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We discuss aspects of global and gauged symmetries in quantum field theory and quantum gravity,

focusing on discrete gauge symmetries. An effective Lagrangian description of Zp gauge theories shows

that they are associated with an emergent Zp 1-form (Kalb-Ramond) gauge symmetry. This understanding

leads us to uncover new observables and new phenomena in nonlinear � models. It also allows us to

expand on Polchinski’s classification of cosmic strings. We argue that in models of quantum gravity, there

are no global symmetries, all continuous gauge symmetries are compact, and all charges allowed by Dirac

quantization are present in the spectrum. These conjectures are not new, but we present them from a

streamlined and unified perspective. Finally, our discussion about string charges and symmetries leads

to a more physical and more complete understanding of recently found consistency conditions of

supergravity.
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I. INTRODUCTION AND CONCLUSIONS

This work addresses several seemingly unrelated topics.
Wewill comment on some subtleties in gauge theories and,
in particular, in discrete (e.g. Zp) gauge theories. We will

explore the classifications of strings in four dimensions.
We will discuss some conjectures about symmetries in
quantum gravity, and we will present some constraints on
consistent supergravity theories. Even though these topics
seem to be distinct, we will see that they are related. Our
improved understanding of the field theory of discrete
gauge symmetries is crucial to a proper analysis of gravi-
tational theories.

A key focus of our work is a discussion of three
conjectures about quantum gravity.1 Some of them are
widely accepted as ‘‘folk theorems.’’ Others are known
to some experts (see e.g. [1–3] and, in particular, [4] and
the earlier reference [5]). We present new, streamlined
arguments for them, and explore their interrelation and
their implications for other issues. The conjectures are as
follows:

(1) There are no global symmetries. Here we slightly
extend the known ‘‘no global symmetries’’ dictum
to include also discrete symmetry groups and higher
brane charges. In particular, we argue that all stable
branes are associated with gauge symmetries. For
example, stable strings in four dimensions are asso-
ciated with a continuous or discrete 1-form gauge

symmetry [a.k.a. Kalb-Ramond (KR) gauge
symmetry].2

All continuous gauge groups, including Kalb-
Ramond gauge symmetries, are compact. This ex-
cludes, for example, the possibility of a gauge group
being R rather than Uð1Þ.

(2) The completeness hypothesis: The spectrum of elec-
tric and magnetic charges forms a complete set
consistent with the Dirac quantization condition.
By ‘‘complete set’’ we mean that every allowed
charge is present in the spectrum.

Clearly, these conjectures are satisfied in all known ex-
amples of string theory, i.e. in perturbative string theory,
matrix theory, and for strings in an asymptotically anti-
de Sitter background.
Our arguments in favor of the three conjectures show

that the distinction between observable operators and dy-
namical particles, which pervades quantum field theory,
disappears in models of quantum gravity. In particular,
Wilson and ’t Hooft loops must correspond to propagating
particles, which might be stable charged black holes.

1We will concentrate on models with exactly four noncompact
dimensions, which are asymptotically flat, but we expect that
some version of our conjectures is true more generally.

2Our conventions for higher-form gauge symmetries and
gauge fields follow that of branes. A q-brane has a qþ
1-dimensional world volume. It couples to a qþ 1-form gauge
field, which has a q-form gauge symmetry. In this terminology
ordinary gauge symmetry is a 0-form gauge symmetry and a
global symmetry is a ‘‘�1-form gauge symmetry.’’ We will use
this terminology both for continuous and for discrete gauge
symmetries.
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Since our arguments thread together a number of themes
and results, which are at first sight quite unrelated, we end
this introduction with a reader’s guide to the sections and
their relationships.

Section II: Here we review properties of gauge theories,
many of which are well known. We emphasize the analysis
of these theories in terms of their deep infrared behavior.
We give a universal IR Lagrangian for Zp gauge theories in

four dimensions. This involves a 2-form and a 1-form
gauge potential, whose holonomies are valued in Uð1Þ.
The integer p enters in the Lagrangian. In Secs. II and III
we will strive to find universal properties of the long
distance quantum field theory, as well as a description of
operators in the IR theory, which parametrize possible
objects in any UV completion of the theory. In some
more complete effective field theory at a higher scale, we
may find some of these objects as dynamical (perhaps
solitonic) particles or strings. The others remain as observ-
ables (Wilson lines etc.). In Sec. IV, we will argue that in
models including gravity, all the observables represent
dynamical objects.

We also study a Zp gauge theory coupled to � models,

like the SOð3Þ model, with nontrivial two-cycles in their
target space. Here we use our improved understanding of
the Zp gauge theories to shed new light on the construc-

tions of [6]. The strings of these models might be a macro-
scopic manifestation of the strings of a Zp gauge theory.

We point out the existence of point, line, and surface
operators, which describe the violation of topological sym-
metries of � models in a universal manner independent of
the UV completion of the model. We describe applications
of these operators to the violation of the string conservation
law of the � models referred to above. The latter operators
are analogs of magnetic monopoles for Nielsen-Olesen
strings. In Appendix B we note the application of these
operators to baryon number violation and the existence
of confining strings, in chiral Lagrangians derived from
QCD-like gauge theories. Appendix C outlines how all of
these questions arise in lattice models.

Section III: Here we review and refine Polchinski’s
classification of cosmic strings [7]. Our general conclusion
is that stable strings are always coupled to a KR gauge
field, which might be a Zp gauge field of the type described

in Sec. II. In the latter case p strings can end at a point.
We also mention the possibility of discrete non-Abelian
strings. If the KR gauge group is continuous, the corre-
sponding 2-form gauge field is massless and is dual to a
scalar. Here we argue that the theory should be supersym-
metric in order to avoid a potential for that scalar.
Furthermore, in order to render the string tension finite,
that scalar should be part of a moduli space of vacua and
the latter should have a singularity around which the scalar
winds. In addition, the boundary conditions should set the
moduli to that singular value. Otherwise, in the presence of
gravity the strings cannot be viewed as excitations of the

model. If one tries to create a large loop of string in such a
model, there will always be a radius above which one
forms a black hole instead.3

Section IV: Here we formulate the three interlocking
conjectures about symmetries in models of quantum grav-
ity that we mentioned above. The arguments for these
conjectures are all based on black hole physics. They are
also valid in all known consistent models of quantum
gravity.
We argue that the covariant entropy bound (CEB) leads

to an elegant and simple way to formulate the principle of
quantum gravity that forbids global continuous symme-
tries. The same argument shows that all continuous gauge
groups are compact. We use the CEB and other arguments
from black hole physics to argue for the completeness
hypotheses and to show that all global cosmic string
charges are violated as well. Stable cosmic strings must
be coupled to a gauge field, which might be discrete. In
Sec. III we use these observations to refine Polchinski’s
classification of cosmic strings.
Section V: We return to the origins of this paper [6,8,9]

and explore the consequences of all of these results for
N ¼ 1 supergravity in four dimensions. These papers
argued that certain rigid supersymmetric theories cannot
be coupled to supergravity in a straightforward way. In
particular, problems arise either when the theory includes
Fayet-Iliopoulos (FI) terms or when the target space topol-
ogy has a nonexact Kähler form. We will give a more
physical interpretation of these results by emphasizing
the role of a certain 2-form string current4 in the super-
symmetry multiplet. Such nontrivial string currents imply
the existence of cosmic strings. Hence our general discus-
sion of cosmic strings gives a new perspective on the
conclusions of [6,8,9] and extends them.
Throughout most of this paper, we will neglect the

gravitational backreaction of cosmic strings. In all the
models we consider, that backreaction is a simple deficit
angle much smaller than 2�, and this certainly appears
justified.

3One should be careful about applying many of our conclu-
sions, including this one, to phenomenology. In many cases, the
instabilities we describe are exponential in the ratio of the
cosmic string tension scale and the Planck scale.

4More generally, q-branes can carry a conserved q-brane
charge which is characterized by the associated qþ 1-form
conserved current. It is convenient to dualize it to a closed d�
q� 1-form J. We define a finite ‘‘charge’’ by integrating

Qð�d�q�1Þ ¼
Z
�d�q�1

J; (1.1)

where �d�q�1 is a closed d� q� 1 subspace. Note that this
definition of the charge coincides with the standard definition for
q ¼ 0, where �d�q�1 is all of space. Shifting the current by an
exact d� q� 1-form does not affect its conservation and does
not change the charges (1.1). This is known as an improvement
transformation.
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II. COMMENTS ON GAUGE SYMMETRIES,
OBSERVABLES, AND DYNAMICAL BRANES IN

QUANTUM FIELD THEORY

One theme of our paper is the description of quantum
field theory and quantum gravity models using their long
distance behavior. In this section we will make some
general comments (many of them are well known) about
the long distance properties of gauge theories.

A. Continuous Abelian gauge theories

A simple question, which often causes confusion, that
one can ask about an Abelian gauge theory in continuum
quantum field theory is whether the gauge group is Uð1Þ
or R. It has long been known to cognoscenti that this
question can be answered by specifying the list of allowed
observables in the model. We can have Wilson loops

WAð�1; nAÞ ¼ exp

�
inA

I
�1

A

�
: (2.1)

In a Uð1Þ gauge theory only nA 2 Z are allowed, while
in an R gauge theory every nA 2 R is allowed.
Correspondingly, in a Uð1Þ gauge theory we can have
’t Hooft operators

TAð�1; mAÞ ¼ exp

�
imA

I
�1

V

�
; (2.2)

where V is the dual photon and mA 2 Z. Alternatively,
we can define TAð�1; mAÞ by removing a tubular neighbor-
hood of �1 which is locally R� S2 and imposingR
S2 F ¼ 2�mA.

Equivalently, we can characterize the compactness of
the gauge group, by specifying the allowed fluxes of F and
�F through various cycles. The allowed fluxes and Wilson/
’t Hooft lines are restricted by the Dirac quantization
condition, but in quantum field theory nothing requires us
to include all charges consistent with the Dirac condition
as dynamical objects in the theory. Some of the Wilson
and/or ’t Hooft lines may just be nondynamical probes of
the theory.

The relation between dynamical particles and probes can
be usefully thought of as an infinite mass limit. If we take
the mass of some charged field to infinity, we can find the
effect on low energy fields due to virtual particles of large
mass by the usual Wilsonian methods. However, one can
analyze more general states, containing one or more large
mass particles, by using the particle path expansion of the
functional integral over the massive field [10]. For the case
of Abelian gauge theories in a perturbative phase, the
particle path expansion involves Wilson loops for heavy
electric charges and ’t Hooft loops for magnetic charges.5

We end this subsection with a comment about noncom-
pact gauge groups. One simple way to guarantee that one is
talking about a noncompact gauge group is to insist that the

model has two relatively irrational charges, say 1 and
ffiffiffi
2

p
.

We would like to point out that any gauge invariant
Lagrangian for this pair of charges also has a global
Abelian symmetry under which just the field of chargeffiffiffi
2

p
rotates. If we accept that there are no global conserved

charges in quantum gravity, then such a model cannot
be coupled to gravity. In Sec. IV we will see that global
charges and irrational charges are both ruled out by the
same argument about black hole physics. Of course, in
field theory with gauge group R, we include Wilson loops
of irrational charge in the list of observables, even if all
dynamical charged fields have only integer charges.
Alternatively, we can insist that we do not allow magnetic
flux when we study the theory on S2 � R2. In quantum
gravity, we will see that the completeness hypothesis does
not allow us to make such choices. R gauge theories would
have to allow irrational electric charges, and this would
lead to a forbidden global quantum number, as above. In
other words, R gauge fields do not exist in the quantum
theory of gravity. All continuous gauge groups are
compact.

B. The low energy description of Zp gauge theories
and an emergent Zp 1-form gauge symmetry

The four-dimensional BF theory with the Lagrangian
[11]

ip

2�
B ^ dA (2.3)

is known to be a simple topological field theory which does
not have any local degrees of freedom. Following Ref. [12]
we now show that this theory is equivalent to another
topological field theory—a Zp gauge theory.

A simple way to establish the relation of (2.3) to a Zp

gauge theory [12] is to start with the Lagrangian

t2ðd�� pAÞ ^ �ðd�� pAÞ þLðAÞ; (2.4)

which describes the Higgsing of a Uð1Þ gauge theory
with gauge field A by a Higgs field �. � is subject
to the identification ���þ 2� such that expði�Þ
carries charge p under the gauge group and hence the
Uð1Þ gauge symmetry is Higgsed to Zp. We are interested

in the low energy limit of this theory which is obtained
in the limit t ! 1. In this limit A ¼ 1

p d�, and therefore

the low energy theory does not include local degrees of
freedom.
In order to analyze the low energy Zp gauge theory in

more detail, we start with (2.4) and dualize � to derive the
Lagrangian

5In perturbation theory, only mutually local dyons can be light
simultaneously, and by convention we call those electric charges.
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1

ð4�Þ2t2 H ^ �H þ ip

2�
B ^ dAþLðAÞ; (2.5)

where H ¼ dB.6

If

ALðAÞ ¼ 1

2e2
F ^ �F; (2.7)

we can further dualize A to another 1-form V with the
Lagrangian

1

ð4�Þ2t2 H^�Hþ e2

8�2
ðdV�pBÞ^�ðdV�pBÞ: (2.8)

In this form we interpret the vector field V as a matter field,
which Higgses the Uð1Þ gauge symmetry of B down to Zp.

Now we can take the low energy limit (t ! 1), and if
LðAÞ depends only on F ¼ dA (i.e. there is no Chern-
Simons term or charged matter fields), we end up with
the low energy Lagrangian

ip

2�
B ^ dA (2.9)

which is a BF theory with coefficient p.
It is important that the gauge fields A and B have their

standard Uð1Þ gauge transformation laws with standard
periodicities. In particular, for every closed two-surface
�2 and for every closed three-volume �3,I

�2

F 2 2�Z;
I
�3

H 2 2�Z: (2.10)

Note that the equations of motion of (2.3) set F ¼ H ¼ 0,
and therefore (2.10) might look meaningless. This is not
correct. Equation (2.10) can be interpreted as a rule defin-
ing which bundles are included in the path integral, and
the allowed gauge transformations on these bundles. When
the path integral is used to compute expectation values of
line and surface operators, these rules have content because
F andH have delta function contributions at the location of
the operators.

We conclude that the topological field theory
Lagrangian (2.3) can be interpreted as a universal descrip-
tion of a Zp gauge theory. In fact, it also shows that an

ordinary Zp gauge theory must be accompanied by a Zp 1-

form gauge symmetry (recall our conventions of labeling
higher-form gauge symmetries by the dimension of the
gauge parameter). From the perspective of our starting
point (2.4) this new 1-form gauge symmetry is an emergent
gauge symmetry. It arises, like most emergent gauge

symmetries, out of a duality transformation. Note that
both gauge fields are Uð1Þ gauge fields, but as we will
see below, the distinct observables are labeled by Zp.

We point out that this observation is consistent with the
result of [13] that the theory with p ¼ 1 is trivial.
What are the observables in the theory (2.3)? The local

gauge invariant operators are

d�� pA� �H; dV � pB� �F: (2.11)

However, the equations of motion in the low energy theory
(2.3) show that they vanish; i.e. their long distance corre-
lation functions are exponentially small in the parameter t
or other relics of short distance physics.
We can also consider electric (Wilson) operators. For

every closed line �1 and for every closed two-surface �2,
we study

WAð�1; nAÞ ¼ exp

�
inA

I
�1

A

�
;

WBð�2; nBÞ ¼ exp

�
inB

I
�2

B

� (2.12)

with integers nA and nB. They are interpreted as the effect
of a charge nA particle with worldline �1 and a string with
charge nB with world sheet �2.
It easily follows from the equations of motion of (2.3)

that every one of these operators induces a holonomy for
the other gauge field around it. In particular,

hWAð�1; nAÞWBð�2; nBÞi � exp

�
2�i

nAnB#ð�1;�2Þ
p

�
;

(2.13)

where #ð�1;�2Þ is the linking number of �1 and �2.
Therefore, only nAmodðpÞ and nBmodðpÞ label distinct
operators. Alternatively, the fact that only nAmodðpÞ and
nBmodðpÞ are important follows from performing singular
gauge transformations. A Uð1Þ gauge transformation on A,
which winds around �2 (and is singular on �2), shifts
nB ! nB þ p. Similarly, a Uð1Þ gauge transformation on
B, which winds around �1, shifts nA ! nA þ p.
In terms of the equivalent Zp gauge theory the operator

WA in (2.12) is simply the Zp gauge theory Wilson line;

i.e. it describes the worldline of a probe particle in the
representation labeled by nAmodðpÞ of Zp. The operator

WB in (2.12) represents the world sheet of a probe string
which is characterized by the Zp holonomy around it

being expð2�inBp Þ. Clearly, this interpretation is consistent

with (2.13).
We can also attempt to construct magnetic (’t Hooft)

operators. Naively, the operator expði�ðPÞÞ at a point P is a
‘‘’t Hooft point operator’’ for B and expðiH�1

VÞ is a

’t Hooft line operator of A. However, these operators are
not gauge invariant under the Uð1Þ gauge symmetries of A
and B, respectively. In order to make them gauge invariant,
we attach p open line electric operators to expði�Þ and

6If LðAÞ ¼ 0 we can shift

A ! Aþ i

8�pt2
�H (2.6)

and remove the first term in (2.5), showing that the Lagrangian is
only ip

2�B ^ dA. However, in the presence of observables, this
shift does not eliminate the dependence on t.
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consider expði�ðPÞ þ i
P

i

R
li
AÞ, where all the lines li end

at P, which is gauge invariant. Similarly, we attach p open
surface operators to expðiH�1

VÞ to make it gauge invari-

ant. Special cases of these configurations are the two
’t Hooft operators

TBðP;mBÞ ¼ exp

�
imBð�ðPÞ þ p

Z
l
AÞ
�
;

TAð�1; mAÞ ¼ exp

�
imA

�I
�1

V þ p
Z
L
B

��
;

(2.14)

where the line l ends at the point P and the surface L ends
at �1. The other ends of these open line and open surface
can be on another magnetic operator or can be taken to
infinity. Instead of using � and V in (2.14) we could have
cut out of our space an S3 around P and a tubular neigh-
borhood around �1, which is locally S

2 � R, and imposedR
S3 H ¼ 2�mB and

R
S3 F ¼ 2�mA. This way the opera-

tors (2.14) are expressed only in terms of the variables
A and B.

However, these constructions of the operators (2.14)
show that their long distance behavior is in fact trivial.
First, note that the charge p line and surface in (2.14) are
invisible—they are like Dirac strings. Second, we can al-
ways locally gauge � ¼ V ¼ 0. Equivalently, as we re-
marked above, the equations of motion of the long distance
theory (2.3) set F ¼ H ¼ 0 and hence we cannot fix any
nontrivial integrals of them to be nonvanishing.

We conclude that the only significance of the magnetic
operators (2.14) is that a number of electric operators
can end at the same point provided their electric charges
sum up to zero modulo p. Other than that, the operators
(2.14) are trivial in the low energy Zp theory.

The Wilson loop operators may be viewed, in a familiar
fashion, as the remnants of high mass particles of charge
1 � k < p in the low energy theory. For example, we could
include in the original Higgs model, from which we de-
rived our BF Lagrangian, fields c k of charge kwith a mass
of order the Higgs vacuum expectation value (VEV) or
higher. These particles can be represented using the
Schwinger particle path expansion. If k is a factor of p,
then p

k of these paths can end at a point, indicating the

existence of the gauge invariant operator c p=k
k e�i� in

the underlying theory at the scale of the VEV. Similarly,
the fact that p elementary flux tubes of the BF theory can
end at a point and are therefore unstable (in the BF theory,
this just means that their AB phase is unobservable, so they
are indistinguishable from the vacuum) could be attributed
to the existence of magnetic monopoles carrying the mini-
mal Dirac unit with respect to the particles with charge
k ¼ 1. Note, however, that in an underlying continuum
Higgs model, nothing requires these monopoles to exist
at finite mass. In the Zp lattice gauge theory they do exist,

as well as in continuum theories in which the Uð1Þ is
embedded in a simple spontaneously broken non-Abelian

gauge theory. We will see in Sec. IV that the completeness
hypothesis of quantum gravity guarantees the existence of
these particles below a mass of order the Planck scale.

C. Example 1: The 4d Abelian Higgs model

We have seen that the universal low energy description
of Zp gauge theories involves a KR gauge field, and that

the observables include cosmic string sources. We now
turn to two examples of explicit microscopic models in
which such strings are present.
The first is theUð1Þ gauge theory with a charge p scalar.

The short distance Lagrangian is

L ¼ jð@� ipAÞ�j2 � Vðj�jÞ þ 1

2e2
F ^ �F: (2.15)

We take Vðj�jÞ such that hj�j2i ¼ t2 � 0. This VEV
Higgses the gauge symmetry to Zp and the spectrum is

gapped. Writing � ¼ t expði�Þ in (2.15) we recover the
Lagrangian (2.4). Hence, the low energy description of this
theory is given by the universal Lagrangian (2.3).
Given an explicit UV theory we can consider the opera-

tors (2.12). First, the theory (2.15) has only charge p
elementary quanta. Therefore, the nontrivial Wilson lines
WAð�1; nÞ with n � 0modðpÞ correspond to probe parti-
cles rather than dynamical particles. If, however, we add to
(2.15) additional massive particles with electric charge 1,
then all these Wilson lines can be realized by dynamical
particles.
It follows from (2.15) that the theory has smooth string

configurations. The Higgs field � vanishes at the core of
the string, where the full Uð1Þ gauge symmetry is restored,
and its phase winds around the core. The low energy
description of k strings with world sheet �2 is given by
the operator WBð�2; kÞ. These strings can be detected by
using the electric Wilson operators WAð�1; nÞ, where �1

circles around the string world sheet.
Next we consider the magnetic ’t Hooft operators (2.14).

Because of the Higgsing by �, magnetic monopoles are
confined—they are attached to strings. More precisely,
since � has electric charge p, the magnetic flux in our
strings is 1=p times the fundamental unit of magnetic
charge, and a charge m monopole is connected to mp
strings. This configuration is the one we discussed above
when we considered p open surface operators. We see that
hTAð�1; mÞi exhibits an area law with string tension mp
times that of the basic strings. In accordance with our
general discussion above, this area law sets this operator
to zero in the long distance theory.
More interesting is the possibility of adding to our

theory dynamical massive magnetic charges. If they carry
the fundamental unit of magnetic charge, the number of
strings k is not conserved but kmodðpÞ is conserved.
This fact is consistent with our general discussion above
in which a low energy observer was sensitive only to
kmodðpÞ rather than to k.
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D. Example 2: Coupling a Zp gauge theory to the SOð3Þ
� model and topology tearing operators

In our first example above the theory was gapped and
the low energy theory was only the Zp gauge theory. The

universal behavior of its correlation functions was deter-
mined by the low energy theory, but additional details
depended on the UV theory. In particular, some properties
of the strings, including their tension, depended on the
details of the potential at � � 0, where the Uð1Þ gauge
symmetry was restored. We now study a variant of this
theory in which the low energy Zp theory is coupled to

massless matter fields. Here, in addition to various possible
massive excitations, some charged particles and strings
are constructed out of the low energy matter theory.

We replace the theory (2.15) with a similar theory with
two fields �i¼1;2 with charge p. We can take the potential

to constrain

j�1j2 þ j�2j2 ¼ t2: (2.16)

This constraint guarantees that theUð1Þ gauge symmetry is
Higgsed everywhere in field space to Zp. This theory has

been studied in [6,14–16] from various points of view.
Naively, the low energy theory is simply the SOð3Þ �

model. However, the unbroken Zp gauge symmetry has

interesting low energy consequences. In order to derive
them we parametrize the two fields �1;2 subject to the

constraint (2.16) as

�1 ¼ t
zei�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzj2p ; �2 ¼ t

ei�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzj2p : (2.17)

Here z parametrizes the S2 target space and � can be
changed by a Uð1Þ gauge transformation. Next, we dualize
� as in (2.4) and (2.5) and shift A as in (2.6) to find that the
� model couples to A and B through

i

2�
B ^ ðpF�!Þ; (2.18)

where ! is the pullback of the Kähler form of the target
space to space-time normalized such that if we wrap the
target space once,

H
! 2 2�.

We conclude that the�model is coupled to theZp gauge

theory in the BF presentation.
The equation of motion of B sets pF ¼ !. In fact, up to

a gauge transformation we can write

pA ¼ a; (2.19)

where a is the pullback of the Kähler connection to space-
time satisfying

! ¼ da: (2.20)

Therefore the integral over every closed two-surface �2

in our space-time must satisfy [6]

I
�2

! ¼ p;
I
�2

F 2 2�pZ: (2.21)

The paper [6] studied two classes of theories with non-
trivial constraints on the ‘‘instanton number’’

R
�2

!. First,

the theory was coupled to a BF theory, where B played the
role of a Lagrange multiplier implementing the constraint
on !. Second, the constrained theory was derived as a Zp

gauge theory by using charge p fields. Here we see that, in
fact, these two presentations are dual to each other.
To explore the low energy content of our model, we

study its allowed operators. These include both ‘‘matter’’
components constructed out of the �-model field z and Zp

components constructed out of A and B.
Let us start with the matter operators. First, we have all

the obvious local �-model operators, which are con-
structed out of functions of z and its derivatives. Another
local operator at a point P, OHopfðPÞ is constructed by

removing a neighborhood of P from our space-time and
constraining the �-model variables on its S3 boundary to
have a nontrivial Hopf map. Such an operator is interpreted
as creating a nontrivial particle—a ‘‘Hopfion,’’ at the point
P. We can also construct line operators expðinH�1

aÞ
for integer n. Finally, we can attempt to construct a line
operator that represents the creation of m strings.
Ordinarily, it is defined by removing a tubular neighbor-
hood of the line whose boundary is locally R� S2 and
imposing

R
S2 ! ¼ 2�m. However, because of the condi-

tion (2.21) this is possible only for m which is a multiple
of p. In other words, only operators that create p strings
can be constructed out of the �-model variables.
Next we construct additional operators out of the gauge

sectors A and B. We start with the Wilson line

WAð�1; nAÞ ¼ exp

�
inA

I
�1

A

�
¼ exp

�
i
nA
p

I
�1

a

�
:

(2.22)

For nA a multiple of p, this operator was mentioned above
as a ‘‘matter operator.’’ The appearance of the fraction nA

p in

(2.22) is interesting. It shows that this is not a standard
�-model operator. If we think of it as a result of a massive
particle of charge nA, the fraction means that the field of
this particle cannot be described as a section of an integer
power of the line bundle over our �-model target space. It
appears like ‘‘the pth root of that line bundle.’’ The inter-
pretation of this fact is obvious. The massive field is not a
section on the target space, which is pulled back to space-
time. Instead, it is a section of a bundle on space-time,
whose transition functions depend on the �-model fields.
Since the �-model configurations are restricted by (2.21),
the corresponding massive field is well defined.
The second gauge sector operator is the surface Wilson

operator WBð�2; nBÞ. In the presence of this operator the
equation of motion pF�! has a delta function on �2.
Hence this operator represents the world sheet of a string
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with nB units of flux. These strings can be interpreted either
as �-model strings or as strings constructed out of massive
degrees of freedom.

For nB which is not a multiple of p, the world sheet �2

must be closed. If, however, nB is a multiple of p, these
strings can end as in the second equation in (2.14). Their
end can be described by the string creation operator made
out of the �-model fields that we discussed above. We
conclude that in this case we can use the matter degrees of
freedom to construct an analog of the second operator in
(2.14). However, since the equation of motion of A still sets
H ¼ 0, there is no analog of the first operator in (2.14).

Now suppose we add dynamical particles with magnetic
charge k. They are characterized by the integral

R
S2 ! ¼

2�pk around their worldline. As above, such particles are
confined—they are attached to strings. The wrapping num-
ber of these strings is pk. If such excitations are present,
then a string with wrapping numberm can decay to a lower
winding number while preserving mmodðpkÞ. In particu-
lar, if particles with k ¼ 1 are present, then only mmodðpÞ
is conserved. It is important to note that since

R
S2 ! ¼

2�pk around a magnetically charged particle, creating or
annihilating such a particle has the effect of ‘‘tearing the
topology.’’ We will refer to these operators and analogous
ones below as ‘‘topology tearing operators.’’

As in the Abelian Higgs model, the expectation value of
a purely electric loop hWAð�1; nÞi has a perimeter law. If
�1 is large and it winds once around a string with winding
number m, hWAð�1; nÞi depends on m through a phase
expð2�inm=pÞ. Again, only mmodðpÞ is measurable this
way. Also, as in the Abelian Higgs model, if there are no
magnetically charged particles, a ’t Hooft loop of charge
m, TAð�1; mÞ, exhibits an area law associated with a string
tension proportional to mp. However, dynamical magneti-
cally charged particles with charge k can screen the ten-
sion, and the area law is determined by mmodðkÞ. In
particular, for k ¼ 1 the loop can be totally screened.

In conclusion, we have presented new operators in the
standard SOð3Þ � model. In addition, this model can be
coupled to a topological field theory. There are no new
local degrees of freedom, but the set of operators is modi-
fied. We have also shown that this theory can be modified at
short distances [without breaking its SOð3Þ global symme-
try] by adding electric and magnetic charges. The electri-
cally charged fields do not transform like sections of a line
bundle on the target space. The magnetic charges violate
conservation of the string current �!. Equivalently, be-
cause of the monopoles the 2-form operator ! is not
closed,

d! ¼ pdF � 0: (2.23)

Hence, the topological conservation law is violated. As we
said above, this arises from the fact that creation of mag-
netically charged particles tears the topology.

The topological classification of the space of maps from
space-time to the target space depends on the topology of

both domain and range, and violation of the conservation
law can come from either. For example, we can, as above,
embed the � model in a linear model in which the con-
straint (2.16) is a low energy artifact. This eliminates the
topology of the target space, while keeping space-time
continuous. Alternatively, we can look at the lattice version
of the � model, with the constraint imposed at the micro-
scopic level. Here, topology tearing operators and topology
tearing excitations can ‘‘hide their singularities in the holes
between lattice points,’’ and they exist even though the
target space topology is intact. We will see that in theories
with gravity, black holes act in some respect like both of
these mechanisms at once.
Finally, we would like to comment on another aspect of

this theory, which is unrelated to our Zp discussion. The �

model has particle-like excitations, Hopfions associated
with nontrivial Hopf maps of space to the target space.
Their number is conserved,7 and hence the theory has a
global continuous symmetry. This symmetry cannot sur-
vive when the model is coupled to gravity. The operator
OHopf , when added to the Lagrangian, will describe the

breaking of this symmetry. Although formally it is a local
operator, we are dealing with a nonrenormalizable theory,
so it is, at best, local on the scale of the cutoff t. So we
should imagine that the hole which it cuts in space-time is
of size �1=t. A smooth Hopfion configuration can shrink
to the cutoff scale and when, in first order perturbation
theory in OHopf , it encounters the hole, it disappears. Its

energy is radiated into topologically trivial fields of the �
model. If, in fact, the underlying physics responsible for
the violation of Hopf number comes from a shorter dis-
tance scale, the dimensionless coefficient of OHopf in the

Lagrangian will be small.
There is a similar description of proton decay, due to e.g.

unification scale exchanges, in terms of a topology tearing
operator in the Skyrme model. We will discuss it in
Appendix B.

III. THE TAXONOMY OF STABLE STRINGS

In this section we review and expand on Polchinski’s
classification of cosmic strings [7]. Polchinski classifies
strings according to a long distance observer’s ability to
detect them:

7We point out that the corresponding conserved current is

JH �X
i;j

ð ��id�i ��id ��iÞd ��jd�j � d� ^!; (2.24)

where we have used the parametrization (2.17). It is not gauge
invariant under the gauge symmetry of A, and therefore this
current cannot be gauged. [Equivalently, if we express it in terms
of the gauge invariant data of the � model as a ^!, it is not
invariant under the global SUð2Þ.] However, the corresponding
charge is gauge invariant, and therefore the Hopf number is
conserved.
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(1) ‘‘Local’’ strings cannot be detected by a long dis-
tance observer.

(2) ‘‘Global’’ strings are coupled to a massless 2-form
gauge field B or, equivalently, to a massless dual
scalar �, which winds around the string.

(3) Aharonov-Bohm (AB) strings [17–19] are charac-
terized by a nontrivial discrete holonomy around the
string. We can divide this category in two by asking
whether or not the discrete group is Abelian. We
will leave a discussion of the IR theory for discrete
non-Abelian groups to future work.

(4) Quasi-Aharonov-Bohm strings have such a holon-
omy but it is embedded in a continuous gauge
symmetry.

We would like to make several comments about these
classes, emphasizing the perspective of this paper:

(1) The term ‘‘local strings’’ originates from the cosmic
string literature. From our perspective this terminol-
ogy is confusing because such strings are character-
ized by a global string charge, which is not gauged.
If the corresponding symmetry is continuous, the
theory has a conserved string current—a closed but
not exact 2-form current J. Following the three quan-
tum gravity conjectures, such global string symme-
tries cannot be present, and, as discussed in [7], such
stable strings should not exist in a gravity theory.

(2) Again, the term ‘‘global strings,’’ which originates
from the cosmic string literature, is confusing. Such
strings are characterized by a local string charge.
We will discuss them in more detail below.

(3) Here the AB phase is associated with a discrete
gauge symmetry, e.g. Zp. The discussion of Sec. II

shows that these are Zp strings. They arise from an

ordinary Zp gauge symmetry and are coupled to an

emergent Zp 1-form gauge symmetry. So the differ-

ence between this case and the previous one is that
here the 1-form gauge symmetry is discrete. As we
will discuss in Sec. IV, in the context of a gravity
theory p, such strings can combine and disappear.

(4) Unlike the previous case, here the ordinary gauge
symmetry is embedded in a continuous gauge sym-
metry, e.g. Zp � Uð1Þ. Since the low energy theory

does not have a Zp gauge symmetry, we do not find

the emergent Zp 1-form gauge symmetry, and hence

these strings are, at best, associated with a global
charge and should not be present in quantum gravity.
In fact, in most situations such strings can decay by
emitting the massless Uð1Þ gauge fields.

To summarize, classes 2 and 3 are associated with a long
range 1-form gauge symmetry, which is continuous and
discrete, respectively, while classes 1 and 4 are not asso-
ciated with such a gauge symmetry and hence cannot exist
in a consistent model of quantum gravity. We have given a
complete IR description of class 3 strings when the discrete
AB phase is Abelian. The non-Abelian case certainly

exists, because we know of examples with discrete non-
Abelian gauge groups in perturbative string compactifica-
tion (e.g. the S5 symmetry of the quintic is a case in point).
We will leave a discussion of the IR Lagrangian for such
theories to future work. For the rest of this paper we restrict
the AB phase to lie in Zp.

We now turn to a more detailed discussion of the second
class in which the strings are coupled to a massless scalar
�, which winds around the string. This massless� leads to
two problems:
(1) As emphasized in [7], such a configuration of a

winding � is possible only if � does not have a
potential. Typically, this is natural only if the theory
has a global shift symmetry of�. The lack of global
symmetries in gravity makes this possibility
unnatural.

(2) Even if a scalar � without a potential is present, its
kinetic term ð@�Þ2 makes the tension of the string
infinite.

These two problems can be solved naturally, if our
theory and our vacuum are supersymmetric. In that case
it is natural to have no potential for � without a shift
symmetry. � and its supersymmetric scalar partner lie on
a supersymmetric moduli space.
In the context of supersymmetry the problem of infinite

tension can also be ameliorated. � is typically the real part
of a massless complex field � without a potential. More
generally, we should view � as a complex coordinate on the
moduli space. For simplicity, consider a common example
of a one-dimensional moduli space where the metric on
that space is determined by the kinetic term

g� ��@�@ �� ¼ 1

ðIm�Þ2 @�@ ��: (3.1)

Because of the singularity as Im� ! 1, if Im� ! 1 near
the boundary of space-time, the string tension can be
finite.8

One can generalize this construction to multidimen-
sional moduli spaces. Finite tension strings will exist for
every nontrivial circle near the boundary of moduli space,
if the metric has the appropriate asymptotic behavior there.
To our knowledge, this is the case for all the boundaries of
moduli space that have been explored in string theory. Note
that it does not matter whether the circle can be unwound in
the interior of moduli space. The existence of a string is

8Using polar coordinates in two dimensions, the most general
solution of the equations of motion, which winds around infinity
n times, is � ¼ � n�

2� þ i n
4�C ððbrÞC � ðbrÞ�CÞ, where b and C

are integration constants. The action of this solution suffers from
an IR divergence as r ! 1. It is removed by taking the C ! 0
limit in which the solution becomes � ¼ i n

2� logðbzÞ, where z ¼
rei�. Note that this solution becomes singular at z ¼ 1=b. In
standard string applications this singularity is removed by a
duality transformations. We thank J. Distler for a useful dis-
cussion about this point.
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characterized by the winding of� at spatial infinity, but the
finite tension condition forces the fields to the boundary of
moduli space at spatial infinity. This is analogous to the
finite action condition on four-dimensional gauge theory,
which leads us to characterize gauge fields in terms of
maps of the sphere at infinity into the gauge group.

This understanding leads us to an important point: The
behavior of these finite tension strings is such that they
cannot be viewed as excitations of a model at a generic
point in moduli space. Generic models are characterized by
generic values of the moduli at infinity, and such boundary
conditions do not accommodate finite tension strings.

At this point we would like to make a few comments:
(1) For generic values of the moduli we can consider a

circular loop of one of these strings, of radius R. Far
from the string the moduli must first approach the
boundary of moduli space, and then return to their
fixed value at infinity. As R ! 1, the fields must
return to the fixed value at infinity over a larger
region in space, and hence the energy of this con-
figuration must grow more rapidly than R. (Of
course, this statement is equivalent to our statement
above that such strings have infinite tension unless
the asymptotic value of the moduli is infinite.)
Consequently, for large enough R this configuration
collapses into a black hole, and there are no large
loops of cosmic string. For example, in the simple
moduli space with asymptotic metric (3.1), the en-
ergy grows like R lnR and the maximal scale of the

string loop is of order ��1em
2
P=�

2
, where �2 is the

string tension.
(2) Special cases of this discussion of cosmic strings

with a Z valued quantum number in four asymptoti-
cally flat dimensions are fundamental type II or
heterotic E8 � E8 superstrings, in compactifications
that preserve minimal super-Poincaré invariance in
four dimensions. The infinite tension in these cases
is of order g2s as is the backreaction on the metric.
For this reason this effect is often ignored.

(3) We would like to point out an important fact, which
follows from the analysis of [8], and to which we
will return in Sec. V. The target space of every
supersymmetric field theory is a Kähler manifold.
If its Kähler form is not exact, it cannot be coupled
to linearized minimal supergravity. The only way to
do that is through the introduction of an additional
chiral superfield �. In the linearized approximation
the Kähler potential K is replaced by K þ �þ ��.
The real field Im� plays the role of � above—it is
dual to a 2-form that couples to the string current.
However, taking into account the gravitational cor-
rections to the metric on the target space, this modi-
fication ofK has the effect of ruining the topology of
the target space. The strings are no longer stable,
even classically.

(4) At this point it is worth mentioning the gravitational
backreaction of the cosmic string, which is a deficit
angle at infinity and has been neglected in all of our
discussions so far. This by itself means that there is a
sense in which the string is not an excitation in
asymptotically flat space, but if the deficit angle is
small this is clearly sort of academic. One can make
arbitrarily large closed loops of such strings without
forming black holes. In particular, if the tension of
Zp strings is small compared to the Planck scale,

then macroscopic strings are observable.
(5) We caution again that the phenomenological import

of our statements is unclear. Many of the instabil-
ities we describe may have exponentially small
probabilities. For example, our general arguments
only imply the existence of magnetic monopoles of
mass �MP. In that case the Schwinger pair produc-
tion probability per unit string length for these
monopoles to destabilize an infinite cosmic string

is expð�M2
P

f2
Þ, where f is of the order of the energy

scale of the magnetic flux line in some low energy
Higgs field. Similarly, the collapse of a long but
finite string for generic values of the moduli to a
black hole takes place only for exponentially large
R. Therefore, in many cases, these instabilities will
have no phenomenological relevance.

Our conclusion then is that in models of quantum gravity
in four asymptotically flat dimensions, with finite values
of the moduli at infinity, there is only one kind of stable
cosmic string, and it is stable modulo some integer p.9 In
models that have a noncompact moduli space, the exis-
tence of strings of finite tension depends on the behavior
of the metric on target space at infinity and on the ‘‘fun-
damental group of the boundary.’’ All other types of cos-
mic strings suffer from instabilities. In the next section
we will provide arguments for the claims about quantum
gravity, which we have used to come to these conclusions.

IV. SYMMETRIES IN QUANTUM GRAVITY

In this section we will discuss the following three
conjectures about symmetries in quantum gravity:
(1) No global symmetries—all the symmetries includ-

ing brane symmetries and discrete symmetries are
gauged.

(2) All continuous gauge symmetries are compact.
(3) The entire set of allowed states in the lattice of

charges is populated.
Before getting into a detailed discussion of these con-

jectures, we would like to point out that some special
cases of them can be proven or at least be argued for
quite convincingly, but others are more speculative.

9There is a generalization to strings whose AB phases lie in a
more complicated finite group.
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Furthermore, these conjectures are not logically indepen-
dent. Assuming a subset of them, or some special cases, we
can prove the others.

As an example of the interrelation between the conjec-
tures, consider a gauge symmetry associated with a q-form
conserved current. Then the corresponding field strength is
a d� qþ 1-form F. If the gauge symmetry is noncom-
pact, it does not have magnetic charges and F is closed and
leads to a conserved current. Using the first conjecture, it
must be gauged, i.e. be coupled to a q� 1 gauge field B
through the Chern-Simons coupling B ^ F. As in Sec. II,
this has the effect of Higgsing the two gauge symmetries.
If such a coupling is not present, we conclude that the
gauge group must be compact and that the theory includes
dynamical magnetic monopoles, so that F is not closed. A
similar example was discussed at the end of Sec. II A.
There we argued that if a gauge group is R and two
relatively irrational charges are present, the theory must
have a global symmetry, thus violating the first conjecture.

A. No global continuous symmetries

The idea that any theory of quantum gravity cannot have
global symmetries has a long history and is often referred
to as a ‘‘folk theorem.’’ Below we will discuss the rationale
behind this idea. But before doing that we would like to
make some comments:

(1) The simplest form of this conjecture applies to
continuous symmetries, which are associated with
point particles in space-time dimensions four or
larger. The usual argument for this case involves
black hole physics.

(2) The lack of such ordinary global continuous symme-
tries is known to be satisfied in all controlled con-
structions of quantum gravity. It was shown in [20] to
be satisfied in perturbative string theory—global
symmetries on the string world sheet lead to gauge
symmetries in space-time, and there is no way to
have global symmetries in space-time. The situation
for strings in anti-de Sitter background [21] is simi-
lar—global symmetries in the boundary theory are
associated with gauge symmetries in the bulk and
there is noway to have global symmetries in the bulk.
Similar comments apply to the matrix model of [22].

(3) Assuming that no such global symmetries exist,
we can easily extend the result to all continuous
symmetries associated with branes of codimension
larger than 2. Such branes can be compactified on
circles to ordinary point particles in lower dimen-
sions. The absence of global symmetries for these
particles leads to the absence of global symmetries
of the higher-dimensional branes.

(4) We will be particularly interested in string currents
in four dimensions. These situations are not covered
by the discussion above. Yet, we will argue in
Sec. IVD that such currents should also be coupled

to gauge fields. One special string current will be
discussed in Sec. V. This current appears in the
supersymmetry current algebra. Hence, in the con-
text of supergravity it must be gauged, independent
of our more general conjectures.

We begin by reviewing the argument that models of
quantum gravity cannot have global continuous symme-
tries. The lightest particle transforming under the group is
in a representation r and has mass m. We can make multi-
particle states of an arbitrary representation R � r � r �
r . . . and collide those particles to make a black hole. As
long as the representation is not correlated with a long
range gauge field, this will be a Schwarzschild black
hole, and its macroscopic fields will be independent
of R. Hawking’s calculation shows that this state decays
to a remnant with mass of order XMP, without emitting its
global charge. Here XLP is the value of the Schwarzschild
radius for which Hawking’s calculation becomes unreli-
able. The value of X for which the Hawking calculation
breaks down is hard to estimate but it is surely no more
than an order of magnitude or so.
If m is nonzero, the remnant state is absolutely stable,

since any combination of particles carrying such a large
representation of the global group is heavier than the rem-
nant. Even if m ¼ 0, as would be the case for the global
SUð8Þ symmetry of N ¼ 8 supergravity (SUGRA), the
lifetime of the state must go to infinity with the number
of particles in r, which are needed to make a black hole in
R. Indeed, the only way to emit an infinite number of
massless particles with finite energy is through bremsstrah-
lung processes in which the decay products accelerate
through rescattering. Neither the remnant state nor any of
its decay products carry charge under any low energy gauge
field apart from gravity itself. Gravitons are of course
neutral under the global symmetry, so gravitational brems-
strahlung cannot carry away global charge. Thus, even if
m ¼ 0 we get an infinite number of arbitrarily long lived
remnants, whose external geometry is that of
Schwarzschild’s with RS ¼ XLP.
The covariant entropy bound (CEB) [23,24] is a conjec-

tured bound on the entropy contained in any causal dia-
mond in Lorentzian geometry. The original statement of
the bound does not specify which density matrix is (im-
plicitly) referred to, but it would be completely meaning-
less if it did not count entropy associated with verifiably
different states that could form the same black hole ge-
ometry. Causal diamonds whose past boundary is a portion
of the remnant black hole horizon10 have a holographic

10The black hole remnant might be only metastable in the
massless case and purists might object to using its interior
geometry. We can instead talk about the causal diamond of an
observer orbiting the black hole in the last stable orbit, over one
period of rotation. This would affect only the quantitative
estimate of the bound on the order of finite global symmetry
groups, which we present below.
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screen whose area is that of the horizon. Thus, the CEB
implies that the entropy of the remnant object is less than a
finite number of order �X2, which contradicts the exis-
tence of an infinite number of remnant states. Other
arguments have been given for the absence of infinitely
degenerate remnants, but all of them make some assump-
tion about the most general possible theory of quantum
gravity. For example, it has been argued that quantum
loops of an infinite number of degenerate remnants are
inconsistent. All such arguments contain some hidden
assumptions. We view the CEB as the most elegant and
general criterion for characterizing the differences between
gravitational and nongravitational quantum theories.

The CEB also enables us to get a soft bound on the
maximal size of a finite global symmetry group. Let � be
the sum of the dimensions of irreducible unitary represen-
tations of such a group. Since each state, in each represen-
tation, would be another possible state for the remnant, we
get a bound

�< e�X
2
: (4.1)

The bound is soft, both because we do not know the value
of X and because, for X of order one, we expect corrections
to the Bekenstein-Hawking formula.

Actually, as we said above and as we will discuss in
Sec. IVB, it is our prejudice/conjecture that there are no
global discrete symmetries in gravitational theories.

We want to point out that this set of arguments also rules
out Abelian gauge fields with particles of relatively irra-
tional charge. Suppose, for example, that there are particles

of charge 1 and
ffiffiffi
2

p
. Then we can make Reissner-

Nordstrom black holes of charge

q ¼ n1 þ
ffiffiffi
2

p
n2; (4.2)

where the ni are any integers. Thus, there are an infinite
number of black holes of charge q < �, for any �. Again,
Hawking radiation will allow all of these to decay down to
a remnant of Schwarzschild radius XLP, but an infinite
number of these states are indistinguishable, violating the
CEB. This argument complements that given in Sec. II A,
that the theory has a global Uð1Þ symmetry, which counts

the number of particles of charge
ffiffiffi
2

p
. The argument for

compactness of continuous symmetry groups and the fact
that they must be gauged are really one and the same.

B. Are discrete symmetries gauged?

In perturbative string theory there is an enormous
amount of evidence that all discrete symmetries are gauge
symmetries. For example, the SLð2;ZÞ duality symmetry
of ten-dimensional type IIB string theory is, from the
M-theory point of view, just part of the 11-dimensional
reparametrization group. Similarly, the T-duality of heter-
otic strings compactified on a circle is a gauge symmetry
[25], because it is part of a continuous SUð2Þ gauge sym-
metry that is restored at the self-dual radius. Some of the

torsion part of the K-theory group of D-brane systems can
be viewed as part of the gauge group of a space-filling
brane antibrane system out of which we construct lower-
dimensional D-branes [26–30]. For example, the Z2 of the
stable non-BPS particle of type I string theory is the center
of the Spinð32Þ=Z2 gauge group of the branes. And so it
goes for all known discrete symmetries.
We anticipate a general argument for the fact that dis-

crete symmetries are gauged, based solely on simple prin-
ciples of any theory of quantum gravity, but we have not
found one as compelling as those for continuous symme-
tries. The best we could do is to find the argument around
(4.1), which leads to a weak bound on the size of possible
discrete groups.
A first step in this direction might be to establish that a

Zp symmetry is gauged if there is a finite tension cosmic

string, around which particles pick up a Zp phase. The

existence of such a string would enable us to measure the
Zp charge of a black hole, proving that the Zp charge is

conserved and measurable from arbitrarily far away. There
is clearly much more to be understood about this.

C. The completeness hypothesis and black holes

On the basis of perturbative string theory examples,
Polchinski has conjectured that consistent models of quan-
tum gravity always contain a complete set of electric and
magnetic objects consistent with the Dirac quantization
condition [4]. This is certainly not the case in ordinary
quantum field theory. There we can often take the masses
of monopoles or charged particles to infinity, leaving be-
hind an incomplete but consistent spectrum.
In a theory of gravity, this procedure will fail. When the

mass of the particle becomes larger than the Planck mass,
gravitational backreaction cannot be neglected and the
state becomes a black hole carrying the electric or mag-
netic charge of the erstwhile particle. This black hole will
decay by Hawking radiation down to the extremal black
hole for that charge. Thus, there is no way to tune parame-
ters to eliminate charges.
Still, we might speculate about the possibility of models

in which certain allowed states were ‘‘never there.’’ In
quantum field theory, there are two ways of specifying
the global structure of a gauge group. We can either specify
the allowed set of observables, including line and surface
operators, or we can specify the allowed fluxes of the field
strength and its dual on geometries containing nontrivial
cycles. The line operators require renormalization by a
factor

ec
R ffiffiffiffiffi�g

p
; (4.3)

and therefore interact with the gravitational field like a
point particle. Thus, an allowed line operator will produce
a charged black hole with the ‘‘missing’’ charge, even if the
field theorist has refused to include a low energy field
carrying that charge in the model.
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Furthermore, the black hole geometry has an S2, which
is topologically nontrivial, and so the field theorist will be
forced to allow black holes with every flux that went into
the definition of the gauge group.

Without a rigorous definition of the most general pos-
sible theory of quantum gravity, we cannot call these re-
marks a proof, but they constitute a very strong argument
that the completeness hypothesis is valid in any such
theory. As a consequence of the completeness hypothesis,
our argument about relatively irrational charges becomes
the stronger statement that all continuous gauge groups are
compact. The completeness hypothesis eliminates the pos-
sibility of a noncompact gauge group (no monopoles),
which ‘‘just happens’’ to have only quantized electric
charge states.

Our argument that gauge groups must be compact ap-
plies only to continuous groups. We know that type IIB
string theory has an infinite SLð2;ZÞ gauge symmetry. We
also have not found an argument that bounds the value of p
in a discrete Zp gauge theory. Thus, we cannot rule out the

p ! 1 limit. We note, however, that SLð2;ZÞ is always
Higgsed to a finite subgroup by a choice of the moduli
fields at infinity. Furthermore, known string compactifica-
tions to asymptotically flat space always seem to have
finite discrete gauge groups, acting on the Hilbert space
of excitations. Thus, it may be that more refined arguments
than those we have presented could rule out infinite dis-
crete gauge groups that leave the boundary conditions at
infinity invariant.

It is quite likely that eventually the completeness hy-
pothesis would be derived from general string theory con-
siderations without relying on the existence of black holes.
In fact, there are known simple solvable examples of string
theory in one space or in one space and one time dimen-
sions in which this question can be addressed. Clearly, in
such degenerate situations there are no black hole solu-
tions. So one could ask whether all allowed charges are
present. The relevant charges are the Ramond-Ramond
charges of the type 0 theory. The authors of [31–35] have
shown that all the Ramond-Ramon charges of these
theories have a manifestation in the matrix models.
Furthermore, the allowed charges are quantized and all
of them are populated.

D. Black holes and the stability of strings

In this subsection we focus on strings and follow the
point of view of [7], which emphasizes measurements that
can be performed far from the string. We restate it as
follows from the three conjectures: Every stable string
must be coupled to a KR gauge field. Its gauge group can
be either Uð1Þ or Zp.

11 In the first case the total number of

strings is conserved, while in the latter case it is conserved

only modulo p. Let us see how these ideas are realized
in two examples of strings: Nielsen-Olesen strings of the
Abelian Higgs model (Sec. II B) and �-model strings
(Sec. II B).
The completeness hypothesis shows us that in quantum

gravity Nielsen-Olesen strings of low energy Higgs models
are, at best, unbreakable modulo p, for some integer p. The
value of p is determined by the charge of the Higgs field,
which in turn determines the unbroken gauge symmetry.
The string can be detected by the AB phase around it. The
completeness assumption guarantees that the system al-
ways has dynamical particles of electric charge 1, which
can detect the Zp phase. Furthermore, while in field theory

the system might not have magnetic monopoles of the
lowest allowed charge, the completeness hypothesis now
tells us that in gravity theories such monopoles must be
present. p strings can end on such a monopole. Hence, not
only are we unable to detect p strings using an AB phase,
but such a configuration of p strings is unstable. In terms of
the Uð1Þ field strength we have

dF ¼ Jm � 0; (4.4)

where Jm is the monopole current, so the local string
current is not conserved.
As we have explained in Secs. II and III, one way to

think about such a situation is in terms of a continuum Zp

gauge theory, which is a pair consisting of a 2-form gauge
field B and a 1-form A which are both valued in Uð1Þ.
The action is

ip

2�

Z
B ^ F: (4.5)

Next we turn to �-model strings. One way to generate
these � models is by using a Higgs system, and then
the strings are similar to those we have just discussed.
Alternatively, we can use a description which is intrinsic
to the�-model variables. The strings are maps of a plane or
a two-cycle in space into a nontrivial two-cycle in the
target space. Now consider a black hole space-time. The
black hole horizon is a two-sphere, and we can consider
maps which take this two-sphere into the nontrivial two-
cycle in the target space. These can end a string configu-
ration without any violation of continuity. Colloquially,
we can say that ‘‘the other end of the string has fallen
down the black hole.’’ We can make a particularly com-
pelling case for the existence of such string ends if the
model contains aUð1Þ gauge field. We can study the space-
time of an extremal charged black hole, which has an
infinitely long throat, ending in an AdS2 horizon. It would
appear to violate locality to claim that one could not thread
a �-model string through the throat. If we now drop
charged particles into the extremal hole, we are left with
the Schwarzschild string ender, when the dust of Hawking
radiation has cleared.

11In this discussion we ignore the interesting situation which
arises when strings are associated with a non-Abelian AB phase.

TOM BANKS AND NATHAN SEIBERG PHYSICAL REVIEW D 83, 084019 (2011)

084019-12



As we explained in Sec. II B, if the � model is coupled
to a Zp gauge theory through (2.18), then there can be

massive particles which are not sections of a line bundle
over the target space—they appear like ‘‘fractional powers
of that line bundle.’’ The completeness assumption guar-
antees that such dynamical particles exist. Such particles
can detect the Zp AB phase around the string. If such a

string can end, this phase would change discontinuously as
we pass the string end. Thus, string ends can exist only if
they are not detectable by this phase. In fact, the complete-
ness assumption guarantees that such string ends must be
present—each is an end of p strings. Again, we can say
‘‘the number of strings which can penetrate the black hole
horizon is a multiple of p.’’

We have seen that by coupling the � model to a Zp

gauge theory, we can arrange for Zp AB phases in the

interaction of probe particles with the �-model strings. We
conclude that in a model of quantum gravity, these strings,
like those of the Higgs model, have no integer valued
quantum number, but might be AB strings for some finite
group.

The violation of string current conservation by string
ends is analogous both to its violation in lattice � models,
where a topology change can happen in the holes between
lattice points, and in models where the target space topol-
ogy is a low energy artifact. From the external observer’s
point of view, the black hole horizon is a hole in space, on
which we are free to specify boundary conditions with
nontrivial topology. From the internal point of view, the
Hamiltonian is time dependent and singular, and all low
energy field theoretic restrictions must be abandoned. The
same is true for an external observer supported very close
to the horizon, which experiences Hawking radiation of
extremely high temperature.

Finally, we should add a word of caution. Throughout
this subsection we have ignored the backreaction of the
gravitational field. An infinitely long string in four dimen-
sions creates a deficit angle at infinity, and as such, some of
the analysis above is not necessarily justified. If the string
tension is parametrically smaller than the Planck scale, it is
reasonable to ignore this backreaction. It is not clear to us
how to think about it for strings with Planck scale tensions.

V. RELATION TO SUPERGRAVITY

So far, supergravity has not played a role in our discus-
sion. As we will now see, the discussion above allows us
to streamline and to reinterpret some recent results about
constraints on supergravity [6,8,9] and to further extend
them. Throughout this section we will limit ourselves to
N ¼ 1 supersymmetry in four dimensions. The extension
to other cases is straightforward.

An important distinction in [6,8,9] is between super-
symmetric theories containing a continuous parameter,
which can be dialed to make gravity arbitrarily weakly
coupled, and theories which are intrinsically gravitational,

in the sense that all scales are discrete multiples of the
Planck scale. We will devote the next two subsections to
these two cases and will find that all of the problems
exposed in [6,8,9] can be phrased in terms of the existence
of string currents. When all such currents are gauged or
their conservation laws violated, following the strictures
of Sec. IV, we find rather different outcomes in the two
classes of models. In models with continuous parameters,
the duals of the KR gauge fields are new chiral multiplets.
These make all FI terms field dependent, and remove all
noncontractible two-cycles from the low energy target
space. In models with quantized FI terms or periods, the
KR gauge symmetry is discrete, and the low energy theory
includes our universal Zp Lagrangian.

A. Linearized SUGRA

Following [9] we start with constraints on linearized
supergravity. Here one starts with a well-defined rigid
supersymmetric theory and studies its supersymmetry
current multiplet. Then, this current is coupled to gauge
fields—the supergravity multiplet. This is a standard and
well-known procedure (see e.g. the text books [36,37]).
Depending on the supercurrent multiplet, three different
approaches can be taken:
(1) Old minimal supergravity [38–40] uses the Ferrara-

Zumino (FZ) multiplet [41]

�D _�J � _� ¼ D�X; �D _�X ¼ 0: (5.1)

This multiplet exists in all Lagrangian field theories,
which have no FI terms and for which the Kähler
form of their target space is exact.

(2) New minimal supergravity [42,43] is based on the R
multiplet (see e.g. Sec. 7 of [36])

�D _�R� _� ¼ 	�;

�D _�	� ¼ �D _� �	 _� �D�	� ¼ 0:
(5.2)

This multiplet exists in all field theories that have
a global Uð1ÞR symmetry, even in the presence of
FI terms or a target space with a nontrivial Kähler

form. The conserved Uð1ÞR current jðRÞ is the bot-
tom component of R� _�.

(3) The 16/16 supergravity [44–46] is based on a larger
multiplet [9,47], called the S multiplet,

�D _�S� _� ¼ D�Xþ 	�; �D _�X ¼ 0;

�D _�	� ¼ �D _� �	 _� �D�	� ¼ 0:
(5.3)

This multiplet exists in all known Lagrangian field
theories. It is particularly important in theories with-
out a global Uð1ÞR symmetry, which have FI terms
or a target space with a nontrivial Kähler form.

Additional multiplets and the relations between them were
discussed in [47,48].
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Each of these multiplets includes the energy momentum
tensor T�
 (six independent bosonic operators) and the

supersymmetry current S�� (12 operators) as well as addi-

tional operators. Some of these operators can be interpreted
as brane currents for branes of various dimensions.12

In Sec. IV we argued that all such brane currents must
be coupled to gauge fields. In fact, for brane currents that
are in the supersymmetry multiplet, this conclusion follows
from imposing supersymmetry—since T�
 and S�� are

coupled to gauge fields, their superpartners must be as
well.

There are a few important remarks that we should make
about the brane currents that appear in the supercurrent
multiplets:

(1) The FZ multiplet (5.1) includes the conserved, com-
plex 2-brane current dx, where x is the lowest
component of X in (5.1) [recall that our conventions
for currents (1.1) are dual to the more standard
ones]. For example, in Wess-Zumino models x ¼
4W � 1

3
�D2K, whereW is the superpotential andK is

the Kähler potential. The tension of domain walls
(2-branes) is constrained by this current [49]. In
supergravity this current must be gauged. The cor-

responding gauge field is a 3-form Að3Þ. If x is well
defined, the supergravity Lagrangian depends only

on its field strength Fð4Þ ¼ dAð3Þ, which couples to x.
Integrating out Fð4Þ eventually leads to the famous
�jWj2 in the potential. This interpretation of the
jWj2 term as arising from integrating out the gauge
field of 2-brane currents is similar to the relation
between the Romans mass in ten-dimensional IIA
supergravity and the gauge field of 8-branes.

(2) The R multiplet (5.2) includes a conserved 2-form
string current Z in the � component of 	�. For
example, in Wess-Zumino models 	� ¼ �D2D�K,
where K is the Kähler potential and the string cur-
rent Z ¼ ! is the pullback of the Kähler form
to space-time. In theories with a FI term 	� ¼
�4�W�, where � is the FI term and W� is the
superfield including the field strength F. The corre-
sponding string current is Z ¼ �F. Note that if this
gauge field is Uð1Þ rather than R and it is coupled to
dynamical magnetic monopoles, then its field
strength F is not closed and therefore the defining
equation (5.2) is not satisfied.13

(3) The S multiplet (5.3) includes both a string current
and a 2-brane current.

The interpretation of the brane currents in the various
supersymmetry multiplets leads to a new perspective on
some of the issues raised in [8,9]. The problem with
theories with nonzero FI terms or with a nonexact Kähler
form is that their supersymmetry current algebra includes
string currents that cannot be improved to zero [see the
discussion around (1.1)]. Therefore, the FZ multiplet does
not exist.
If the rigid theory has a globalUð1ÞR symmetry, it has an

R multiplet, which includes such a string current Z, and
therefore such theories can be coupled to supergravity
using the new minimal formalism. Even though both the

Uð1ÞR global current jðRÞ and the string current Z of the
rigid theory are gauged, the resulting supergravity theory
has both a global Uð1ÞR symmetry and a conserved global
string current. More explicitly, the supergravity multiplet

includes a 1-form gauge field AðRÞ for the global Uð1ÞR
symmetry of the rigid theory, and a 2-form gauge field B
for the string current of the rigid theory. These two gauge
fields couple through

B ^ dAðRÞ: (5.4)

Therefore, the gauged Uð1ÞR current is a linear combina-

tion of the original Uð1ÞR current of the rigid theory jðRÞ
and dB. Similarly, the gauged string current is a linear
combination of the original string current Z and the field

strength FðRÞ ¼ dAðRÞ. Therefore, the supergravity theory

has global conserved currents which can be taken to be jðRÞ

and Z (or FðRÞ andH ¼ dB). Note that the gauge fields AðRÞ
and B do not correspond to massless propagating degrees
of freedom and can be integrated out. The resulting on-
shell theory still has global conserved currents. If we
accept the arguments in Sec. IV, we conclude that such
rigid theories cannot arise in consistent models of quantum
gravity [8] (see also [51,52]).
Even though the FZ multiplet does not exist in these

cases, one can still use the old minimal formalism. In fact,
it is well known that these two formalisms are dual to each
other [53] (see, however, [54]) and therefore we can use
either one. As is common in the old minimal formalism,
one uses compensator fields. In the problematic situations
the FZ multiplet is either not gauge invariant or not glob-
ally well defined. This is taken care of by using compen-
sator fields, which are also nongauge invariant or fail to
be globally well defined. This is possible only when the
theory has a globalUð1ÞR symmetry and ultimately rests on
the fact that the R multiplet exists.
This understanding naturally leads us to examine rigid

theories without a global Uð1ÞR symmetry but with non-
trivial string currents. Here we must use the Smultiplet and
the corresponding 16/16 supergravity. As pointed out in
[46] for pure 16/16 supergravity and in [9] for the case with
matter, this theory has an alternate interpretation. It can

12It is common to refer to them as ‘‘brane charges’’ or ‘‘central
charges.’’ These terms are misleading. First, when these
‘‘charges’’ correspond to extended branes (not to 0-branes),
the corresponding charge is infinite and only the charge per
unit brane volume is meaningful. Therefore, we prefer to discuss
the corresponding currents and the charges (1.1), which are
finite. Second, these charges are not central—they do not com-
mute with the Lorentz group.
13If such a theory indeed exists, one might need to use the more
complicated multiplets discussed in [47,48,50].
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be interpreted as standard minimal supergravity theory in
which the rigid matter system is enlarged by adding to it a
chiral superfield �. The real part of the scalar in � is dual
to the 2-form gauge field B, which couples to the string
current. Note that unlike the situation in the new minimal
supergravity, which we discussed above, here B or its dual
scalar corresponds to a massless propagating particle. With
this interpretation of the theory the additional chiral super-
field � removes the problem with the coupling to super-
gravity [9]. A simple way to understand it is to note that
with � the string current can be improved to zero; i.e. the
2-form current is exact. In theories with a FI term, that
term becomes field dependent [55]; more precisely, the FI
term can be absorbed by shifting � such that the theory
does not really have a FI term. Similarly, in theories with
nontrivial cycles, the cycles become contractible in the
higher-dimensional moduli space that includes � [9].

So far we viewed the additional field � as infinitesimal.
However, its global properties can be important. Consider
a Uð1Þ gauge theory with a FI term which is eliminated
through the coupling to �. The complex field expð2�i�Þ
transforms linearly under theUð1Þ gauge symmetry, but we
have not yet discussed its charge. It can be an arbitrary
integer p. In that case, the nonzero value of expð2�i�Þ
Higgses the Uð1Þ gauge symmetry down to Zp and the

system can have Zp strings. For example, this situation

with field-dependent FI terms arises in string constructions
with anomalous Uð1Þ [55]. The anomaly is canceled
through a Green-Schwarz term B ^ F, where F is the
Uð1Þ field strength and B is dual to Re�. The coefficient
of this Green-Schwarz term is proportional to the sum of
the Uð1Þ charges in the problem and thus determines the
value of the integer p.

An interesting situation arises when the rigid theory
has several Uð1Þ gauge fields Vi with transformation pa-
rameters �i and FI terms �i. The chiral superfield � is
added to the rigid theory so that under gauge transforma-
tions it transforms as

� ! �þ i�i�
i: (5.5)

When some of the gauge groups are compact, i.e. �i �
�i þ 2�i, the global structure of � becomes important. In
this case if �i are generic, the gauge transformation rule
(5.5) is incompatible with any periodicity of �. Similarly,
we can consider a rigid theory with a complicated target
space with several two-cycles. The addition of � through
K ! K þ ið�� ��Þ [9] might be incompatible with all the
necessary Kähler transformations associated with all the
two-cycles.14

One way to address this question is to constrain the maps
from space-time to the target space. In the gauge theory
case we could simply declare that all the gauge groups are

R rather thanUð1Þ. And in the �-model case we can follow
Sec. II and [6] and restrict the maps such that the wrapping
of various cycles is compatible with the existence of �.
This amounts to adding an additional discrete gauge sym-
metry to the system. This modification of the rigid theory
by adding � and an appropriate modification of its global
structure makes the coupling to supergravity possible.
However, the discussion in Sec. IV points us in another
direction.
The issue with the global behavior of � arises when the

addition of � to the rigid theory does not eliminate all its
string currents. The addition of the discrete gauge symme-
try in the previous paragraph, which restricts the maps
from space-time to the target space, induces a global
Uð1Þ symmetry which shifts � by an arbitrary real constant.
Although this is perfectly consistent with perturbative
supergravity, it violates the conjectures of Sec. IV.
Therefore, the only way to weakly couple such systems

to supergravity, while respecting the three conjectures of
Sec. IV, is the following. For generic �i and for generic
cycles, we need to add a separate �i field for every gauge
group and for every two-cycle. In other words, all FI terms
must be field dependent and all the Kähler moduli must
be massless dynamical fields.15

B. Intrinsically gravitational theories

In the previous subsections we studied a quantum field
theory weakly coupled to supergravity, with a continuously
variable coupling parameter. Assuming the conjectures of
Sec. IV, we concluded that all FI terms are field dependent
(which means they can be removed), and no two-cycles are
present in the target space.
Here we consider situations in which the separation

between the rigid field theory and gravity is not possible.
In particular, we are interested in theories with FI terms or
with target spaces that have nontrivial cycles of the order
of the Planck scale.
A careful analysis of the component Lagrangian shows

that FI terms must be quantized16 [6] (see also [56]),

� ¼ 2NM2
P; N 2 Z: (5.6)

Similarly, if the target space includes nontrivial two-
cycles, their periods must be rational. For example, if the
target space includes a CP1 with the metric

ds2 ¼ f2�
d�d ��

ð1þ j�j2Þ2 ; (5.7)

14We thank N. Nekrasov for a useful discussion about this
point.

15This observation extends the condition about massless moduli
in [9] to many additional moduli. It has the consequence that in a
supersymmetric string construction with a continuously variable
ratio between low energy scales and the Planck scale, many of
the moduli cannot be stabilized in a manner consistent with
SUSY.
16We use the notation 1

GN
¼ M2

Planck ¼ 8�
2 ¼ 8�M2

P; i.e. MP is
the reduced Planck mass.

SYMMETRIES AND STRINGS IN FIELD THEORYAND . . . PHYSICAL REVIEW D 83, 084019 (2011)

084019-15



f� must satisfy

f2� ¼ 2N

p
M2

P; p; N 2 Z (5.8)

and the integer p is related to a discrete Zp gauged R

symmetry. (The case p ¼ 1 was studied in [57].)
The quantization conditions (5.6) and (5.8) were derived

in [6] by focusing on the gravitino and its transformation
laws. These are gauge transformations in the case with FI
terms, and Kähler and Zp transformations in the case with

two-cycles. Here we will rederive and interpret these re-
sults from the perspective of our discussion—using the
underlying string currents and the coupling to a 2-form
gauge field.

The new minimal formalism is particularly useful if one
wants to track the remaining discrete gauge symmetries.
Let us start with a model with an R symmetry such that it is
straightforward to use this formalism. As explained around
(5.4), even though the R symmetry is gauged, the theory
still has a global R symmetry whose current can be taken to

be jðRÞ. Next we try to add to the Lagrangian terms that
explicitly break this symmetry. However, since a linear

combination of jðRÞ and H ¼ dB is gauged, we must
preserve that linear combination. In other words, the con-
servation ofH must also be violated. This can be done only
if the 1-form gauge symmetry of B is compact. Then, as
explained in Sec. II, there exist local operators ON around
which

R
S3 H ¼ 2�N � 0 (N 2 Z). These operators carry

charge N under the global symmetry. Using ON and
R-breaking operators constructed out of matter fields, we
can explicitly violate the conservation of bothH ¼ dB and

jðRÞ, while preserving their gauged linear combination.
Similarly, the theory has two conserved string currents,

Z and FðRÞ ¼ dAðRÞ. One linear combination of them is
gauged. We can preserve that linear combination, while

violating the conservation of Z and FðRÞ, by adding to our

system particles magnetically charged under AðRÞ, and
having suitable properties under Z.

The upshot of all this is that if the gauge symmetries of

AðRÞ and of B are compact, and the appropriate magnetic
objects are present, both the global R symmetry and the
conservation of the global string current can be violated.
Of course, since these symmetries are compact, their cor-
responding charges are quantized. This leads to the quan-
tization conditions (5.6) and (5.8).

The same conclusion can be reached using the old
minimal formalism. Here the point is that the compensators
are not gauge invariant and not Kähler invariant. Normally,
the compensator fields appear only in front of the expo-
nential of the Kähler potential and in front of the super-
potential. However, if the quantization conditions (5.6) and
(5.8) are satisfied, we can add to the Lagrangian terms with
other dependence on the compensators such that they ex-
plicitly break the global R symmetry.

In conclusion, the problem with FI terms and with non-
trivial two-cycles can be traced back to the existence of
strings in the rigid model that we are trying to couple to
SUGRA. With FI terms the quantization condition (5.6)
guarantees that magnetic monopoles can be added to the
system such that the strings are unstable. With nontrivial
two-cycles the condition (5.8) guarantees that one can
couple the strings to a Zp gauge theory and violate the

string current conservation.
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APPENDIX A: GENERALIZATIONS OF THE
LAGRANGIAN DESCRIPTION OF THE

Zp GAUGE THEORIES

It is easy to extend the BF theory to N ¼ 1 supersym-
metry. The gauge field A belongs to a vector superfield V
with the gauge symmetry

V ! V þ�þ�y: (A1)

The 2-form B belongs to a chiral spinor superfield B�

(satisfying �D _�B� ¼ 0) with the gauge symmetry

B � ! B� þ �D2D�L (A2)

for arbitrary real L. The gauge invariant field strength
H ¼ dB is embedded in the real linear superfield17

H ¼ D�B� þ H:c: which is invariant under (A2).
Then the BF Lagrangian (2.9) is included in

p

2�

Z
d4�HV ¼ p

2�

Z
d2�B�W

� þ H:c: (A3)

which is invariant under the two gauge symmetries (A1)
and (A2).
Our discussion of the BF theory has an obvious general-

ization to an arbitrary q-form gauge field A in d dimensions
[12]. The Zp gauge theory is described at low energies by

twoUð1Þ gauge fields: a q-form A and a d� q� 1-form B
with the Lagrangian

ip

2�
B ^ dA: (A4)

17A real linear superfield H is characterized by H ¼ H y
and D2H ¼ 0 (and using the reality also �D2H ¼ 0).
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Note that this theory is invariant under q ! d� q� 1,
which exchanges A and B.

A particularly interesting special case is q ¼ 1 in three
dimensions, where both A and B are 1-forms. In this case
we find aUð1Þ �Uð1Þ Lagrangian description of the three-
dimensional Zp, level k, Chern-Simons gauge theory of

[58,59] (see also the recent discussions [60,61]),

ip

2�
B ^ dAþ ik

4�
A ^ dA: (A5)

As in (2.12), the theory has p2 line operators

exp

�
inA

I
�1

Aþ inB
I
�1

B

�
(A6)

labeled by nA, nB ¼ 0; 1; . . .p.

APPENDIX B: TOPOLOGY CHANGING
OPERATORS IN THE CHIRAL LAGRANGIAN

In this brief appendix, we note that our method of
describing operators that violate topological symmetries
in terms of boundary conditions can easily be extended
to other � models.

Consider, for example, the SUðnÞ chiral model. The
dynamical field is a group element � 2 SUðnÞ, and the
model has an SUðnÞ � SUðnÞ symmetry. We compactify
space to S3; then the states of the system are labeled by
the integer quantum number �3ðSUðnÞÞ ¼ Z, and the cor-
responding current is

B� trð�yd�Þ3; (B1)

where the cubic product is a wedge product. As is well
known, in the context of QCD, this current should be
interpreted as the baryon current, and the corresponding
solitons are baryons [62–64].

We can define a local operatorOk that creates k baryons.
We remove a point from space-time and impose that � on
its surrounding S3 is associated with k wrappings in
�3ðSUðnÞÞ ¼ Z. Ok¼1 is an interpolating field for a single
baryon. We can add Ok to the Lagrangian to describe the
effects of UV physics that violates baryon number but
preserves a Zk subgroup of it.

Another example of the general phenomena we have
explored is the observation that the chiral Lagrangian
for an OðnÞ gauge theory coupled to n chiral fermions
in the vector representation has Z2 strings arising from
�2ðSUðnÞ=OðnÞÞ ¼ Z2 [64]. We can construct a string
creation operator by excising a one-dimensional line
from space-time and imposing boundary conditions around
it. Locally the line is surrounded by R� S2, and we
impose that on the S2 the fields are associated with the
nontrivial homotopy class.

APPENDIX C: LATTICE GAUGE THEORIES

There are higher-form Zp invariant gauge theories on

any d-dimensional cubic lattice. In fact, our discussion
generalizes rather simply to any finite Abelian group and
any d-dimensional simplicial complex. A q-form Zp gauge

theory is an assignment of an integer Lmodp to each qþ
1-dimensional hypercube on the lattice. (Recall our con-
vention of labeling higher-form gauge symmetry by the
dimension of the gauge parameter.) For q ¼ �1, 0 the
hypercube is a point or a link. To simplify the notation,
in this appendix we will restrict our attention to q ¼ �1
and d ¼ 4, which is generally called the case with global
Zp symmetry. Our considerations are easily generalized

to arbitrary q and d. In particular, our conclusion that,
in the symmetric phase, the global Zp symmetry is realized

as the global limit of an IR gauge symmetry is true for
general d.
The lattice partition function is the sum over all

LðxÞ of18

e

P
x;�

S½d�LðxÞ	
; (C1)

where the sum in the exponent is over all elementary links.
d� is the lattice finite difference operator in the direction

labeled by �. Correlation functions are expectation values
of local operators of the form

eð2�i=pÞnkLðxÞ; nk ¼ 0; . . . ; p� 1: (C2)

[For higher values of q the observables are gauge invariant
products of elements like (C2).] Zp invariance would

imply that only correlation functions with
P

nk ¼
0modp are nonvanishing, but there are values of the pa-
rameters where the Zp symmetry is spontaneously

broken.19

Next, we apply ordinary electric magnetic duality to this
system and replace the variables LðxÞ on the sites with

plaquette variables. We define e
~S½z	 to be the Zp Fourier

transform of eS½z	. We use the same letter for the arguments
of the two functions because the group Zp is self-dual.

Using lattice integration by parts one easily shows that the
partition function is given by

X
K�ðxÞ

e

P
x;�

~S½K�ðxÞ	Y
x

�½d�K�ðxÞ	: (C3)

The Zp valued vector K� must be conserved. The �

function in this equation is a Zp valued Kronecker �.

18We limit ourselves to nearest neighbor interactions. More
complicated local actions which couple more points are possible.
19If we were dealing with q 
 0, this language would be
slightly misleading, but conventional. The local symmetry is
never spontaneously broken. This phase is called the Higgs
phase for q 
 0.
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For correlation functions, conservation of K� fails on

those points where there are local operators. We can solve
the conservation constraint by writing

K� ¼ ��
��d
L�� þ �: (C4)

The Zp valued 2-form L�
 really lives on the dual lattice,

but we use the Levi-Civita symbol to assign it to a lattice
plaquette. � is a sum of Dirac string contributions, ema-
nating from each point on the original lattice where con-
servation failed. The correlation functions are invariant
under L�
 ! L�
 þ d�L
 � d
L�. The Dirac strings

must either go to infinity or connect points with opposite
charge. Any choice of strings satisfying these conditions
is equivalent to any other choice, because the difference
between them defines a K� which is conserved and can

be written in terms of L�
.
20 We see that a theory with

global Zp symmetry is dual to a theory with a 1-form

Zp gauge symmetry. More generally, a theory with a

k-form gauge symmetry is dual to one with ðd� 4�
kÞ-form gauge symmetry. Correlation functions of
the original fields involve expressions with nonlocal
Dirac strings, when they are written in terms of the dual
fields.

The action S depends on p parameters, and in some
extreme parameter ranges, it is large. We can then approxi-
mate the partition sum by finding the configuration that
minimizes S and considering a dilute gas of small localized
fluctuations around it. This is actually the first term in a
convergent expansion and defines a weak coupling phase
of the lattice theory. Similarly, there is a different range

of parameters in which ~S is large, and we have a strong
coupling phase. Both phases have a mass gap finite in
lattice units. The IR physics is completely topological
and is described by a BF Lagrangian. For the weak cou-
pling, spontaneously broken phase, the IR Lagrangian has
a 0-form potential and a 3-form potential. The latter cou-
ples to the domain wall excitations of the spontaneously
broken phase. In the strong coupling, symmetric phase
the IR Lagrangian has a 2-form potential B and a 1-form
potential. The Dirac strings that attach to the charged local
operators are realized as Wilson lines of the 1-form poten-
tial. They can be shifted at will, as long as there are no
sources coupling to the 2-form.

We conclude that in the symmetric phase, the global
symmetry of the original model is realized as the global
transformation that is the limit of a Zp 0-form (Maxwell)

gauge symmetry, coupled by the topological Lagrangian to
a 1-form (Kalb-Ramond) gauge potential. If we take the
continuum limit, the tension of the codimension-2 objects
that couple to B�
 goes to infinity, so we can always ignore

the fact that the global symmetry is the global part of a
gauge group.
We want to emphasize that we are not saying that

every Zp 1-form gauge symmetry has a global symmetry

associated with it. In quantum field theory, exact global
symmetries are not emergent—at best, there can be acci-
dental approximate global symmetries. However, gauge
symmetries are often emergent. We have shown that a
particular class of UV regulators, the lattice, associates a
1-form Zp gauge symmetry to every system with a global

Zp symmetry. In the IR limit of the symmetric phase, there

is an emergent 0-form gauge symmetry, and the original
global symmetry becomes the global limit of these gauge
transformations in the IR. We can run this argument back-
ward only if we have the full UV complete 1-form lattice
gauge theory.
It is illuminating to restate this using our continuum

formalism. We start with a continuum Zp gauge theory,

L ¼ ip
2�B ^ dA, and would like to introduce local opera-

tors. We do that by adding to the system charged fields 	ðxÞ
and studying the gauge invariant operators

	ðxÞei
R1

x
A: (C5)

These are not invariant under gauge transformations that
approach a constant at infinity. Therefore, the operators
(C5) can be interpreted as carrying charge under a global
symmetry.
Conversely, starting with a linearly realized global Zp,

acting on a field c ðxÞ, we can write c ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
c �c

p
ei
R1

x
V ,

where V is a 1-form and the integral is taken along some

contour. Adding to the action eip=2�
R

B^dV we see that B
acts as a Lagrange multiplier setting dV ¼ 0, and therefore
the expression for c ðxÞ is independent of local changes in
the contour. We have thus introduced a fake gauge invari-
ance, and in this formalism the global symmetry is realized
as the global part of the gauge group—the group of gauge
transformations that act as constants at infinity, modulo
those which act as the identify at infinity.
These observations may be relevant to our speculations

about discrete gauge symmetries in Sec. IVB. If gravita-
tional effects force the codimension-2 brane tension to be
finite, we would be able to prove that all discrete symme-
tries are gauged.
For many forms of the action S, appropriate values of d,

and large enough p, there is another phase of the system,
which illustrates some of the principles we have ex-
pounded in the text. This is well known in the literature
[65,66], so we will only sketch the results. Start from the
dual form of the Zp theory and use the coset construction

of Zp in terms of Z to write this as a Z valued gauge theory

with matter fields of charge p. Then use the Poisson
summation formula to write the sum over Z valued fields
in terms of an integral and another sum. For q ¼ 0 and
d ¼ 4, the result is a lattice version of QED, coupled to

20On simplicial complexes with more complicated topology,
we would have to include variables describing closed but inexact
forms.
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electric and magnetic charges. The electric charges are p
times the fundamental unit of charge, while the monopoles
have the minimal Dirac quantum. There is often an inter-
mediate Coulomb phase, where the IR physics is that
of a free photon, and the electric and magnetic particles
have mass of order the inverse lattice spacing. The weak

and strong coupling phases can be viewed as transitions
to states where either electric or magnetic charges are
condensed. The charges supply the relevant ends of strings
in the weak and strong coupling phases. The Coulomb
phase has no stable strings and is an illustration of the
instability of quasi-Aharonov-Bohm strings [7].
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