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We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted

wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field

equations but also the linearized ones which include the linearized equations of the recently found critical

gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their

logarithmic behavior.
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I. INTRODUCTION

Quadratic deformations of Einstein’s gravity have al-
ways attracted attention since the inception of general
relativity for various reasons. Initial motivation was to
understand the uniqueness of general relativity, but later
on it was realized that perturbative quantum gravity re-
quired these terms [1]. Generically, quadratic gravity theo-
ries at the linearized level describe massless and massive
spin-2, and massive spin-0 modes. Massive spin-2 mode
ruins perturbative unitarity due to its ghost nature.
Recently, a new interest in quadratic theories arose, since
it was shown that in three dimensions the ghost disappears
[2], and in D-dimensions in the anti-de Sitter (AdS) back-
ground, certain quadratic theories become ‘‘critical’’ with
only a massless spin-2 excitation just like the Einstein
gravity [3,4]. These observations led us to consider exact
solutions to the quadratic gravity models. The existence of
a cosmological constant changes the structure of the field
equations and the solutions dramatically. For example, the
plane wave metric solves all higher order gravity field
equations coming from string theory with zero cosmologi-
cal constant [5,6]. With a cosmological constant this does
not work; however, if one starts with a plane-fronted AdS-
wave [7,8], one may have exact solutions to quadratic
curvature gravity models as we show below. In general,
save the Schwarzschild-anti de Sitter solution, no exact
solution is known in generic quadratic gravity theories. In
some specific theories, such as the Einstein-Gauss-Bonnet
theory, some static spherically-symmetric solutions are
known [9]; in the new massive gravity of [2], AdS-wave
solutions were found in [10], and types D and N solutions
were found in [11]. In this paper, in generic D-dimensions,
we find the AdS-wave solutions for general quadratic
theories including the critical gravity. By construction,
our exact solutions also solve the linearized wave
equations.

The layout of the paper is as follows: In Sec. II, we
briefly review the quadratic gravity theory and specifically
the critical gravity inD-dimensions. In Sec. III, we discuss
the AdS-wave metric, compute the Riemann and the rele-
vant tensors, and derive the field equations. In Sec. IV, we
present the solutions of the field equations deferring one
rather cumbersome case to the Appendix.

II. CRITICAL POINTS OF QUADRATIC
GRAVITIES

This work was inspired by the critical gravity models
[3,4] which are a certain subset of quadratic curvature
gravities. Therefore, we will briefly recapitulate these
models. The action of the quadratic gravity is

I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þ þ �R2 þ �R2
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þ �ðR2
���� � 4R2

�� þ R2Þ
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: (1)

The (source-free) field equations were given in [12,13] as
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The two AdS vacua of the theory satisfy
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2�
þ f�2 ¼ 0;
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Around any of these vacua, the linearized equations
read [12]

cGL
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�g��

�
RL

þ �

�
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�� � 2�

D� 1
�g��R
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�
¼ 0; (4)

for the metric perturbation h�� � g�� � �g��. Here,GL
�� is

the linearized Einstein tensor, and c is given by

c � 1

�
þ 4�D

D� 2
�þ 4�

D� 1
�þ 4�ðD� 3ÞðD� 4Þ

ðD� 1ÞðD� 2Þ �:

(5)

The critical theory is obtained as follows: One chooses
4�ðD� 1Þ þD� ¼ 0, which then kills the massive spin-0

mode, and sets RL ¼ � 2�
D�2 h ¼ 0. Then, in the transverse

gauge r�h�� ¼ 0, the linearized equations simplify to

ð� �hþ cÞGL
�� ¼ 0; (6)

or more explicitly�
�h� 4�

ðD� 1ÞðD� 2Þ �M2

��
�h� 4�

ðD� 1ÞðD� 2Þ
�
h��

¼ 0; (7)

where

M2 ¼ � 1

�

�
cþ 4��

ðD� 1ÞðD� 2Þ
�
; (8)

and the pointM2 ¼ 0 defines the critical point where one is
left only with a massless spin-2 excitation.

III. ADS-WAVE METRIC

The quadratic field equations are highly nontrivial,
therefore the form of the metric ansatz is important in
finding solutions. Here, we take the D-dimensional AdS-
wave metric (which is conformally related to the pp-wave
metric) to be in the Kerr-Schild form [14,15] as

g�� ¼ �g�� þ 2V
�
�; (9)

where �g�� is the metric of the AdS space. The vector 
� ¼
g��
� ¼ �g��
� is assumed to be null and geodesic with
respect to both �g�� and g��, that is [16]


�

� ¼ g��
�
� ¼ �g��
�
� ¼ 0;


�r�

� ¼ 
� �r�


� ¼ 0:
(10)

The inverse metric can be found as

g�� ¼ �g�� � 2V
�
�; (11)

which is an exact form. Here, note the similarity with
a perturbation analysis where the metric perturbation is

defined as h�� � g�� � �g��; and, at the linearized level,

the inverse metric becomes g�� ¼ �g�� � h��. Now, let us
choose the coordinates on AdS to be in the conformally flat
form

�g�� ¼ ��2���; (12)

where � ¼ k�x
�, k� is a constant vector, and we choose

the flat space coordinates as x� ¼ ðu; v; x1; � � � ; xnÞ with
n ¼ D� 2. This choice of �g�� simplifies the construction.

Here, u and v are null coordinates, hence more explicitly

���dx
�dx� ¼ 2dudvþ Xn

m¼1

ðdxmÞ2: (13)

Then, the vector k� ¼ ð0; 0; k1; � � � ; knÞ is related to the

cosmological constant as

�R�� ¼ 2�

D� 2
�g��; � ¼ �ðD� 1ÞðD� 2Þ

2‘2
; (14)

where 1
‘2
� P

n
m¼1 kmkm > 0, hence we will be working

only with �< 0 (note that to conform with the usual
notation, we introduced the AdS radius ‘). With this coor-
dinate choice, 
� naturally becomes


�dx
� ¼ du ) 
�@� ¼ �2@v: (15)

The function V is assumed not to depend on v, that is


�@�V ¼ 0: (16)

This choice is extremely important; since, with it, h�� �
2V
�
� becomes transverse r�h

�� ¼ �r�h
�� ¼ 0 and

traceless h � g��h�� ¼ �g��h�� ¼ 0. Furthermore, as

we show below by explicit calculations, the parts of the
curvature tensors which are quadratic in V drop out with

this choice. It is also important to realize that if V ¼ cðuÞ
�2 ,

then g�� corresponds to just a coordinate transformed

version of �g��. This is clear since in this case, one can

simply define ðu; ~vÞ in such a way that the two-dimensional
subspace metric cðuÞdu2 þ 2dudv becomes 2dud~v. This
fact will play a role in deciding how our solutions should
decay at infinity.
We are now ready to compute the Riemann tensor. The

connection corresponding to g�� splits into two parts:

�
�
�� ¼ ��

�
�� þ��

��; (17)

where ��
�
�� is the Levi-Civita connection corresponding to

�g��, which reads as

��
�
�� ¼ � 1

�
ð
�

�@��þ 

�
�@��� �g�� �g

��@��Þ: (18)

The nontrivial part of the connection is given as

��
�� ¼ 
�ð
�@�V þ 
�@�V þ 2V �r�
�Þ � 
�
�@

�V:

(19)
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The null vector 
� with @�
� ¼ 0 satisfies the following

equations, which are frequently used in the computations:

�r�
� ¼ 1
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� ¼ 1�D
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where �h � �g�� �r�
�r�. The Riemann tensor reduces to
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tensor becomes zero, since the explicit calculation of
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After a lengthy computation, one finds the Riemann tensor
as
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where as usual 2A½�B�� � A�B� � A�B�. Then, the Ricci

tensor R�� � R�
��� and the curvature scalar can be com-

puted as

R�� ¼ 2�
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; (24)

where H is defined as
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The following two relations will be used in the field
equations:
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With our metric ansatz, the field Eqs. (2) split into two
parts in the form Ag�� þ B
�
�. Trace of this equation

yields a relation between the effective cosmological
constant and the parameters of the theory exactly given as

(3), where we have used R ¼ 2D�
D�2 and R2

	
�� � 4R2
�� þ

R2 ¼ 4�2DðD�3Þ
ðD�1ÞðD�2Þ . Observe that the 
�
� part does not

contribute to the trace equation. To obtain the rest of the
field equations, the nontrivial computation is the contrac-
tion of two Riemann tensors, that is the R���	R�

��	 term.

After a lengthy computation, one obtains
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and similarly,
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Finally, the remaining field equations become

ð� �hþ cÞðH
�
�Þ ¼ 0; (30)

where H was given in (25). Observe the similarity of this
equation to (6). Then, using

�hð
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�Þ ¼ 4�
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we get


�
��

�
�hþ 4

�
@��@� þ 4ðD� 3Þ�

ðD� 1ÞðD� 2Þ �M2

�

�
�
�hþ 4

�
@��@� þ 4ðD� 3Þ�

ðD� 1ÞðD� 2Þ
�
V ¼ 0; (32)

where M2 is defined as (8). Therefore, the exact equations
of the quadratic gravity reduces to a linear fourth-order
wave equation. One can show that putting h�� ¼ 2V
�
�

in (4) yields (32). When M2 ¼ 0, the theory reduces to the
linearized equations of the critical theory of [3,4]. There is
a fine point here: In the critical theory, to get rid off the
massive scalar mode, one imposes a relation between �
and �, 4�ðD� 1Þ þD� ¼ 0; but here these parameters
are arbitrary, since RL � R� �R vanishes identically for
the AdS-wave metric. In the next section, we discuss the
solutions of (32) in detail.
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IV. SOLUTIONS OF THE FIELD EQUATIONS

The Eq. (32) is of the form

�
�hþ 4

�
@��@� þ b

��
�hþ 4

�
@��@� þ a

�
V ¼ 0; (33)

with a ¼ 4ðD�3Þ�
ðD�1ÞðD�2Þ and b ¼ a�M2, which are obviously

equal for M2 ¼ 0. Whether M2 ¼ 0 or not changes the
behavior of solutions dramatically, therefore we will dis-
cuss these cases separately.

A. The a � b case

One can define V ¼ Va þ Vb in such a way that each
part satisfies the corresponding second order equation

�
�hþ 4

�
@��@� þ a

�
Va ¼ 0;

�
�hþ 4

�
@��@� þ b

�
Vb ¼ 0:

(34)

Without loss of generality, let us choose only the nth
component of the k� vector to be nonvanishing; and define

z ¼ xn, then � ¼ z
‘ . With this choice, the quadratic equa-

tion reduces to
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�hþ 4
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�
z2

‘2
@2 þ 6�D

‘2
z@z þ a

�
Va

¼ 0; (35)

where @2 � ���@�@�. Note that the Vb equation is similar.

Using the separation of variables technique as Va �
�aðu; x1; x2; � � � ; xn�1Þ�aðu; zÞ, we can split the quadratic
equation into two parts:

ð ~r2þ�aÞ�aðu;x1;x2;��� ;xn�1Þ¼0;�
z2

d2

dz2
þð6�DÞz d

dz
þða‘2��az

2Þ
�
�aðu;zÞ¼0; (36)

where �a is an arbitrary real number at this stage and ~r2 �P
n�1
i¼1

@2

@ðxiÞ2 . Note that the
@2

@u@v term does not appear because

of the v-independence of the solution. On the other hand,
the solution will have an arbitrary dependence on u.
Depending on the boundary conditions, �a can be continu-
ous or discrete. Then, a formal solution will be of the form

Vaðu; x1; x2; � � � ; xn�1; zÞ ¼
Z

d�aAð�aÞ�aðu; x1; x2; � � � ; xn�1;�aÞ�aðu; z;�aÞ

þX
�a

B�a
�a;�a

ðu; x1; x2; � � � ; xn�1Þ�a;�a
ðu; zÞ; (37)

where Að�aÞ and B�a
are arbitrary functions of u. Over the

entire ðu; v; xiÞ flat space, the first equation in (36) does not
have bounded solutions when �a < 0. Therefore, we will
take �a � �2

a � 0. Here, the discussion bifurcates whether
�a ¼ 0 or not. Concentrating on the continuous case, first
we start with �a � 0. Then, the solutions are of the form

�aðu; x1; x2; � � � ; xn�1Þ ¼ c1ðuÞ sinð ~�a:~rþ c2ðuÞÞ; (38)

where ~�a is an arbitrary vector with magnitude �a, and
~r ¼ ðxiÞ. Now, we come to the second equation in (36)
which is in the form of the modified Bessel equation for
D ¼ 5, and can be converted to this form for any other D
by the following redefinition:

�aðu; zÞ � zðD�5Þ=2faðu; zÞ; (39)

which then yields

�
z2

d2

dz2
þ z

d

dz
� ð�2

a þ �2
az

2Þ
�
faðu; zÞ ¼ 0; (40)

where �a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 5Þ2 � 4a‘2
p

. For generic D and non-
vanishing �a, the solution is given as

�aðu; zÞ ¼ zðD�5Þ=2½c3ðuÞI�a
ðz�aÞ þ c4ðuÞK�a

ðz�aÞ�; (41)

where I� and K� are the modified Bessel functions
of the first and second kind, respectively. Vb will have
the similar solutions with �b¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD�5Þ2�4b‘2
p ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD�1Þ2þ4‘2M2
p

. As we discussed in Sec. III, we re-
quire the solution to go like 1

z2
at the boundary z ¼ 0; the

modified Bessel functions approach z ! 0 as I�ðzÞ � z�,
K� � z�� and K0 �� lnz. Therefore, we keep both c3 and
c4. It is important to realize that �a and �b are real. This is
automatically satisfied for �a since a ¼ � 2ðD�3Þ

‘2
, and

�a ¼ � 1
2 ðD� 1Þ. The reality of �b puts a constraint on

M2 which is

M2 � �ðD� 1Þ2
4‘2

: (42)

This bound is exactly equivalent to the Breitenlohner-
Freedman (BF) bound on the mass of a scalar excitation
in AdS [17]. When the bound is saturated, �b ¼ 0 and
logarithmic solutions arise.
For the sake of completeness, let us write the solution
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Vðu; ~r; zÞ ¼ zðD�5Þ=2½ca;1ðuÞI�a
ðz�aÞ þ ca;2ðuÞK�a

ðz�aÞ� sinð ~�a:~rþ ca;3ðuÞÞ
þ zðD�5Þ=2½cb;1ðuÞI�b

ðz�bÞ þ cb;2ðuÞK�b
ðz�bÞ� sinð ~�b:~rþ cb;3ðuÞÞ: (43)

The full solution can be obtained by integrating the first
part of (43) with respect to ~�a, and the second part with
respect to ~�b as in (37). Here, ca;1ðuÞ and ca;2ðuÞ depend
on ~�a, and cb;1ðuÞ and cb;2ðuÞ depend on ~�b. In odd
dimensions for D � 5, c2;a should vanish, otherwise V is
unbounded at the boundary of AdS at z ¼ 0. (Note that we
do not worry about the disconnected component of the
boundary, which is just the single point z ¼ 1, since
this point just compactifies the boundary of AdS from
RD�1 ! SD�1.) For generic values of M2, �b is not an
integer or an odd integer, therefore in general c2;b must be
kept.

Let us now consider the �a ¼ �b ¼ 0 case. [The case
when only one of these parameters vanish follows from the
discussion above and the discussion below.] In this case,
�aðu; x1; x2; � � � ; xn�1Þ ¼ cðuÞ þ ~qðuÞ: ~r, but we take
~qðuÞ ¼ 0 to have a bounded solution at j~rj ! 1. The other
equation reduces to�

z2
d2

dz2
þ z

d

dz
� �2

a

�
faðu; zÞ ¼ 0; (44)

whose solution is faðzÞ ¼ ca;1ðuÞzj�aj þ ca;1ðuÞz�j�aj.
Adding also the solution of the b equation, one gets

Vðu; zÞ ¼ ca;1ðuÞzD�3 þ ca;2ðuÞ 1
z2

þ zðD�5Þ=2ðcb;1ðuÞzj�bj þ cb;2ðuÞz�j�bjÞ: (45)

WhenM2 > 0, because of the last term the spacetime is not
asymptotically AdS as one approaches the boundary

z ¼ 0: Namely, Vðu; zÞ � cb;2ðuÞz�ð2þ�Þ where � > 0,

hence cb;2ðuÞ ¼ 0. On the other hand, when 0>M2 >

� ðD�1Þ2
4‘2

, all the terms are allowed. When the BF bound

(42) is saturated, one has (�b ¼ 0)

Vðu; zÞ ¼ ca;1ðuÞzD�3 þ ca;2ðuÞ 1
z2

þ zðD�5Þ=2
�
cb;1ðuÞ þ cb;2ðuÞ ln

�
z

‘

��
; (46)

which yields an asymptotically AdS metric.
Up to now, we have implicitly assumed D> 3, but in

fact our expressions are also valid forD ¼ 3 for which (45)
and (46) reduce to the results given in [10].

B. The a ¼ b case which includes the critical theory

In this case, a ¼ � 2ðD�3Þ
‘2

and Va, as found above (43), is

a solution, but this is not the only solution: One should
consider the full quadratic theory;

ðz2@2 þ ð6�DÞz@z � 2ðD� 3ÞÞ2V ¼ 0: (47)

DefiningW � ðz2@2 þ ð6�DÞz@z � 2ðD� 3ÞÞV; so that,
ðz2@2 þ ð6�DÞz@z � 2ðD� 3ÞÞW ¼ 0, since we know
the solution of the latter equation from the above discus-
sion, we can simply consider the nonhomogeneous equa-
tion, where W is a source term. The � � 0 case is
somewhat cumbersome and not particularly illuminating,
therefore we defer it to the Appendix, and here study the
� ¼ 0 case. Then, the solution to the quadratic equation is

Wðu; zÞ ¼ c1ðuÞzD�3 þ c2ðuÞz�2: (48)

The nonhomogeneous equation becomes

ðz2@2 þ ð6�DÞz@z � 2ðD� 3ÞÞV
¼ c1ðuÞzD�3 þ c2ðuÞz�2; (49)

which after rescaling Vðu; zÞ ¼ zðD�5Þ=2fðu; zÞ can be
transformed to

�
z2

d2

dz2
þ z

d

dz
� ðD� 1Þ2

4

�
fðzÞ

¼ c1ðuÞzðD�1Þ=2 þ c2ðuÞzð1�DÞ=2: (50)

The general solution of this equation is

Vðu; zÞ ¼ d1ðuÞzD�3 þ d2ðuÞ
z2

þ 1

D� 1

�
c1ðuÞzD�3 � c2ðuÞ

z2

�
ln

�
z

‘

�
; (51)

which was also obtained recently in [18], in the context of
D-dimensional Log gravity. For generic D, the solution is
not asymptotically AdS, unless c2ðuÞ vanishes. For D ¼ 3,
this equation again reduces to the corresponding expres-
sion given in [10].

V. CONCLUSIONS

We have found exact AdS-wave solutions in the generic
quadratic gravity theory with a cosmological constant. The
metrics we have found also solve the linearized field
equations of the same theory. When we restrict the qua-
dratic theory by choosing M2 ¼ 0, which boils down to
eliminating one of the parameters of the quadratic theory,
the solutions we found in this case also solve the critical
gravity theory defined recently. Depending on the value of
M2, asymptotic behavior of the solution changes dramati-
cally. Energy and some other physical properties of our
solutions, and their conformal field theory duals need to be
investigated. It would also be interesting to take the
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solutions presented here as background and study the spin-
2 fluctuations.

Finally, with adjusted � and M2, the metrics we have
found will also solve any higher (cubic or more) curvature
gravity models and constitute an example of spacetimes
studied in [19]. This can be seen as follows: the linearized
version of a generic gravity theory constructed from the
contractions of the Riemann tensor around AdS will be
exactly of the form (4) which is solved by the AdS-wave
metrics obtained above. Since by construction the exact
field equations reduce to the linearized equations for these
solutions, AdS-wave solves the full nonlinear theory at any
order in the curvature.
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APPENDIX: SOLUTION FOR THE CRITICAL
THEORY WITH � � 0

Let us consider the a ¼ b theory for the � � 0 case. The
corresponding fourth-order equation reduces to the qua-
dratic nonhomogeneous equation;

ðz2@2 þ ð6�DÞz@z � 2ðD� 3ÞÞV
¼ zðD�5Þ=2½c1ðuÞI�ðz�Þ þ c2ðuÞK�ðz�Þ�
� ½c3ðuÞei ~�:~r þ c4ðuÞe�i ~�:~r�; (A1)

where � ¼ � 1
2 ðD� 1Þ, but we shall restrict to the positive

� case; and instead of the sines and cosines we choose the
exponentials. This equation can be solved with the help of
the Green’s function technique. First, we would like to take
care of the ~r dependence using the Fourier transform (for
the sake of simplicity, here we choose � to be continuous,
but the discrete case follows similarly)

Vðu; z; ~rÞ ¼ 1

ð2�ÞðD�3Þ=2
Z

dD�3p ~Vðu; z; ~pÞei ~p:~r; (A2)

then (A1) after defining ~Vðu; z; ~pÞ ¼ zðD�5Þ=2fðu; z; ~pÞ, re-
duces to

�
z2

d2

dz2
þ z

d

dz
� ð�2 þ p2z2Þ

�
fðu; z; ~pÞ

¼ ð2�ÞðD�3Þ=2½c1ðuÞI�ðz�Þ þ c2ðuÞK�ðz�Þ�
� ½c3ðuÞ
ð ~�� ~pÞ þ c4ðuÞ
ð ~�þ ~pÞ�: (A3)

From the solutions of the homogeneous part, we can con-
struct the Green’s function (OG ¼ �1) as

Gðz; z0;pÞ ¼ 1

z0

�
I�ðzpÞK�ðz0pÞ 0< z < z0;
I�ðz0pÞK�ðzpÞ z0 < z <1;

(A4)

where we have used the Wronskian WfI�ðpzÞK�ðpzÞg ¼
� 1

z . Therefore, the solution of (A3) becomes

fðu; z; ~pÞ ¼ ½d1ðuÞI�ðzpÞ þ d2ðuÞK�ðzpÞ� þ ð2�ÞðD�3Þ=2½c3ðuÞ
ð ~�� ~pÞ
þ c4ðuÞ
ð ~�þ ~pÞ�

Z 1

0
dz0Gðz; z0;pÞ½c1ðuÞI�ðz0�Þ þ c2ðuÞK�ðz0�Þ�: (A5)

We can carry out the p integrals using

Z
dD�3pfðpÞei ~p:~r ¼ ð2�ÞðD�3Þ=2rð5�DÞ=2

�
Z 1

0
dpfðpÞpðD�3Þ=2JðD�5Þ=2ðprÞ;

(A6)

where Jn is the Bessel function of the first kind. Since the
Fourier transform of I�ðzpÞ diverges, we must choose

d1ðuÞ ¼ 0. For D ¼ 4 and D ¼ 5, d2ðuÞ must also
be zero, since the integral involving K�ðzpÞ diverges.
Then, the integral involving K�ðzpÞ for D> 5 gives
z�� ~

2F1ð�2 � 1; 3�2 � 1; �� 1;� r2

z2
Þ where the second factor

is the regularized hypergeometric function. As z ! 0, this
expression diverges. Therefore, for all D, there is no con-
tribution from the homogeneous part, and c2ðuÞ should
vanish in the nonhomogeneous part since that term di-
verges in the ½0; z� integral, yielding finally

Vðu; z; ~rÞ ¼ zðD�5Þ=2½c1ðuÞei ~�:~r þ c2ðuÞe�i ~�:~r�
Z 1

0
dz0Gðz; z0;�ÞI�ðz0�Þ

¼ zðD�5Þ=2½c1ðuÞei ~�:~r þ c2ðuÞe�i ~�:~r�
�
K�ðz�Þ

Z z

0

1

z0
I�ðz0�ÞI�ðz0�Þdz0 þ I�ðz�Þ

Z 1

z

1

z0
K�ðz0�ÞI�ðz0�Þdz0

�
: (A7)
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This solution is valid for a given ~�. The general solution can be obtained by integrating this solution over the (D� 3)-
dimensional ~�-space. Here, c1ðuÞ and c2ðuÞ also depend on ~�. Using Mathematica, one can find the integrals in terms of the
hypergeometric function pFqða; b; zÞ and the digamma function c

Z z

0
dz0

1

z0
I�ðz0�ÞI�ðz0�Þ ¼ ð�zÞ2�

22�þ1�½�ð�þ 1Þ�2 2F3

�
�; �þ 1

2
;�þ 1; �þ 1; 2�þ 1;�2z2

�
;

Z 1

z

1

z0
K�ðz0�ÞI�ðz0�Þdz0 ¼ �2z2

8�ð�2 � 1Þ 3F4

�
1; 1;

3

2
; 2; 2; 2� �; �þ 2;�2z2

�

� �ð��Þð�zÞ2�
4�þ1��ð�þ 1Þ 2F3

�
�; �þ 1

2
;�þ 1; �þ 1; 2�þ 1;�2z2

�

� 1

2�

�
ln

�
z�

2

�
� c ð�Þ � 1

2�

�
: (A8)

Specifically, for D ¼ 4, that is � ¼ 3
2 , around z ¼ 0, one has

Vðu; z; ~rÞ � ½c1ðuÞei ~�:~r þ c2ðuÞe�i ~�:~r��3=2z½lnð�zÞ � 1:3963�; (A9)

which gives an asymptotically AdS metric.
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[8] P. Baekler and M. Gürses, Lett. Math. Phys. 14, 185

(1987).
[9] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656

(1985).
[10] E. Ayon-Beato, G. Giribet, and M. Hassaine, J. High

Energy Phys. 05 (2009) 029.
[11] H. Ahmedov and A.N. Aliev, Phys. Lett. B 694, 143

(2010); Phys. Rev. Lett. 106, 021301 (2011).

[12] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002);
Phys. Rev. D 67, 084009 (2003).

[13] I. Gullu and B. Tekin, Phys. Rev. D 80, 064033
(2009).

[14] R. P. Kerr and A. Schild, Proc. Symp. Appl. Math. 17, 199
(1965); G. C. Debney, R. P. Kerr, and A. Schild, J. Math.
Phys. (N.Y.) 10, 1842 (1969).
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