
Beyond the geodesic approximation: Conservative effects of the gravitational self-force
in eccentric orbits around a Schwarzschild black hole

Leor Barack1 and Norichika Sago2

1School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 17 January 2011; published 14 April 2011)

We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-

field orbit around a Schwarzschild black hole. We assume the particle’s mass � is much smaller than the

black hole mass M, and explore post-geodesic corrections of Oð�=MÞ. Our analysis uses numerical data

from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the

particle along the eccentric geodesic. First, we calculate the Oð�=MÞ conservative correction to the

periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity.

A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit,

where we express the correction to the periastron advance as a function of the invariant azimuthal

frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations.

In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a

suitable generalization of Detweiler’s circular-orbit ‘‘redshift’’ invariant. We compute the Oð�=MÞ
conservative correction to this invariant, expressed as a function of the two invariant frequencies that

parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in

the weak-field regime, as we shall report elsewhere. The results of our study can inform the development

of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate

benchmark for future numerical-relativistic simulations.
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I. INTRODUCTION AND SUMMARY

We recently reported [1] a numerical code for comput-
ing the gravitational self-force (GSF) experienced by a
mass particle set in motion around a Schwarzschild black
hole. The code takes as input the two parameters of an
eccentric geodesic (p and e, representing relativistic gen-
eralizations of the Keplerian semilatus rectum and eccen-
tricity, respectively) and returns the various components of
the GSF, evaluated in the Lorenz gauge, as functions along
the geodesic orbit. Our current code does not take into
account the backreaction from the GSF on the orbital
motion; describing the radiative evolution of the orbit
remains an important long-term goal of the self-force pro-
gram [2], strongly motivated within the context of experi-
mental gravitational-wave physics [3]. However, GSF data
from our current code (and from GSF codes by others
[4–6], so far restricted to circular orbits) already give
access to some interesting new physics. Specifically, they
allow a quantitative description of some conservative post-
geodesic effects associated with the finiteness of the parti-
cle’s mass. This description is exact at linear order in the
particle’s mass � (within a controlled numerical error,
which in practice can be kept very small).

Several such post-geodesic effects have already been
analyzed. In [4] Detweiler calculated the conservative
Oð�Þ correction to the value of the gauge-invariant ‘‘red-
shift’’ parameter (dt=d�, with t and � being the particle’s
coordinate and proper times, respectively; see below)

along a circular orbit. In [7] we derived the conservative
Oð�Þ shift in the frequency of the innermost stable circular
orbit (ISCO). Most recently, in [8] (with Damour) we
computed the Oð�Þ precession effect of the conservative
GSF at the circular-orbit limit. These results were all
successfully tested against the analytic predictions of
post-Newtonian (PN) theory in the weak-field regime
[4,8,9] and, moreover, used to constrain some of the
yet-unknown high-order PN parameters [8–11].
Indeed, GSF calculations already provide a valuable

source of strong-field calibration data for various analytic
models of the dynamics in binary systems. Huerta and Gair
[12] used circular-orbit GSF data from Ref. [13] to assess
the influence of conservative GSF corrections on the long-
term phase evolution in astrophysical extreme-mass-ratio
inspirals. Lousto et al. [14,15] used the ISCO-shift result to
inform an ‘‘empirical’’ formula (based also on results from
fully nonlinear numerical simulations and on PN informa-
tion) for the remnant masses and spins in binary black hole
mergers. The value of the ISCO shift was also utilized by
Favata [16] as an exact reference point in an exhaustive
study of the relative performances of various PN methods.
And, in a recent collaboration with Damour [8] we used
GSF data for slightly eccentric orbits to constrain, for the
first time, the strong-field shape of some of the analytic
functions appearing in the effective one-body (EOB) de-
scription of the conservative binary dynamics. In all these
examples GSF data are valuable because they give a handle
on a hitherto inaccessible, ‘‘remote’’ region of the binary
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parameter space, namely, the domain of small mass ratios
and small separations.

So far, analysis of the conservative effects of the GSF
has been restricted to circular orbits or to orbits with an
infinitesimally small eccentricity. Here we take a big step
forward, and study the conservative effects of the GSF for
orbits with large eccentricities (‘‘large’’ in the sense of
‘‘not necessarily small’’—in practice our code can handle
eccentricities up to about 0.7; see below). In doing so we
exploit the full capacity of our eccentric-orbit code for the
first time.

Eccentric geodesics of the Schwarzschild geometry are
characterized by two frequencies: an azimuthal frequency
�’ and a radial frequency�r, associated with the periodic

motions in the Schwarzschild coordinates ’ and r, respec-
tively (the two frequencies will be defined more precisely
below). Unlike in the analogous Keplerian problem where
�’ ¼ �r, here one always finds �’ >�r, giving rise to

what we interpret as periastron advance. The conservative
piece of the GSF induces Oð�Þ shifts in the values of �’

and �r and hence in the value of the periastron advance.
Our first goal in this paper is to compute this GSF-induced
correction to the periastron advance, denoted ��, and we
do so in Sec. II. We express �� as a function of (the GSF-
perturbed values of) p and e—a convenient parametriza-
tion of the orbit which is commonly adopted in perturba-
tive studies (e.g., [17–19]). Unfortunately, although the
shift �� itself is gauge invariant (in a sense that will be
made precise in Sec. III A), the parameters p and e are not
invariant, so our numerical results for ��ðp; eÞ must be
interpreted with caution: they are valid specifically in the
Lorenz gauge. A sample of our results for ��ðp; eÞ is
presented in Tables II and III and plotted in Fig. 1.
Notably, we find that the correction ��ðp; eÞ is negative
for any p, e, i.e., the Lorenz-gauge GSF always acts to
reduce the rate of periastron advance.

The above calculation accounts only for the effect of the
conservative piece of the GSF, and it assumes that its
dissipative piece has been ‘‘turned off.’’ Of course, in the
physical problem the frequencies �’ and �r evolve dis-

sipatively, and over one radial period they drift by an
amount of Oð�Þ, which may well be comparable in mag-
nitude to the conservative shift in these frequencies. One
should therefore ask whether the conservative shift �� has
any physical relevance (notwithstanding the gauge issue
mentioned above). We will suggest an interpretation of our
results that makes them meaningful even in the presence of
dissipation: The periastron advance in the physical, dis-
sipatively evolving system may still be defined through the
accumulated ’-phase between two successive periastron
passages (minima of the orbital radius r); we will observe
that this ‘‘true’’ periastron advance is given through Oð�Þ
by the conservative advance �� calculated for a certain
‘‘average’’ geodesic. This observation makes it possible, in
principle, to incorporate the Oð�Þ precession effect in an

approximate model of the orbital evolution (such as the one
introduced recently by Gair et al. in Ref. [2]) based on our
results for ��.
It is clearly desirable to have at hand a gauge-invariant

measure of the Oð�Þ conservative effect—to allow, for
example, a meaningful comparison with results from PN
theory. What is required, more precisely, is a gauge-
invariant relation, that expresses a nontrivial gauge-
invariant quantity encoding the Oð�Þ effect as a function
of two other gauge-invariant quantities parametrizing the
perturbed orbit. A natural gauge-invariant parametrization
of the orbit is provided by the pair f�’;�rg [20], but it is
not immediately obvious what one might choose for a third
nontrivial invariant. In Sec. III we will propose such a third
invariant, which is constructed from the GSF (and the
regularized metric perturbation) along the orbit, and enc-
odes the Oð�Þ conservative effect in a nontrivial way. Our
gauge-invariant quantity, denoted hUi�, represents a natu-
ral generalization of Detweiler’s redshift invariant: it is
defined as the �-average of dt=d� over a radial period,
which is also equal to the ratio between the radial period
measured in time t and the radial period measured in time
�. We then compute the conservative GSF correction
�hUi� as a function of the (GSF-corrected) frequencies
�’ and �r. Our numerical results for the gauge-invariant

relation �hUi�ð�’;�rÞ are displayed in Table IV.

Preliminary comparison of these results with PN expres-
sions in the weak-field regime shows a very good agree-
ment. A detailed comparison with PN theory will be
presented elsewhere [21].
In the above description we have (for simplicity) left

unmentioned a certain subtlety related to our choice of a
time coordinate, and we come back to this point now. It is
known [8,9,22] that the monopole piece of the Lorenz-
gauge metric perturbation has a peculiar behavior at
r ! 1, which, however, can be cured using a simple
‘‘normalization’’ of the Schwarzschild time coordinate,
in the form t ! t̂ ¼ ð1þ �Þt, where � is a certain Oð�Þ
constant which depends on the particle’s orbit [see Eq. (64)
below]. The time t̂ (unlike t) reflects the asymptotic
flatness of the perturbed spacetime, and at r ! 1 it co-
incides with the natural time coordinate used in PN studies.
Since one of our main goals here is to provide useful data
for PN comparisons, we choose to work with the time
coordinate t̂ throughout our analysis. In particular, we
define the orbital frequencies with respect to time t̂, not t

(and call them �̂’ and �̂r to reflect this), and we similarly

define hUi� through dt̂=d�, not dt=d�. We note, however,
that the quantity �� is insensitive to the time coordinate

chosen (as it depends only on the ratio�’=�r ¼ �̂’=�̂r).

In Sec. IV we return to consider the periastron advance,
this time focusing on the circular-orbit limit (e ! 0). This
limit defines a one-parameter family of orbits, each of
which nonetheless is characterized by two invariant

frequencies �̂’ and �̂r (the latter associated with an
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infinitesimal e-perturbation of the circular orbit). This
allows for a gauge-invariant description of the GSF pre-
cession effect in this case, e.g., by expressing � as a

function �̂’. In previous work [8] we have already ana-

lyzed the precession effect of the GSF for slightly eccen-
tric orbits. Here we reproduce our results in a form that
allows us a direct comparison with recent results from
fully nonlinear numerical-relativistic (NR) simulations by
Mroué et al. [23]. We illustrate the feasibility and poten-
tial benefit of such comparisons in order to motivate more
detailed study.

To help readers navigate through this work we give, in
Table I, a key to our main symbols and essential notation.
The table can serve as a quick reference guide for readers
wishing to use our numerical results without delving into
the technical details of their derivation. Throughout this
work we use metric signature �þþþ and ‘‘geome-
trized’’ units with c ¼ G ¼ 1 (with the mass of the central
black hole providing a natural unit for both time and
distance). Physical units can be restored by multiplying
all distances by G=c2, all frequencies by c3=G, etc.

II. PRECESSION EFFECT OF THE GSF

A. Preliminaries: geodesic motion

Let us begin by recalling a few results from the theory of
geodesic motion in Schwarzschild spacetime. Throughout
our presentationwe use a subscript 0 to distinguish geodesic
quantities from their GSF-perturbed counterparts; thus, for
example, u�0 and u� will denote the tangent four-velocity

associated with the geodesic and GSF-perturbed orbits,
respectively. Timelike geodesics in Schwarzschild geome-
try constitute a two-parameter family, parametrized by two

constants of motion: the specific energy E0 � �ut0 and

specific angular momentum L0 � u’0. Here u�0 ¼
g��u

�
0 , where g�� is the background Schwarzschild metric

with mass M, and we have assumed (without loss of gen-
erality) that the geodesics lie in the equatorial plane, � ¼
�=2 (hence u�0 ¼ 0). We will be interested in the subset of

bound geodesics, i.e., ones confined to a radii range r�0 �
r � rþ0 for some r�0 > 4M (periastron) and rþ0 � r�0 (apas-

tron) (there are no bound timelike geodesics with
r�0 � 4M). The pair ðr�0 ; rþ0 Þ can be used as an alternative

parametrization of these geodesics,whichwe call eccentric.
The special (one-parameter subset of) eccentric geodesics
with r�0 ¼ rþ0 are called circular.

For eccentric geodesics it is convenient to define the
(adimensionalized) semilatus rectum p0 and eccentricity
e0 through

r�0 ¼ p0M

1þ e0
; rþ0 ¼ p0M

1� e0
; (1)

and reparametrize the orbits using the pair ðp0; e0Þ. The
structure of the ðp0; e0Þ parameter space is described, e.g.,
in Sec. II A of [1] (see, in particular, Fig. 1 therein). Each
eccentric geodesic has a unique value of ðp0; e0Þ within the
range 0 � e0 < 1 with p0 > 6þ 2e0. Geodesics located
along the separatrix p0 ¼ 6þ 2e0 are marginally unstable
(and will not remain bound under small perturbations of e0
and/or p0). Stable circular orbits have e0 ¼ 0 and p0 > 6.
The special geodesic with ðp0; e0Þ ¼ ð6; 0Þ (corresponding
in the e0-p0 plane to the intersection of the separatrix with
the e0 ¼ 0 axis) is the ISCO.
In terms of p0 and e0, the geodesic specific energy and

angular momentum are given by

TABLE I. Essential notation and key to main symbols.

Symbol Meaning Where defined

�, M particle’s mass, black hole’s mass

q �=M, small mass ratio

t, r, �, ’ Schwarzschild/Lorenz-gauge coordinates

Fcons
� conservative piece of the GSF (/ �2)

X0 value of a quantity X at the geodesic limit (� ! 0)
�X the Oð�Þ conservative GSF correction to X e.g., Eqs. (20) and (81)

p, e semilatus rectum (per M) and eccentricity Eq. (14)

� orbital radial phase (true anomaly) Eq. (16)

E, L particle’s energy and angular momentum per � Eq. (15)

�r, �’ radial and azimuthal orbital frequencies Eqs. (17) and (18)

T radial period (in time t)
T radial period (in proper time �)
� fractional periastron advance (dissipation ignored) Eq. (19)

�true fractional periastron advance (dissipation included) Eq. (47)

t̂ normalized (asymptotically flat) time coordinate Eq. (63)

X̂ a quantity X redefined with respect to time t̂ e.g., Eq. (70)

hUi� generalized redshift invariant Eq. (60)

r� radius (r value) of a circular orbit
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E0 ¼
�ðp0 � 2� 2e0Þðp0 � 2þ 2e0Þ

p0ðp0 � 3� e20Þ
�
1=2

;

L0 ¼ p0M

ðp0 � 3� e20Þ1=2
: (2)

The orbital radius varies in time according to the formula

r ¼ r0ð�Þ ¼ p0M

1þ e0 cos�
; (3)

where the radial phase � (true anomaly) is related to the
coordinate time t ¼ t0ð�Þ through

dt0
d�

¼ Mp2
0

ðp0 � 2� 2e0 cos�Þð1þ e0 cos�Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 � 2� 2e0Þðp0 � 2þ 2e0Þ

p0 � 6� 2e0 cos�

s
; (4)

with initial condition t0ð� ¼ 0Þ ¼ t�, where t� corre-
sponds to a periastron passage [i.e., r0ð�ðt�ÞÞ ¼ r�0 ]. The
azimuthal phase of the orbit, ’ ¼ ’0ð�Þ, can be obtained
as a function of � by solving

d’0

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0

p0 � 6� 2e0 cos�

s
(5)

with initial condition ’ð� ¼ 0Þ ¼ ’�, where ’� is the
’-phase at t ¼ t�. We note that both t0ð�Þ and ’0ð�Þ are
monotonically increasing functions.

The t-period of the radial motion (i.e., the t-time interval
between two successive periastron passages) and the fre-
quency associated with it are given by

T0 ¼
Z 2�

0

dt0
d�

d�; �r0 ¼ 2�=T0; (6)

where the integrand can be expressed as a function of �
using Eq. (4). The azimuthal phase accumulated over one
radial period T0, i.e., �0 � ’0ð� ¼ 2�Þ � ’0ð� ¼ 0Þ, is
given by

�0 ¼
Z 2�

0

d’0

d�
d�

¼ 4

�
p0

p0 � 6� 2e0

�
1=2

ellipK

� �4e0
p0 � 6� 2e0

�
; (7)

where we have substituted from Eq. (5) and where

ellipKð	Þ � R�=2
0 ð1� 	sin2xÞ�1=2dx is the complete ellip-

tic integral of the first kind. The azimuthal frequency �’0

is defined as the t-average of ðd’=dtÞ0 over a radial period,
which may also be expressed as

�’0 ¼ �0=T0 ¼ �r0 � ½�0=ð2�Þ�: (8)

It can be shown that, for any given 0 � e0 < 1, �0 is a
monotonically decreasing function of p0, with �0 ! 2�
as p0 ! 1. Hence �0 > 2� for all eccentric orbits, with
the excess �0 � 2� representing periastron advance.

We shall denote the average periastron advance per radian
by �0,

�0 � �0=ð2�Þ � 1> 0: (9)

From Eq. (8) we then have the relation

�’0=�r0 ¼ 1þ �0: (10)

It is instructive to examine some asymptotic character-
istics of �0. For a fixed eccentricity we have the large-p0

expansion

�ðp0 � 1Þ ¼ 3p�1
0 þ 1

4
ð54þ 3e20Þp�2

0 þOðp�3
0 Þ; (11)

and we note that e0 only enters �0 at subleading order—
and even there the effect of eccentricity is suppressed due
to the smallness of the term 3e20 compared with 54. We also

observe that �0 does not vanish at the circular-orbit limit;
rather, we find

�ðe0 	 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0=ðp0 � 6Þ

q
� 1þOðe20Þ: (12)

Note that at the ISCO (where �r0 ¼ 0) �0 diverges as


ðp0 � 6Þ�1=2. Lastly, consider the asymptotic behavior
near the separatrix, p0 � 6� 2e0 	 1 (for e0 > 0),

�0 ’ 1

�

�
3þ e0
2e0

�
1=2

ln

�
64e0

p0 � 6� 2e0

�
: (13)

Note the logarithmic divergence at the separatrix limit. We
see that the form of divergence of �0 at the ISCO limit
ðp0; e0Þ ! ð6; 0Þ depends on the direction (in the p0-e0
plane) from which this limit is taken, illustrating the
singular nature of the ISCO point.
It should be noted that the pair of frequencies ð�r0;�’0Þ

does not constitute a one-to-one parametrization of eccen-
tric geodesic orbits in Schwarzschild geometry. The
transformation ðp0; e0Þ ! ð�r0;�’0Þ [and also ðE0; L0Þ !
ð�r0;�’0Þ] becomes singular along a certain curve in the

parameter space, well outside the separatrix (see Fig. 3 in
Appendix A); one finds that for each orbit lying on the
inner side of the singular curve there exists a ‘‘dual’’ orbit
on the outer side, which is physically distinct but has
precisely the same frequencies ð�r0;�’0Þ. This little-

known property of the parameter space (we were unable
to find any reference to it in the literature) is further
discussed in Appendix A.

B. The GSF-perturbed orbit

Now consider a pointlike particle of mass � 	 M mov-
ing in the Schwarzschild geometry. At the limit � ! 0 the
particle’s orbit is a geodesic of the background geometry,
and we assume here this geodesic belongs to the class of
eccentric geodesics discussed above. When the finiteness
of � is taken into account, we say that the particle expe-
riences a GSF ( / �2), and the motion is no longer strictly
a geodesic of the background geometry. The GSF has a
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dissipative effect, which removes energy and angular mo-
mentum from the system (via gravitational radiation) and
gives rise to a gradual inspiral. The GSF also has a con-
servative piece, which affects, for example, the precession
rate of the orbit. The splitting of the GSF into dissipative
and conservative pieces is formally defined in terms of the
retarded and advanced metric perturbations (see, e.g.,
[24]); in Ref. [1] we describe how each of the two pieces
can be constructed from the full GSF in practice, taking
advantage of the particular symmetries of Schwarzschild
geodesics. We will proceed here by making the (nonphys-
ical) assumption that the dissipative piece of the GSF has
been ‘‘turned off,’’ and that the particle is moving under the
influence of the conservative piece of the GSF alone,
denoted Fcons

� . We shall come back to discuss the dissipa-
tive effect in the next subsection.

We shall assume that the orbit remains strictly bound
under the small perturbation caused by F�

cons (this is only
allowed because we are ignoring dissipation), and denote
the values of the new, ‘‘perturbed’’ radial turning points by
r� and rþ. (We note that the values of r�, rþ are gauge
dependent, as are the values of many other perturbed
quantities we define below. We will describe the construc-
tion of gauge-invariant quantities in the next section; in the
meantime, for concreteness, we may assume that all per-
turbed quantities are given in a particular gauge—e.g., the
Lorenz gauge.) We then define p and e via

r� ¼ pM

1þ e
; rþ ¼ pM

1� e
; (14)

and use the pair ðp; eÞ to parametrize the perturbed orbit.
We also define

E � �ut; L � u’; (15)

where u� ¼ g��u
� with u� being the four-velocity tangent

to the perturbed orbit, taken to be normalized with respect
to the backgroundmetric: g��u

�u� ¼ �1. Note thatE and

L are not conserved along the orbit, and do not have the
interpretation of energy and angular momentum. From
symmetry, the orbit remains equatorial even under the
effect of the GSF, u� ¼ 0.

We further assume that the perturbed orbit remains
periodic in time, with radial period T interpreted as the
perturbed value of T0 (that such a periodic solution to the
perturbed equations of motion exists will be confirmed
below by explicit construction). We then choose a radial
phase parameter � so defined that the radius along the
perturbed orbit varies according to

r ¼ rð�Þ ¼ pM

1þ e cos�
; (16)

in analogy with the geodesic formula (3) (we use the same
symbol � as in the geodesic case for mere notational
brevity; this should not lead to confusion). The effect of
the GSF on the shape of the orbit is then encoded in the

relations t ¼ tð�Þ and ’ ¼ ’ð�Þ along the perturbed orbit,
which depend explicitly on the GSF (see below). The
perturbed period and radial frequency are obtained through

T ¼
Z 2�

0

dt

d�
d�; �r ¼ 2�=T; (17)

and the perturbed accumulated phase � and azimuthal
frequency are given by

� ¼
Z 2�

0

d’

d�
d�; �’ ¼ �=T: (18)

Finally, the conservative GSF-perturbed value of the
periastron advance reads

� ¼ �=ð2�Þ � 1 ¼ �’=�r � 1: (19)

In what follows we will obtain an explicit expression for
� as a function of p, e (which will, of course, involve
Fcons
� ). We will then define the Oð�Þ post-geodesic

conservative correction to � as

�� � �ðp; eÞ � �0ðp; eÞ; (20)

where �0ðp; eÞ is the background value obtained from
Eq. (9) with Eq. (7), replacing ðp0; e0Þ ! ðp; eÞ. Notice
that our definition of theOð�Þ correction employs only the
perturbed parameters ðp; eÞ. We are not considering here

the alternative definition ~�� � �ðp; eÞ � �0ðp0; e0Þ,
which, of course, differs from �� at the leading order,
Oð�Þ. The motivation for considering the correction �

rather than ~� will become clear in the next section, where
we reparametrize the orbit using two gauge-invariant quan-
tities—the frequencies �r and �’—and calculate the �

correction to a third invariant, expressed as a function of
the two perturbed frequencies. This � correction will then

be truly gauge invariant, unlike the corresponding ~� cor-
rection, which would depend on the background frequen-
cies�r0 and�’0. We remind, however, that, in our present

discussion, neither ~��ðp; e;p0; e0Þ nor��ðp; eÞ constitute
gauge-invariant relations. This is because the orbital pa-
rameters p, e themselves are gauge-ambiguous. In this
section we will be calculating �� specifically in the
Lorenz gauge.

C. Conservative GSF correction
to the periastron advance

Recalling Eq. (18), let us write

d’

d�
� ’�ð�;p; eÞ ¼ ’�0ð�;p; eÞ þ�’�ð�;p; eÞ; (21)

where the background quantity ’�0ð�;p; eÞ is obtained

from Eq. (5) replacing ðp0; e0Þ ! ðp; eÞ. From Eq. (19)
we then have
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� ¼
�
1

2�

Z 2�

0
’�0ð�;p; eÞd�� 1

�

þ 1

2�

Z 2�

0
�’�ð�;p; eÞd�; (22)

and, identifying the term in square brackets as �0ðp; eÞ, we
obtain from the definition in (20)

��ðp; eÞ ¼ 1

2�

Z 2�

0
�’�ð�;p; eÞd�: (23)

To obtain an expression for �’�ð�;p; eÞ, let us start by
writing

’� ¼ _’

_r

dr

d�
¼ eLð�Þj sin�j

pM½E2ð�Þ � Vðrð�Þ; Lð�ÞÞ�1=2 ; (24)

where hereafter an overdot denotes d=d�, with � being
proper time along the perturbed geodesic. Here we have
used _’ ¼ g’’u’ ¼ r�2L, substituting for rð�Þ from

Eq. (16); the factor dr=d� was evaluated using Eq. (16)
again; and to evaluate _r we used the normalization of
the perturbed four-velocity, g��u

�u� ¼ �1, giving _r2 ¼
E2 � Vðrð�Þ; Lð�ÞÞ, with the effective potential

Vðr; LÞ ¼
�
1� 2M

r

��
1þ L2

r2

�
: (25)

The background quantity ’�0ð�;p; eÞ in Eq. (21) can be

obtained from Eq. (24) by fixing p, e, � [hence also
fixing rð�Þ] and replacing Eð�;p; eÞ ! E0ðp; eÞ and
Lð�;p; eÞ ! L0ðp; eÞ [where E0ðp; eÞ and L0ðp; eÞ
are the geodesic functional relations obtained from
Eq. (2) with ðp0; e0Þ ! ðp; eÞ]. The GSF correction
�’� ¼ ’� � ’�0 can therefore be obtained at Oð�Þ by
considering the �-variation of ’� in Eq. (24) with respect

to E and L,

�’� ¼ @’�

@E

��������E0;L0

�Eþ @’�

@L

��������E0;L0

�L: (26)

Here the partial derivatives are taken with fixed p, e, �
(hence also fixed r) and evaluated at ðE0ðp; eÞ; L0ðp; eÞÞ,
and we have introduced �Eð�;p; eÞ � Eð�;p; eÞ �
E0ðp; eÞ and �Lð�;p; eÞ � Lð�;p; eÞ � L0ðp; eÞ. With
Eqs. (23) and (26), the task of calculating �� thus reduces
to obtaining the Oð�Þ corrections �E and �L.

To obtain �E and �L we need to consider the t and ’
components of the particle’s equation of motion. These
read, respectively, � _ut ¼ �Fcons

t and � _u’ ¼ Fcons
’ or,

with the definitions of Eq. (15),

� _E ¼ �Fcons
t ; � _L ¼ Fcons

’ : (27)

It is useful to think of Fcons
t and Fcons

’ as (periodic) func-

tions of � along the perturbed geodesic. We define the two
Oð�Þ functions

Eð�Þ � ���1
Z �

0
Fcons
t ð�0Þ d�

d�0 d�
0;

Lð�Þ � ��1
Z �

0
Fcons
’ ð�0Þ d�

d�0 d�
0:

(28)

The factor d�=d� in the integrands need only be evaluated
at leading order in � [since the expressions in Eq. (28) are
already Oð�Þ], and we can therefore use for this purpose
the geodesic expressions given earlier. Writing d�=d� ¼
ðd�=dtÞ0ðdt0=d�Þ ¼ ð1� 2M=r0ÞE�1

0 ðdt0=d�Þ and then

substituting from Eqs. (2)–(4), we find, at leading order
in �,

d�

d�
¼ Mp3=2

ð1þ e cos�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� 3� e2

p� 6� 2e cos�

s
: (29)

Note we are using here the perturbed parameters ðp; eÞ
instead of ðp0; e0Þ, which is allowed since interchanging
ðp; eÞ $ ðp0; e0Þ affects the expressions in Eq. (28) only at
Oð�2Þ. In Eq. (28) it is sufficient, at our working order, to
evaluate the GSF components along the background geo-
desic ðp0; e0Þ. Given numerical data for the conservative
GSF along the geodesic (the kind of data provided by our
code [1]), the functions Eð�Þ and Lð�Þ can be evaluated
numerically for any � throughOð�Þ. In fact, it is sufficient
to evaluate these two functions for 0 � � � �, given the
‘‘reflection’’ symmetry Eð�Þ ¼ Eð2�� �Þ and Lð�Þ ¼
Lð2�� �Þ [see Ref. [1], where we explain that the con-
servative t, ’ components of the GSF have the antisym-
metry property Fcons

t ð�Þ ¼ �Fcons
t ð2�� �Þ and similarly

for Fcons
’ , and note that the factors d�=d� in Eq. (28) are

reflection-symmetric].
Integrating Eqs. (27), we now obtain

Eð�Þ ¼ Eð0Þ þ Eð�Þ ¼ E0 þ �Eð0Þ þ Eð�Þ;
Lð�Þ ¼ Lð0Þ þLð�Þ ¼ L0 þ �Lð0Þ þLð�Þ;

(30)

where Eð0Þ and Lð0Þ are the values of E and L at the
periastron (� ¼ 0), and the Oð�Þ quantities �Eð0Þ �
Eð0;p; eÞ � E0ðp; eÞ and �Lð0Þ � Lð0;p; eÞ � L0ðp; eÞ
are the shifts in the values of E and L at the periastron
due to the conservative GSF. We identify

�Eð�Þ¼�Eð0ÞþEð�Þ; �Lð�Þ¼�Lð0ÞþLð�Þ: (31)

The values of the shifts �Eð0Þ and �Lð0Þ are found in
the following manner. At the periastron (r ¼ r�, � ¼ 0)
and apastron (r ¼ rþ, � ¼ �), where _r ¼ 0, it follows
from the normalization of the perturbed four-velocity that

E2ð0Þ ¼ Vðr�; Lð0ÞÞ; E2ð�Þ ¼ Vðrþ; Lð�ÞÞ: (32)

The Oð�Þ piece of these relations (holding p, e—hence
also r�—fixed) is given by

E�Eð0Þ ¼
�
1� 2M

r�

�
L

ðr�Þ2 �Lð0Þ; (33)
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E�Eð�Þ ¼
�
1� 2M

rþ

�
L

ðrþÞ2 �Lð�Þ; (34)

where �Eð�Þ and �Lð�Þ are the Oð�Þ shifts in the values
of E and L at the apastron. These two are related to the
shifts at the periastron through

�Eð�Þ ¼ �Eð0Þ þ Eð�Þ; (35)

�Lð�Þ ¼ �Lð0Þ þLð�Þ: (36)

Solving the four equations (33)–(36) simultaneously for
�Eð0Þ, �Lð0Þ, �Eð�Þ, and �Lð�Þ, with the substitutions
r� ¼ Mp=ð1þ eÞ and rþ ¼ Mp=ð1� eÞ, we obtain

�Eð0Þ ¼ ð1þ eÞ2ðp� 2� 2eÞ
4eðp� 3� e2Þ

� ½ð1� eÞ2ðp� 2þ 2eÞBLð�Þ � Eð�Þ�; (37)

�Lð0Þ¼ 1

4eðp�3�e2Þ
�½ð1�eÞ2ðp�2þ2eÞLð�Þ�Eð�Þ=B�; (38)

with

B ¼ L0ðp; eÞ
E0ðp; eÞM2p3

¼ 1

Mp3=2½ðp� 2Þ2 � 4e2�1=2 ; (39)

where we have substituted for E0ðp; eÞ and L0ðp; eÞ from
Eq. (2). With these expressions, the functions �Eð�Þ and
�Lð�Þ of Eq. (31) are now fully specified given the pa-
rameters p, e and the GSF functions Eð�Þ;Lð�Þ.

Finally, substituting for �E and �L from Eq. (31) in
Eq. (26), we obtain the rather unwieldy but explicit result

�’�¼pðp�3�e2Þ1=2½ðp�2Þ2�4e2�1=2
e2ðp�6�2ecos�Þ3=2

�
�

Eð�Þ
4cos2ð�=2Þ�

Eð�Þ
sin2�

�
� p�1=2ðp�3�e2Þ1=2
Me2ðp�6�2ecos�Þ3=2

�
�ð1�eÞ2ðp�2þ2eÞLð�Þ

4cos2ð�=2Þ
�½pð1þe2Þ�2ð1þ3e2Þþ2eðp�3�e2Þcos��Lð�Þ

sin2�

�
:

(40)

Recall �� is obtained from �’� as prescribed in Eq. (23).

Notice in that equation that, since �� and �’� are of

Oð�Þ, we are allowed to replace ðp; eÞ ! ðp0; e0Þ in their
argument; this only results in an error of Oð�2Þ which we
neglect in our treatment. We also note that �’� has the

reflection symmetry mentioned above, i.e., �’�ð�Þ ¼
�’�ð2�� �Þ. This allows us to fold the integral pieceR
2�
� over onto

R
�
0 . With these modifications, we write our

final result for �� in the form

��ðp0; e0Þ ¼ 1

�

Z �

0
�’�ð�;p0; e0Þd�; (41)

where �’�ð�;p0; e0Þ, given in Eq. (40) with the replace-

ment ðp; eÞ ! ðp0; e0Þ, only contains quantities which are
evaluated along the background geodesic ðp0; e0Þ.
Let us summarize the construction of ��. One starts

with (numerical) data sets for the conservative GSF com-
ponents Fcond

t and Fcond
’ , evaluated as functions of � along

the background geodesic ðp0; e0Þ between � ¼ 0 and
� ¼ �. These data are integrated via Eq. (28) to yield
the indefinite integrals Eð�Þ and Lð�Þ, which in turn are
used to construct the function �’�ð�Þ via Eq. (40). A

second integration [Eq. (41)] finally produces ��ðp0; e0Þ.
Note in this procedure the GSF data are integrated over
twice. It is possible to simplify this ‘‘integral of integral’’
structure by integrating by parts in Eq. (41). We find in
practice, however, that this does not lead to significant
simplification in the numerical implementation, and we
hence prefer to leave our working formula for �� in the
form of Eq. (41).
Inspecting Eq. (40), one may be worried about the ap-

parent divergence of the terms / sin�2� at � ¼ 0,� and of
the terms/ cos�2ð�=2Þ at� ¼ �. In fact, the function�’�

is perfectly regular at these two points (and anywhere else
within the domain 0 � � � �). To see this, it suffices to
notice the following. First, at the limit � ! 0 we have E,
L / �2, since the two functions are even in � and they
obviously vanish at� ! 0 [from their definition in Eq. (28),
recallingFcond

t andFcond
’ are regular functions of� along the

orbit]. Hence E=sin2� and L=sin2� have finite limits as
� ! 0. Second, at the limit� ! �we have the even Taylor
expansion E ¼ Eð�Þ þ 1

2 ð�� �Þ2E00ð�Þ þOð�� �Þ4
[recalling the reflection symmetry Eð�Þ ¼ Eð�� �Þ], and
similarly for L; substituting these expansions in Eq. (40)
reveals that the limit � ! � of this expression is finite as
well. Nonetheless, a direct numerical implementation of
Eq. (41) does require some special care near � ¼ 0, �. In
Appendix B we describe our method for dealing with this
technical subtlety in practice.

D. Numerical results

Our numerical algorithm for calculating the GSF is
described in detail in Ref. [1], where we also discuss the
various sources of numerical error and our method for
estimating the error bars on the numerical data. Our code
returns the GSF as a function of � along a given geodesic
defined by the input parameters p0, e0. Our code can
handle eccentricities in the range 0 � e0 & 0:7 and p0

values between the separatrix and
100; outside this range
our current algorithm is less effective and the computation
burden becomes prohibitive (see [1] for details). We should
point out that even in the above workable part of the
parameter space, there are narrow stripes in the e0-p0

plane which are currently inaccessible to our code.
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These inaccessible stripes correspond to orbits for which
the frequency ratio �’0=�r0 is close to a small integer

(mainly 2 or 3). For such ‘‘resonant’’ orbits, our algorithm
for calculating the dipole piece of the metric perturbation
(which is based on a frequency domain method) becomes
ineffective. Hence, for example, the orbits with ðp0; e0Þ ¼
ð8; 0:1Þ and (8, 0.2) have �’0=�r0 very close to 2, and are

currently inaccessible to our code. We have discussed this
problem in Ref. [1] and are hoping to address it in future
work. In the current study, however, we will content our-
selves with simply avoiding the problematic orbits.
Tables II and III and Fig. 1 display a sample of numerical

results for �� over the parameter space of p and e. The
tables also compare �� to the background (geodesic)
advance �0, as derived from Eq. (9) [with Eq. (7)].
We can make the following observations.
(i) The conservative post-geodesic correction �� (in

the Lorenz gauge) is negative for any p0, e0; it
causes recession of the periastron and acts to reduce
the rate of periastron precession.

(ii) At large p0,�� exhibits a very weak dependence on
e0. This is reminiscent of the behavior of the back-
ground advance �0; recall Eq. (11).

(iii) At large p0, the magnitude of the GSF correction
�� seems to fall off faster with p0 than that of the
background advance �0; the latter [recall Eq. (11)]
falls off as / 1=p0 (at fixed e0). Indeed, Fig. 1
suggests the large-p0 behavior

��ðp0 � 1Þ / p�4
0 ; (42)

where the proportionality constant (
�2000�=M)
is independent of e0.

(iv) Near the separatrix, the quantity �� diverges as /
ðp0 � 6� 2e0Þ�1.

The last of the above observations is particularly inter-
esting. Recall that the background advance �0 diverges at
the separatrix only logarithmically with p0 � 6� 2e0 [for
fixed e0 > 0; see Eq. (13)]. This means that, for any given

TABLE II. Numerical results for the conservative (Lorenz-
gauge) GSF correction to the periastron advance per radian,
��, for a sample of p0, e0 values. q � �=M is the small mass
ratio. The last column in each table shows the GSF correction as
a fraction of the background advance �0. Parenthetical figures
indicate the estimated uncertainty in the last displayed decimals
(due to numerical error); thus, e.g., �19:71ð5Þ stands for
�19:71� 0:05. Note that the effect of the Lorenz-gauge GSF
is to reduce the periastron advance (�� < 0). Note also, in the
data for p0 ¼ 7:0, the manifest linear growth of �� with the
inverse separatrix distance ðp0 � 6� 2e0Þ�1; this behavior is
discussed in the text.

p0 e0 q�1�� q�1��=�0

6.1 0.02 �146ð2Þ �20:7ð2Þ
6.2 0.05 �57:0ð2Þ �11:71ð5Þ
6.3 0.1 �41:9ð1Þ �10:23ð3Þ
6.4 0.1 �19:71ð5Þ �6:12ð2Þ
6.5 0.1 �12:28ð3Þ �4:51ð1Þ
6.5 0.2 �31:15ð6Þ �9:36ð2Þ
6.7 0.1 �6:45ð1Þ �3:010ð6Þ
6.7 0.2 �9:45ð1Þ �4:062ð6Þ
6.7 0.3 �27:03ð3Þ �9:30ð1Þ
7.0 0.1 �3:372ð9Þ �2:024ð6Þ
7.0 0.2 �4:089ð6Þ �2:359ð3Þ
7.0 0.3 �5:909ð7Þ �3:157ð4Þ
7.0 0.4 �11:99ð1Þ �5:516ð5Þ
7.0 0.45 �24:64ð2Þ �9:764ð8Þ
7.0 0.49 �127:30ð9Þ �37:25ð3Þ
7.0 0.499 �1279:4ð9Þ �268:3ð2Þ
7.0 0.4999 �12735ð7Þ �2075ð1Þ
7.5 0.1 �1:614ð4Þ �1:298ð3Þ
7.5 0.2 �1:788ð3Þ �1:411ð2Þ
7.5 0.3 �2:134ð3Þ �1:629ð2Þ
7.5 0.4 �2:778ð3Þ �2:015ð2Þ
7.5 0.5 �4:070ð3Þ �2:733ð2Þ
8.0 0.3 �1:140ð1Þ �1:101ð1Þ
8.0 0.4 �1:347ð1Þ �1:264ð1Þ
8.0 0.5 �1:682ð2Þ �1:516ð1Þ
8.5 0.1 �0:6156ð5Þ �0:7276ð6Þ
8.5 0.2 �0:6497ð9Þ �0:762ð1Þ
8.5 0.3 �0:7106ð8Þ �0:822ð1Þ
8.5 0.4 �0:8052ð9Þ �0:914ð1Þ
8.5 0.5 �0:9461ð9Þ �1:046ð1Þ
9.0 0.1 �0:4299ð4Þ �0:5861ð5Þ
9.0 0.2 �0:4493ð6Þ �0:6089ð8Þ
9.0 0.3 �0:4832ð5Þ �0:6483ð7Þ
9.0 0.4 �0:5346ð6Þ �0:7070ð7Þ
9.0 0.5 �0:6082ð6Þ �0:7894ð8Þ
10 0.1 �0:2392ð3Þ �0:4111ð5Þ
10 0.2 �0:2471ð2Þ �0:4230ð4Þ
10 0.3 �0:2606ð2Þ �0:4433ð3Þ
10 0.4 �0:2807ð2Þ �0:4731ð3Þ
10 0.5 �0:3084ð3Þ �0:5138ð4Þ
12 0.1 �0:10011ð8Þ �0:2415ð2Þ
12 0.2 �0:102104ð9Þ �0:24580ð2Þ
12 0.3 �0:105563ð4Þ �0:25322ð1Þ

p0 e0 q�1�� q�1��=�0

12 0.4 �0:110620ð2Þ �0:264025ð5Þ
12 0.5 �0:11752ð3Þ �0:27867ð6Þ
15 0.1 �0:03960ð1Þ �0:13604ð5Þ
15 0.2 �0:03996ð4Þ �0:1371ð1Þ
15 0.3 �0:04057ð4Þ �0:1389ð2Þ
15 0.4 �0:04149ð4Þ �0:1417ð1Þ
15 0.5 �0:04278ð3Þ �0:1455ð1Þ
20 0.1 �0:01353ð1Þ �0:06932ð8Þ
20 0.2 �0:01348ð3Þ �0:0690ð2Þ
20 0.3 �0:01338ð3Þ �0:0684ð1Þ
20 0.4 �0:01327ð3Þ �0:0677ð1Þ
20 0.5 �0:01314ð3Þ �0:0669ð1Þ

TABLE II. (Continued)
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mass ratio q, small as we wish, the GSF correction ��
becomes comparable in magnitude to the background ad-
vance�0 at some separatrix distancep0 � 6� 2e0 
OðqÞ,
and would in fact become a dominant effect (giving rise to a
net recession of the periastron!) at distances smaller still.
Inspecting the data in Table II we find, for example, that
with q ¼ 1=2075 the conservative GSF effect becomes

comparable in magnitude (and opposite in sign) to the
background effect for a near-separatrix geodesic with
ðp0; e0Þ ¼ ð7; 0:4999Þ. In such a situation one would no
longer trust our perturbative treatment, and the leading-
order GSF would seem to be of a limited utility.
It should be explained immediately, however, that we do

not expect the above situation to realize itself in actual,
inspiraling systems. In the physical system, radiation-
reaction ‘‘smears’’ the transition regime across an interval

�r ¼ Oðq2=5Þ [25,26], over which the orbit evolves
quickly and is highly nongeodesic. For relevant (small)
mass ratios q, the above condition p0 � 6� 2e0 

OðqÞ 	 �r sets the orbit to lie well within this transition
regime, where the quantity ��, defined along closed geo-
desics, is no longer physically meaningful. We may ask,
conversely, what the magnitude of ��=�0 is at the onset of

the transition regime, i.e., for p0 � 6� 2e0 
 q2=5. The
data in Table II indicate that this magnitude may range
from about 10�2 for q ¼ 10�3 to about 10�4 for q ¼ 10�6,
and is therefore always quite small in the relevant range of
mass ratios.

E. Effect of dissipation

So far we have been making the (unphysical) assump-
tion that the particle experiences no dissipative forces and
that, consequently, the orbit remains strictly periodic. In
reality, of course, the dynamics is nonconservative and the
orbital parameters (e.g., E and L) drift secularly in time
under the effect of the dissipative piece of the GSF. In a
regime where the drift is sufficiently slow (adiabatic) we
may still define the periastron advance by referring to the
’-phase accumulated over the period of time between
two successive periastron passages (minima of r),

FIG. 1 (color online). Plot of some of the numerical data presented in Table II. The left and right panels show, respectively, the
absolute and relative GSF corrections, �� and ��=�0 (divided by the mass ratio q � �=M), as functions of p0 for a variety of
eccentricities e0. The data are shown on a log-log scale, and we have in fact plotted ��� and ���=�0 since �� itself is negative
(while �0 is positive). Note �� depends very weakly on e0 at large p0, where it appears to fall off with a power-law / p�4

0 . The

background advance �0 falls off as 
3p�1
0 [recall Eq. (11)]. The dashed line in the left panel is a reference line �� ¼ �2000q=p4

0.

TABLE III. Additional numerical data for ��, exploring the
near-separatrix regime. The structure of this table is similar to
that of Table II, but for convenience we have multiplied here the
values of �� and ��=�0 by the separatrix distance 
 � p0 �
6� 2e0. The entries in the upper part of the table correspond to

 ¼ 0:001, and those in the lower part to 
 ¼ 0:01.

p0 e0 ð
=qÞ�� ð
=qÞ��=�0

6.301 0.15 �3:58ð1Þ �0:424ð1Þ
6.401 0.20 �3:204ð6Þ �0:4265ð8Þ
6.451 0.225 �3:073ð5Þ �0:4293ð7Þ
6.501 0.250 �2:967ð4Þ �0:4328ð7Þ
6.551 0.275 �2:879ð5Þ �0:4368ð7Þ
6.601 0.30 �2:808ð4Þ �0:4414ð7Þ
6.651 0.325 �2:750ð3Þ �0:4466ð5Þ
6.751 0.375 �2:661ð3Þ �0:4580ð5Þ
6.801 0.40 �2:629ð2Þ �0:4645ð4Þ
6.851 0.425 �2:603ð2Þ �0:4712ð4Þ
6.901 0.45 �2:582ð2Þ �0:4782ð5Þ
6.951 0.475 �2:567ð2Þ �0:4858ð4Þ
7.001 0.50 �2:556ð2Þ �0:4937ð3Þ
6.110 0.05 �5:98ð3Þ �0:659ð4Þ
6.160 0.075 �4:91ð2Þ �0:625ð3Þ
6.210 0.10 �4:29ð1Þ �0:607ð2Þ
6.260 0.125 �3:89ð1Þ �0:598ð2Þ
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notwithstanding the fact that two such periastra would
occur at slightly different radii [if the radiation-reaction
time scale is E= _E
OðM2=�Þ, which we assume here, the
two successive periastron radii would differ by a small
amount / �]. Let us denote by �true the true periastron
advance, defined between two periastron passages of the
actual evolving orbit, taking into account all Oð�Þ effects
of the GSF, both conservative and dissipative (below we
give a more precise definition of �true). Here (and in
Appendix C) we will argue that, through Oð�Þ, the quan-
tity �true is, in fact, given by the conservative-only advance
�, calculated along a suitable average geodesic orbit.

Let us make this statement more precise. First, we need a
notion of ‘‘slowly evolving’’ p and e. For our purpose, it
would suffice to concentrate on a particular radial cycle of
the evolving orbit, between two apastron passages at times
(say) t1 and t2 (t2 > t1). We denote the radius of the (full
GSF-perturbed) evolving orbit by ~rðtÞ, so that ~r1 � ~rðt1Þ
and ~r2 � ~rðt2Þ are two consecutive apastron radii of the
true orbit. We assume that at times t1 and t2 the true orbit is
tangent to periodic orbits with parameters ðp1; e1Þ and
ðp2; e2Þ, respectively, which are geodesics perturbed by
the conservative piece of the GSF only (in Lorenz gauge,
for concreteness). Through Oð�Þ, then, the slowly evolv-
ing p and e are given, for t1 � t � t2, by the linear
interpolation

~pðtÞ ¼ p1 þ p2 � p1

t2 � t1
ðt� t1Þ þOð�2Þ; (43)

and similarly for ~eðtÞ. Note that terms quadratic (and
higher) in t� t1 are also higher order in �, and so are
any conservative GSF corrections to the term linear in
t� t1—both types of higher-order corrections can be ne-
glected in our discussion.

We further assume that the solution to the equations of
motion for the true, evolving orbit can be obtained [through
Oð�Þ] from the corresponding conservative solution (i.e.,
assuming only the conservative piece of the GSF is at play)
via the simple replacement ðp; eÞ ! ½~pðtÞ; ~eðtÞ�. Hence, in
particular, we assume [recalling Eq. (16)]

~rð~�Þ ¼ ~pðtð~�ÞÞM
1þ ~eðtð~�ÞÞ cos~� ; (44)

where ~� is a certain parameter along the evolving orbit,
and the relation tð~�Þ is obtained (in principle) by replacing
ðp; eÞ ! ½~pðtÞ; ~eðtÞ� and � ! ~� in the conservative expres-
sion for dt=d� and integrating with the initial condition
tð~�1Þ ¼ t1. Here ~�1 is the value of ~� at the first apastron,
determined from the conditions ~�1 ! �� for � ! 0 to-
gether with ðd~r=d~�Þ~�¼~�1

¼ 0 throughOð�Þ (we determine

the value ~�1 explicitly in Appendix C). Note the form
~r ¼ ~r½~�; ~pðtÞ; ~eðtÞ�, which reflects the two-time-scale de-
pendence of the orbital radius: ~r depends on a ‘‘fast’’
variable ~� (or t), as well as on the slowly varying parame-
ters ~p and ~e. Writing ~rð~�Þ as in Eq. (44) amounts to

assuming that, at any fixed time t ¼ t0 (t1 � t0 � t2), the
relation ~r ¼ ~r½~�; ~pðt0Þ; ~eðt0Þ� describes a conservative or-
bit of constant parameters p ¼ ~pðt0Þ and e ¼ ~eðt0Þ, tangent
to the true, evolving orbit.
In a similar fashion, we write for the ’-phase along the

evolving orbit

d~’

d~�
� ~’�ð~�Þ ¼ ~’�½~�; ~pðtð~�ÞÞ; ~eðtð�ÞÞ�; (45)

where the right-hand side is obtained from Eq. (21) by
replacing ðp; eÞ ! ½~pðtÞ; ~eðtÞ�. The total ’-phase accumu-
lated over one radial period of the evolving orbit
(¼ t2 � t1) is then given by

�true ¼
Z ~�2

~�1

~’�½~�; ~pðtð~�ÞÞ; ~eðtð~�ÞÞ�d~�; (46)

where, recall, ~�1 ¼ ~�ðt1Þ, and we also denoted ~�2 � ~�ðt2Þ.
The true periastron advance (per radian) of the evolving
orbit between t1 and t2 is given by

�true ¼ ð2�Þ�1�true � 1: (47)

With these definitions, our claim is that the true advance
�true, which accounts at Oð�Þ for both conservative and
dissipative effects of the GSF, can be computed through

�true ¼ �ð �p; �eÞ þOð�2Þ; (48)

where

�p � 1

2
ðp1 þ p2Þ; �e � 1

2
ðe1 þ e2Þ: (49)

The quantity �ð �p; �eÞ on the right-hand side of Eq. (48) is
the conservative-only advance, calculated along the con-
servative GSF-perturbed orbit with average parameters
ð �p; �eÞ. It is not difficult to convince oneself of the validity
of Eq. (48); a proof of this relation is presented in
Appendix C. Note that the average geodesic for use in
Eq. (48) can alternatively be defined through the average
values of E and L, or of any other pair of slowly varying
orbital parameters [because the secular drift in any such
parameters over a radial period would be linear in t through
Oð�Þ]. Note also that, through Oð�Þ, �p, �e are the momen-
tary parameter values at the periastron of the evolving
orbit.
We point out that the relation (48) is gauge invariant in

an obvious sense, since we are considering here the full
[Oð�0Þ þOð�Þ] periastron advance without breaking it up
into background and GSF-correction pieces as we have
done before. One may, of course, also define the (gauge-
dependent) GSF correction in �true via ��true �
�true � �0ð �p; �eÞ, which, by virtue of Eqs. (20) and (48),
would relate to the conservative-only correction �� via

��true ¼ ��ð �p; �eÞ þOð�2Þ: (50)

Equations (48) and (50) suggest a way in which our
results for the conservative-only periastron advance �
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may be relevant to actual, evolving orbits: One only needs
to reinterpret the quantity �ðp; eÞ as the advance (per
radian) of an adiabatically evolving orbit, defined [via
Eqs. (46) and (47)] between two periastra whose average
parameter values are ðp; eÞ. This interpretation [which, we
recall, is only valid through Oð�Þ] may form a basis for
comparison between our GSF precession data and results
from fully nonlinear numerical-relativistic simulations of
binary inspirals, once the latter are available for suffi-
ciently small mass ratios. This interpretation also suggests
a way in which our results for the conservative correction
��might be incorporated into one of the existing approxi-
mate (PN/perturbative) frameworks for computing the or-
bital evolution in extreme-mass-ratio systems [2,18,19],
which so far do not account for the conservative effects
of the GSF. (Any such application of our results will,
however, need to deal cautiously with the gauge depen-
dence of ��.)

III. GAUGE-INVARIANT EFFECT
OF THE CONSERVATIVE GSF

The quantity ��ðp; eÞ considered above is gauge de-
pendent, and as such it is of a limited utility. Our ambition
in this section is to devise a gauge-invariant measure of
the Oð�Þ conservative GSF effect on eccentric geodesics.
As already mentioned, while � itself is gauge invariant (as
it is constructed from the two fundamental frequencies of
the orbit, which are gauge invariant), the Oð�Þ functional
relation ��ðp; eÞ is not invariant since the parameters p, e
are gauge dependent. A gauge-invariant parametrization
of the eccentric orbits is provided by the pair ð�’;�rÞ,
but the relation �ð�’;�rÞ is trivial [recall Eq. (19)] and
gives no information about the GSF. What is required is a
third, independent gauge-invariant quantity (call it G)
which depends in a nontrivial way on the two invariant
frequencies. The relation �Gð�’;�rÞ � Gð�’;�rÞ �
G0ð�’;�rÞ [where, recall, Gð�Þ and G0ð�Þ denote the

functional relations with and without the GSF, respec-
tively] would then provide a gauge-invariant measure of
the GSF effect.

The quest for such a functionG is motivated by the wish
to identify a common reference point for comparison be-
tween calculations of the GSF held in different gauges
[27], and also to facilitate comparison with results from
PN theory. We therefore remain mindful that our G would
need to be readily accessible to both GSF and PN treat-
ments. In what follows we propose such a gauge-invariant
G and use our code to compute the GSF correction
�Gð�’;�rÞ, ready for comparison with results from other

methods when these become available.

A. Physically acceptable gauge transformations

First, we need to make precise the meaning of gauge
invariance in our problem. An Oð�Þ gauge transformation

x� ! x� � �� (51)

changes the physical (retarded) metric perturbation h��
associated with particle by an amount

��h�� ¼ ��;� þ ��;�; (52)

where a semicolon denotes covariant differentiation with
respect to the background (Schwarzschild) metric. In the
Detweiler-Whiting interpretation [28], the GSF is exerted
by a certain smooth perturbation hR�� derived from h��.

This so-called R-field (which is defined only in the local
neighborhood of the particle) transforms under �� in the
same way as h�� [29,30],

��h
R
�� ¼ ��;� þ ��;�: (53)

It is usually desirable to work in a gauge in which the
metric perturbation (h�� or hR��) correctly reflects the

underlying symmetry of the physical system. In the case
of eccentric geodesics, an essential requirement is for the
metric perturbation to respect the periodicity of the orbit,
i.e., to exhibit a biperiodic spectrum with fundamental
frequencies �r and �’. In particular, when evaluated

along the geodesic orbit (say, as a function of proper
time �), the field hR�� need be periodic with a �-period T
corresponding to the radial t-period T (this forbids, for
example, a spurious secular growth of the perturbation over
time). We write this periodicity condition as

hR��½x�p ð�Þ� ¼ hR��½x�p ð�þT Þ� (54)

(for any proper time � along the orbit), where x� ¼ x�p ð�Þ
describes the geodesic orbit. In the special case of a circu-
lar orbit, the condition (54) is replaced with the require-
ment of helical symmetry [27]. We require the R-field in
any ‘‘physically acceptable’’ gauge to satisfy (54).
In discussing gauge invariance we wish to restrict atten-

tion to the class of transformations �� that take one
physically acceptable perturbation to another. Such trans-
formations need to preserve, in particular, the periodicity
of the metric perturbation. This can be achieved by requir-
ing that the generators �� themselves are biperiodic func-
tions of t (with frequencies �r and �’), so that, in

particular,

��½x�p ð�Þ� ¼ ��½x�p ð�þT Þ� (55)

for any �. In fact, to this class of transformations we may
add t-translations of the form �� / t��

t , which are them-
selves nonperiodic but do not interfere with the periodicity
of the metric perturbation; we shall come back to this type
of gauge displacements later in our discussion. For now,
however, let us restrict attention to the class of gauge
transformations satisfying the periodicity condition (55).
We shall refer to any quantity defined along the orbit as
gauge invariant if it is invariant under any gauge trans-
formation within this class [31].
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Let us consider, for example, the frequencies �r and
�’, already described above as gauge invariant. It is read-

ily seen that the t-period T is formally invariant under
periodic gauge transformations: Changing integration var-
iables in Eq. (6) gives

T ¼
Z T

0

dt

d�
d� (56)

(taking � ¼ 0 at periastron without loss of generality),
which, under the transformation (51), is modified by an
amount

��T ¼ �
Z T

0

d�t

d�
d� ¼ ��tðT Þ þ �tð0Þ ¼ 0; (57)

following from the periodicity condition (55) [we hereafter
use ��ð�Þ as a shorthand for ��ðx�p ð�ÞÞ]. Hence, the radial
frequency �r ¼ 2�=T too is gauge invariant. Similarly,
we have for the azimuthal frequency

�’ ¼ 1

T

Z T

0

d’

d�
d�; (58)

giving

���’ ¼ � 1

T

Z T

0

d�’

d�
d� ¼ �T�1½�’ðT Þ � �’ð0Þ� ¼ 0;

(59)

by virtue of the gauge invariance of T and the periodicity
condition (55). This confirms that �’ too is gauge invari-

ant. Note that the formal invariance of �r and �’ is a

direct consequence of the periodicity condition (55); in
general, the frequencies will not remain invariant under
gauge transformations that fail to satisfy (55).

B. Generalized redshift invariant

Detweiler [33] first pointed out that, in the case of a
circular orbit, the quantity U � ut (i.e., the conservative
GSF-perturbed t component of the particle’s four-velocity)
is invariant under gauge transformations that respect the
helical symmetry of the black hole-particle configuration.
A possible physical interpretation of U as an observable
measure of gravitational redshift is discussed in Ref. [4].
The gauge-invariant relation Uð�’Þ was later utilized for

comparing between GSF results in different gauges [27,32]
and between GSF and PN results [4,10,11].

Here we propose a natural generalization of the redshift
invariant to the case of eccentric orbits. Our proposed
invariant is simply the �-average of U over a radial period,
which is also, more simply, the ratio between the t and �
periods,

hUi� � 1

T

Z T

0

dt

d�
d� ¼ T

T
: (60)

The quantity hUi� is obviously gauge invariant, since both
T and T are invariant. (We could as well choose T as our
third invariant; we prefer hUi� because it is dimensionless

and because is reduces to the standard redshift invariant in
the circular-orbit limit.)
As in [27], we make two small adjustments to our

invariant, to better fit it for comparison with PN calcula-
tions. First, we replace the proper time � (which is defined
with respect to the background metric g��) with the proper

time ~� defined with respect to the perturbed metric
g�� þ hR��. The two proper times are related, through

Oð�Þ, via
d�

d~�
¼ 1þHR; (61)

where

HR � 1

2
hR��u

�u�; (62)

with the R-field perturbation hR�� evaluated at the particle.

(Here the four-velocity u� may be defined with respect to
either � or ~�; the difference would affect HR only at
subleading order in �, which we neglect in our treatment.)
The R-field combination HR can be constructed directly
from the full (retarded) metric perturbation using a certain
regularization procedure, which we describe in
Appendix D. The appendix also details the numerical
computation of HR in practice, using our code.
The second adjustment is a normalization of the time

coordinate t, motivated as follows. As first mentioned in
[22] and discussed in length in [8,9,27], the physical metric
perturbation component htt, in the Lorenz gauge, has the
peculiarity that it does not vanish at r ! 1 but rather
approaches a constant nonzero value (which depends
only on the orbital parameters). This behavior is entirely
attributed to the static piece of the mass monopole pertur-
bation, and thus the asymptotic value of htt does not
depend on the angular direction even for eccentric orbits.
To remove this gauge artifact and facilitate comparison
with PN theory (where a more suitable asymptotically flat
time coordinate is used), we introduce the normalized time
coordinate

t̂ ¼ ð1þ �Þt; (63)

where � ¼ �ðp; eÞ is given by

� ¼ � 1

2
httðr ! 1Þ: (64)

Then, through Oð�Þ, we have gt̂ t̂ þ ht̂ t̂ ! �1 as r ! 1,
as desired. In the circular-orbit case one finds [22]

�ðe ¼ 0Þ ¼ �½r�ðr� � 3MÞ��1=2, where r ¼ r� is the ra-
dius of the orbit. For eccentric orbits we do not have an
analytic expression for �, but its numerical value can be
extracted from our numerical solutions for the Lorenz-
gauge perturbation, using Eq. (51). Note that the trans-
formation t ! t̂ amounts to an Oð�Þ gauge transformation

(51) with �� ¼ ��t��
t � �̂�. This transformation from

the Lorenz-gauge time t to the asymptotically flat time t̂
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does not spoil the periodicity of the metric perturbation,

but its generator �̂� does not respect the periodicity con-
dition (55). As a result, the transformation does not leave
hUi� invariant; in fact, one finds ��̂hUi� ¼ �hUi�.

With the above two adjustments, we redefine our gener-
alized redshift invariant as

^hUi ~� � 1
~T

Z ~T

0

dt̂

d~�
d~� ¼ T̂

~T
; (65)

where

T̂ ¼ ð1þ �ÞT; ~T ¼
Z T

0
ð1�HRÞ

�
dt

d�

��1
dt (66)

are [through Oð�Þ] the radial periods measured in time t̂
and proper time ~�, respectively.

C. The geodesic limit of ^hUi ~�
At the limit � ! 0 the quantities ^hUi~� and hUi� coin-

cide, and are given by

^hUi ~�0 ¼ hUi�0 ¼ T0

T 0

; (67)

where T0 ¼ T0ðp0; e0Þ and T 0 ¼ T 0ðp0; e0Þ are the geo-
desic radial periods measured in t and �, respectively. The
period T0 is computed via Eqs. (6), which, for easy refer-
ence, we reproduce here in explicit form,

T0ðp; eÞ ¼ 2Mp2½ðp� 2Þ2 � 4e2�1=2

�
Z �

0

ðp� 6� 2e cos�Þ�1=2

ðp� 2� 2e cos�Þð1þ e cos�Þ2 d�:
(68)

The proper-time period T 0 is obtained by integrating
d�=d� given in Eq. (29),

T 0ðp; eÞ ¼ 2Mp3=2ðp� 3� e2Þ1=2

�
Z �

0

ðp� 6� 2e cos�Þ�1=2

ð1þ e cos�Þ2 d�: (69)

D. Gauge-invariant parametrization of the orbit

As already discussed, we are aiming to replace the p, e
parametrization of the orbit with a gauge-invariant one,
based on the (perturbed) fundamental frequencies�r,�’.

More precisely, we wish to work with the normalized
frequencies, defined with respect to time t̂. These are
simply related to the original t-frequencies via

�̂ r ¼ ð1� �Þ�r; �̂’ ¼ ð1� �Þ�’; (70)

valid through Oð�Þ. Rather than using the frequencies �̂r,

�̂’ themselves, we find it convenient to introduce a new

pair of gauge-invariant parameters, denoted p and e, which
are obtained by inverting

�̂ r ¼ 2�

T0ðp; eÞ ; �̂’ ¼ �0ðp; eÞ
T0ðp;eÞ ; (71)

where T0 and �0 are the geodetic relations, given,
respectively, in Eqs. (68) and (7) (with the replace-

ment p, e ! p, e), and, recall, �̂r and �̂’ are the GSF-

perturbed frequencies. The quantities p and e are natural
gauge-invariant notions of semilatus rectum and eccentric-
ity, in much the same way that the standard quantity

x�1 ¼ ðM�’Þ�2=3 (see, e.g., [8]) is a natural gauge-

invariant notion of radius in the circular-orbit case.
It is important to recall, however, that the relations

�̂rðp;eÞ and �̂’ðp; eÞ in Eq. (71) are not bijective, and

thus cannot be inverted without a suitable restriction of the
domain—we remind the reader of the discussion at the end
of Sec. II A and in Appendix A. The inverse relations

pð�̂r; �̂’Þ and eð�̂r; �̂’Þ are nonetheless well defined in

each of the domains p> psðeÞ and p< psðeÞ (cf. Figure 3)
separately. In what follows we will assume that the domain
[p> psðeÞ or p< psðeÞ] has been prespecified and that

pð�̂r; �̂’Þ and eð�̂r; �̂’Þ are the uniquely determined

values corresponding to that domain.
Even in a suitably restricted domain, it is not possible to

invert Eq. (71) in explicit form to obtain pð�̂r; �̂’Þ and
eð�̂r; �̂’Þ. However, given the GSF in a particular gauge,

we may express the invariants p, e through Oð�Þ in terms
of the gauge-dependent parameters e, p, using the linear
variation formulas

p ¼ pþ @p

@�̂r

��������0
��̂r þ @p

@�̂’

��������0
��̂’ þOð�2Þ; (72)

e ¼ eþ @e

@�̂r

��������0
��̂r þ @e

@�̂’

��������0
��̂’ þOð�2Þ: (73)

Here the partial derivatives can be evaluated by inverting

the transformation matrix @ð�̂r; �̂’Þ=@ðp; eÞ, which itself

can be computed numerically (for given p, e) based on
Eq. (71) with (68) and (7) (replacing p; e ! p; e). The
subscript 0 indicates that these partial derivatives are to
be evaluated at the geodesic limit. The Oð�Þ quantities

��̂r and ��̂’ are the GSF corrections to the correspond-

ing frequencies, defined as

��̂rðp; eÞ � �̂rðp; eÞ ��r0ðp; eÞ;
��̂’ðp; eÞ � �̂’ðp; eÞ ��’0ðp; eÞ:

(74)

Unfortunately, the inversion formulas (72) and (73) be-
come meaningless along the singular curve p ¼ psðeÞ,
where the transformation matrix @ð�̂r; �̂’Þ=@ðp; eÞ is sin-
gular. In the following analysis we will therefore ‘‘keep
away’’ from parameter-space points that lie directly on the
singular curve.
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To calculate pðp; eÞ and eðp; eÞ in Eqs. (72) and (73) we
need explicit expressions for ��̂r and ��̂’ in terms of

p, e and the GSF. These are given, through Oð�Þ, by

��̂r ¼ ��r0

�
�þ �T

T0

�
; (75)

��̂’ ¼ ��’0

�
�� ��

�0

þ �T

T0

�
; (76)

where �Tðp; eÞ � Tðp; eÞ � T0ðp; eÞ and ��ðp; eÞ �
�ðp; eÞ ��0ðp; eÞ are the Oð�Þ GSF corrections to T
and �, themselves given by

�T ¼ 2
Z �

0
�t�ð�;p; eÞd�; (77)

�� ¼ 2
Z �

0
�’�ð�;p; eÞd� ¼ 2���: (78)

The quantity �’�, recall, is the GSF correction to ’� �
d’=d�; it was given explicitly in Eq. (40) in terms of e, p
and the GSF quantities Eð�Þ andLð�Þ. The quantity�t� is

the GSF correction to

t� � dt

d�
: (79)

The evaluation of �t� is similar to that of �’� (see

Sec. II C). The result is

�t�¼ Mp5=2ðp�3�e2Þ1=2
e2ð1þecos�Þ2ðp�6�2ecos�Þ3=2

�
�ðp�2�2eÞð2þeþecos�Þ

8cos2ð�=2Þ Eð�Þ

�p�3�e2þð1þecos�Þ2
sin2�

Eð�Þ
�

þ pðp�3�e2Þ1=2½ðp�2Þ2�4e2�1=2
e2ð1þecos�Þ2ðp�6�2ecos�Þ3=2

�
�ð1þecos�Þ2

sin2�
Lð�Þ�ð1�eÞ2ð2þeþecos�Þ

8cos2ð�=2Þ Lð�Þ
�
:

(80)

As with �’� [Eq. (40)], here too the evaluation of the

expression near the turning point � ¼ 0, � is subtle. The
practical solution proposed in Appendix B applies here as
well.

Let us summarize. Given a parameter-space point p, e
and the GSF corresponding to that point, Eqs. (72) and (73)
are used to construct the two quantities pðp; eÞ and eðp; eÞ.
The pair ðp; eÞ constitutes a gauge-invariant parametriza-
tion of the eccentric orbits [on each side of the singular
curve p ¼ psðeÞ].

E. Conservative GSF correction to ^hUi ~�
We are now in position to write down a gauge-invariant

expression for the post-geodesic correction to ^hUi~�,
� ^hUi~� � ^hUi~�ðp; eÞ � hUi�0ðp;eÞ: (81)

Here hUi�0ðp;eÞ represents the geodesic functional relation
given in Eq. (67); it is to be calculated using Eqs. (68) and
(69) with the arguments p, e replaced with p, e. Since both

the function ^hUi~� and the parameter pair p, e are gauge

invariant, the Oð�Þ quantity � ^hUi~� provides a genuinely
invariant description of the GSF effect.
Our next goal is to express Eq. (81) in a workable form,

i.e., as a function of the parameters p, e and the GSF.
To this end, we expand each of the two terms on the right-
hand side of Eq. (81) about its geodesic value hUi�0ðp; eÞ
through Oð�Þ. Starting with ^hUi~�ðp; eÞ ¼ T̂ðp; eÞ=
~T ðp; eÞ, we obtain

^hUi~�ðp;eÞ¼ hUi�0ðp;eÞ
�
1þ �T̂

T0ðp;eÞ�
�T̂

T 0ðp;eÞ
�
þOð�2Þ:

(82)

Here �T̂ and � ~T are the GSF corrections to T̂ and ~T ,
respectively, which we shall give explicitly below in terms
of p, e and the GSF. The second term on the right-hand side
of (81) is expanded in the form

hUi�0ðp; eÞ ¼ hUi�0ðp; eÞ þ @hUi�0
@p

��������0
ðp� pÞ þ @hUi�0

@e

��������0

� ðe� eÞ þOð�2Þ; (83)

where the subscript 0 indicates that the partial derivatives
are to be evaluated at ðp; eÞ ! ðp; eÞ. Substituting
Eqs. (82) and (83) in Eq. (81) and using Eqs. (72) and
(73) we then obtain, neglecting Oð�2Þ terms,

� ^hUi~� ¼ hUi�0ðp; eÞ
�

�T̂

T0ðp; eÞ �
� ~T

T 0ðp; eÞ
�

� Crðp; eÞ��̂r � C’ðp; eÞ��̂’; (84)

with

Crðp; eÞ ¼ @hUi�0
@p

@p

@�r

þ @hUi�0
@e

@e

@�r

; (85)

C’ðp; eÞ ¼ @hUi�0
@p

@p

@�’

þ @hUi�0
@e

@e

@�’

: (86)

The coefficients Cr and C’ can be computed (numeri-

cally), for any given p, e, from the appropriate geodesic
expressions: The partial derivatives of hUi�0 are obtained
using Eq. (67) with (68) and (69), and the partial deriva-
tives @ðp; eÞ=@ð�r;�’Þ are computed as explained below

Eq. (73). Note that in the expressions for Cr and C’ we
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have allowed ourselves to replace ð�̂r; �̂’Þ ! ð�r;�’Þ
and ðp; eÞ ! ðp; eÞ, which does not affect � ^hUi~� through
Oð�0Þ.

Finally, to be able to use Eq. (84), we need expressions

for the Oð�Þ quantities �T̂, � ~T , ��̂r and ��̂’. The

latter two have already been given above, in Eqs. (75) and

(76). As for �T̂, it follows from Eq. (66) that

�T̂ ¼ �T0ðp; eÞ þ �T; (87)

with �T given in Eq. (77) [with (80)]. Last, we have,
recalling Eq. (66),

� ~T ¼ 2
Z �

0
ð��� �HR��0Þd�; (88)

where we introduced the notation

�� � d�

d�
; (89)

with ��0ðp; eÞ being the geodetic limit of ��, and

���ðp; eÞ � ��ðp; eÞ � ��0ðp; eÞ. The background quan-

tity ��0 is given explicitly in Eq. (29), and for the perturbed

quantity �� we write

�� ¼ dr=d�

dr=d�
¼ epMj sin�jð1þ e cos�Þ�2

½E2ð�Þ � Vðrð�Þ; Lð�ÞÞ�1=2 ; (90)

proceeding using the method of Sec. II C to obtain

��� ¼ Mp2½ðp� 2Þ2 � 4e2�1=2ðp� 3� e2Þ
e2ð1þ e cos�Þ2ðp� 6� 2e cos�Þ3=2

�
Eð�Þ

4cos2ð�=2Þ �
Eð�Þ
sin2�

�

� p1=2ðp� 3� e2Þ
e2ðp� 6� 2e cos�Þ3=2

�ð1� eÞ2ðp� 2þ 2eÞ
ð1þ e cos�Þ2

Lð�Þ
4cos2ð�=2Þ � ðp� 2� 2e cos�ÞLð�Þ

sin2�

�

þMp2½ðp� 2Þ2 � 4e2�1=2Eð�Þ � p1=2ð1� eÞ2ðp� 2þ 2eÞLð�Þ
4eð1þ e cos�Þ2ðp� 6� 2e cos�Þ1=2 : (91)

The method of Appendix B can again be used to assist in
evaluating the last expression near the turning points
� ¼ 0, �.

Let us summarize the above construction. Our main

result is expressed in Eq. (84), giving � ^hUi~� in terms of
the parameters p, e and the GSF. The various elements of
Eq. (84) are constructed using Eqs. (67)–(69), (75), (76),

and (85)–(88). Note that since � ^hUi~� is already Oð�Þ, in
Eq. (84) we may replace ðp; eÞ ! ðp0; e0Þ and calculate the
various ingredients of this equation based on GSF data
evaluated along geodesic orbits.

The value of � ^hUi~� in Eq. (84) does not depend on the
gauge in which the GSF is given, and as such it provides a
useful reference for comparison between results from dif-
ferent calculation schemes (PN or perturbative).

F. Numerical results

Using Eq. (84) we have computed� ^hUi~� for a sample of
e, p values; the results are displayed in Table IV. We have
tested these results against weak-field analytic expressions
through 1PN, and found a very good agreement—this
comparison will be presented in a forthcoming paper
[21]. In the future, the data could also provide a basis for
comparison with other calculations of the GSF (in what-
ever gauge) when these are available.

In selecting the data set for display in Table IV we have
deliberately avoided parameter-space points which are
located on or near the singular curve p ¼ psðeÞ, where
the quantity � ^hUi~� becomes singular. This indeterminacy

is an unavoidable price to pay for using the gauge-invariant

parametrization ð�̂r; �̂’Þ, which is ill-suited along psðeÞ.
It is worth clarifying a potentially confusing point re-

grading the interpretation of the data in Table IV. The table
labels the orbits by their ðp; eÞ-values and not by their

invariant frequencies ð�̂r; �̂’Þ or the invariant parameters

ðp; eÞ associated with them. This does notmean that we are
measuring the GSF effect with respect to the background

quantity ^hUi~�0ðp; eÞ: we remind that the GSF correction

� ^hUi~� is defined in an invariant way with respect to
^hUi~�0ðp; eÞ—recall Eq. (81). The p, e parametrization is

adopted a posteriori for convenience, and it by no means

compromises the gauge invariance of � ^hUi~�.
Finally, we should comment on how the information in

Table IV could be used for comparisons with PN expres-
sions, the latter being usually given in terms of the two

invariant frequencies �̂r, �̂’ (or simple combinations

thereof; see, e.g., [34]) and not in terms of p, e. Suppose

one has a PN expression for � ^hUi~�, given as a function of

�̂r, �̂’. One starts by extracting from the PN expression

all terms through Oð�Þ (holding �̂r, �̂’ fixed). One then

subtracts the background [Oð�0Þ] quantity ^hUi~�0ð�̂r; �̂’Þ,
where, of course, �̂r, �̂’ are the full, perturbed frequen-

cies. The remaining [Oð�Þ] terms are explicit functions of

�̂r, �̂’, which may now be replaced with the background

values �r0, �’0 [with the error from this replacement

being of only Oð�2Þ]. The resulting expression is readily
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evaluated for any given values of p, e from Table IV, and
the result may be compared with the corresponding GSF

value of � ^hUi~� given in the table. This procedure has been
used to facilitate the comparison to be presented in
Ref. [21].

IV. THE CIRCULAR-ORBIT LIMIT AND A
TENTATIVE COMPARISON WITH

NUMERICAL RELATIVITY

The limit e ! 0 (with fixed p) defines a circular orbit of
radius pM ¼ r�ð¼ constÞ, which, however, still has two

TABLE IV. GSF correction to the generalized redshift invariant ^hUi~�: sample numerical
results. Each row in the table corresponds to a particular geodesic orbit with parameters
ðp; eÞ and associated frequencies ð�r0;�’0Þ, as specified. The fifth column gives the numerical

value of the coefficient �ðp; eÞ [see Eq. (64)] needed for converting the Lorenz-gauge time
coordinate t to the asymptotically flat time t̂. The sixth column displays the numerical values of

the gauge-invariant quantity � ^hUi~�, computed via Eq. (84). Parenthetical figures indicate the
estimated uncertainty in the last displayed decimals.

p e M�r0 � 100 M�’0 � 100 � � ^hUi~�
6.1 0.02 0.8250131 6.655900 0.2306141 �0:287145ð2Þ
6.2 0.05 1.111674 6.527790 0.2263482 �0:279734ð2Þ
6.3 0.1 1.264048 6.447631 0.2240162 �0:275394ð2Þ
6.4 0.1 1.479287 6.240510 0.2170145 �0:263768ð2Þ
6.5 0.1 1.629472 6.068755 0.2112690 �0:254468ð2Þ
6.5 0.2 1.447220 6.260868 0.2192002 �0:265667ð2Þ
6.7 0.1 1.835687 5.770239 0.2014079 �0:238987ð2Þ
6.7 0.2 1.743418 5.800667 0.2037311 �0:240868ð2Þ
6.7 0.3 1.532544 5.985119 0.2122705 �0:251457ð2Þ
7 0.1 2.019275 5.383470 0.1888463 �0:220085ð2Þ
7 0.2 1.953186 5.337941 0.1885223 �0:217914ð2Þ
7 0.3 1.836993 5.275083 0.1884196 �0:214972ð2Þ
7 0.4 1.653074 5.247708 0.1903568 �0:213936ð1Þ
7 0.45 1.512406 5.329219 0.1949564 �0:2183399ð9Þ
7 0.49 1.295776 5.724418 0.2103972 �0:2397373ð6Þ
7 0.499 1.095652 6.319841 0.2317371 �0:2745003ð3Þ
7 0.4999 0.9514141 6.789595 0.2483215 �0:30448660ð3Þ
8 0.3 2.019755 4.111256 0.1507862 �0:163772ð1Þ
8 0.4 1.867138 3.857336 0.1444159 �0:152580ð1Þ
8 0.5 1.664691 3.511329 0.1352542 �0:1377441ð7Þ
9 0.1 2.116662 3.669228 0.1352196 �0:147865ð1Þ
9 0.2 2.051228 3.564791 0.1325754 �0:1433588ð9Þ
9 0.3 1.940808 3.387357 0.1279803 �0:1358046ð8Þ
9 0.4 1.783443 3.131885 0.1211342 �0:1251445ð7Þ
9 0.5 1.576685 2.791538 0.1115804 �0:1113160ð5Þ
10 0.1 1.978414 3.129615 0.1186709 �0:1277554ð7Þ
10 0.2 1.913377 3.031019 0.1160724 �0:1236493ð7Þ
10 0.3 1.804093 2.864706 0.1115965 �0:1168034ð6Þ
10 0.4 1.649391 2.627916 0.1050164 �0:1072221ð5Þ
10 0.5 1.448070 2.317390 0.09599833 �0:0949289ð4Þ
15 0.1 1.316635 1.699926 0.07389641 �0:0768709ð1Þ
15 0.2 1.266627 1.635815 0.07196285 �0:0743140ð1Þ
15 0.3 1.183613 1.529315 0.06868680 �0:0700771ð1Þ
15 0.4 1.068277 1.381192 0.06398800 �0:0641991ð1Þ
15 0.5 0.9220001 1.193071 0.05775499 �0:0567390ð1Þ
20 0.1 0.9230304 1.103275 0.05374213 �0:05522177ð4Þ
20 0.2 0.8860353 1.059177 0.05226239 �0:05340866ð4Þ
20 0.3 0.8249337 0.9863242 0.04976861 �0:05040388ð4Þ
20 0.4 0.7406898 0.8858366 0.04621998 �0:04623383ð4Þ
20 0.5 0.6349478 0.7596359 0.04156092 �0:04093697ð3Þ
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distinct frequencies associated with it: the azimuthal fre-

quency �’ (or �̂’) is simply d’=dt (or d’=dt̂) along the

limiting circular orbit, and the radial frequency�r (or �̂r)
is that associated with a slightly eccentric orbit resulting
from an infinitesimal e-perturbation of the circular orbit.
Hence, rather conveniently for us here, the circular-orbit
limit defines a one-parameter family of orbits that are
nonetheless characterized by two gauge-invariant frequen-
cies. We may utilize the relation between these two fre-
quencies (or between any two independent combinations
thereof) as a simple gauge-invariant function for GSF
studies. In Ref. [8] we have already studied the circular-
orbit limit, and extracted the Oð�Þ gauge-invariant
information embedded in the relation between the two
frequencies (then used it to inform a comparison with
PN-calibrated EOB models).

In a recent numerical-relativistic (NR) study [23] Mroué
et al. reported measurements of the periastron advance in
fully nonlinear simulations of slightly eccentric black hole
inspirals. Data are provided for a sample of binary mass
ratios in the range 1:1–1:6, with eccentricities of order a
few �10�5 (see Fig. 8 of [23]; how the eccentricity is
defined in these simulations is discussed in Sec. II therein).
It is interesting to examine the NR data against the pre-
dictions of our GSF calculation in the circular-orbit limit.
Of course, we must exercise great caution in attempting
such a comparison, and we note here three obvious caveats.
First, even the small mass ratio of 1:6 is well outside the
natural domain of validity of our Oð�Þ GSF approxima-
tion. Second, the NR simulation automatically accounts for
dissipative effects, which are ignored in our GSF calcula-
tion. Our argument (Sec. II E) that dissipation has a negli-
gible effect on the periastron advance loses its validity
when the mass ratio is not sufficiently small. Third,
Ref. [23] makes no special effort to obtain very accurate
precession data, since its main motivation lies somewhere
else (it attempts to develop a method for eliminating spu-
rious eccentricity in quasicircular inspirals). As a result,
the statistical variance (due to numerical error) in the
precession data of [23] is large, making a meaningful
comparison difficult. The numerical error is particularly
large for smaller mass ratios, which are, alas, most useful
to us here.

Nonetheless, we would like here to take advantage of
this opportunity to make a first contact between the GSF
and NR programs, if only to point to the potential of a
mutually beneficial synergy between the two programs,
and in order to motive further study.

Mroué et al. plot the frequency ratio �̂’=�̂r versus the

adimensionalized azimuthal frequency ðMþ�Þ�̂’. Note

we must interpret the NR frequencies as our hat frequen-
cies (those defined with respect to the asymptotically flat
time t̂) rather than our Lorenz-gauge frequencies �’, �r.

It is also crucial to notice that Mroué et al. adimensionalize
the frequency using the total mass Mþ� and not

(as customary in GSF analysis) the large mass M. A GSF

expression for �̂’=�̂r is readily obtained, through Oð�Þ,
using Eqs. (3), (6), and (14) of Ref. [8],

�̂’

�̂r

¼ �’

�r

¼
�
1� 6M

r�

��3=2
�
1� 6M

r�
þ r�ðr� � 3MÞ

�M
Fr�

� r�ðr� � 3MÞ
2�M

Fr
1 þ

ðr� � 3MÞ3=2
�M1=2r2�

F1
’

�
: (92)

Here r� is the radius of the limiting circular orbit, and the
Oð�2Þ quantities Fr�, Fr

1, and F1
’ arise from the formal

e-expansion of the conservative GSF components along
the slightly eccentric orbit. Specifically, Fr� is the r com-
ponent of the conservative GSF along the strictly circular
orbit, and Fr

1, F
1
’ are associated with the OðeÞ variation of

the GSF. We refer the reader to [8] for a precise definition
of these GSF quantities. How these quantities are extracted
in practice from the numerical GSF data is described
in Ref. [1]. The azimuthal frequency is given through
Oð�Þ by

�̂ ’ ¼
ffiffiffiffiffi
M

r3�

s �
1� �� � r2�ðr� � 3MÞ

2�Mðr� � 2MÞF
r�
�

(93)

[see Eqs. (3) and (6) of [8]], where �� � �ðe ¼ 0Þ ¼
�½r0ðr0 � 3MÞ��1=2. Hence, through Oð�Þ,

ðMþ�Þ�̂’ ¼ ðM=r�Þ3=2
�
1þ�� ��

� r2�ðr� � 3MÞ
2�Mðr� � 2MÞF

r�
�
: (94)

In Appendix E we give numerical values for the GSF
coefficients Fr�ðr�Þ, Fr

1ðr�Þ and F1
’ðr�Þ. Using these

values in Eqs. (92) and (94) we can obtain a numerical

(parametric) relation between �̂’=�̂rð¼ �’=�rÞ and

ðMþ�Þ�̂’ for any given value of�. We plot this relation

in Fig. 2 for a sample of mass ratios q � �=M. Superposed
on these GSF ‘‘predictions’’ (which, of course, represent
gross extrapolations beyond the natural mass-ratio domain
of the GSF) we display the NR data points from Mroué
et al. [23]. Each NR data set, for a given q, comes from a
single inspiral simulation; how the frequencies are ex-
tracted from the numerical data is explained in Ref. [23].
The NR data clearly resolve a nonzero precession effect,

but they are not accurate enough to allow a detailed
quantitative comparison with the GSF predictions.
Nevertheless, one can make several tentative observations.
(i) The NR and GSF data are in agreement on the sign of
the post-geodesic precession effect: it is opposite that of
the geodesic precession, i.e., the GSF acts to reduce the
rate of periastron advance. (ii) The NR data for q ¼ 1=2 is
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least noisy and perhaps most accurate. If we are to trust
these data, we find that the GSF prediction ‘‘overesti-
mates’’ the post-geodesic effect by about a factor 2. This
is not unreasonable for a mass ratio as large as 1:2. We see
how our comparison already starts to tell us about the sign
and magnitude of uncalculated higher-order GSF contri-
butions. Tentatively, it would seem that the second-order
GSF precession effect is opposite in sense to that of the
first-order effect. (iii) A most meaningful comparison
(relatively speaking) would have been provided by the
1:6 data, if not for the very large scatter of the NR points
in this case. The 1:6 NR data seem roughly evenly distrib-
uted about the GSF curve, but it is not possible to make
more definite statements.

The above tentative comparison illustrates the potential
benefits from synergic GSF/NR studies. Foremostly, it
provides a strong two-way test of the results, because
GSF and NR computations use highly independent meth-
ods. From the point of view of NR practitioners, the GSF
predictions provide an accurate benchmark against which
to assess the quality of the numerical simulations. From the
GSF point of view, comparison with NR simulations gives
access to valuable information about the effect of currently
inaccessible high-order GSF corrections. We envisage a
synergy between GSF and NR methods as a fast-track
avenue to the modeling of the two-body dynamics in

intermediate mass-ratio inspirals, which is currently be-
yond the reach of either method.
Motivated by the above, we have recently initiated a

collaborative study to pursue and exploit a more detailed
comparison of the GSF and NR precession data.
Preliminary new NR data by Mroué et al. are dramatically
more accurate, and show a remarkable agreement with the
GSF predictions at q ¼ 1=8. We hope to report results
from this study in a forthcoming paper [35].
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APPENDIX A: ISOFREQUENCY
GEODESIC ORBITS

We think there is a common belief that bound geodesic
orbits in Schwarzschild (or Kerr) spacetime can be labeled
uniquely by their frequencies. This belief is unfounded,
and turns out to be false. To the best of our knowledge, this
issue was (rather surprisingly) never addressed in the lit-
erature, so we briefly discuss it here.
In Fig. 3 we plot the level lines�’0 ¼ const and�r0 ¼

const over a portion of the p0, e0 parameter space of bound
geodesics in Schwarzschild. Recall the region of para-
meter space with p0 > 6þ 2e0 (and 0 � e0 < 1) corre-
sponds to bound geodesics. The transformation ðp0; e0Þ !
ð�r0;�’0Þ becomes singular along the separatrix p0 ¼
6þ 2e0. More surprisingly, it also turns out to be singular
along a certain curve p0 ¼ psðe0Þ, well outside the sepa-
ratrix, which divides the parameter space into two disjoint
domains, p0 < psðe0Þ and p0 > psðe0Þ (see Fig. 3). At each
point along psðe0Þ, the�’0 ¼ const level line is tangent to

an �r0 ¼ const level line, and the Jacobian matrix of the
transformation ðp0; e0Þ ! ð�r0;�’0Þ becomes singular.

Note that the transformation ðE0; L0Þ ! ðp0; e0Þ is per-
fectly regular across the entire parameter space of bound
geodesics, so one cannot dismiss the above behavior as a
mere peculiarity of the p0, e0 parametrization.
It can be easily verified that the presence of the singular

curve p0 ¼ psðe0Þ results in the following: for each orbit
belonging to the left domain [p0 < psðe0Þ], there exists a
dual (or isofrequency) orbit in the right domain [p0 >
psðe0Þ], which is physically distinct but has the same fre-
quencies�’0,�r0. For example, the orbit with parameters

(M+µ)Ωϕ

Ω
ϕ/Ω

r

FIG. 2 (color online). Tentative comparison of GSF and NR
data for the periastron advance of slightly eccentric orbits.

Shown is the frequency ratio �’=�r as a function of �̂’

(adimensionalized using the total mass Mþ�), for a variety
of mass ratios q ¼ �=M between 1:2 and 1:6. The dashed line
corresponds to a test particle (q ¼ 0). Single data points describe
results from NR simulations, reproduced here from Fig. 8 of
Mroué et al. [23]. Solid lines are interpolated OðqÞ GSF pre-
dictions, calculated using Eqs. (92) and (94) with the numerical
values of the GSF coefficients tabulated in Appendix E. The
horizontal scale of this plot roughly coincides with that of Fig. 8
of [23] for easy reference. Despite the manifest low accuracy of
the NR data, this preliminary comparison is already rather
instructive (as described in the text), and motivates further study.
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ðp0; e0Þ ¼ ð6:3; 0:05Þ has the same frequencies as an orbit
with parameters ðp0; e0Þ ¼ ð6:59274 . . . ; 0:27569 . . .Þ.
This, of course, means that the frequency pair ð�’0;�r0Þ
does not label the geodesic orbits uniquely. However, one
may still use the ð�’0;�r0Þ parametrization separately in

each of the left and right domains (as we do in Sec. III).
It should be noted that all orbits on the left domain are

deep within the zoom-whirl regime. The least zoom-
whirling orbit in the left domain [the one corresponding
to the intersection of psðe0Þ with e0 ¼ 0] has a frequency
ratio �’0=�r0 ’ 4:1, i.e., it executes over 3 whirls per

radial period. It is also interesting to ask whether the range
of dual orbits in the right domain extends to the weak-field
regime (which would suggest fascinating astrophysical
implications). It is clear, however, that this is not the
case: the azimuthal frequencies of orbits in the left domain
(and hence those of their right duals too) are confined to the

range 6:38�3=2 & M�’0 < 4�3=2.

Readers familiar with the literature on radiation-
reaction in black hole spacetimes may find the curve
psðe0Þ in Fig. 3 here reminiscent of the critical curve

shown in Fig. 3 of Cutler et al. [17], which describes
the locus of points in the p0, e0 plane at which the
radiative evolution of the eccentricity changes its sense
(so that de=dp turns from negative to positive). Inspection
of the two plots reveals, however, that the two curves lie
sufficiently far apart in the parameter space to assume that
there is no direct relation between them. It is still inter-
esting to ask about possible anomalies in the behavior of a
radiatively inspiraling object as it crosses the curve
psðe0Þ. If the radiative evolution happens to drive the
inspiral across psðe0Þ in a direction (in the p0, e0 plane)
tangent, or nearly tangent, to the frequency level lines, we
might expect a ‘‘hang up’’ episode during which the
evolution of the two frequencies halts, or slows down.
The information in Fig. 3 of Ref. [17] suggests, however,
that the radiative evolution through psðe0Þ proceeds in a
direction roughly orthogonal to the frequency level lines.
Any hang-up effect should therefore be minimal.
One may also ponder the possibility of finding resonant

interaction effects acting between pairs of dual orbits
around astrophysical black holes (e.g., between clumps
of accreting matter). This intriguing possibility deserves
exploration. A preliminary step would be to understand the
dual behavior across the full (three-dimensional) parame-
ter space of generic orbits in Kerr geometry. We have
confirmed that a similar duality exists at least in the sub-
space of eccentric equatorial geodesics in Kerr [36].
Finally, we point to the fact that, in the context of the

GSF problem, the relation between the two frequencies
along the (GSF-perturbed) singular curve,�’ ¼ �’sð�rÞ,
is a gauge-invariant one. As such, we can envisage it being
utilized as a reference for comparison between different
calculations of the GSF, and for a strong-field calibration of
approximate analytic methods—in much the sameway that
the relation �’ð�rÞ has been utilized in the circular-orbit

limit [8,9]. We hope to explore this possibility in future
work.

APPENDIX B: TREATMENT OF NUMERICAL
�-INTEGRALS NEAR PERIASTRON

AND APASTRON

The numerical implementation of formulas (41) (for

��), (77) (for �T), and (88) (for � ~T ) is somewhat subtle,
due to the formal divergence of individual terms in the
respective integrands �’�, �t�, and ��� at the two radial

turning points, � ¼ 0, �. As we explained in the text, each
of the full integrands is in fact smooth for all �, including
at � ¼ 0, �. However, in practice, the divergence of indi-
vidual terms require a special treatment at the turning
points, which we describe here. In what follows we refer
specifically to �� (and �’�) for concreteness; �T and

� ~T are treated in a similar manner.
Consider first the periapsis, � ¼ 0, which is more easily

dealt with. The function �’�ð�Þ [Eq. (40)] has the form

p
0

e 0

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIG. 3 (color online). Singularity of the transformation
ðp0; e0Þ ! ð�’0;�r0Þ for bound (eccentric) geodesics in

Schwarzschild spacetime. The plot displays the level lines
�’0 ¼ const (dotted, red) and �r0 ¼ const (solid, blue)

over a portion of the p0, e0 parameter space. The diagonal p0 ¼
6þ 2e0 (straight black line) is the separatrix, where �r0 ¼ 0;
stable geodesic orbits exist in the region p0 > 6þ 2e0. In the
domain shown, �’0 decreases monotonically with p0 while �r0

increases monotonically with p0 (the sign of @�r0=@p0 reverses
further out to the right of the region shown). The thick (black)
curve, p0 ¼ psðe0Þ, is the locus of points where the�’0 and�r0

level lines are tangent to one another; along this curve the
Jacobian of the transformation ðp0; e0Þ ! ð�’0;�r0Þ vanishes.
Each orbit left of the singular curve has a dual isofrequency orbit
associated with it, which lies to the right of the singular curve.
One such pair is indicated in the plot (black crosses), at
ðp0; e0Þ ¼ ð6:3; 0:05Þ and (0.59274, 0.27569).
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�’� ¼ f1ð�Þ þ f2ð�Þ Eð�Þ
sin2�

þ f3ð�ÞLð�Þ
sin2�

; (B1)

where f1, f2, f3 are certain functions of � which are
regular (smooth) at � ¼ 0 (�t� and ��� have similar

forms, with different fn’s). The functions Eð�Þ and Lð�Þ
have even Taylor expansions at � ¼ 0, with Eð0Þ ¼
Lð0Þ ¼ 0, and so the expression in Equation (B1) is in
fact perfectly regular at � ¼ 0. Still, the factors E=sin2�
and L=sin2� pose a practical problem, because the nu-
merical integration routine we apply to evaluate Eqs. (41)
requires as input (also) the value�’�ð0Þ. We deal with this

simply by writing

lim
�!0

Eð�Þ
sin2�

¼ 1

2

d2E
d�2

���������¼0
¼ � 1

2�

�
dFcons

t

d�

d�

d�

����������¼0
;

lim
�!0

Lð�Þ
sin2�

¼ 1

2

d2L
d�2

���������¼0
¼ 1

2�

�
dFcons

’

d�

d�

d�

����������¼0
; (B2)

where we have recalled the definitions of E and L in
Eqs. (28). The factor d�=d� is given explicitly in
Eq. (29), and in the above equalities we have made use
of the fact that it is an even function of �, so the term
/ d2�=d�2 vanishes at � ¼ 0. The GSF derivatives in
Eqs. (B2) are readily evaluated numerically at � ¼ 0
from our GSF data sets. Then the numerical value of
�’�ð0Þ is obtained by substituting from Eqs. (B2) in the

form (B1).
Now turn to consider the apastron, � ¼ �, where the

situation is slightly more involved. For this discussion, we
note that �’� can also be written in the form

�’� ¼
�
g1ð�ÞEð�Þ � g2ð�ÞEð�Þ

sin2�

�

þ
�
g3ð�ÞLð�Þ � g4ð�ÞLð�Þ

sin2�

�
; (B3)

where the gn’s are certain functions of � which are smooth
near � ¼ �, where they satisfy

g1ð�Þ ¼ g2ð�Þ þOð�� �Þ2;
g3ð�Þ ¼ g4ð�Þ þOð�� �Þ2: (B4)

(�t� can be written in the same form, with different

functions gn having the same properties. The same also
applies to ���, modulo an additive function of � which is

however smooth at � ¼ � and hence of no concern to us
here.) Since E and L admit regular Taylor expansions
about � ¼ �, of the form E ¼ Eð�Þ þOð�� �Þ2 and
L ¼ Lð�Þ þOð�� �Þ2, it follows that the expression
in Eq. (B3) is perfectly regular at � ¼ �, and, in particular,
the limit � ! � of this expressions is finite. Here, how-
ever, it is not sufficient to obtain �’�ð�Þ via a Taylor

expansion as we did for � ¼ 0. An added practical diffi-
culty is that, for values of � near �, a delicate cancellation
occurs in Eq. (B3) between the g1 and g2 terms and also

between the g3 and g4 terms. This can give rise to large
numerical errors due to roundoff if one attempts to evaluate
Eq. (B3) directly.
To circumvent this problem, we introduce

�Eð�Þ � �
Z �

�
Fcons
t ð�0Þ d�

d�0 d�
0 ¼ Eð�Þ � Eð�Þ;

�Lð�Þ �
Z �

�
Fcons
’ ð�0Þ d�

d�0 d�
0 ¼ Lð�Þ �Lð�Þ; (B5)

in terms of which Eq. (B3) becomes

�’� ¼ h1ð�ÞEð�Þ þ g2ð�Þ
�Eð�Þ
sin2�

þ h2ð�ÞLð�Þ

þ g4ð�Þ
�Lð�Þ
sin2�

� ��’�; (B6)

where h1ð�Þ � ½g1ð�Þ � g2ð�Þ�=sin2� and h2ð�Þ �
½g3ð�Þ � g4ð�Þ�=sin2 are regular (smooth) at � ¼ �.
This form no longer involves a delicate cancellation be-
tween different terms near � ¼ � and is thus free from the
above numerical difficulty. To obtain �’�ð�Þ we simply

use

lim
�!�

�Eð�Þ
sin2�

¼ 1

2

d2 �E
d�2

���������¼�
¼ 1

2�

�
dFcons

t

d�

d�

d�

����������¼�
;

lim
�!�

�Lð�Þ
sin2�

¼ 1

2

d2 �L
d�2

���������¼�
¼ � 1

2�

�
dFcons

’

d�

d�

d�

����������¼�
;

(B7)

where the GSF derivatives are evaluated from the numeri-
cal data.
Finally, to carry out the integral in Eq. (41), we split the

integration domain as

�� ¼ 1

�

Z �=2

0
�’�d�þ 1

�

Z �

�=2

��’�d�; (B8)

where we use the form (B1) [with (B2)] for the first
integral, and the form (B6) [with (B7)] for the second.

The integrals for �T [Eq. (77)] and for � ~T [Eq. (88)] are
evaluated in the same way.

APPENDIX C: RELATION BETWEEN TRUE AND
CONSERVATIVE-ONLY PERIASTRON ADVANCE

In this appendix we establish the relation (48), which
states that the periastron advance �true of the physical,
evolving orbit [as it is defined in Eq. (47)] is equal through
Oð�Þ to the conservative advance � associated with a
certain average conservative orbit.
We begin by reproducing Eqs. (46) and (47) here for

easy reference,
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�true ¼ ð2�Þ�1�true � 1;

�true ¼
Z ~�2

~�1

~’�½~�; ~pðtð~�ÞÞ; ~eðtð~�ÞÞ�d~�: (C1)

Here, recall, the integration is over a complete radial cycle
of the slowly evolving orbit, from an apastron at ~� ¼ ~�1

(t ¼ t1) to the next apastron at ~� ¼ ~�2 (t ¼ t2). The values
of ~�1 and ~�2 are found from the conditions ~�1 ! �� and
~�2 ! � for � ! 0, together with ~r0ð~�1Þ ¼ ~r0ð~�2Þ ¼ 0,
where throughout this appendix a prime denotes d=d~�.
Using Eq. (44), these conditions give

~�1 ¼ ��þ ��ðp1; e1Þ þOð�2Þ;
~�2 ¼ �þ ��ðp2; e2Þ þOð�2Þ; (C2)

with

��ðp; eÞ ¼ p0ð1� eÞ þ pe0

pe
: (C3)

Here it is sufficient to evaluate p0 and e0 at leading order
[Oð�Þ], which may be done with the help of Eqs. (43) and
(4). Recall ðp1; e1Þ and ðp2; e2Þ are the orbital parameters at
times t1 and t2, respectively (assumed given). Since �� is
already Oð�Þ, in Eq. (C2) we are allowed to replace p1,
p2 ! �p and e1, e2 ! �e, where �p, �e are the average pa-
rameter values defined in Eq. (49). �p, �e are also, through
Oð�Þ, the parameter values at the periastron. We thus have

~�1 ¼ ��þ ��ð �p; �eÞ þOð�2Þ;
~�2 ¼ �þ ��ð �p; �eÞ þOð�2Þ: (C4)

Now let us formally expand ~p and ~e in ~� about the
periastron throughOð�Þ, noting that the periastron value of
~� is Oð�Þ,

~p ¼ �pþ p0ð �p; �eÞ~�þOð�2Þ;
~e ¼ �eþ e0ð �p; �eÞ~�þOð�2Þ; (C5)

where p0, e0 [each ofOð�Þ] are evaluated at the periastron.
We use this to expand the integrand in Eq. (C1) in the form

�true ¼
Z ~�2

~�1

d~�

�
~’�ð~�; �p; �eÞ þ

@~’�ð~�; ~p; ~eÞ
@~p

�������� �p; �e
p0 ~�

þ @~’�ð~�; ~p; ~eÞ
@~e

�������� �p; �e
e0 ~�þOð�2Þ

�

� �1 þ�2 þ�3; (C6)

where �1, �2, and �3 denote the corresponding contribu-
tions to �true from the first, second, and third terms in the
integrand [neglecting the terms of Oð�2Þ].

Let us consider �2 first. Using Eq. (C4) we can express
it as

�2 ¼
�
@~’�ð�; ~p; ~eÞ

@~p

�������� �p; �e
�@~’�ð��; ~p; ~eÞ

@~p

�������� �p; �e

�
p0���

þ
Z �

��
d~�

@~’�ð~�; ~p; ~eÞ
@~p

�������� �p; �e
p0 ~�þOð�2Þ: (C7)

The first two terms on the right-hand side may be evaluated
at the geodesic limit, since they are multiplied by
�� / Oð�Þ. We note, recalling Eq. (5), that ’�ð�;p; eÞ
is an even function of �, and so is its partial derivative with
respect to p. Therefore, the first two terms on the right-
hand side in Eq. (C7) cancel each other through Oð�Þ. In
addition, we note that the integrand in the third term is odd
in ~� and it follows that the integral vanishes. Hence, the
entire contribution �2 is Oð�2Þ, and similarly for �3,

�2;�3 ¼ Oð�2Þ: (C8)

Concentrate then on �1. Using Eq. (C4) again we have

�1 ¼ ½~’�ð�; �p; �eÞ � ~’�ð��; �p; �eÞ���
þ

Z �

��
~’�ð~�; �p; �eÞd~�þOð�2Þ; (C9)

in which the first two terms cancel each other through
Oð�Þ by virtue of the aforementioned even parity of
~’�ð�;p; eÞ, and the integral is simply the quantity

�ð �p; �eÞ associated with the conservative orbit with pa-
rameters �p, �e. Hence,

�1 ¼ �ð �p; �eÞ þOð�2Þ: (C10)

Combining Eqs. (C6), (C8), and (C10), we conclude

�true ¼ �ð �p; �eÞ þOð�2Þ; (C11)

and substituting �true ¼ 2�ð�true þ 1Þ and �ð �p; �eÞ ¼
2�½�ð �p; �eÞ þ 1� leads directly to Eq. (48).

APPENDIX D: MODE-SUM
REGULARIZATION OF HR

In this appendix we describe the calculation of the
R-field combination

HR ¼ 1

2
hR��u

�u� (D1)

(evaluated along the orbit) that goes into the expression for

our gauge-invariant � ^hUi~� [Eq. (84) with (88) in Sec. III].
Our numerical code returns the tensor-harmonic modes of
the retarded metric perturbation (not those of the R-field
hR��), and the construction of the function HR follows

through a certain regularization procedure, which resem-
bles the standard mode-sum regularization of the GSF.
Here we derive the necessary mode-sum regularization
formula for the quantity HR. Our analysis follows very
closely the method of Refs. [37–39], although the details
are much simpler in our present case.
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We start by recalling

hR�� ¼ hfull�� � hS��; (D2)

where hfull�� is the full (retarded) metric perturbation (de-

noted simply h�� elsewhere in this work) and hS�� is

Detweiler-Whiting’s S-field [28]. Both hS�� and hR�� are

uniquely defined (in terms of a particular Green function)
in a small neighborhood of the particle’s worldline, with
the field hR�� being a smooth (C1) homogeneous solution

of the linearized field equations. At a field point x � x� in
the vicinity of a point z � z� on the worldline, the S-field
admits the local expansion [37]

�h S
��ðxÞ ¼

4�v�v�



½1þOð�x2Þ�; (D3)

where an overbar denotes trace reversal, v�ðx; zÞ is the
four-velocity vector parallel-propagated from z to x along a
short geodesic section connecting the two points, 
ðx; zÞ is
the spatial geodesic distance from x to the worldline, and
�x � x� z. The spatial distance 
 itself has the local
expansion


 ¼ 
0

�
1þ S1

2
20

�
þOð�x3Þ; (D4)

in which 
20 ¼ ðg�� þ u�u�Þ�x��x� (with the metric

function and four-velocity evaluated at z) and S1 is a cubic
polynomial in �x [given explicitly in Eq. (A5) of [37]].
Defining now the field HSðxÞ � 1

2h
S
��v

�v�, we find

HSðxÞ ¼ 1

2

�
�hS�� � 1

2
�hS��g

��g��

�
v�v� ¼ �



þOð�xÞ;

(D5)

which, using Eq. (D4), gives

HSðxÞ ¼ �


0
��S1

2
30
þOð�xÞ: (D6)

Let us now introduce the field HfullðxÞ � 1
2h

full
��v

�v�.

Then, noting v�ðx ! zÞ ¼ u�, we obtain using Eqs. (D1)
and (D2)

HR ¼ lim
x!z

½HfullðxÞ �HSðxÞ�: (D7)

As in the standard mode-sum regularization prescription,
we formally expand both HfullðxÞ and HSðxÞ in spherical
harmonics (on a 2-sphere of constant r, t), and write
Eq. (D7) in the form

HR ¼ lim
x!z

X1
l¼0

½Hfull
l ðxÞ �HS

l ðxÞ�; (D8)

where Hfull=S
l represent the total l-mode contribution

(summed over m) to Hfull=S. It can be shown, based on
the form of the local expansion in Eq. (D6), that each of the
l-modes HS

l ðxÞ is continuous (though not differentiable) at

x ! z; and that, at large l,HS
l ðzÞ admits an expansion of the

form

HS
l ðzÞ ¼ BH þ CH=lþOðl�2Þ; (D9)

where the coefficients BH and CH depend on z but not on l.
Since HfullðxÞ �HSðxÞ is a smooth function, the multipole
sum in Eq. (D8) must converge uniformly and faster than
any power law in 1=l, and it follows thatHfull

l ðzÞ, too, must

admit the large-l expansion

Hfull
l ðzÞ ¼ BH þ CH=lþOðl�2Þ; (D10)

with the same BH and CH. This allows us to reexpress
Eq. (D8) as a sum of two convergent series, using the
familiar mode-sum form

HR ¼ X1
l¼0

½Hfull
l ðzÞ � BH � CH=l� �DH; (D11)

with

DH ¼ X1
l¼0

½HS
l ðzÞ � BH � CH=l�: (D12)

The parameters BH, CH, and DH are akin to the standard
self-force regularization parameters—which we have at-
tempted to reflect in our notation. The absence of a regu-
larization term / l is related to the fact that HR, unlike the
self-force, does not involve derivatives of the metric
perturbation.
The derivation of the parameters BH, CH, and DH fol-

lows closely the method detailed in Secs. VII and VIII of
Ref. [37]. It is based on expandingHSðxÞ [given in Eq. (D6)
] in spherical harmonics, and then evaluating the l-mode
contribution at the limit x ! z. First, one notes that the
terms of Oð�xÞ and higher in Eq. (D6) can be discarded as
they cannot affect the value of HR in Eq. (D7). [The
individual l-modes of the Oð�xÞ terms may well be non-
zero, but their summed contribution must vanish at the
limit x ! z.] We can therefore write

HR ¼ lim
x!z

½HfullðxÞ �HS;approxðxÞ�; (D13)

where

HS;approxðxÞ � �


0
��S1

2
30
; (D14)

and consider the l-mode contributions from HS;approx in-
stead of those from HS. Considering first the term / S1,
one readily shows based on a simple symmetry considera-
tion (cf. Sec. VII B of [37]) that it yields no contribution to

H
S;approx
l ðzÞ. The validity of this consideration does not

depend on the explicit form of S1 (but only on the fact
that it is cubic in �x), and it is the same consideration that
leads one to conclude the vanishing of the C parameter in
the self-force case.

Hence, the sole contribution to HS;approx
l ðzÞ comes from

the term �=
0 in Eq. (14). This contribution is easily
evaluated in explicit form using the method of Sec. VII C
of [37], and one finds, crucially, that it is l-independent.
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One therefore identifies this contribution with the parame-
ter BH [recall Eq. (D9)], and moreover concludes that
CH ¼ 0. Furthermore, since the above implies

H
S;approx
l ðzÞ � BH � CH=l ¼ 0 for all l, it follows from

the definition in Eq. (D12) that DH ¼ 0. Explicitly, one
finds, in summary,

BH¼ 2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20þL2

q ellipK

�
L2

r20þL2

�
; CH¼DH¼0; (D15)

where, recall, ellipKð�Þ is the complete elliptic integral of
the first kind. Equation (D11) thus reduces to

HR ¼ X1
l¼0

½Hfull
l ðzÞ � BH�: (D16)

To calculate HR along the orbit we begin by recording
the values of the (Lorenz-gauge) tensor harmonic l-modes

hfull;l�� generated by our time-domain code (the l-modes are

continuous at the orbit, so these values are well defined).
We then construct the full l-mode contributionsHfull

l ðzÞ (as
functions along the orbit) using

Hfull
l ðzÞ � 1

2
hfull;l�� u�u�: (D17)

We use these modes as input in the mode-sum formula
(D16), which yields HR. In practice we compute numeri-
cally only the first 20 or so l-modes. We estimate the
contribution from the uncomputed large-l tail by fitting a
power-law model (a=l2 þ b=l4) to the numerical data, then
add the estimated tail contribution to the mode-sum. In this
we follow the same procedure as for the GSF, and we refer
the reader to Ref. [1] for details.

APPENDIX E: NUMERICALVALUES FOR THE
CIRCULAR-LIMIT GSF COEFFICIENTS

Table V gives numerical values for the GSF coefficients
Fr�, Fr

1 and F
1
’ appearing in Eqs. (92) and (94), for a sample

of circular-orbit radii r�. How these values are extracted in
practice from the numerical GSF data is explained in
Ref. [1]. We give these values here for the benefit of readers
who wish to reproduce the GSF curves shown in Fig. 2, or
wish to obtain similar curves for other values of the mass
ratio q.
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