hamiltonian constraint. To streamline the second calcula-
tion, let us specify the Poisson brackets between Ea

i , Ci
j,

and Pi
j:

fEa
i ðxÞ; Pj

kðyÞg ¼ ðEa
j ðxÞ�i

k � Ea
i ðxÞ�j

kÞ�ðx; yÞ; (3.9)

fPi
jðxÞ; Pk

lðyÞg ¼ ðPk
jðxÞ�i

l � Pi
lðxÞ�k

jÞ�ðx; yÞ; (3.10)

2This operator is linear and satisfies the Leibnitz rule. It
ignores internal indices (since the action of Da is nontrivial
only on tensor indices). However, since its action on a function f
does not yield the exterior derivative df, ~Di is not a connection.
If we were to formally treat it as a connection, it would have
torsion, which is related to C: ~D½i ~Dj�f ¼ � ~Tk

ij
~Dkf where

~Tk
ij ¼ �kl½i ~Cj�

l. In what follows, Di often acts on scalar den-
sities. This action is given explicitly in Appendix A.
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�Z
fijP

ij;
Z

gklC
kl

�
¼

Z
ðfijgklðCkj�il þ Cjl�ikÞ

þ �jlm�ikgklDmfijÞ; (3.11)

fEa
i ðxÞ; Cj

kðyÞg ¼ 0 and fCi
jðxÞ; Ck

lðyÞg ¼ 0; (3.12)

where fij, gij are smooth test scalar fields. The equations of

motion obtained by taking Poisson brackets with the scalar
constraint are then given by

_Cij ¼ ��jklDkðNð1=2�i
lP� Pl

iÞÞ
þ N½2Cði

kP
jkjjÞ þ 2C½kj�Pk

i � PCij�; (3.13)

_Pij ¼ �jklDkðNð1=2�i
lC� Cl

iÞÞ � �klmDmðNCklÞ�ij

þ 2�jkmC½ik�DmðNÞðDiDj �DkDk�
ijÞN

þ N½�2CðikÞCk
j þ CCij � 2C½kl�C½kl��ij�; (3.14)

and

_E a
i ¼ �NPi

jEa
j ;

where we have set the shift to zero to reduce clutter. (For
nonzero shift, see Appendix B.) Note that the equation of
motion for Ea

i is a simple ODE. Note also that, as was the
case with constraints, the equations of motion for Ci

j and
Pi

j can again be written in terms of scalar densities and the
derivativeDi only. This motivates us to ask for an evolution
equation for the derivative operator Di. Since Di ignores
internal indices, it suffices to consider its action just on
scalar densities Sn of weight n. We have

_D iSn ¼ n

2
½DiðNPÞ�Sn � NPi

jDjSn: (3.15)

Thus we have cast all the constraints as well as evolution
equations as a closed system involving only Ci

j, Pi
j, and

Di. These equations can then be used as follows. On an
initial slice, we construct ðCi

j; Pi
j; DiÞ from a pair ðEa

i ; K
i
aÞ

of canonical variables. Then we can deal exclusively with
the triplet ðCi

j; Pi
j; DiÞ. The pair ðEa

i ; K
i
aÞ satisfies con-

straints if and only if the triplet satisfies (3.6), (3.7), and
(3.8). Given such a triplet, we can evolve it using (3.13),
(3.14), and (3.15) without having to refer back to the
original canonical pair ðEa

i ; K
i
aÞ. These two sets of equa-

tions have some interesting unforeseen features. First, as
already mentioned, the basic triplet ðCi

j; Pi
j; DiÞ has only

internal indices: our basic fields are scalars on 3M (with
density weight 1). It would be of considerable interest to
investigate if this fact provides new insights into the dy-
namics of 3þ 1 dimensional gravity [34]. Second, these
equations do not refer to the triad Ea

i . Suppose we begin at
an initial time where Ci

j is derived from an Ea
i . Then these

constraint and evolution equations ensure that Ci
j is deriv-

able from a triad at all times. Furthermore, we can easily
construct that triad directly from a solution ðCi

j; Pi
jÞ to

these equations: first solve (3.13), (3.14), and (3.15) and
then simply integrate the ODE

_E a
i ¼ �NPi

jEa
j (3.16)

at the end. Third, the structure of the constraint and evo-
lution equations in terms of ðCi

j; Pi
j; DiÞ is remarkably

simple since only low order polynomials of these variables
are involved. Finally, thanks to our rescaling by

ffiffiffi
q

p
, our

basic triplet Ci
j; Pi

j; Di (as well as E
a
i ) is expected to have

a well behaved limit at the singularity. A close examination
of our equations shows that they allow the triad to become
degenerate during evolution. So, strictly (as in LQG
[30,32]), we have a generalization of Einstein’s equations.
To summarize, we have found variables which remain

finite at the singularity in examples and rewritten Einstein’s
equations as a closed system of differential equations in
terms of them. Therefore, this formulation may be useful
for proving global existence and uniqueness results and
rigorous exploration of fields near spacelike singularities.
Finally, although for simplicity we have set shiftNi and the
smearing field �i equal to zero, the features we just dis-
cussed hold more generally (see Appendix B).
To conclude, let us examine the action of the vector and

the Gauss constraints on our basic variables. (The action of
the scalar constraint yields the evolution equations which
we have already discussed.) Since the vector constraint
generates a combination of spatial diffeomorphisms and
internal rotations, it is standard to subtract a multiple of the
Gauss constraint to define the diffeomorphism constraint:

V 0
i ¼ Vi � 2

�
Ci

j � C

2
�i

j

�
Gj: (3.17)

We can then smear both constraints to obtain

G½�� ¼
Z

3M
�kGk and V0½N� ¼

Z
3M

NiV 0
i ; (3.18)

where Ni is a scalar with density weight �1 so that
Na :¼ NiEa

i is the standard lapse and, as before, �i has
density weight zero. The action of G½�� on the basic
variables is given as usual via Poisson brackets:

fPij; G½��g ¼ �klj�
lPi

k þ �kli�
lPk

j; (3.19)

fCij; G½��g ¼ �klj�
lCi

k þ �kli�
lCk

j þDi�j �Dk�
k�ij;

(3.20)

fDiSn; G½��g ¼ �jki�
kDjSn: (3.21)

In the last equation Sn is any scalar density of weight n.
As expected the Gauss constraint generates infinitesimal
SOð3Þ transformations with DiSn and Pi

j transforming as
tensors and Ci

j transforming as (the contraction of a triad
with) an SOð3Þ connection.
Similarly, the action of the diffeomorphism constraint is

given by the Poisson brackets:
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fPi
j; V 0½N�g ¼ �2ðNkDkPi

j þ Pi
jDkN

k þ Pi
j�klmN

kClmÞ
¼ �2L ~NPi

j; (3.22)

fCi
j; V0½N�g ¼ �2ðNkDkCi

j þ Ci
jDkN

k þ Ci
j�klmN

kClmÞ
¼ �2L ~NCi

j; (3.23)

fDiSn; V
0½N�g ¼ �2ðNjDjðDisnÞ þ nDjðNjÞDiSn

� n�jklN
jCklDiSnÞ

¼ �2L ~NDiSn; (3.24)

where ~N � Na ¼ Ea
i Ni. We see that the constraint gener-

ates diffeomorphisms as expected with Pi
j, Ci

j, and DiSn
transforming as scalar densities. Again, note that the in-
finitesimal changes generated by each constraint involve
only the basic variablesCi

j, Pi
j, andDi. Thus there is still a

closed system in terms of this set of variables.

IV. THE CONJECTURE

In order to express the BKL conjecture we must make
more precise the arena in which it is to be applied. The
ingredients we need are a space-time with a spacelike
singularity, a notion of ‘‘spatial’’ and ‘‘temporal’’ deriva-
tives, and specification of the system to which the conjec-
ture is to be applied. We make use of the framework
introduced in the previous section to provide this arena.

Let us begin with a 4-manifold, 4M, admitting a smooth
foliationMt parametrized by a time function, t. We restrict
ourselves to a slicing of 4M in which the spacelike singu-
larity lies on the limiting leaf. This ensures that we can
reasonably discuss an approach to the singularity as ap-
proaching the limiting leaf. The time function t labeling
our spatial slices is intertwined with the choice of lapse and
shift. Wewill assume that the lapseN and the shiftNi, each
with density weight �1, admit a smooth limit as one
approaches the singularity. Since the spatial metric qabðtÞ
becomes degenerate at the singularity, the commonly used
lapse function �N :¼ ffiffiffi

q
p

N (with density weight zero) goes

to zero, thus placing the singularity at t ¼ 1. (These
assumptions are minimal and further constraints on admis-
sible foliations may well be needed in a more complete
framework.)

Our basic variables will be ðCi
j; Pi

jÞ, the lapse N, and
the shift Ni. By time derivatives, we will mean their Lie
derivatives along the vector field ta :¼ �Nna þ Na where
na is the unit normal to the foliation Mt. By spatial
derivatives we will mean their Di derivatives. Since
Di :¼ Ea

i Da, the notion does not depend on coordinates.
Rather, it is tied directly to the physical triads and the
covariant derivatives compatible with them. Then, the
idea behind the conjecture is that, as one approaches
the singularity, the spatial derivatives DiCj

k, DiPj
k,

DiN, DiN
j of the basic fields should become negligible

compared to the basic fields themselves because of the
ffiffiffi
q

p
multiplier in the definition of Ea

i which descends to Di.
We now show that an immediate consequence of this

assumption is that the antisymmetric part of Cij is negli-

gible compared to the other basic fields. Let us define
ai :¼ �ijkCjk. Then by conjecture DiðaiNÞ is negligible.3
Since the spatial manifold is assumed to be compact,
integrating this negligible quantity and then integrating
by parts, one obtainsZ

3M
DiðNaiÞ ¼

Z
3M

NaiDaE
a
i ¼

Z
3M

Naiai; (4.1)

where we have used the definition of Cij which implies

DaE
a
i ¼ �ijkC

jk. Since the internal metric and the lapse are

positive, we conclude that ai and hence C½ij� are neces-

sarily negligible under our assumptions. This fact will be
useful throughout our analysis.
Next, note that we have expressed general relativity in

the form of a constrained theory in terms of our basic
variables, Ci

j, Pi
j, and Di. Our constraints are composed

of quadratic terms in our basic variables and terms of the
form DiCj

k and DiPj
k. We can therefore split each con-

straint into two parts—terms which contain no derivatives
and those which do. Similarly the equations of motion can
be split into terms that contain derivatives and those that
do not. With this background, we can state two versions of
our conjecture.
Weak conjecture: As the singularity is approached the

terms containing derivatives in the constraints and equa-
tions of motion are negligible in comparison to the poly-
nomial terms. Thus, as the singularity is approached the
constraints and equations of motion approach those found
by setting derivative terms to zero.
We define the truncated theory to be the system defined

by setting Di-derivative terms to zero,

DiCj
k ¼ DiPj

k ¼ DiN ¼ DiNj ¼ C½ij� ¼ 0; (4.2)

in the equations of motion (3.13), (3.14), and (3.15) and
constraints (3.6), (3.7), and (3.8). Thus, the weak conjec-
ture says that the equations of motion can be well approxi-
mated by those of the truncated theory in the vicinity of the
singularity. Note that this does not imply that the solutions
of the full equations of motion will approach the solutions
to the truncated equations as the singularity is approached.
This additional condition is captured in the strong version
as follows.
Strong conjecture: As the singularity is approached the

constraints and the equations of motion approach those of
the truncated theory and in addition the solutions to the full
equations are well approximated by solutions to the trun-
cated equations.

3By their definitions, the internal metric q
�
ij and the alternating

tensor �ijk are kinematic, fixed once and for all, and are annihi-
lated by all derivative operators Da and Di.
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With the strong conjecture the solution of the full
Einstein equations will asymptote to solutions of the trun-
cated system defined by (4.2). In the following we will
analyze this truncated system.

Not only are the truncated constraints purely algebraic,
but they involve only quadratic combinations of our basic
variables:

SðTÞ :¼ CijC
ji � 1

2
C2 þ PijP

ji � 1

2
P2; (4.3)

VðTÞ
i

:¼ ��ijkCP
jk þ 2�ijkP

jlCl
k; (4.4)

Gk
ðTÞ :¼ �ijkPji: (4.5)

The truncated Gauss constraint is in fact exact because
(3.8) involves no derivative terms, while the scalar and the
diffeomorphism constraints are genuinely truncated.

The infinitesimal transformations (3.19), (3.20), (3.21),
(3.22), (3.23), and (3.24) generated by the full constraints
contain derivative terms that are now assumed to be neg-
ligible in comparison to the polynomial terms. Ignoring the
negligible terms leads us to the following transformations
on the basic fields:

fPij; Gð�ÞgT ¼ 2�klðjPiÞ
k�l; (4.6)

fCkl; Gð�ÞgT ¼ 2�klðjCiÞ
k�l; (4.7)

fPij; VðNÞgT ¼ 4�klðjPiÞ
kNm

�
Cm

l � C

2
�m

l

�
; (4.8)

fCij; VðNÞgT ¼ 4�klðjCiÞ
kNm

�
Cm

l � C

2
�m

l

�
; (4.9)

fCij; SðNÞgT ¼ �2Nð2CkðiPk
jÞ � PCijÞ; (4.10)

fPij; SðNÞgT ¼ �2Nð�2CikC
k
j þ CCijÞ: (4.11)

The Gauss constraint continues to generate internal rota-
tions, but whereas in the full theory Ci

j transforms as (the
contraction of the triad with) a connection, after truncation
both Ci

j and Pi
j transform as SOð3Þ tensors. The vector

constraint also generates internal rotations, since the dif-
feomorphism constraint generates only negligible terms.

We arrived at the truncated equations of motion by first
obtaining the full equations and then applying the trunca-
tion to them, i.e., by setting spatial derivative terms to zero.
But we could also have first truncated the constraints to
obtain (4.3), (4.4), and (4.5) and then computed their
truncated Poisson brackets with the basic variables. This
leads to a consistency check of our scheme: do the
two procedures yield the same ‘‘truncated equations of
motion’’ in the end? The answer is in the affirmative.
This fact is illustrated by the following ‘‘commutativity
diagram’’:

Note that the operation of truncation, the final truncated
system, and hence the consistency requirement mentioned
above depend crucially on one’s choice of basic variables
and notions of space and time derivatives. For example, if
we had adopted the more ‘‘obvious’’ strategy and used
triads Ea

i rather than Ci
j as basic variables, we would

have been led to set Ci
j to zero in the truncation procedure

since Ci
j would then be derived quantities, obtained by

taking the Di derivative of E
a
i . This truncation would have

led us just to Bianchi I equations. The resulting BKL
conjecture would have been manifestly false. Thus, con-
siderable care is needed to arrive at variables which satisfy
a closed set of equations in a Hamiltonian framework,
suggest a natural way to make the heuristic idea of ignoring
spatial derivatives in favor of time derivatives precise, and
lead to the above commuting diagram and a version of the
BKL conjecture that is compatible with the large body of
analytical and numerical results that have accumulated so
far. It is rather striking that the variables ðCi

j; Pi
jÞ auto-

matically satisfy these rather stringent criteria.

V. HAMILTONIAN FORMULATION
OF THE TRUNCATED SYSTEM

In this section we will analyze the truncated system in
some detail and show that its solutions reproduce the
expected BKL behavior. The section is divided into three
parts. In the first we regard Ci

j, Pi
j as fields on the full

phase space P , and obtain the truncated Poisson brackets
between them and truncated constraints. In the second we
solve and gauge-fix the vector and the Gauss constraints of
the truncated theory. The result is a finite dimensional,
reduced phase space with a single constraint which is
well suited to serve as a starting point for quantization
inspired by the BKL conjecture. In the third part we discuss
several features of solutions to this Hamiltonian theory. In
particular, we will find that they exhibit Bianchi I phases
with Bianchi II transitions.

A. Truncated Poisson brackets

Since the truncated equations of motion can be formu-
lated entirely in terms of Ci

j, Pi
j, let us truncate the

Poisson brackets (3.10) and (3.11) we obtained between
them by setting the negligible terms on the right side to
zero. Since the full Poisson bracket (3.11) involves smear-
ing fields fij and gij, we first need to specify which terms

involving them are to be regarded as negligible. The most
natural avenue is to construct to fij and gij only from the

basic fields ðCi
j; Pi

j; N; Ni; q
�
ij; �

ijkÞ (and their Di deriva-

tives). Then the terms containing Di derivatives of the
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smearing fields will also be negligible and hence vanish in
the truncation. The resulting truncated Poisson brackets
between Ci

j and Pi
j are then given by

fPi
jðxÞ; Ck

lðyÞgT ¼ ðCk
j�i

l þ Cjl�ikÞðxÞ�ðx; yÞ; (5.1)

fPi
jðxÞ; Pk

lðyÞgT ¼ ðPk
j�i

l � Pi
l�k

jÞðxÞ�ðx; yÞ; (5.2)

fCi
jðxÞ; Ck

lðyÞgT ¼ 0: (5.3)

These Poisson brackets suffice to determine the equations
of motion because the truncated Hamiltonian constraint
(4.3) is algebraic in Ci

j and Pi
j. They are now ODEs,

_Cij ¼ N½2CkðiPk
jÞ � PCij� and

_Pij ¼ N½�2CikC
k
j þ CCij�;

(5.4)

so the truncated dynamics at any one spatial point decouple
from those at other points.

This system has some notable features. First, we have a
closed system expressed entirely in terms of Ci

jðxÞ and
Pi

jðxÞ at any fixed point x. Furthermore, the equations of
motion (5.4) and constraints (4.3), (4.4), and (4.5) are at
most quadratic in these variables. In the full theory, the
triad does not appear explicitly in Eqs. (3.13), (3.14), and
(3.15) but is implicitly present through Di. Upon trunca-
tion, even this implicit dependence disappears. Second, as
in the full theory, one can first solve the equations of
motion for Ci

jðxÞ and Pi
jðxÞ and then evolve the triad at

that point at the end by solving an ODE. Third, the trun-
cated scalar constraint (4.3) is symmetric under inter-
change of Ci

j and Pi
j, and by adding a multiple of the

Gauss constraint, the vector constraint can be made anti-
symmetric under this interchange:

�V i
ðTÞ :¼ �ijkPj

lCkl: (5.5)

However, this symmetry is broken at the level of equations
of motion because the truncated Poisson algebra does
not have a simple transformation property under this
interchange.

Because fields at distinct points decouple, to study the
truncated system from the viewpoint of differential equa-
tions, one can simply restrict oneself to a single spatial
point. However, this is not directly possible in the
Hamiltonian framework because, even in the truncated
theory, the Poisson brackets (5.1) and (5.2) involve
�ðx; yÞ. But one can introduce a subspace P hom of the
full phase space P tailored to our truncation. Given a point
ðEa

i ; K
i
aÞ in P consider the pair ðCi

j; Pi
jÞ of density-

weighted fields it determines. The phase space point will
be said to be homogeneous if there exists an internal
gauge and a nowhere vanishing scalar density S�1 of
weight �1 such that the (density weight zero) scalar fields
ðS�1Ci

j; S�1Pi
jÞ are constants on 3M (and C½ij� ¼ 0).

(Fixing a S�1 is equivalent to fixing a 3-form on 3M; see
Appendix A.) Clearly, the truncated dynamics leaves this

homogeneous subspace P hom of the phase space invariant.
More importantly, P hom is invariant under full dynamics:
If the Di derivatives are initially zero they remain zero
under the full equations of motion. The Hamiltonian dy-
namics on P hom fully captures the truncated dynamics at
any fixed spatial point on 3M.
Remark: Since the triads Ea

i in the full phase space P
have been assumed to be nondegenerate, they are also
nondegenerate in P hom. However, as examples suggest,
one would expect them to be become degenerate in the
limit to the spacelike singularity where, however, Ci

j, Pi
j

would continue to be well behaved (and some of them may
even vanish). It is therefore of some interest to extend the
homogeneous subspace by adding ‘‘limit points’’ which
have this behavior. This construction is not needed in our
analysis. However, since it may be useful in future inves-
tigations, we will conclude this subsection with a brief
summary. Let us allow the density-weighted triads Ea

i to
become degenerate such that the subspaces spanned by
the nondegenerate directions of vector fields S�1E

a
i are

integrable. (If this condition is satisfied for one nowhere
vanishing scalar density S�1, it is satisfied for all.) Thus, in
the degenerate case we obtain preferred two- or one-
dimensional submanifolds on 3M. We can extend the phase
space by including such degenerate Ea

i if, in addition, the
resulting pair ðCi

j; Pi
jÞ is regular, Cij is symmetric, and the

pair S�1Ci
j; S�1Pi

j is homogeneous along the preferred
lower dimensional submanifolds of 3M. Key questions for
the BKL conjecture are then (i) does the Hamiltonian flow
on P naturally extend to this extension and (ii) do generic
dynamical trajectories flow to it?

B. Reduced phase space

Since Cij is symmetric but Pij is not, the homogeneous

subspace P hom is not a symplectic submanifold of the full
phase space P . But it turns out that one can obtain a
symplectic manifold by solving and gauge fixing the trun-
cated vector and the Gauss constraints. It will be referred to
as the reduced phase space, P red.
The Gauss constraint (4.5) is equivalent to asking that

Pij be symmetric, and then the vector constraint (4.4) is

equivalent to asking that as matrices, Ci
j and Pi

j should
commute. To gauge-fix the Gauss constraint, we first note
the transformation properties (4.6) and (4.7) of Pi

j and Ci
j

under the action of the Gauss constraint. It is easy to verify
that, because Pi

j and Ci
j commute, the requirement that

they both be diagonal gauge-fixes the Gauss constraint
completely. It turns out that the diagonality requirement
also fixes the vector constraint. This may seem surprising
at first. But note that the combination �V of the vector and
the Gauss constraint of Eq. (5.5) again generates internal
gauge rotations, where, however, the generator �i is a
‘‘q number,’’ i.e., depends on the phase space variables:
�i ¼ NjðCi

j � C�i
jÞ, where Nj is the shift used to smear

the vector constraint. The fact that the gauge fixing of the
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vector constraint does not impose additional requirements
on ðCij; PijÞ ‘‘cures’’ the mismatch in the degrees of free-

dom in the homogeneous subspace (arising from the fact
that while Cij is symmetric, Pij is not).

So far Ci
j, Pj

i are fields on 3M, each carrying density
weight 1. Since these fields are homogeneous, symmetric,
and diagonal, the reduced phase space is six dimensional. It
is convenient to coordinatize it with just six numbers, CI,
PI, with I ¼ 1, 2, 3:

C1 :¼
Z

3M
C1

1; P1 :¼
Z

3M
P1

1; etc:; (5.6)

where the integrals are well defined because we have
completely fixed the internal gauge—in that gauge the
integrands are all densities of weight 1, and 3M is compact.
From now on we will focus on the description of P red in
terms of CI and PI.

The symplectic structure on P red is given by the Poisson
brackets:4

fPI;PJg ¼ fCI;CJg ¼ 0 and fPI;CJg ¼ 2�I
JCJ: (5.7)

For indices I; J; ::: the summation convention will hold if
and only if one of the repeated indices is contravariant and
the other is covariant. The scalar or Hamiltonian constraint

1

2
C2 � CIC

I þ 1

2
P2 � PIP

I ¼ 0 (5.8)

now generates the equations of motion via Poisson
brackets:

_P I ¼ NCIðC� 2CIÞ; (5.9)

_C I ¼ �NCIðP� 2PIÞ: (5.10)

Here we have set

P ¼ P1 þ P2 þ P3 and C ¼ C1 þ C2 þ C3: (5.11)

As a side remark, we note that CI ¼ 0 is a fixed point of
our system for each CI, whence the sign of each CI along
any dynamical trajectory is fixed by the initial conditions.
Therefore, away from the ‘‘planes’’ CI ¼ 0, we can,
if we wish, perform a change of variables to XI ¼
lnjCIj=2 and work with the canonically conjugate pair
ðXI; PIÞ. However, in what follows, we will continue to
work with ðCI; P

IÞ.
Finally, recall that in the BKL conjecture ‘‘the only

matter that matters’’ is a scalar field. Let us therefore

extend our gravitational reduced phase space to include a
massless scalar field �. Denote the conjugate momentum
by � so that f�;�g ¼ 1. Then on this extended reduced

phase space �P red the Hamiltonian constraint is given by

1

2
C2 � CIC

I þ 1

2
P2 � PIP

I � �2

2
¼ 0: (5.12)

The equations for _P and _C are still given by (5.9) and (5.10)

while those of the scalar field are simply _� ¼ � and
_� ¼ 0.

C. Dynamics

The Hamiltonian flow in �P red fully captures the gauge
invariant properties of the truncated dynamics of fields at
any one fixed spatial point on 3M. Let us therefore focus on
this Hamiltonian system. Although the basic constraint and

evolution equations on �P red are just ODEs, they have a rich
structure; indeed they incorporate the dynamics of all
Bianchi type A models. Since the analysis of Bianchi IX
is already quite complicated and required considerable
effort [35,36], we will follow the strategy used in [27]
and analyze implications of the reduced equations near
fixed points.
There are two sets of fixed points of the dynamics, i.e.,

points at which _CI ¼ _PI ¼ 0:
(1) C1 ¼ C2, C3 ¼ 0, P1 ¼ P2, P3 ¼ 0, and � ¼ 0,
(2) CI ¼ 0 and PIP

I � 1
2P

2 þ 1
2�

2 ¼ 0.

The first set of fixed points corresponds essentially to a
dimensional reduction of our theory [37] and is therefore
highly unstable. To show that our truncation captures the
standard features associated with the BKL behavior near
singularities, it will suffice to focus on the second set
which, we will now show, in fact corresponds to the
Kasner solutions. One can show that the solutions to the
scalar constraint 2PIP

I � P2 þ �2 ¼ 0 are such that all
three PI are positive or all three are negative. Choice of
positive signs turns out to be necessary and sufficient for
the singularity to appear at t ¼ þ1 as per our previous
conventions.
Let us return for a moment to the homogeneous phase

space P hom and set lapse N ¼ S�1, the fiducial scalar
density for which S�1Pij is homogeneous, diagonal, with

entries PI. We can then solve the evolution equation (3.16)
for the triad Ea

i ðtÞ in terms of PI. Finally let us set

pI ¼ 1� 2PI

P
and � ¼ e�Pt=2: (5.13)

Then the space-time metric computed from Ea
i ðtÞ is given

by

ds2 ¼ �d�2 þ �2p1dx21 þ �2p2dx22 þ �2p3dx23 (5.14)

so that the singularity lies at � ¼ 0 (or t ¼ 1). By defini-
tion, the constants pi satisfy

4Note that, thanks to the integrals in the definitions of CI and
PI, the delta distributions on the right-hand side of truncated
Poisson brackets (5.1) and (5.2) on P have now disappeared. To
write the truncated constraints (4.3) and (4.4) in terms of CI, P

I ,
one first fixes a nowhere vanishing scalar density S1 of weight 1
(i.e., a 3-form; see Appendix A). One then multiplies these
constraints by ðS1Þ�2 to obtain constraints with density weight
zero. Finally, by noting that C1 ¼ ðC1

1S�1ÞVo, etc., where Vo is
the volume of 3M with respect ðS1Þ, one obtains the equations of
motion for CI, P

I given below.
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p1 þ p2 þ p3 ¼ 1 (5.15)

and the Hamiltonian constraint

2PIP
I � P2 þ �2 ¼ 0 (5.16)

on PI translates to the familiar quadratic Kasner constraint

p2
1 þ p2

2 þ p2
3 ¼ 1� p2

� where p2
� ¼ 2�2

P2
: (5.17)

For each value of p� < 1, these constraints on the pi define

a 1-parameter family of solutions, the intersection of a
plane with a 2-sphere. One can check that if p2

� > 1=2

all the pi are positive, while if p2
� < 1=2 solutions exist

only if one of the pi is negative. We will now show that
this distinction plays the key role for the stability of the
solution.

Let us now move away slightly from a Kasner fixed
point ðPI; CIÞ and consider the Hamiltonian trajectory
through the new point ðP0

I; C
0
IÞ:

P0
I ¼ PI þ �PI; C0

I ¼ CI þ �CI: (5.18)

Then, the evolution equations for the perturbations are of
the form

ð� _PIÞ ¼ Oð�P2Þ and

ð� _CIÞ ¼ �N�CIðP� 2PIÞ þOð�C�PÞ: (5.19)

For definiteness, let us set I ¼ 1. Then P� 2P1 ¼ p1P
and similarly for I ¼ 2, 3. Now P is positive since all three
PI are positive. Therefore, if all pi are positive (i.e., if
p2
� > 1=2), the evolution equation for �CI is of the type

ð� _CIÞ ¼ ðnegative definite quantityÞ � �CI, whence the
perturbation will decay, implying stability. In terms of
the canonical variables describing the scalar field, this
occurs when the scalar field is large: 4�2 >P2. This
stability is in accordance with the Andersson-Rendall
results [8] on approach to spacelike singularity in the
presence of a massless scalar field in full general relativity.

Let us now consider the complementary case where
p2
� < 1=2. By the above reasoning, now (P� 2PI) is

negative for some I. For definiteness, let us take P1 to be
the largest of the PI’s initially so that (P� 2P1) is negative
which implies that C1 will grow and we have instability. In
this case, we cannot use perturbative analysis for the pair
C1, P1; it is necessary to keep all order terms in C1 and P1.
For simplicity, let us set C2 ¼ C3 ¼ 0 initially. Then val-
ues of C2, P2, C3, P3 will not change during evolution and
equations for C1, P1 simplify,

_P 1 ¼ �NC2
1; (5.20)

_C 1 ¼ �NC1ðP2 þ P3 � P1Þ ¼ �NC1Pp1; (5.21)

which can be solved exactly to obtain

P1ðtÞ ¼ P2 þ P3 � 2
ffiffiffiffiffiffiffiffiffiffiffi
P2P3

p
tanhð2 ffiffiffiffiffiffiffiffiffiffiffi

P2P3

p
Nðt� toÞÞ;

C1ðtÞ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffi
P2P3

p
sechð2 ffiffiffiffiffiffiffiffiffiffiffi

P2P3

p
Nðt� toÞÞ: (5.22)

These are the Bianchi II solutions written in our variables.
Here C1, the unstable variable, rapidly increases and then
decays to zero. During that time the P1 transitions between
one Kasner solution to another. In the asymptotic limits we
have

P1ð�1Þ ¼ P2 þP3 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
P2P3

p ¼ ð ffiffiffiffiffiffi
P2

p þ ffiffiffiffiffiffi
P3

p Þ2;
P1ðþ1Þ ¼ P2 þP3 � 2

ffiffiffiffiffiffiffiffiffiffiffi
P2P3

p ¼ ð ffiffiffiffiffiffi
P2

p � ffiffiffiffiffiffi
P3

p Þ2:
(5.23)

(In practice the asymptotic limits are achieved quickly,
thanks to the hyperbolic functions of time.) The result of
the transition is that P1, which originally was the largest of
the three PI, has transitioned to a lower value. By a change
of variables to the pi used in (5.14) it is apparent that the
eigenvalue corresponding to the negative exponent pi is the
one which has transitioned, and is positive at the end of the
transition. Since the singularity lies at � ¼ 0, this means
that the initially expanding direction now contracts, and
one of the two contracting directions now expands. Indeed,
(5.23) is precisely the u map in pi variables.
In this analysis we have made the simplification that

initially C2 ¼ C3 ¼ 0. If one starts from a generic point in
the vicinity of the Kasner fixed point set and still with P1 as
the largest of the three PI initially, there would again be a
transition of the type (5.22). But as P1 decreases, after a
finite time either P2 or P3 will now be the largest eigen-
value and making the corresponding CI unstable. That
pair will then evolve according to (5.22). This general
scenario was borne out in a large class of simulations of
the reduced equations of motion. Figures 1 and 2 illustrate
this dynamical behavior for generic initial data near the
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FIG. 1 (color online). Evolution of each of the three CI in
vacuum, starting from a point near the Kasner fixed point
surface. Initial data are C1 ¼ 1� 10�7, C2 ¼ 2� 10�7, C3 ¼
2:2� 10�7, P1 ¼ 0:4, P2 ¼ 0:8, P3 ¼ 0:0686 (C1 in blue, C2 in
green, C3 in red). Since none of the initial CI vanish, as expected
from analytical considerations, there is a series of separate Taub
transitions between Kasner states. Time has been rescaled by a
power of 1=4 to allow multiple transitions to be shown on a
single plot.
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Kasner surface. The Taub transitions are easy to see in
Fig. 2: even though none of the CI are initially zero, the
Taub transitions are well described by the analytical ex-
pressions (5.22). Figure 3 illustrates the dynamical behav-
ior in cases where the initial data are quite far from the
Kasner surface. Note that even in this case, the CI decrease
in time so that, although we start far away from the Kasner
surface, dynamics drives the state to the Kasner surface.

We can also draw some lessons for the full theory from
this behavior of the truncated system. Recall that the
dynamical trajectories discussed above can be thought of
as representing the evolution of fields at a fixed spatial
point. Let us therefore return to 3M and consider fields
CIðxÞ, PIðxÞ. Now, generically, wewill encounter a point x0

where the CI all vanish, while being nonzero is the neigh-
borhood of the point. As we noted in Sec. VB, the sign of
CI is preserved throughout the evolution. This is, in par-
ticular, true during the Taub transitions where the magni-
tude of CI grows. Therefore, on ‘‘one side’’ of x0, a CI will
be positive and increasing in magnitude, while on the
‘‘other side’’ it will be negative and increasing in magni-
tude. Therefore its derivative will increase rapidly.
Similarly the under Taub transitions the values of PIðxÞ
will change from those of one Kasner solution to another
except at the point x0. Again, this dynamics will generate a
large derivative at x0. Thus, analysis of the reduced system
suggests that spikes will occur in the full system (3.13) and
(3.14). As is well known, these spikes were found in
numerical simulations and, more recently, also in analyti-
cal treatments [38,39]. Whenever spikes appear, the key
assumption underlying BKL truncation is brought to
question because the spatial derivatives are large at the
spikes. The key issue for the BKL conjecture—and for the
application to quantum gravity we proposed in Sec. I—is
whether the time derivatives still dominate generically, as
they do in examples.
Let us summarize. Using analytical and numerical meth-

ods we showed that there exists a well-defined subspace
P hom of the full phase space P which exhibits exactly the
properties expected in the BKL conjecture. Our procedure
to arrive at the reduced system is more direct than those
available in the literature. In [27], for example, elimination
of the off-diagonal components and the antisymmetric
parts of Cij involves an additional assumption, beyond

ignoring spatial derivatives in favor of time derivatives:
these quantities are identified as part of the ‘‘stable subset’’
(variables that are expected to decay rapidly as the singu-
larity is approached) and then set to zero to obtain the
truncated equations. In our treatment, on the other
hand, the fact that the antisymmetric part of Cij is negli-

gible is directly implied by the assumption that the Di

derivatives are negligible and the constraints imply that
the variables Cij and Pij can be simultaneously diagonal-

ized, which, furthermore, completely fixes the gauge.
Thus, our Hamiltonian framework naturally led to a diago-
nal gauge, enabling us to quickly zero in on the essential
variables and eliminating the need to keep track of the
dynamics of extraneous variables involving frame rotations
[27,28]. Finally, the framework easily led us to the mix-
master behavior—a series of Bianchi I phases interspersed
by Bianchi II transitions. We recovered the umap for these
transitions, and observed the behavior expected from the
Andersson and Rendall analysis [8] when a scalar field of
large enough magnitude is introduced.

VI. DISCUSSION

We began with the Hamiltonian formulation of general
relativity underlying LQG where the basic fields are spatial
triads Ea

i with density weight 1, spin connections �i
a they
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FIG. 2 (color online). Evolution of each of the three PI in
vacuum, starting from a point near the Kasner fixed point
surface, with the same initial data as in Fig. 1 (P1 in blue, P2

in green, P3 in red). The largest eigenvalue, P2, transits first.
After this transition, P1 becomes the largest eigenvalue, now
making C1 unstable. In time all three PI tend to zero. In terms of
parameters pi used in the Kasner metric (5.14), the initially
expanding direction p2 starts contracting at the end of the
transition and initially contracting p1 starts expanding.
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FIG. 3 (color online). Evolution of each of the three CI in
vacuum, starting from a point away from the Kasner fixed
point surface. Initial data are C1 ¼ 0:7431, C2 ¼ 0:3922,
C3 ¼ 0:6555, P1 ¼ 0:1712, P2 ¼ 0:7060, P3 ¼ �0:3140 (C1

in blue, C2 in green, C3 in red). Even though we start out far
from the Kasner surface (where all CI vanish), dynamics drives
the state to the Kasner surface. Again, time has been rescaled by
a power of 1=4 to allow multiple transitions to be shown on a
single plot.
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determine, and extrinsic curvaturesKi
a. Based on examples

that have been studied analytically and numerically, it
seems reasonable to expect that the determinant q of the
spatial metric qab would vanish and the trace K of the
extrinsic curvature would diverge at spacelike singular-
ities. (This expectation is, in particular, borne out in the
numerical simulations of G2 space-times [33].) One can
therefore hope to obtain quantities which remain well
defined at the singularity by either multiplying the natural
geometric fields by suitable powers of q or dividing them
by suitable powers of K. In the commonly used framework
due to Uggla et al. [12,27,40], one chooses to divide by K.
One first introduces the so-called Hubble normalized triad
K�1eai by rescaling the orthonormal triad eai by K�1, and
then constructs a set of Hubble normalized fields by con-
tracting �a

j and Ka
j with K�1eai. These fields are ex-

pected to have a regular limit at the spacelike singularity.
Einstein’s equations expressed in terms of them naturally
suggest a truncation and the truncated system successfully
describes the expected oscillatory BKL behavior. The re-
sulting form of the BKL conjecture is supported by nu-
merical evolutions of full general relativity carried out by
Garfinkle [41]. However, because there is no underlying
Hamiltonian framework, this approach does not easily lend
itself to nonperturbative quantization. Even if such a
framework were to be constructed, because of the presence
of the K�1 factor, it would be difficult to introduce quan-
tum operators corresponding to the Hubble rescaled fields.

Motivated by quantum considerations, we adopted the
complementary strategy of multiplying geometrical fields
by

ffiffiffi
q

p
. The LQG Hamiltonian formulation we began with

already features a density-weighted triad with exactly the
desired property: Ea

i ¼ ffiffiffi
q

p
eai . Since

ffiffiffi
q

p
is expected to

vanish at the singularity, one can hope to use Ea
i in place

of the Hubble normalized K�1eai to construct a new set of
fields to formulate the BKL conjecture. Indeed, (modulo
trace terms) our basic variables Ci

j and Pi
j were obtained

simply by contacting the spatial indices of �a
j and Kj

a by
Ea
i . Furthermore, because Ea

i vanishes in the limit, the
operator Di :¼ Ea

i Da provided a key tool in the formula-
tion of the BKL conjecture: asymptotically, DiCj

k and

DiPj
k should become ‘‘negligible’’ relative to Cj

k and

Pj
k. Now, in exact general relativity, time derivatives of

Ci
j and Pi

j can be expressed in terms of their Di deriva-
tives, purely algebraic (and at most quadratic) combina-
tions of Ci

j and Pi
j, the lapse N, and itsDi derivatives [see

(3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14),
and (3.15)]. Therefore, if in the limit the Di derivatives of
the basic fields become negligible compared to the fields
themselves, we are naturally led to conclude that time
derivatives would dominate the spatial derivatives. This
chain of argument led to our formulation of the BKL
conjecture.

This rather simple idea depends on the fact that the
structure of Einstein’s equations has an interesting and

unanticipated feature: as we saw in Sec. III, once the triplet
Ci

j, Pi
j, Di is constructed from the triad Ea

i and the
extrinsic curvature Ki

a on an initial slice, the constraint
and evolution equations can be expressed entirely in terms
of the triplet. Given a solution to these equations, the
spatial triadEa

i (and hence the metric qab) can be recovered
at the end simply by solving a total differential equation
(3.16). This is a surprising and potentially deep property of
Einstein’s equation. It played an essential role in our for-
mulation of the BKL conjecture and could well capture the
primary reason behind the BKL behavior observed in
examples and numerical simulations.
Since our framework is developed systematically from a

Hamiltonian theory, its BKL truncation naturally led to a
truncated phase space. The specific truncation used has an
important property: The truncated constraint and evolution
equations on the truncated phase space coincide with the
truncation of full equations on the full phase space. On
the truncated phase space we could solve and gauge-fix
the Gauss and vector constraints to obtain a simple
Hamiltonian system (which encompasses all Bianchi type
A models). Solutions to this system were explored both
analytically and numerically. We showed that they exhibit
the Bianchi I behavior, the Bianchi II transitions, and
spikes as in the analysis of symmetry reduced models
[42] and numerical investigations of full general relativity
[12]. Therefore, as explained in Sec. I, an appropriate
quantization of the truncated system, e.g., à la loop quan-
tum cosmology, could go a long way toward understanding
the fate of generic spacelike singularities in quantum
gravity.
In Secs. III, VA, and VB, we restricted ourselves to

vacuum equations. The addition of a massless scalar field is
straightforward and was carried out in the reduced phase
space framework in Sec. VC. If the energy density in the
scalar field is small, one again has Bianchi II transitions
and spikes. However, once the energy density exceeds a
critical value, these disappear and the asymptotic dynamics
at any spatial point is described just by the Bianchi I model
with a scalar field without transitions. Thus, our truncated
system faithfully captures the main features generally ex-
pected from the analysis of Andersson and Rendall [8] in
full general relativity coupled to a massless scalar field or
stiff fluid. Thus, although the initial motivation came from
quantum considerations, our formulation of the BKL con-
jecture, and the form of the field equations both in the full
and truncated versions, should be useful also in the
analytical and numerical investigations of singularities in
classical general relativity.
We will conclude with a discussion comparing our

approach with that of Uggla, Ellis, Wainwright, and Elst
(UEWE) ([27]). The Hubble normalized variables used in
their formulation of field equations are give by

�ij ¼ 3K�1eaðiKjajjÞ � K�1eakK
k
a�ij; (6.1)
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Nij ¼ �3K�1eaði�jajjÞ þ 3K�1eak�
k
a�ij; (6.2)

Ai ¼ ��i
jk3K�1eaj�

k
a; (6.3)

@i ¼ 3K�1eai @a: (6.4)

These variables are especially useful because they are scale
invariant: they are unchanged under a constant rescaling of
the space-time metric. Because of this property and be-
cause of the ‘‘regulating’’ factor K�1 in their expressions,
it is hoped that in the limit as one approaches the spacelike
singularity, these variables will remain finite [40] and their
@i derivative will become negligible.

We began with quite a different motivation and our focus
was on constructing a Hamiltonian framework rather than
on differential equations. Since our emphasis was on con-
structing phase space variables that can be readily pro-
moted to well-defined quantum operators, from the start
we avoided the use of factors such as 1=K. As a result,
our basic variables Ci

j and Pi
j are not scale invariant.

Could we have made a different choice which is also
well suited for quantization and at the same time enjoyed
scale invariance? The answer is in the negative for the
following reason. Under constant conformal rescalings
gab ! �2gab of the space-time metric, we have Ea

i !
�2Ea

i , �
i
a ! �i

a, and Ki
a ! Ki

a. Now, in the analysis of
the approach to singularity, scale invariant quantities are
directly useful only if they are space scalars and it is not
possible to construct scale invariant scalars using just sums
of products of these fields, i.e., without introducing fields
such as K�1 for which it is difficult to construct quantum
operators. Even if one introduces additional nondynamical
fields, such as fiducial frames to construct scalars, for
natural choices of these frames, scale invariant components
of fields such as Ki

a, �
i
a typically diverge at the singularity.

Thus, with our motivation, it does not seem possible to
demand scale invariance of the basic variables that are to
feature in the BKL conjecture.

Our viewpoint is that the most important feature of
the Hubble normalized variables is that although the or-
thonormal triad eai typically diverges as one approaches a
spacelike singularity, K diverges even faster, making the
combination K�1eai go to zero at the singularity.
Furthermore, it goes to zero at a sufficient rate for its
contraction with Ki

a, �
i
a, and @a in (6.1), (6.2), (6.3), and

(6.4) to tame the a priori divergent behavior of these fields.
Instead of dividing the orthonormal triad eai by K, which
one expects to diverge at the singularity, our strategy was to
multiply it by the volume element

ffiffiffi
q

p
, which, in examples,

goes to zero at the singularity. This difference persists
also in the treatment of the lapse. The UEWE framework
assumes that the (scalar) lapse �N is such that �NK admits
a limit N while we assume that the density-weighted
lapse N ¼ ð ffiffiffi

q
p Þ�1 �N admits a well-defined limit at the

singularity. Thus, in both cases, the standard scalar lapse
�N goes to zero so the singularity lies at t ¼ 1.
The key scale invariant UEWE variables ðNij;�ijÞ—

which are expected to be well behaved at the singular-
ity—are related to our ðCij; KijÞ via
Nij ¼ 6P�1CðijÞ and �ij ¼ �6P�1PðijÞ þ 2�ij; or

(6.5)

CðijÞ ¼ �K
ffiffiffi
q

p
3

Nij and PðijÞ ¼
K

ffiffiffi
q

p
3

ð�ij � 2�ijÞ
(6.6)

and the two sets of lapse fields are related by

N ¼ K
ffiffiffi
q

p
N: (6.7)

If one focuses only on the structure of differential equa-
tions near spacelike singularities, the two reduced systems
would in essence be equivalent if K

ffiffiffi
q

p
admits a finite,

nowhere vanishing limit at the singularity. This condition
holds for Bianchi I models and also Bianchi II which
describe the transitions between Bianchi I epochs. In fact
in the Bianchi I model,

ffiffiffi
q

p
K ¼ 1 and our density-weighted

triad has the same dependence on proper time as the
Hubble normalized triad. Thus, although the motivations,
starting points, and procedures used in the two frameworks
are quite different, surprisingly, in the end the basic vari-
ables and equations are closely related.
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APPENDIX A: DENSITIES

Since the basic variables that feature in our formulation
of the BKL conjecture are scalars on 3M of density weight
1, in this appendix we briefly recall a coordinate indepen-
dent framework for describing densities. The underlying
idea is due to Wheeler and the detailed framework was
developed by Geroch (see, e.g., [43]). This framework goes
hand in hand with Penrose’s abstract index notation
[44,45]. Because the primary application in this paper is
to our fields Ci

j, Pi
j on 3M, we will focus on scalar

densities on 3-manifolds. But generalization to tensor den-
sities on n-manifolds is straightforward.
Fix an oriented 3-manifold 3M and fix a orientation

thereon. Denote by E the space of smooth, positively
oriented, nowhere vanishing, totally skew tensor fields
eabc on 3M. Clearly, given any two elements eabc and
e0abc in E, there exists a (strictly) positive function 	
such that e0abc ¼ 	eabc. This fact will be used repeatedly.

HAMILTONIAN FORMULATION OF THE BELINSKII- . . . PHYSICAL REVIEW D 83, 084024 (2011)

084024-13



In this paper, a scalar density Sn of weight n is a map
from E to the space of (real valued) smooth functions on
3M: e ! SnðeÞ, such that

Snðe0Þ ¼ 	nSnðeÞ: (A1)

Here n can be any real number but in most applications in
general relativity it is an integer. [In quantum mechanics,
on the other hand, states are (complex-valued) densities of
weight 1=2 on the configuration space [43].] Since Ci

j, Pi
j

have density weight 1, let us make a short detour to discuss
the case n ¼ 1. Fix any 3-form sabc on

3M. It determines a
canonical scalar density of weight 1:

S1ðeÞ :¼ sabce
abc: (A2)

Conversely, since S1 is a linear mapping from E to smooth
functions, it determines a canonical 3-form sabc. Thus, our
basic variables could also be taken to be 3-forms Cij

abc,

Pij
abc on

3M which take values in second rank tensors in

the internal space. The standard ADM phase space of
general relativity can be similarly coordinatized by posi-
tive definite metrics qab and tensor fields Pab

cde which are

symmetric in a, b and totally skew in c, d, e [46,47].
Finally note that every metric qab determines a canonical
volume 3-form �abc which has positive orientation and
satisfies �abc�defq

adqbeqcf ¼ sgnðqÞ3!. Therefore it also

determines a canonical scalar density
ffiffiffi
q

p
of weight 1,

called the square root of the determinant of qab:
ffiffiffi
q

p ðeÞ :¼
�abce

abc for all e 2 E.
This definition can be extended to density-weighted

tensor fields in an obvious fashion. Note that every 3M
carries a natural totally skew tensor density 
abc of weight
1, called the Levi-Civita density:


abcðeÞ ¼ eabc 8 e 2 E: (A3)

Given any metric qab on 3M, the square root of its deter-
minant,

ffiffiffi
q

p
, can also be expressed as

ffiffiffi
q

p ¼ 
abc�abc.
Finally, given a derivative operator Da on tensor fields

on 3M, we can extend its action on densities Sn of weight 1
in a natural manner.DaSn is a 1-form with the same density
weight n, given by

ðDaSnÞðeÞ ¼ DaðSnðeÞÞ � n�aSnðeÞ 8 e 2 E; (A4)

where the first term on the right-hand side is just the
gradient of the function SnðeÞ and the 1-form �a is given
byDae

bcd ¼ �ae
bcd. Therefore the action of the derivative

operator Di introduced in the main text is given by

ðDiSnÞðeÞ ¼ DiðSnðeÞÞ � nðEa
i �aÞSnðeÞ 8 e 2 E:

(A5)

Since the derivative operator Da we considered ignores
internal indices, this equation gives the action of Di on Ci

j

and Pi
j by regarding these basic fields simply as scalar

densities with weight 1.

APPENDIX B: FULL EQUATIONS OF MOTION

In the main text we restricted the equations of motion to
the case where the shift is zero as is the Lagrange multiplier
for the Gauss constraint. In this appendix we give the
equations of motion in full generality for both full general
relativity and in our reduced system. The full equations of
motion for C and P are as follows.

_Cij¼��jklDk

�
N

�
1

2
�i
lP�Pl

i

��
þN½2Cði

kP
jkjjÞ

þ2C½kj�Pk
i�PCij�þNkDkCijþCijDkN

k

þCij�klmN
kClmþðCi

k�kljþCk
j�kliÞ

�
�
�l�NmCmlþ1

2
CNl

�
þDi

�
�j�NkCkjþ1

2
NjC

�

�Dk

�
�k�NlCl

kþ1

2
CNk

�
�ij; (B1)

_Pij ¼ �jklDkðNð1=2�i
lC� Cl

iÞÞ � �klmDmðNCklÞ�ij

þ 2�jkmC½ik�DmðNÞ þ ðDiDj �DkDk�
ijÞN

þ N½�2CðikÞCk
j þ CCij � 2C½kl�C½kl��ij�

þ NkDkPij þ PijDkN
k þ Pij�klmN

kClm

þ ðPi
k�klj þ Pk

j�kliÞ
�
�l � NmCml þ 1

2
CNl

�
: (B2)

In the reduced system the derivative terms are set to zero
leading to the following equations of motion for C and P.

_Cij ¼ N½2CkðiPk
jÞ � PCij�

þ 2�klðiCjÞ
k

�
�l � NmCm

l þ 1

2
CNl

�
; (B3)

_Pij ¼ N½�2CikC
k
j þ CCij�

þ 2�klðiPjÞ
k

�
�l � NmCm

l þ 1

2
CNl

�
: (B4)
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