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We study the gravitational wave emission of three compact objects using post-Newtonian (PN)

equations of motion derived from the Arnowitt-Deser-Misner-Hamiltonian formulation, where we include

(for the first time in this context) terms up to 2.5 PN order. We perform numerical simulations of a

hierarchical configuration of three compact bodies in which a binary system is perturbed by a third, lighter

body initially far away from the binary. The relative importance of the different PN orders is examined.

We compute the waveform in the linear regime considering mass quadrupole, current quadrupole and

mass octupole contributions. Performing a spherical harmonic decomposition of the waveforms we find

that from the l ¼ 3 modes it is possible to extract information about the third body, in particular, the

period, eccentricity of its orbit, and the inclination angle between the inner and outer binary orbits.
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I. INTRODUCTION

In the near future gravitational wave detectors will open
a new branch on astronomy beyond electromagnetism and
particles. In order to extract astrophysical information
from the waves it is crucial to model the source in an
accurate way. One of the parameters to determine is the
number of bodies which generate the waves. Some con-
figurations of three bodies can produce particular periodic
waveforms with distinctive features, e.g. [1]. On the other
hand, Lagrange’s triangle solution produces a quadrupole
waveform which is identical to the one produced by a
binary system [2]. However, it is possible to distinguish
between a binary system and a triple one by considering
the octupole part of the waveform [3]. Lagrange’s solution
is stable only if one of the bodies holds more than 95% of
the total mass [4]. For three-body systems of comparable
masses there are stable configuration in which it is possible
to characterize the system by looking at the waveform. In
this work we consider Jacobian systems, in which the
three-body configuration is composed of two parts, a
clearly defined binary and a third body orbiting far away.
We will refer to this kind of system also as a hierarchical
system.

Several models of three or more black holes were re-
cently studied from the astrophysical point of view.
Hierarchical three black hole configurations interacting in
a galactic core were studied by several authors. For ex-
ample in [5–7] some configurations of intermediate-mass
black holes with different mass ratios were considered. The
inclusion of gravitational radiation was done via an effec-
tive force which includes 1 PN (post-Newtonian) and
2.5 PN corrections to the binary dynamics. The configura-
tions consist of a binary system in a quasicircular orbit and

a third black hole approaching from a distance around 200
times the binary separation. The initial eccentricity was
specified in a random way. N-body simulations of dynami-
cal evolution of triple equal-mass supermassive black holes
in a galactic nuclei were performed in [8]. The method
includes an effective force with gravitational radiation
terms and galaxy halo interactions. In [9] the dynamics
of repeated triple supermassive black hole interactions in
galactic nuclei with several mass ratios and eccentricities
were considered. The simulations were performed using
Newtonian dynamics with corrections through an addi-
tional force which includes 2.5 PN corrections to the binary
dynamics and stellar dynamical friction. Other astrophys-
ical applications of multiple black hole simulations
include, for example, three-body kicks [10,11] and
binary-binary encounters (see e.g. [12–16]).
The first complete simulations using general-relativistic

numerical evolutions of three black holes were presented
in [17,18]. These recent simulations show that the dynam-
ics of three compact objects display a qualitatively differ-
ent behavior than the Newtonian dynamics. In [19] the
sensitivity of fully relativistic evolutions of three and four
black holes to changes in the initial data was examined,
where the examples for three black holes are some of the
simpler cases already discussed in [17,18]. The apparent
horizon and the event horizon of multiple black holes
have been studied in [20–22]. Although fully general-
relativistic simulations are available, they are limited to
only a small number of orbits for small separations of the
black holes.
In the present work we study three-body systems with

PN methods, where the main technical novelty is the
inclusion of the 2.5 PN terms in the orbital dynamics. We
do not consider compact objects with spin, although re-
cently the knowledge of Hamiltonian up to 2.5 PN was
completed with the computation of a next-to-leading order
spin-orbit and spin-spin Hamiltonian [23–25]
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Using post-Newtonian techniques, it is currently possible
to describe the dynamics of n compact objects without spin
up to 3.5 PN order (see e.g. [26–32]), although explicit and
closed expressions for the terms required for our purpose
are not available for arbitrary n. For binary systems the
Arnowitt-Deser-Misner (ADM) Hamiltonian has been spe-
cialized up to 3.5 PN order [33]. For three bodies there are
explicit formulas up to 2.5 PN order, with the final key
integral performed in [34] (see also Appendix A and [35];
see [36] for an alternative discussionwhere the final result is
not as yet explicit). For four compact objects, the same
degree of explicitness has not been obtained, see e.g. [37]
on which [34] is based where the integral (C.2) must be
computed for four bodies, and also Appendix D of [38]. In
theADM-Hamiltonian formalism the resulting equations of
motion exactly conserve the constants of motion. For nu-
merical simulations this represents an advantage with re-
spect to other post-Newtonian approaches, since the
constants of motion can be tracked and their constancy
continually checked.

Periodic solutions were studied using the 1 PN and 2 PN
approximation in [35,39,40]. Examples of three compact
bodies in a collinear configuration were considered in
[41,42], and Lagrange’s equilateral triangular solution
was studied including 1 PN effects in [43]. In [44], the
stability of the Lagrangian points in a black hole binary
system was studied in the test particle limit, for which
radiation effects were modeled by a drag force.

The most likely source of gravitational waves are binary
compact objects. Recently it was shown that the probabil-
ity that more than two black holes interact in the strongly
relativistic regime is, not surprisingly, very small [45]. For
practical purposes the creation of gravitational waveform
templates for gravitational wave detectors is naturally
focused on binary systems, and even binary systems can
produce complicated waveforms when taking into account
spinning black holes and eccentric orbits, e.g. [46].

Nevertheless, it remains an interesting question of prin-
ciple what additional wave phenomena are possible for
more than two compact objects. The waveform character-
ization of three or more compact objects is complementary
to the study of binary systems. For a three-body system the
complexity of the orbits can reveal properties of the waves
which for a binary system are hidden. As we will demon-
strate for a hierarchical system, from the l ¼ 3 modes of
the gravitational wave it is possible to extract information
about the third body, particularly the period, eccentricity of
its orbit and the inclination angle between the inner and
outer binary orbits.

The paper is organized as follows. In Sec. II, we sum-
marize the equation of motion up to 2.5 post-Newtonian
approximation for three bodies. This is followed by a
discussion of gravitational radiation in the linear regime
and the multipole expansion of the gravitational waves. In
Sec. III A, we describe the numerical techniques used to

solve the equation of motion and we present some results
for test cases. The perturbation of a binary system by a
third object is presented in Sec. III B, where we perform
numerical experiments in order to characterize the wave-
form. We conclude in Sec. IV.

Notation and units

We employ the following notation: ~x ¼ ðxiÞ denotes a
point in the three-dimensional Euclidean space R3, letters
a; b; . . . are particle labels. We define ~ra :¼ ~x� ~xa, ra :¼
j~raj, n̂a :¼ ~ra=ra; for a � b, ~rab :¼ ~xa � ~xb, rab :¼ j~rabj,
n̂ab :¼ ~rab=rab; here j � j denotes the length of a vector.
The mass parameter of the a-th particle is denoted by ma,
with M ¼ P

ama. Summation runs from 1 to 3. The linear
momentum vector is denoted by ~pa. A dot over a symbol,

as in _~x, means the total time derivative, and partial differ-
entiation with respect to xi is denoted by @i.
In order to simplify the calculations it is useful to define

dimensionless variables (see e.g. [47]). We use as basis
quantities for the Newtonian and post-Newtonian calcula-
tion the gravitational constant G, the speed of light c and
the total mass of the systemM. Using derived constants for
time � ¼ MG=c3, length l ¼ MG=c2, linear momentum
P ¼ Mc and energy E ¼ Mc2 we construct dimensionless
variables. The physical variables are related with the di-
mensionless variables by means of a scaling, for example,
denoting with capital letters the physical variables with the
usual dimensions and with lowercase the dimensionless

variable we define for a particle a its position ~xa :¼ ~Xa=l,

linear momentum ~pa :¼ ~Pa=P and mass ma ¼ Ma=M
(notice that ma < 1, 8a).

II. EQUATIONS OF MOTION

In the ADM post-Newtonian approach it is possible to
split the Hamiltonian in a series with coefficients which are
inverse powers of the speed of light (see e.g. [27,48])

H�2:5 ¼ H 0 þ c�2H 1 þ c�4H 2 þ c�5H 2:5: (1)

Here each term of the Hamiltonian cnH n=2 is a quantity

with a dimension of energy, and we write it explicitly with
factors of c. The dimensionless Hamiltonian is given by
Hn=2 ¼ cnH n=2=E. For each term we calculate the equa-

tions of motion

ð _xiaÞn ¼ @Hn

@pi
a

; (2)

�ð _pi
aÞn ¼ @Hn

@xia
; (3)

where the equations of motion up to 2.5 PN approximation
are

_~xa ¼ ð _~xaÞ0 þ ð _~xaÞ1 þ ð _~xaÞ2 þ ð _~xaÞ2:5; (4)

_~pa ¼ ð _~paÞ0 þ ð _~paÞ1 þ ð _~paÞ2 þ ð _~paÞ2:5: (5)
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The first term in (1) is the Hamiltonian for n particles
interacting under Newtonian gravity,

H0 ¼ 1

2

Xn
a

~p2
a

ma

� 1

2

Xn
a;b�a

mamb

rab
; (6)

with ~pa ¼ ma
_~x2a. The inclusion of post-Newtonian correc-

tions enriches the phenomenology of the system.

A. Post-Newtonian equations of motion up to 2.5 order

The first post-Newtonian correction to the equations of
motion is discussed extensively in the literature (see e.g.
[27,49]). The three-body Hamiltonian at first and second
post-Newtonian order is given in Appendix A. The equa-
tions of motion for the first post-Newtonian order are given
by (2), (3), and (A1). For particle a we obtain

ð _~xaÞ1¼� ~p2
a

2m3
a

~pa�1

2

X
b�a

1

rab

�
6
mb

ma

~pa�7 ~pb�ðn̂ab � ~pbÞn̂ab
�
;

(7)

ð _~paÞ1 ¼ � 1

2

X
b�a

�
3
mb

ma

~p2
a þ 3

ma

mb

~p2
b � 7ð ~pa � ~pbÞ

� 3ðn̂ab � ~paÞðn̂ab � ~paÞ
�
n̂ab
r2ab

þ X
b�a

X
c�a

mambmc

r2abrac
n̂ab þ

X
b�a

X
c�b

mambmc

r2abrbc
n̂ab

� 1

2

X
a�b

�ðn̂ab � ~pbÞ ~pa þ ðn̂ab � ~paÞ ~pb

r2ab

�
: (8)

For the second post-Newtonian approximation the equa-
tions of motion are calculated using (2), (3), and (A2). For
brevity we do not display the explicit equations.

Following [26,33] we obtain equations of motion from
the 2.5 PN Hamiltonian in the ADM gauge. The general
2.5 PN Hamiltonian is

H2:5 ¼ 1

45
_�ð4Þijð ~xa0 ; ~pa0 ; tÞ�ð4Þijð ~xa; ~paÞ; (9)

where the auxiliary function �ð4Þij is defined by

�ð4Þijð ~xa; ~paÞ :¼
X
a

2

ma

ð ~p2
a�ij � 3paipajÞ

þX
a

X
b�a

mamb

rab
ð3nabinabj � �ijÞ: (10)

Our expressions differ from [26,33] due to a different
choice of units. The explicit form of the derivative in (9) is

_�ð4Þijð ~xa0 ; ~pa0 Þ¼
X
a0

2

ma0
½2ð _~pa0 � ~pa0 Þ�ij�3ð _pa0ipa0jþpa0i _pa0jÞ�

þX
a0

X
b0�a0

ma0mb0

r2a0b0
½3ð _ra0b0ina0b0jþna0b0i _ra0b0jÞ

þðn̂a0b0 � _~ra0b0 Þð�ij�9na0b0ina0b0jÞ�: (11)

We denote the retarded variables by primed quantities. The
position and momentum appearing in Eq. (11) are not
affected by the derivative operators given by (2) and (3),
and only after calculating those derivatives we identify
positions and momenta inside and outside the transverse-
traceless variables (i.e. the primed and unprimed quanti-
ties). We replace the time derivatives of the primed
coordinates and positions given in Eq. (11) by the 1 PN
equations of motion Eqs. (7) and (8).
The equations of motion for 2.5 PN are given in short

hand by

ð _~xaÞ2:5 ¼ 1

45
_�ð4Þijð ~xa; ~pa; ð _~xaÞ1; ð _~paÞ1; tÞ @

@ ~pa

�ð4Þijð ~xa; ~paÞ;
(12)

ð _~paÞ2:5 ¼ � 1

45
_�ð4Þijð ~xa; ~pa; ð _~xaÞ1; ð _~paÞ1; tÞ

� @

@~xa
�ð4Þijð ~xa; ~paÞ: (13)

Given initial values for ~xa and ~pa of each particle it is
possible to integrate the resulting equations of motion
numerically.

B. Gravitational radiation in the linear regime

We consider leading order and next-to-leading order
gravitational waves calculated using trajectories which
contain post-Newtonian corrections. We compute the
gravitational waveforms for a given observational direc-
tion, and alternatively we calculate the multipole decom-
position which allows us to reconstruct the waves for an
arbitrary direction. The inclusion of post-Newtonian cor-
rections to the gravitational waveforms is a topic for future
research in the three-compact-body problem.

1. Quadrupole and octupole formulas

Here we summarize the formulas for quadrupole and
octupole mass radiation and for current quadrupole radia-
tion (for a review see e.g. [48,50]). The second and third
mass moments are defined by

MijðtÞ ¼
Z

T00ð ~x; tÞxixjd3x; (14)

MijkðtÞ ¼
Z

T00ð ~x; tÞxixjxkd3x: (15)

The second moment of the momentum density is
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Pi;jkðtÞ ¼
Z

T0ið ~x; tÞxjxkd3x: (16)

For n point particles

T��ð ~x; tÞ ¼ X
a

p�
a p�

a

�ama

�3ð ~x� ~xaðtÞÞ; (17)

where �a :¼ ð1� ~p2
aÞ�1=2 is the Lorentz factor, and p�

a :¼
�aðma; ~paÞ is the four-momentum. In this case Eqs. (14)–
(16) reduce to

MijðtÞ ¼ X
a

�amax
i
aðtÞxjaðtÞ; (18)

MijkðtÞ ¼ X
a

�amax
i
aðtÞxjaðtÞxkaðtÞ; (19)

Pi;jkðtÞ ¼ X
a

pi
aðtÞxjaðtÞxkaðtÞ: (20)

In the following we consider the case where j ~paj � 1,
�a ’ 1.

The mass quadrupole and octupole moment are given by

Q ijðtÞ ¼ Mij � 1

3
�ijMkk;

OijkðtÞ ¼ Mijk � 1

5
ð�ijMllk þ �ikMljl þ �jkMillÞ;

where repeated indices mean summation from 1 to 3. The
current quadrupole is given by

C k;lmðtÞ ¼ Pk;lm þ Pl;km � 2Pm;kl: (21)

A projection tensor into the plane normal to the direction
of wave propagation, n̂ ¼ ðsin� sin�; sin� cos�; cos�Þ, is
defined by

P ij :¼ �ij � ninj; (22)

�ijklðn̂Þ :¼ P ikP jl � 1

2
P ijP kl: (23)

The mass quadrupole and octupole waveforms are given by

hTTij ð ~x; tÞMQ ¼ 2

r
�ijklðn̂Þ €Qklðt� rÞ; (24)

hTTij ð ~x; tÞMO ¼ 2

3r
�ijklðn̂ÞnmO

:::klmðt� rÞ; (25)

and the current quadrupole contribution to the waveform is

hTTij ð ~x; tÞCQ ¼ 4

3r
�ijklðn̂Þnm €Ck;lm: (26)

The total contribution on the waveform is given by

hTTij ð ~x; tÞ ¼ hTTij ð ~x; tÞMQ þ hTTij ð ~x; tÞCQ
þ hTTij ð ~x; tÞMO þ . . . : (27)

where . . . means additional multipoles. Assuming that the
wave propagates in the ẑ-direction, then hþ ¼ hTT11 and
h� ¼ hTT12 . For an arbitrary direction n̂ð�;�Þ we have to

perform a rotation of the axes in order to identify the
polarization with the hTT11 and hTT12 components.
We decompose hþ and h� into modes using spherical

harmonics with spin-weight minus two,

hþ � ih� ¼ X
l

Xl
m¼�l

�2Y
l
mð�;�Þhml ; (28)

where

sY
l
mð�;�Þ :¼ ð�1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4	

s
dlmð�sÞð�Þeim�; (29)

dlmsð�Þ :¼ XC2

t¼C1

ð�1Þt½ðlþmÞ!ðl�mÞ!ðlþ sÞ!ðl� sÞ!�1=2
ðlþm� tÞ!ðl� s� tÞ!t!ðtþ s�mÞ!

� ðcos�=2Þ2lþm�s�2tðsin�=2Þ2tþs�m; (30)

with C1 ¼ maxð0; m� sÞ and C2 ¼ minðlþm; l� sÞ.
Using the orthonormality of the spherical harmonics it is
possible to compute hlm by

h l
m ¼

Z 2	

0

Z 	

0
�2

�Yl
mð�;	=2��Þðhþ � ih�Þd�; (31)

where d� ¼ sin�d�d�.

III. SIMULATIONS AND RESULTS

A. Numerical integration

We solved the equations of motion numerically using
MATHEMATICA 7.0 [51]. We used the built-in low-level

functions of the NDSolve routine with a ‘‘double-step’’
method using as subalgorithm the ‘‘explicit midpoint’’
method. We divided long simulations into substeps in order
to store the result from time to time and to avoid saturating
the random-access memory. With this approach we can
produce accurate numerical solutions of the equations of
motion. For our purpose the performance of MATHEMATICA

solving the ordinary differential equation system is not an
issue (see the performance and accuracy tests at the end of
this section).
An important issue in the numerical integration of a

three-body system arises when two of the bodies come
very close to each other. Adaptive step size methods can
automatically maintain the necessary accuracy to properly
resolve the orbits in the close interaction, but issues of
efficiency arise. For the Newtonian system a number of
techniques have been developed that address problems
with accuracy and efficiency, see e.g. [52–56] and refer-
ences therein. For our PN evolutions, efficiency was not an
issue, and furthermore the equations of motion are not
valid for arbitrarily small separation anyway. What is of
relevance here is a convenient criterion of when to stop the
evolution. We monitor the absolute value of each conser-
vative part of the Hamiltonian (1) relative to the sum of the
absolute values,
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H%
i
:¼ 100

� jHij
jH0j þ jH1j þ jH2j

�
: (32)

We stop the simulation when the contribution of the first
post-Newtonian correction is larger than 10%.

In the remainder of this section we report on several tests
that allow us to estimate the numerical errors. We use the
Lagrangian equilateral triangle solution to compare the
numerical with an analytical solution. In Lagrange’s solu-
tion each body is sitting in one corner of an equilateral
triangle (see e.g. [57]). We set the side of such triangle to
L ¼ 1000, the mass ratio to 1:2:3, and the eccentricity to
zero. Then each body follows a circular orbit (with differ-
ent radii) around the center of mass. The solution in this
case is not stable [4], however for circular orbits we can
compute the waveforms and compare with the analytical
expressions [3].

In Fig. 1, we show the relative variation of the
Hamiltonian

�H :¼ Hð0Þ �HðtÞ
Hð0Þ ; (33)

and for each body the relative variation of the position with
respect to the center of mass. The variation of the
Hamiltonian is small (close to machine accuracy), however
the error in the orbits grows fast, breaking the regular
trajectory. In this case, after seven orbits the numerical
solution fails. The waves exhibit a similar behavior. In
Fig. 2, we show the error for each polarization of the
waveforms (24)–(26). The error is defined as the absolute
value of the difference between the numerical calculation
and the analytical expression. The mass octupole exhibits a
noisy error due to the complicated nature of the analytical
expression. On the other hand, it seems that the error in
the mass quadrupole starts growing before the errors in the
mass octupole and current quadrupole. By looking at the

analytical expressions this fact can be explained as follows
(see Eqns. (B5)–(B10)). The mass quadrupole part con-
tains a factor a2!2 (where a is the separation of the bodies
and ! the orbital frequency). The mass octupole and
current quadrupole have a factor a3!3. In terms of a the

factors reduce to a�1 and a�3=2 respectively. A small
change in the orbit is visible at a smaller length scale,
and then the growth in the waveforms seems to be delayed.
We reproduce a few of the results from [35], specifically

the simulation of the equal-mass Moore’s figure eight [39],
which includes first and second post-Newtonian correc-
tions. Our choice of method was guided by numerical
experiments to minimize the numerical error in this ex-
ample. With the double-step, midpoint method we obtain
fluctuations of the Hamiltonian of 10�14 (see Fig. 3), while
other methods and parameter settings can show a signifi-
cantly larger error.
We tested our n-body 2.5 PN equations of motion for the

case n ¼ 2, i.e. for binary systems. The variation of the
semimajor axis and of the eccentricity of a binary system
due to the gravitational radiation is given by [58]

da

dt
¼ � 64

5

m1m2

a3ð1� e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; (34)

de

dt
¼ � 304

15

m1m2

a4ð1� e2Þ5=2
�
eþ 121

304
e3
�
: (35)

We tested the 2.5 PN equations of motion (12) and (13) by
comparison with direct numerical integration of the
Eqs. (34) and (35). The test was performed with two differ-
ent binaries, one with initial eccentricity e0 ¼ 0:1 and one
with e0 ¼ 0:5. In both cases we set m1 ¼ 2m2, a0 ¼ 160.

-1.6
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1.6
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6.4

∆
H

[×10−15]

-3.6

-1.8

0

1.8

3.6

0 0.4 0.8 1.2

∆|
→ x i

|

t

[×10−5]

[×106]

BH1
BH2
BH3

FIG. 1 (color online). Test using Lagrange’s equilateral solu-
tion of the Newtonian three-body problem. Shown is the relative
variation of the Hamiltonian (top) and the relative change in the
orbits (bottom).
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∆h
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Error[hTT
i j ][×10−9]
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6
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∆h
×
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[×106]

0

0.2

0.4

0 0.3 0.6 0.9 1.2

0

0.2

0.4

0 0.3 0.6 0.9 1.2

MQ
MO
CQ

FIG. 2 (color online). Test using Lagrange’s equilateral solu-
tion of the Newtonian three-body problem. Shown is the absolute
value of the difference between the analytical expression and the
numerical calculation for the mass quadrupole, mass octupole
and the current quadrupole for each polarization of the wave-
form. The insets show the mass octupole and the current
quadrupole.
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The numerical integration of the 2.5 PN equations agree
very well with the result provided by the numerical inte-
gration of (34) and (35). We calculate the eccentricity of
our orbits with the Newtonian formula

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l2Hc

ðm1m2Þ3
s

; (36)

where l is the magnitude of the total angular momentum
and Hc is the value of the conservative part of the
Hamiltonian. The apoapsis (the maximum separation of
the two bodies) is related to the semimajor axis by rap ¼
að1þ eÞ. For simplicity we compare in the upper panel of
Fig. 4 the relative variation of rap to its initial value and in

the lower panel we show the variation of the eccentricity.

In order to test the code for long evolutions of three
bodies we use Hénon’s criss-cross solution [35,59,60].
This solution is stable with respect to a wide range of
perturbations [61]. We evolve the equal-mass criss-cross
solution for around 103 orbits for ad-hoc initial parameters.
In our system of units,

~x1ð0Þ¼ 1:07590
2x̂; ~p1ð0Þ¼ 3�3=2 �0:19509
�1ŷ;

~x2ð0Þ¼�0:07095
2x̂; ~p2ð0Þ¼�3�3=2 �1:23187
�1ŷ;

~x3ð0Þ¼�1:00496
2x̂; ~p3ð0Þ¼ 3�3=2 �1:03678
�1ŷ;

where x̂, ŷ and ẑ are the unitary basis vectors in Cartesian
coordinates, and 
 is a scaling factor (for our simulation

 ¼ 10). Notice that for this test we use the parameters
given in [61] with the scaling factor 
, and doing a change
of variables from initial velocity to initial momentum.
Therefore, we are not including post-Newtonian correc-
tions to the initial parameters. In Fig. 5 we plot the relative
variation of the Hamiltonian for the evolution using a
Newtonian potential and the corresponding Hamiltonian
variation for evolutions which include 2 and 2.5 PN cor-
rections. As is expected the variation of the Hamiltonian in
the 2.5 PN case is huge compared to the conservative case,
and the bodies separate after around t ¼ 7:825� 106. The
inner panel in Fig. 5 shows a detail of the conservative part.
In this case the 2.5 PN dynamics show better conservation
of the Hamiltonian in contrast to the Newtonian case which
has a variation in the Hamiltonian of around 4� 10�12.
We confirm that the system is stable even after the

inclusion of 2 and 2.5 PN corrections, see Fig. 6. In the
Newtonian case the accumulation of numerical errors and
probably a round-off in the initial parameters lead to a
small variation of the orbits. The basic shape of the criss-
cross figure suffers a small rotation. The 2 PN correction
includes the effect of precession in the orbits; the original
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FIG. 3 (color online). Moore’s figure eight solution. Relative
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figure spins many times around the origin preserving its
original shape. The inclusion of gravitational radiation via
the 2.5 PN corrections has a stronger effect on the orbits,
slowly deforming the original figure. The body in the
circularlike orbit shows a significant reduction of the orbi-
tal radius, the two other bodies follow at the end a trian-
gular orbit with narrow corners.

We also use the Newtonian Hénon criss-cross solution
for performance and accuracy tests. A performance test
based on wall time measurements resulted in about 4.4 sec-
onds per orbit on (one core of) an Intel i7-860 processor.
For accuracy testing, we evaluate the error of time integra-
tion by a reversibility test. After computing a given number
of orbits, we solve the system backward in time starting
with the last position of each particle but replacing every
linear momentum by its opposite value. To measure the
error we compute the differences in phase space between
the initial position and momentum and the position and
momentum after the backward evolution. For our standard
setting, the error after 100 orbits is on the order of 10�10.

B. Strong perturbation of a binary system

Here we consider the strong perturbation of the dynam-
ics and waveform of a binary compact object system due to
a third smaller compact object. We take all PN corrections
up to 2.5 PN for the three bodies. This approach gives us a
good description of the third body orbiting close to the
binary. However, the computational cost of each simula-
tion increases with respect to the Newtonian simulations,
making it too costly to perform a comprehensive study of
this study. Nevertheless, we can select a representative case
in an attempt to identify key properties.

As a basic configuration we study a Jacobian system
with mass ratio 10:20:1. The inner binary system has initial
separation rbð0Þ ¼ 150 and eccentricity ebð0Þ ¼ 0. We set
the initial parameters considering only the Newtonian
dynamics, in particular, the eccentricity refers to the
Newtonian case. We view the third compact body and the
center of mass of the inner binary as a new binary (we will
refer to it as the external binary). The external binary has
initial separation r3ð0Þ ¼ 10 000 and initial eccentricity
e3ð0Þ ¼ 0. The bodies start from a configuration where
the apoapsis of the inner binary is perpendicular to the
apoapsis of the external binary (see Fig. 7).
We denote the inclination angle between the osculating

orbital planes �in and �ext by i (see Fig. 7). The behavior
of the Hamiltonian is similar in every case that we con-
sider. The conservative part of the Hamiltonian decreases
relatively slowly during most of the simulation. However,
when the system approaches the merger phase, the
Hamiltonian decreases fast (see Fig. 8). As we mentioned
before, the simulations are stopped when the contribution
of the first post-Newtonian correction becomes larger than
10%. We consider this instant the time when the merger
phase starts.
We consider five numerical experiments. In Table I we

summarize the configurations of the numerical experi-
ments. We vary one parameter of the basic configuration
and fix the rest. Themain goal of the study is to characterize
the changes produced in thewaveforms due to the change in
each parameter.

1. Binary versus triple system

We compare the case where the inner binary is not being
perturbed by the third compact body. Figure 9 shows the
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FIG. 6 (color online). Hénon criss-cross solution for
Newtonian, 2 and 2.5 PN dynamics. First and last orbits. In the
Newtonian dynamics the orbits do not show a significant change.
For dynamics including 2 PN corrections the orbits exhibit the
expected precession. For the dynamics which includes 2.5 PN
corrections the gravitational radiation produces a significant
change in the orbits which in the long run breaks the system.

FIG. 7 (color online). Hierarchical system. Initial configura-
tion of the inner and external binaries. The initial momentum of
the third body is given by considering the external binary as a
Newtonian binary. Shown are the osculating orbital planes �in

and �ext for inner and external binary orbits. The two planes are
inclined by an angle i.
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components of the waveform for the hþ polarization with
an observational direction � ¼ 	=4, � ¼ 0. In both cases
the plot shows in light grey the mass quadrupole. The
waveform looks like a shadow region because compared
to the time scale of the entire evolution a single cycle looks
like a very high frequency wave. In Fig. 9, the binary has
completed 3448 orbits, while the inner binary of the triple
system has completed 4071 orbits and the outer binary has
completed 7.5 orbits. The mass octupole plus the current
quadrupole MOþ CQ are the dark region. Notice that in
the triple system MOþ CQ is modulated by the period of
the third body (one cycle of modulation corresponds to half
an orbit of the third body). The perturbation furthermore
affects the merger time; for the triple system it takes
more time for the inner binary to merge. We run the
simulation for five initial inner binary separation rb 2
f130; 140; 150; 160; 170g. In Fig. 9 we mark with vertical

lines the time at which the simulations are stopped.
The relative change in the merger time

t3BH � t2BH
t2BH

¼ 0:270� 0:0025; (37)

is almost constant for this simulation (the standard devia-
tion is 0.0025). We did not observe any particular differ-
ences in the waveform when changing rb.

2. Post-Newtonian corrections

In addition to the comparison to the nonperturbed binary
system, we use the planar configuration to explore the
influence of the conservative post-Newtonian corrections.
As in the previous case with initial binary separation
rb ¼ 150 (which we will denote as full 2.5 PN case), we
solve the system for equations of motion where we remove
the 2 PN part of the Hamiltonian (radiative 1 PN) and
where we remove both 1 and 2 PN corrections (radiative
Newtonian). The full 2.5 PN case does not show a big
difference compared to the radiative 1 PN case. The merger
phase time changes from t ¼ 4:8372� 107 in the first case
to t ¼ 4:8132� 107 in the second one. The waveform does
not suffer a noticeable change (see Fig. 10). On the other
hand, in the radiative Newtonian case the result changes
significantly. The merger phase time starts later than in
previous cases (around t ¼ 5:6388� 107). For this con-
figuration dynamic which include the radiative 1 PN cor-
rections seems to be a good approximation. However, for
the rest of the simulations we employ the full 2.5 PN
corrections.
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FIG. 8 (color online). Planar hierarchical system. Relative
contribution to the Hamiltonian defined by (32). The inset shows
the time dependence of Hc ¼ H0 þH1 þH2. Notice that when
the system approaches the merger phase, the Hamiltonian de-
creases quickly.

TABLE I. Configuration of the numerical experiments. The
fixed parameters in each case are the mass ratio 10:20:1, the
initial eccentricity of the inner binary eb ¼ 0, and the angle
between the apoapsis of the inner binary and the apoapsis of the
external binary which is set to 	=2. The base configuration has
initial binary separation rb ¼ 150, Hamiltonian H0þ1þ2þ2:5,
eccentricity of the external binary e3 ¼ 0, inclination angle of
the osculating planes i ¼ 0 and initial external binary separation
r3 ¼ 10 000.

Experiment Parameter variation

1 rb 2 f130; 140; 150; 160; 170g
2 H 2 fH0þ2:5; H0þ1þ2:5; H0þ1þ2þ2:5g
3 e3 2 f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g
4 i 2 f0; 	=8; 	=4; 3	=8; 	=2g
5 r3 2 f312:5; 625; 1250; 2500; 5000; 10 000g
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FIG. 9 (color online). Planar hierarchical system. Comparison
between the perturbed binary and the unperturbed one. The light
grey region is the mass quadrupole MQ contribution to the
waveform rhþ, which is not resolved since there are 4070 orbits.
The dark region inside the light grey one is the mass octupole plus
the current quadrupole MO+CQ contribution to the waveform
rhþ. The vertical lines mark the time when the simulations are
stopped for initial separation r3 2 f130; 140; 150; 160; 170g of the
inner binary.
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3. Variation of the eccentricity of the external binary

We analyzed the variation of the waveform as a function
of the eccentricity of the external binary e3. We ran simu-
lations for e3 2 f0; 0:1; . . . ; 0:6g. In this case the response
to the variation of the eccentricity is better reflected in the
combination of hl¼2

m¼1 and h
l¼3
m¼3. Figure 11 shows the sum of

l ¼ 2,m ¼ 1 and l ¼ m ¼ 3modes (which are the leading
components of current quadrupole and mass octupole,
respectively). The modulation of the modes shows two
characteristic low-frequencies. If we divide the orbit of
the external binary in two parts, one defined by the true
anomaly1 ’ running from ’ ¼ �	=2 to ’ ¼ 	=2 and the
other by the complement ’ 2 ½	=2; 3	=2�, it is possible
to associate the characteristic frequencies to each part of
the trajectory. We compute the envelope of the absolute
value of the signal using a low-pass filter (dark line in
Fig. 11) for 2=3 of the total signal (that part of the signal
was easier to process for high eccentricity). Using the
resulting function we compute numerically the local min-
ima. The differences between minima are associated with
the characteristic frequencies. An alternativeway to extract
the characteristic frequencies is by looking at the Fourier
spectra of the filtered waveform.

We label the period for ’ 2 ½�	=2; 	=2� as �tap and

the period for ’ 2 ½	=2; 3	=2� as �tper (at ’ ¼ 0 the

external binary reaches the periapsis and at ’ ¼ 	 the
apoapsis). Table II shows the results, where we include
the quotient.
In the Newtonian case it is possible to compute

�tap and �tper using the conservation of the angular
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FIG. 10 (color online). Successive changes in thewaveformdue
to post-Newtonian corrections. Waveform of a radiative
Newtonian system (bottom), radiative 1 PN system (middle),
and full 2.5 PN system (top). The waveform includes the current
and mass quadrupole and the mass octupole contributions. The
vertical dash line at t ¼ 3:81� 107 marks the time when the
nonperturbed binary system enters the merger phase (see Fig. 9).
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TABLE II. Periods �tper and �tap and its quotient. The values
are computed using the averages of the differences between the
minima (see Fig. 11) and the errors by the standard deviation.

e3 �tper½�106� �tap½�106� �tper=�tap

0 3:1473� 0:000 20 3:1427� 0:000 53 0:9985� 0:000 23
0.1 2:3812� 0:000 92 3:0700� 0:001 20 1:2890� 0:001 00
0.2 1:7890� 0:001 80 2:9950� 0:000 51 1:6750� 0:001 90
0.3 1:3260� 0:001 70 2:9160� 0:001 10 2:2000� 0:003 60
0.4 0:9590� 0:001 60 2:8370� 0:001 10 2:9580� 0:006 10
0.5 0:6690� 0:001 10 2:7530� 0:001 70 4:1180� 0:009 20
0.6 0:4390� 0:003 30 2:6670� 0:004 00 6:0700� 0:055 00

1The true anomaly is defined as the angle which connects the
periapsis, the main focus and the trajectory of the reduced body.
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momentum l and the equation of the orbit (see e.g. [57]).
The result is

�tper ¼ l3

�

Z 3	=2

	=2
ð1þ e cos’Þ�2d’; (38)

�tap ¼ l3

�

Z 	=2

�	=2
ð1þ e cos’Þ�2d’; (39)

where � is the reduced mass of the binary. The quotient
between the periods is related to the eccentricity by

�tper
�tap

¼ 	

2 arctan
ffiffiffiffiffiffiffi
1�e
1þe

q
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p � 1: (40)

Figure 12 shows a comparison between the data
presented in Table II and the Newtonian expression (40).
For this case the Newtonian expression represents very
well the functional behavior of our simulation.

4. Variation of the inclination angle

The period of modulation of the l ¼ 3 modes of the
waveform are related to the period of the third body. On the
other hand, the amplitude of the l ¼ 3 spherical compo-
nents of the waveform encode information about the in-
clination angle i. We run simulations with the same initial
configuration for i 2 f0; 	=8; 	=4; 3	=8; 	=2g. Figure 13
shows the variation of the amplitude for the real part of the
modes hl¼3

m¼2 and hl¼3
m¼3 as function of i. Since the real and

the imaginary part of the modes show the same behavior,
for simplicity we present only the analysis of the real part.
The real part of hl¼3

m¼2 is zero for planar motion i ¼ 0.
However, the contribution of this mode increases with i.
On the other hand, the contribution of Refhl¼3

m¼3g is maximal

in the planar case and decreases when i increases. This
behavior is symmetric with respect to i ¼ 	=2 and
periodic with period 	.

We estimate the contribution of each mode calculating
the area which is covered by the real part of the mode,

A l
mð�Þ :¼ �

Z �

tf

jRefhlmð ��Þgjd ��; (41)

where tf ¼ 4:8372� 107 is the final time of the evolution

and � ¼ tf � t. We integrate backward in time starting

with the beginning of the merger phase at tf. We compute

Al
mðtÞ for 8 uniformly spaced times during the simulation.

We normalize the results using the maximum value
Amax ¼ Al¼2

m¼2. We denote the normalized area by Al
m.

As an example we show the results for � ¼ 0 in Table III
where we present the relevant modes. In total we compute
8 tables similar to the previous one, however for brevity
we do not present them here. Notice that the contribution
of the l ¼ 2 modes is almost constant with respect to
the inclination angle i. In Fig. 14 we show the variation
of Al¼3

m¼2 and Al¼3
m¼3 for two integration times, � ¼ 0

and � ¼ tf=2.

We found that the variation of Al¼3
m¼2 is well represented

by

Al¼3
m¼2ðt; iÞ ¼ að�Þj sinij: (42)
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TABLE III. Variation of Al
m as a function of the inclination

angle i.

� ¼ 0 i ¼ 0 i ¼ 	=8 i ¼ 	=4 i ¼ 2	=8 i ¼ 	=2
l m Al

m

2 0 0.0019 0.0019 0.0021 0.0024 0.0026

2 1 0.0000 0.0007 0.0013 0.0016 0.0018

2 2 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.0000 0.0006 0.0021 0.0012 0.0544

3 1 0.0546 0.0527 0.0588 0.0397 0.1160

3 2 0.0000 0.0429 0.0799 0.1033 0.1583

3 3 0.2128 0.2052 0.1957 0.1552 0.2376
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On the other hand, Al¼3
m¼3 is well modeled by

Al¼3
m¼3ðt; iÞ ¼ bð�Þ þ cð�Þj cosij3=2; (43)

where the fitting coefficients a, b and c depend on the
interval of integration. Table IV shows the fitting coeffi-
cients as a function of the integration time �. From this data
it is possible to fit a function to establish the functional
behavior of the coefficients with respect to the integration
time. The result is shown in Fig. 15. The coefficients a, b
and c are well represented by

að�Þ ¼ �1e
���2 ; (44)

bð�Þ ¼ �1e
���2 ; (45)

cð�Þ ¼ �1e
���2 ; (46)

where

�1 ¼ 8:94� 0:018; (47)

�2 ¼ ð8:352� 0:0029Þ � 10�2; (48)

�1 ¼ 10:17� 0:21; (49)

�2 ¼ ð8:26� 0:032Þ � 10�2; (50)

�1 ¼ 5:90� 0:033; (51)

�2 ¼ ð8:305� 0:0084Þ � 10�2: (52)

The asymptotic behavior of the coefficients suggests that
for long integration times it is possible to consider them as
constants.
Alternatively, it is possible to relate the inclination angle

i with the maximum of the modes l ¼ 3, m ¼ 2 and l ¼ 2,
m ¼ 1. As in Sec. III B 3, we compute the envelope of the
modes using a low-pass filter. The upper panel in Fig. 16
shows the result for the angle i ¼ 	=4. The quotient of the
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TABLE IV. Fitting coefficients of Eqns. (42) and (43). For the
8 time intervals we compute the fitting coefficients a, b and c.
We include the error of each coefficient.

�½�107� að�Þ½�10�2� bð�Þ½�10�2� cð�Þ½�10�2�
0.6047 22:45� 0:066 26:99� 0:116 15:21� 0:171
1.2093 18:04� 0:035 21:57� 0:062 12:28� 0:092
1.8140 15:76� 0:025 18:90� 0:046 10:75� 0:067
2.4186 14:28� 0:019 17:19� 0:036 9:76� 0:054
3.0233 13:21� 0:016 15:99� 0:031 9:03� 0:046
3.6279 12:38� 0:014 15:07� 0:027 8:47� 0:041
4.2326 11:72� 0:012 14:33� 0:025 8:00� 0:037
4.8372 11:18� 0:011 13:73� 0:024 7:62� 0:035
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FIG. 15 (color online). Functional behavior of the fitting co-
efficients. The coefficients are well described by an exponential
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envelope of the modes l ¼ 3, m ¼ 2 and l ¼ 2, m ¼ 1
gives a periodic function which removes the growth of the
modes close to the merger time. We define the function R
which rectifies the envelopes as

Rðhl¼3
m¼2; h

l¼2
m¼1Þ :¼

Env½Refhl¼3
m¼2g�

Env½Refhl¼2
m¼1g�

: (53)

The lower panel of Fig. 16 shows the result of applying (53)
to our data. Notice that in the case of i ¼ 	=2 the values
after t ¼ 3� 107 are a little erratic. For our analysis we
consider for i ¼ 	=2 only the points before t ¼ 3� 107.

From the resulting function we compute numerically the
local maxima of (53). Table V shows the result. For this
purpose we perform additional simulations for angles
	=16, 3	=16, 5	=16 and 7	=16. We fit to the data the

function fðiÞ ¼ aiebi
2
, where a ¼ 0:65� 0:034 and

b ¼ 0:69� 0:024. Figure 17 shows the result, notice that
the functional behavior is well represented by the fitted
function.

In both cases, using the relative ‘‘area’’ of the modes
or the maximum of the ‘‘rectified’’ modes, we obtain

quite a simple behavior. The advantage of the second
method is that it does not depend on the integration
time �.

5. Initial separation of the external binary

The last numerical experiment examines the dependence
on the initial separation of the external binary r3.
We set the value of r3 to 312.5, 625, 1250, 2500, 5000,
and 10 000. For r3 ¼ 312:5 the external body is ejected
from the binary after a few orbits, the other configurations
are stable.
Figure 18 shows the sum of the mass octupole and

current quadrupole contributions to the waveform. The
frequency of the modulation of the waveform increases
when the separation and hence the orbital period of the
external binary is decreased. One orbit of the external
binary corresponds to the time between two of the nodes
of the mass octupole plus current quadrupole contribution
shown in Fig. 18. The influence of a third body is not
clearly defined when the period of the external binary is
similar to the inner binary. For small separations, on the
scale shown there is no modulation of the waves visible
(see Fig. 18 (a) and (b)). When the initial separation of the
external binary is increased, at some distance most of
the inspiral and merger of the inner binary happens before
the external binary completes one orbit.

TABLE V. The maximum of (53) as a function of the inclina-
tion angle i. Listed is the average value of the maxima, while the
error is given by the standard deviation of the data.

i Max½Rðhl¼3
m¼2; h

l¼2
m¼1Þ� Variation (%)

0 0 0

	=16 0:1608� 0:000 77 0.48

	=8 0:335� 0:0012 0.36

3	=16 0:538� 0:0029 0.54

	=4 0:806� 0:0049 0.61

5	=16 1:193� 0:0056 0.47

3	=8 1:864� 0:0093 0.50

7	=16 3:41� 0:026 0.75

	=2 5:57� 0:033 0.60
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data
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FIG. 17 (color online). The maximum of (53) as a function of
the inclination angle i. The functional behavior is well repre-
sented by the function aiebi
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FIG. 18 (color online). Planar hierarchical system. Modulation
of the mass octupole plus the current quadrupole as function of
the initial separation of the external body. The initial separation
r3 takes the values 625 (a), 1250 (b), 2500 (c), 5000 (d) and
10 000 (e). Shown on the left is the evolution for t 2 ½0; 107� and
on the right for t 2 ½4� 107; 5� 107�.
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VI. DISCUSSION

We performed post-Newtonian simulations for a selec-
tion of hierarchical configurations as an example for a
three-body system, and we analyzed the waveforms.
Based on these simulations we examined a number of
different physical aspects of the system.

First of all, looking at the mass octupole and current
quadrupole part of the waveform, it is possible to distin-
guish between such a hierarchical (also called Jacobian)
triple system and a binary system, an issue that has been
discussed in [2,3].

In terms of the merger time, the perturbed binary
merges later. For mass ratio 10:20:1, the delay of the
merger is 27% compared to the binary with 10:20, which
is perhaps surprisingly large. However, let us note that even
a small perturbation due to a third object can have a large
effect when integrated over about 4000 orbits of the inner
binary (i.e. there is less than a 0.01% delay per orbit). As
we have shown, the delay depends only very weakly on the
inclination angle or the distance to the third body, see
Figs. 13 and 18. This may be expected since the force
due to the third body periodically increases but also de-
creases the force between the objects of the inner binary
(depending on the orientation of the binary with respect to
the third body), which apparently averages out over several
orbits of the inner binary. As a cross check we also per-
formed simulations where the third mass approaches
zero, and in this case the merger time does approach that
of the binary.

As far as the approximation method is concerned, we
find that there is a significant difference in the merger time
for a system which includes Newtonian dynamics and
2.5 PN radiation compared to the inclusion of 1 PN or
2 PN corrections to the dynamics. The inclusion of 1 PN
corrections to the conservative part of the Hamiltonian
produces a change of 16% in the merger time. However,
the inclusion of 2 PN corrections does not make a signifi-
cant difference to either the waveform or the merger time
(only around 0.5%).

The variation of the eccentricity of the external binary
shows that the period of the third body is well described by
the Newtonian dynamics. From the modulation of the
waveform modes (particularly from the sum of the l ¼ 2,
m ¼ 1 and l ¼ m ¼ 3 modes), it is possible to distinguish
two frequencies which are related to the eccentricity via a
Newtonian expression.

We established a link between the amplitude of the l ¼ 3,
m ¼ 2 and l ¼ m ¼ 3 modes and the angle of the osculat-
ing orbital planes. In order to extract the information given
by the waves we used two methods. First, we used the
relative area covered by the l ¼ 3, m ¼ 2 and l ¼ m ¼ 3
modes with respect to the area covered by the mode
l ¼ m ¼ 2. In this case the contribution of the l ¼ 3,
m ¼ 2 mode is particularly simple. It is zero for planar
motion and increases as a sine function of the inclination

angle. The second method is based on the quotient of the
envelope of the l ¼ 3,m ¼ 2mode and the envelope of the
l ¼ 2, m ¼ 1 mode. The resulting function is almost peri-
odic and does not contain the characteristic growth of the
waveforms close to the merger phase. In this case, it is
possible to relate the inclination angle to the amplitude of
the resulting function. The modulation produced by the
third body on the l ¼ 3 modes characterizes the period of
the external binary. Decreasing the initial separation of the
external body produces a higher frequency modulation,
until it is no longer possible to discern a well defined
modulation of thewaveform. In our simulations, when there
are nowell defined internal and external binaries the system
is not stable.
Our results provide additional evidence to a conjecture

first stated in [2], that in order to characterize a system
of n compact objects, it is necessary to perform an analysis
of the waveform which includes at least the l � n modes.
As we showed in the last numerical experiment, when the
third body is close to the binary it is not evident how to
extract information related to the dynamics of a particular
body. It is necessary to perform a detailed study of non-
hierarchical triple systems to determine how much infor-
mation we can extract from more general cases. More
detailed statements based on the higher modes of the
waveform are possible but require an extensive parameter
study. Other configurations include, for example, a massive
compact object perturbing a binary, or the scattering and
capture of a third body. The present examples showed
the type of characterization that are possible with the
techniques developed above.
As a final comment, let us point out that chaotic behavior

of triple systems is well known in the Newtonian case (see
e.g. [4] and references therein). For binaries, it is known that
chaos appears when using certain post-Newtonian approx-
imations for systems of spinning binaries (see e.g. [62–68]).
As a natural generalization of theNewtonian casewe expect
that the three-body problem exhibits chaotic behavior as
well. An important question is, how does the emission of
gravitational radiation change the chaotic properties of the
system? We consider this a topic for future study.
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Bernuzzi, David Hilditch, and Milton Ruiz for valuable
discussions and comments on the manuscript. This work
was supported in part by DFG Grant SFB/Transregio 7 and
by a DLR grant, LISA Germany.

APPENDIX A: FIRST AND SECOND
POST-NEWTONIAN HAMILTONIAN

Here we reproduce in our notation the Hamiltonian
given in [34], with some factorizations and changes in
the summation of the terms T1 and T2, which are marked
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by braces below. Our version (worked out with G. Schäfer)
fixes the typos noted in [35], giving a formula equivalent to
[35] but written in a different way. The issue is how the

four-point functions of [37] are reduced to explicit triple
sums for a three-body problem. The first and second post-
Newtonian Hamiltonians are

H1 ¼ � 1
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APENDIX B: LAGRANGE
TRIANGLE SOLUTION WAVEFORM

Here we sumarize the expressions for the mass quadru-
pole, mass octupole, and current quadrupole waveforms for
each polarization of the Lagrange triangle solution. See [3]
for details on the calculation of this expression. We denote
bya :¼ r12 ¼ r13 ¼ r23 the separation between each pair of
bodies. m1, m2 andm3 are the dimensionless mass parame-

ters, ! ¼ a�3=2 is the orbital frequency, r is the distance
from the observer to the source and � is the observational
direction. We define the following auxiliary quantities:

�i :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þmjmk þm2
k

q
; (B1)
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�
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where j � i, k � i, j. The plus and cross polarizations of the
mass quadrupole waveform are

rhMQ
þ ¼�ð3þcos2�Þa2!2

X3
i¼1

mi�
2
i cosð2ð!tþ�iÞÞ; (B5)
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the expressions for the current quadrupole are
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and the waveforms for the mass octupole are given by
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