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The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are

investigated for the Einstein-Hilbert gravity in the second-order formalism modified by higher derivative

terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous

works and build up an orthonormal basis of projector-like operators for the degrees of freedom, rather than

for the spin modes of the fields. With this new basis, the attainment of the propagators is remarkably

simplified and the identification of the physical and unphysical modes becomes more immediate. Our

conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the

Chern-Simons term with a timelike vector of the type v� ¼ ð�; ~0Þ. Spectral consistency imposes that the

Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation

imposes a drastically different constraint on the background if compared to ordinary gauge theories

whenever conditions for the suppression of tachyons and ghosts are imposed.
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I. INTRODUCTION

In spite of the special role that Lorentz symmetry plays
in fundamental particle physics, over the last two decades
there has been remarkable activity in considering models
where this symmetry is violated. One reason for this excite-
ment is that the main candidates for a consistent quantum
theory of gravitation, such as loop quantum gravity [1,2]
and Horava-Lifshitz gravity [3], exhibit a phase where
Lorentz symmetry is broken; on the other hand, string
theory may spontaneously break Lorentz invariance by
the vacuum condensation of nontrivial Lorentz tensors
[4]. Most interestingly, the relics of the Lorentz-symmetry
violation (LV) could be detectable at low-energy experi-
mental measurements, yielding physical constraints on
these fundamental theories.

The search for extended quantum gravity models was
mainly dictated by the difficulty of obtaining, simulta-
neously, a renormalizable and unitary quantum field theory
to describe gravity. The attempts to simply add relativistic
higher derivative corrections to the Einstein-Hilbert
Lagrangian did not solve this problem. Although these
terms improve the ultraviolet divergences, they may also
yield ghost excitations which jeopardizes unitarity of the
S-matrix. (For a deeper discussion, we address the reader
to the works of Refs. [5–7].) With this in mind, we judge
that a first and important test for the quantum consistency
of any modified gravity theory is to require unitarity in the
sense that its particle spectrum propagates neither tachyon
nor ghost modes. It is important to state clearly that, in this
paper, we shall adopt a point of view that the models of

gravity we are dealing with are understood as effective
field theories. Their ultraviolet completion must come
from a more fundamental theory which is expected to be
renormalizable, such as string or M-theory.
The type of gravity theory we shall inspect in this paper

is of the LV type characterized by the presence of a constant
vector, va, that spoils the isotropy of space-time. In [8], this
vector is coupled to gravitation via a Chern-Simons-like
term. Great motivation for considering the 4D C-S-like
term comes from the striking effect of the Chern-Simons
(C-S) term in 3D that yields a consistent description of a
massive graviton. In this paper we intend to verify whether
this consistent mass-generating mechanism survives in 4D.
Furthermore, along with the Einstein-Hilbert and C-S
terms, we also consider the effects of ðcurvatureÞ2 terms
and an extra LV term, built up in analogy with the Ricci-
Cotton (R-C) term in 3D. A broad review on LV CS gravity
is given in [9]. For further discussion, see [10–19].
Invoking spatial isotropy, the authors of [8] restrict their

discussion to va ¼ ð�; ~0Þ. For the sake of generality, and
motivated by recent works that point to a possible spatial
anisotropy at cosmological scales [20,21], we shall not
restrict our discussion to any particular choice of va. In
fact, it is known that the nature of the LV background
vector may drastically change the spectrum of the model.
For example, in the electromagnetic C-S LV model, it has
been argued that a spacelike Lorentz background vector of
the type va ¼ ð0; ~�Þ renders the theory free from ghosts

and tachyons, whereas a timelike vector of the type va ¼
ð�; ~0Þ yields an inconsistent quantum theory [22,23]. In
this paper, surprisingly, we conclude just the opposite for
the gravity model extended by a C-S LV term: the only
tachyon- and ghost-free model is the one with a timelike

vector of the type va ¼ ð�; ~0Þ.
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In order to fulfill the task of analyzing the spectral
properties of these modified gravities, we follow the lines
of previous works [24–26] and build up an orthonormal
basis of operators that splits the fundamental fields into
their individual degrees of freedom. With this basis, the
attainment of the propagator is feasible and it is possible to
identify the excitation modes of the model. Also, we may
suitably interpret them as a unitary representation of the
subgroup that survives from the Lorentz breakdown and, in
this manner, as propagating particles. Furthermore, we
obtain conditions on the parameters of the Lagrangian so
that we may ensure propagation of nontachyonic and non-
ghost modes.

This paper is organized as follows: In Sec. II, we in-
troduce our notations and conventions, and we start off
with a general Lagrangian including the Einstein-Hilbert
term, ðcurvatureÞ2-terms, and the LV extensions given by
the C-S and R-C terms. We pursue the attainment of the
propagators in Sec. III. The particle spectrum of the model
is obtained in Sec. IV, where we also discuss the tachyon-
and ghost-free conditions. In Sec. V, we present our
concluding remarks. The operator basis, suitable for the
attainment of the propagators, is presented in Appendix A.
In Appendix B, we present an alternative method to obtain
the propagator so that we can confirm the results found out
in Sec. III.

II. HIGHER DERIVATIVE GRAVITY MODIFIED
BY LV TERMS

Let us start off our analysis by considering the Einstein-
Hilbert Lagrangian modified by higher derivative terms
and C-S and R-C Lorentz-violating actions,

L ¼ ffiffiffiffiffiffiffi�g
p ð�Rþ�RabR

abþ�R2Þþ�LCSþ�LRC; (1)

where �, �, �, �, and � are arbitrary parameters. The
Chern-Simons term is given by

LCS ¼ � 1

2
�abcdva�

e
cf

�
@b�

f
ed þ

2

3
�f
bg�

g
de

�
; (2)

whereas the Ricci-Cotton Lagrangian reads

LRC ¼ "abcdvdRaeDbRc
e: (3)

The background vector va is an embedding coordinate
which is assumed to transform as a four-vector under
observer (or passive) Lorentz transformations; however,
it is invariant under particle (or active) transformations.
Consequently, observer Lorentz symmetry is preserved,

although particle Lorentz symmetry is broken (for further
discussion see [27]).
At this point, it is worth remarking that this LV mecha-

nism is rather different from another recent proposal for a
LV gravity model: the so-called Horava-Lifshitz gravity
[3,28]. Although both of them fall into a class of non-
Lorentz invariant models, in the Horava-Lifshitz gravity
the breaking of Lorentz invariance is implemented by
endowing space-time with a preferred foliation of three-
dimensional spacelike surfaces. This defines the splitting
of coordinates into space and time and explicitly breaks
general covariance down to the subgroup of coordinate
transformations:

x � ~xðt;xÞ; t � ~tðtÞ: (4)

The LV induced by a background vector is expected to be
of very small magnitude and the effects of the LV terms are
tightly constrained by several experiments [29]. The
Horava-Lifshitz gravity, on the other hand, is expected to
flow to a relativistic regime at low energies.
Throughout the paper, we shall use Latin letters

(a; b; c; . . . ) for space-time index and adopt the plus-minus
convention for the Minkowski metric �ab ¼ diagð1;�1�
1� 1Þ. Also, we shall follow the following conventions:
Ra

bcd ¼ @c�
a
bd þ �a

ce�
e
bd � ðc $ dÞ, �a

bc ¼ 1
2g

adð@bgdc þ
@cgdb � @dgbcÞ, Rbd ¼ Ra

bad, R ¼ gbdRbd. We stress that

we are working with the second-order formalism and pos-
sible torsion effects are not included in our study.
The R-C term is, in the linearized limit, a sort of

higher derivative of the C-S term, as it shall soon
become evident. Some properties of the electromagnetic
counterpart of this R-C term in 3D are discussed in [30],
where it is argued that a higher derivative term no longer
preserves the topological properties of the C-S term. It is
not known to the authors of this paper an extensive study
of the R-C term in 3D gravity. In principle, one could
choose different background vectors for the C-S and R-C
terms. We shall, however, adopt a minimalist point of
view, where the LV arises from just one background
vector, va. A conclusive answer to this issue can only
be settled with a more fundamental approach where the
mechanism for spontaneous symmetry breaking is clearly
defined.
By means of the weak-field approximation, gab ¼

�ab þ hab, we are able to write the quadratic Lagrangian,
up to total derivatives, as

L ð2Þ ¼ �

2

�
� 1

2
habhhab þ 1

2
hhh� h@a@bh

ab þ hab@a@ch
c
b

�
þ �

4
ðhabh2hab þ hh2h� 2hh@a@bh

ab

� 2habh@a@chb
c þ 2hab@a@b@c@dh

cdÞ þ �ðhh2h� 2hh@a@bh
ab þ hab@a@b@c@dh

cdÞ

þ�

4
�abcdvahd

e@bð@e@fhfc �hhecÞ þ �

4
�abcdvahd

eh@bð@e@fhfc �hhecÞ: (5)
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For a nontrivial v�, the nonlinearized model (1) is not
invariant under active diffeomorphism transformations.
However, the authors of [8] show that diffeomorphism
symmetry is recovered dynamically by means of the equa-
tions of motion. This fact is reflected in a gauge symmetry
of the action. The model is invariant under the field trans-
formation:

h0ab ¼ hab þ @a�b þ @b�a: (6)

Other fundamental symmetry lost is CPT invariance due to
the fact that we have an LV tensor (vector) with an odd
number (namely, 1) of indices [31].

One readily realizes that, beside derivatives and
Minkowski metric, there is the emergence of the Levi-
Civita tensor and the LV background vector va in the
wave operator (5), which cannot be accommodated into
the well-known Barnes-Rivers operators [32]. An analo-
gous situation occurs in parity-breaking theories in
ð1þ 2Þ �D, where there is the need of an extension of
the spin-operators basis in order to handle the Levi-Civita
tensor [24]. Such an extension is also necessary in the
present problem, and this is the content of Appendix A.

III. WRITING DOWN THE PROPAGATORS

A first step for the attainment of the propagator is to cast
(up to total derivatives) the linearized Lagrangian (5) under
the form

Lð2Þ ¼ 1

2
habOab;cdh

cd; (7)

where the wave operator,Oab;cd, in momentum space reads

as below:

Oab;cd¼1

2
p2ð�þ�p2ÞPð2Þab;cdþ1

4
ð�p2þ�p4ÞSab;cd

þp2½ð6�þ2�Þp2���P11ð0Þab;cd: (8)

With the degree-of-freedom basis of operators discussed
in Appendix A, the wave operator can be expanded as

O ab;cd ¼
X
J;ij

aijðJÞPijðJÞab;cd: (9)

Let us clarify the notation. The aijðJÞ are the coefficients in
the wave operator expansion. The diagonal operators,
PiiðJÞ, are projectors for each of the degrees of freedom
of the spin ðJÞ sectors of the field hab, while the PijðJÞ, with
i � j, are mappings between the projectors PiiðJÞ and
PjjðJÞ. The attribution of projectors and mapping operators

comes from the orthonormal relation that these operators
satisfy:X

cd

PijðIÞab;cdPklðJÞcd;ef ¼ 	jk	
IJPilðIÞab;ef: (10)

The property of decomposition of unity is expressed byX
i;J

PiiðJÞab;cd ¼ 	ab;cd: (11)

The coefficients aijðJÞ can be arranged as matrices that

represent the contribution to the particular spin ðJÞ. When
these matrices are nonsingular, the saturated propagator is
given by

� ¼ i
X
J;i;j

a�1
ij ðJÞJ �abPijðJÞab;cdJ cd; (12)

where J ab are physical sources that couple to the propa-
gator under consideration.
However, Lagrangian (1) in its linearized form is invari-

ant under some local transformations of the fields (6).
Gauge invariance implies that the coefficient matrices
become degenerate. In [33], it is shown that the correct
gauge-invariant propagator is obtained by taking the in-
verse of any largest nondegenerate submatrix, denoted by
AijðJÞ, which is next saturated with sources.

For the model (1), the coefficients aijðJÞ form the (2� 2)

spin-0, (3� 3) spin-1, and (5� 5) spin-2 matrices corre-
sponding to the 10 degrees of freedom contained in the
metric field:

að0Þ ¼ 2ð3�þ �Þp4 � �p2 0
0 0

� �
; (13)

að2Þ ¼ p2

2

�p2 þ � 0 0 �i
ffiffiffiffiffiffi
p2�

p ð�þ �p2Þ 0

0 �p2 þ � �i

ffiffiffiffi
p2�

p
2 ð�þ �p2Þ 0 0

0 i

ffiffiffiffi
p2�

p
2 ð�þ �p2Þ �p2 þ � 0 0

i
ffiffiffiffiffiffi
p2�

p ð�þ �p2Þ 0 0 �p2 þ � 0
0 0 0 0 �p2 þ �

0
BBBBBBBB@

1
CCCCCCCCA
: (14)

The spin-0 matrix is degenerate, while the spin-1 matrix vanishes identically, manifesting the gauge symmetry of the
model. For the spin-2, we have sort of a block-diagonal structure of the (1–4) sector, (2–3) sector, and 5 sector. This allows
an inversion of each sector separately. Their inverses, needed for the attainment of the propagators, with the degeneracies
duly extracted, are given by
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Að0Þ ¼ 1

p2ð2ð3�þ �Þp2 � �Þ ; (15)

a�1
14 ð2Þ¼

2

p2�14

�p2þ� i
ffiffiffiffiffiffi
p2�

p ð�þ�p2Þ
�i

ffiffiffiffiffiffi
p2�

p ð�þ�p2Þ �p2þ�

0
@

1
A; (16)

a�1
23 ð2Þ¼

2

p2�23

�p2þ� i

ffiffiffiffi
p2�

p
2 ð�þ�p2Þ

�i

ffiffiffiffi
p2�

p
2 ð�þ�p2Þ �p2þ�

0
B@

1
CA; (17)

a�1
5 ð2Þ¼ 2

p2ð�þ�p2Þ ; (18)

where �14 ¼ ð�p2 þ �Þ2 � p2�ð�þ �p2Þ2, �23 ¼
ð�p2 þ �Þ2 � p2�

4 ð�þ �p2Þ2. An alternative method to
obtain the propagator is given in Appendix B. This supple-
mentary method is somewhat algebraically simpler, so that
it may be used as a check of our calculations; unfortu-
nately, it provides less physical insights on the properties of
the propagating modes.

At a first glance, one observes that the spin-0 sector is
unaffected by theLV term.Anexplanation for this fact comes
from the observation that the LV operator, Sab;cd, lives

entirely in the spin-2 sector, as pointed out in Appendix A.
However, the spin-2 sector is completely split for this LV

theory. In relativistic field theory, the spin of the particles is
defined in connection with the unitary representations of
the little group defined by a representative momentum of
the class which the particle belongs to. A background
vector that breaks the isotropy of space-time may therefore
modify the spin structure of the theory. This is seen ex-
plicitly in the spin-2 sector, where some degrees of free-
dom may propagate independently.

An analogous phenomenon occurs in ð1þ 2Þ �D in
gravity theories with parity-breaking terms. Since spin is
represented by a pseudoscalar operator in 3D, there must
be a doublet of spins with the same absolute value for the
mass, jmj, so that an irreducible representation of the
Lorentz group extended by time inversion and parity trans-
formations be set up. On the other hand, in a parity-
breaking theory, such as gravity theories added to a
Chern-Simons parity-breaking term, this doublet structure
is lost and each spin component acquires a different mass,
which we interpret as degrees of freedom propagating
independently. For more details, see [26].

The close link between the four-dimensional LV theory
and the three-dimensional parity-breaking theory is estab-
lished when one considers the LV vector with spatial
components v� ¼ ð0; ~vÞ. In this case, there is a symmetry
breaking

SOð1; 3Þ ! SOð1; 2Þ; (19)

therefore, the massive particles should not be any longer
defined by the embedding of SUð2Þ ,! SOð1; 3Þ, but rather

by Uð1Þ ,! SOð1; 2Þ. Furthermore, if the symmetry of the
model considered is extended by parity conservation, the
particles can be defined as doublets of spins ðs;�sÞ, since,
by parity operation, the spin s is mapped onto �s. This is
why the 5-dimensional matrix (14) is split into the direct
sum of the Uð1Þ fundamental representations and their
complex conjugate (or, equivalently, by SOð2Þ representa-
tions). In this case, the new emerging degrees of freedom
can be enumerated by the usual Uð1Þ multiplication rule
coming from group theory:

ð1��1�0Þ�ð1��1�0Þ
¼ð3�0�2�1�2��1�2��2Þ: (20)

The three blocks appearing in the spin-2 sector may be
viewed as coming from a sort of dimensional reduction. If
it is assigned the 0 helicity for the 
-operator, the spin-2
operator decomposition (A16a)–(A16e) can be compared
with the three-dimensional operators defined in [24]. For
example: the P11ð2Þ and P44ð2Þ are clearly Pð2þþÞ and
Pð2��Þ of the paper [24], respectively. In this case, the
spin-2 is broken to a ‘‘three-dimensional’’ spin-2, which
corresponds to the (1–4) sector (Pð2Þ ¼ P11ð2Þ þ P44ð2Þ);
spin-1, which corresponds to the (2–3) sector (Pð1Þ ¼
P22ð2Þ þ P33ð2Þ); and spin-0, which corresponds to the
5 sector (Pð0Þ ¼ P55ð2Þ).

IV. ANALYSIS OF THE SPECTRAL CONSISTENCY

In this section, we analyze the spectral consistency of
the model. As a result of our study, we shall be able to
impose conditions on the parameters of Lagrangian (1) in
order to inhibit the propagation of unphysical modes, that
is, ghosts and tachyons.
In a quantum field theory with relativistic invariance,

it is known that the condition for absence of tachyon is
m2 � 0, where p2 ¼ m2 appears as a pole of a given
propagator. Also, the statement for absence of ghosts reads

=Resð�jp2¼m2Þ> 0: (21)

In the projection-operators formalism, we can take advan-
tage of the general decomposition of the spin projection-
operator,

PijðJÞ ¼ ð�1ÞPc ðiÞc ðjÞ; (22)

where P is the parity related to the spin operator, to rewrite
the propagator (12) as

� ¼ ið�1ÞP X
J;i;j;m2

J�i AijðJ;m2ÞJjðp2 �m2Þ�1; (23)

where Jj ¼ c ðjÞ
cdJ

cd and AijðJ;m2Þ are the inverse subma-

trices with the pole extracted. Therefore, the positiveness
condition (21), for arbitrary sources, is ensured by the
positiveness of the eigenvalues of the AijðJ;m2Þ matrix.
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Nevertheless, it can be shown that these matrices, for
massive poles, have only one nonvanishing eigenvalue
at the pole, which is equal to the trace of AðJ;m2Þ.
Therefore, the condition for absence of ghosts for each
spin is reduced to

ð�1ÞP trAðJ;m2Þjp2¼m2 > 0: (24)

On the other hand, in an LV theory, these conditions
must be carefully reassessed, since, for example, the dis-
persion relation is modified and can be more general than
simply p2 ¼ m2. In this case, it is interesting to character-
ize tachyon and ghost excitations even if Lorentz symme-
try is no longer present. Because of subtleties that appear
for different choices of the background vector, we post-
pone the discussion of the characterization of tachyon and
ghost excitation modes in each considered case.

The spin-0 sector is unaffected by the LV terms. Thus,
the usual constraints remain in order. The spin-0 massive
pole keeps unchanged the expression m2 ¼ �

6�þ2� , and the

ghost- and tachyon-free conditions are given by

Spin -0: �> 0; 3�þ � > 0: (25)

Interestingly, the 5-sector of the spin-2 shows up the
massive graviton yielded by the RabR

ab term. However, the
massive pole, m2 ¼ � �

� , results in contradictory condi-

tions with positiveness of the Newton’s constant, if one
requires ghost and tachyon absence:

Sector -5: �< 0; �> 0: (26)

Being inconsistent with unitarity requirements, we shall
henceforth assume that � ¼ 0, that is, the absence of the
Ricci squared term. Before analyzing the general tachyon-
and ghost-free conditions for the general case of the theory
with the R-C and the C-S term, we think it is instructive to
study the simplest case, where the Ricci-Cotton term is
switched off (� ¼ 0). In this situation, the matrix corre-
sponding to the 1–4 sector is cast as

a�1
14 ð2Þ ¼

2

�2p2ð�2

�2 � p2�Þ
� i�

ffiffiffiffiffiffi
p2�

p
�i�

ffiffiffiffiffiffi
p2�

p
�

 !
: (27)

The particle content of the model is set up by the poles of
the propagator. For the 1–4 sector of the spin-2 matrix, the
poles are given by the roots of

�2

�2
� ððv � pÞ2 � v2p2Þ ¼ 0: (28)

So, the solution to this equation for the energies of the
modes reads:

p0 ¼ j ~pj
j ~vj

2
4v0 cos�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2 ~p2
� v2sin2�

s 3
5; (29)

where � is the angle between ~v and ~p. One should notice
that it is necessary that j ~vj � 0 for the presence of massive

poles. At this stage, it is interesting to open up the dis-
cussion of the interpretation of the modes with negative
energy, so as to ensure that no tachyons are present.
In field theories with Lorentz invariance, the dispersion

relations read like p0 ¼ 	Eð ~pÞ, with Eð ~pÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
.

The negative energy solutions are naturally incorporated
into the quantum description with the definition of the
causal Feynman propagator that takes into account the
contribution of a negative energy mode as being the anni-
hilation of a positive energy mode. Also, the CPT invari-
ance of the model suggests the interpretation of a negative
energy mode propagating to the past as being a positive
energy mode propagating to the future.
However, at the present case, CPT invariance is lost and

the dispersion relations can be in general of the form
p0 ¼ E	 with jEþj � jE�j [e.g., (29)]. These different
masses for the particle and antiparticle can be problematic
to the locality of the quantum theory, as discussed in [34].
By analyzing (29), we realize that, in the case v0 � 0,

there are different masses for the particle and antiparticle
and it happens that the positivity cannot be ensured to
arbitrary directions of propagation, by virtue of the explicit
dependence on cos�. We therefore conclude that it is
incompatible to assume v0 � 0 and j ~vj � 0 simulta-
neously, if we wish to ensure a consistent quantum theory.
In the particular case v0 ¼ 0, the poles are given by

p0 ¼ 	 1

j ~vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2
þ ~v2 ~p2sin2�

s
: (30)

In this case, the dispersion relation is like p0 ¼ 	E and,
potentially, the interpretation of the negative energy modes
could be consistently associated to the antiparticles. In fact,
in spite of the lack of CPT invariance of the model, as
discussed in Sec. II, in the case of a background vector with
spatial components, the breaking of Lorentz symmetry
leaves a residual SOð1; 2Þ symmetry. This can also be
seen by the strict relation between this massive spin-2
mode and the massive graviton that appears in the topo-
logical massive gravity (TMG) in 3D. This forces an
interpretation of the negative energy modes that are con-
sistently discussed in the three-dimensional TMG. We
know that, in the four-dimensional model, a C ~PT symme-
try remains, where C and T are the usual charge conjuga-
tion and time reversal operation, whereas ~P is a discrete
improper Lorentz transformation that reverses only one
spatial component in the orthogonal plane defined by
the LV vector, ~v. The ~P is the usual parity operation in
ð1þ 2Þ �D. We therefore conclude that the negative en-
ergy mode could be consistently interpreted as a positive
energy mode with opposite spin polarization. The fact that
this excitation is nontachyonic is a result that is in agree-
ment with previous discussion in the literature [35].
To conclude the spectral analysis, one must ensure the

positivity of the residues at the poles of the propagators.
First of all, one should observe that, off-shell, the residue
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matrix a�1
14 ð2Þ [Eq. (27)] has two distinct eigenvalues,

namely Cð�þ�
ffiffiffiffiffiffi
p2�

p Þ and Cð���
ffiffiffiffiffiffi
p2�

p Þ, with C ¼
2½�2p2ð�2

�2 � p2�Þ��1. On-shell, that is, at p2� ¼ �2

�2 , only

one of these two eigenvalues survives depending on the
sign of �

� . Physically, this corresponds to the fact that just

one spin polarization propagates: þ2 for �
� > 0, or �2 for

�
� < 0. This is of great resemblance with topologically

massive gravity in 3D, where there is a propagation of a
single massive mode of helicity	2, depending on the sign
of the Chern-Simons term [36].

As previously discussed, the condition for the positivity
of the eigenvalues at the pole is simplified to the positivity
of the trace (24). In this case,

Res tra�1
14 ð2Þjp2

0
¼E2 ¼ � 2�

�2 ~v2p2
; (31)

where, at the pole,

p2 ¼ �2

�2 ~v2
� ~p2cos2�: (32)

For low momenta, ~p2 < �2

�2 ~v2 , the condition for the propa-

gation of a nonghost mode, expressed in Eq. (31), dictates
the following:

�< 0: (33)

One could wonder if the model would be consistent with
�> 0 for specific choices of ~p2cos2�. We understand that
an explicit dependence of the consistency of the model on
the direction of propagation is an odd situation and so we
discard this possibility. In fact, for the case where the
dynamics is restricted to the plane orthogonal to ~v, cos�
vanishes identically and p2 is positive-definite. Again, the
requirement of a negative Newton’s constant is in agree-
ment with previous consideration of the relation of this
model with TMG.

In the more general case, with the Ricci-Cotton term
present (� � 0), the massive poles of the propagator of the
spin (1–4) sector are given by the roots of

�14 ¼ �2 � p2�ð�þ �p2Þ2: (34)

The condition for absence of ghost reads

Res ðtra�1
14 ð2ÞÞjp2

0
¼E2 ¼ 2�ðp2

0 � E2Þ
p2�14

> 0: (35)

However, condition (35) is doomed to propagate ghost
modes. The reason is simple: the denominator (34) brings
three massive poles, �14¼Cðp2

0�E2
1Þðp2

0�E2
2Þðp2

0�E2
3Þ,

with E2
1 <E2

2 < E2
3 or two massive poles (depending

on the choice of v�), �14 ¼ C0ðp2
0 � E2

1Þðp2
0 � E2

2Þ, with
E2
1 <E2

2. In either cases, if tra�1
14 ð2Þjp2

0
¼E2

1
is positive

(negative), then tra�1
14 ð2Þjp2

0
¼E2

2
is negative (positive). So,

the positivity of the residue in all poles cannot be ensured

simultaneously. Such a phenomenon is ubiquitous in theo-
ries with higher derivatives, when more than one massive
pole in the same spin sector usually brings ghosts. In view of
this problem, we are bound to take � ¼ 0, eliminating then
the R-C term.
The spectral consistency analysis for the (2–3) sector

follows the same reasoning of the (1–4) sector, and the
main results remain unchanged. This finishes the discus-
sion of quantum consistency for the massive poles. Let us
tackle now the spectrum consistency analysis for the mass-
less pole.

A. The massless graviton pole

The massless poles must be handled with extra care. At
first sight, one sees that the basis of operators is ill defined
for lightlike momenta. However, one can show that the
physical sources satisfy constraints (paJ ab ¼ 0) due to
gauge symmetries of the model. These constraints make
the saturated propagator a well-defined expression even for
lightlike momenta. In fact, the surviving structures when
the projectors are saturated by the sources at lightlike
momenta (p2 ¼ 0) are given by

P11ð0Þab;cd¼1

2
�ac�cdþ t:d:n:c:res:; (36a)

P11ð2Þab;cd¼1

2
ð�acbdþ�adbcþac�bdþad�bcÞ

þ t:d:n:c:res:; (36b)

P22ð2Þab;cd¼ t:d:n:c:res:; (36c)

P33ð2Þab;cd¼ t:d:n:c:res:; (36d)

P44ð2Þab;cd¼1

2
ð�ab�cdþabcdÞ�1

2
ð�abcdþab�cdÞ

þ t:d:n:c:res:; (36e)

P55ð2Þab;cd¼1

2
�ac�cdþ t:d:n:c:res:; (36f)

where ‘‘t.d.n.c.res.’’ is an acronym for ‘‘terms that do not
contribute to the residue.’’ From the expression of 
ab in
terms of va and pa [Eq. (A5d)], one can show that

abJ bc ¼ 0. This is why P22ð2Þ and P33ð2Þ do not contrib-
ute to the residues, and only the �’s, ’s, and �’s appear in
the final expression.
Another remark that should be made is that, for non-

vanishing mapping operators, the projection contribution
can be diagonalized ( ~Pij ¼ AikPklA

T
lj) in such a way that

the rotated projectors contribute with the corresponding
eigenvalue. In this way, the propagators can be written as

=Resð�jp2¼0Þ ¼ ~J �ab
�

2

���jv � pj
~P11ð2Þab;cd

þ 2

�þ�jv � pj
~P44ð2Þab;cd

�
~J cd: (37)

It is interesting to notice that the contribution of the map-
ping operators is responsible for breaking up the two
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degrees of freedom of the usual graviton. In the case where
the LV parameter, �, vanishes, we recover the well-known
graviton propagator in 4D.

The origin of the splitting in the dynamics of these
independent degrees of freedom of the massless particle is
analogous to the phenomenon that occurs for massive par-
ticles in 3D, when there is a parity-breaking term. There is
indeed a great resemblance betweenmassive particles in 3D
andmassless particles in 4D, since they essentially share the
same representation structure of the Poincaré group. As in
3D, parity-breaking terms yield different masses for parti-
cles that would propagate as doublet of spins, as discussed
in [26]. This same role of the parity-breaking shows up in
the massless graviton propagator (37), where the helicities
modes are no more related by CPT transformations.

To analyze unitarity, one should recall that the sources
are arbitrary and ~P11ð2Þ and ~P44ð2Þ are independent opera-
tors. In order to ensure the positivity of the expression (37),
we must impose that the eigenvalues are positive-definite,
independently. This implies that

j�ðv � pÞj<�: (38)

Condition (38) means, in particular, that the unitarity
constraint of our LV theory is in accordance with the usual
requirement of the positiveness of the Newton’s constant in
4D. However, such a condition is conflicting with the re-
quirement of (33). This is not a surprise for us in light of the
close link between parity-breaking theories in 3D and LV
theories in 4D with a breaking vector with spatial compo-
nents. In fact, it is known that Chern-Simons massive grav-
ities are consistent solely if �< 0. In 3D, the massless
graviton does not propagate and there is no conflict with
respect to unitarity. In a Chern-Simons LV gravity in 4D, we
conclude, therefore, that the propagation of the massless
graviton and the massive modes coming from the violation
of the Lorentz symmetry are not compatible if one enforces
the requirement of propagating only nonghost modes.

Though our efforts have been made to find the correct
relations among the free parameters and the LV background
vector to ensure absence of tachyons and ghosts, it must be
emphasized that these are tree-level conditions, valid at
linear level, stemming from our inspection of the residues
and poles of the free propagators. Interactions and loop
corrections might give rise to unphysical modes which, in
turn, could be suppressed by reanalyzing the spectrum and
finding new conditions among the loop-corrected parame-
ters, so that ghosts and tachyons are also eliminated from
the loop-corrected action. Therefore, at nonlinear level,
suppression of ghosts and tachyons has to be reassessed at
each order in perturbation theory.

V. CONCLUDING REMARKS

We have considered a general gravity Lagrangian
with higher derivatives and CPT/Lorentz-violating
Chern-Simons and Ricci-Cotton terms in the second-order

formalism. It was our interest to investigate the implication
of the CPT/Lorentz-symmetry violating terms in the uni-
tary properties of the model and, also, to determine the
particle spectrum of the theory.
With this aim, we have developed a basis of degree-of-

freedom operators. The proposed basis turns out to be
algebraically convenient and still exhibits a clear physical
interpretation. The principle of defining degree-of-freedom
operators renders a great flexibility to identifying the physi-
cal content of the excitation modes. This generality is
especially interesting if the background vector is not fixed
a priori, since, in this case, there is no definition, in ad-
vance, for the particles. In the case where Lorentz symme-
try remains unbroken, these degree-of-freedom operators
will always rearrange to the usual spin-projectors, as ex-
pected. However, if there is a breaking of the Lorentz
symmetry by a background vector with only spatial com-
ponents, SOð1; 2Þ symmetry is residual. In this case, the
degrees-of-freedom operators rearrange in such a way that
the planarlike excitations can be readily identified. Or,
loosely speaking, this represents a dynamical generation
of the spin-particle by using the degrees of freedom of the
fields.
Extensions to include more general background tensors,

as discussed in the standard model extension (SME), con-
sidered by Kostelecky and collaborators [31], could be
addressed too. In the case of two linear independent
background vectors, there will be a Lorentz-symmetry
breaking, SOð1; 3Þ ! Uð1Þ, and we expect that the excita-
tions shall not be arranged in planarlike modes. This
situation may be relevant whenever LV is triggered by a
spontaneous supersymmetry breaking mechanism [37,38],
since another background vector may appear by means of a
background fermion condensation. Furthermore, we sup-
pose that the degree-of-freedom operators could be defined
and the other Lorentz-breaking vector should be split into
three orthogonal contributions: p�, e3�, and e2�, accord-

ing to the Gram-Schmidt decomposition.
The breaking of the CPT symmetry threatens the inter-

pretation of the negative energy modes that are common in
quantum field theory. This is the matter of a detailed
discussion. We conclude that a background vector, with
v0 � 0 and ~v � 0, brings up an inconsistent quantum
model, since the propagating modes do not have a
positive-definite energy for arbitrary directions of propa-
gation. The situation where v0 ¼ 0 and ~v � 0 revealed
nontachyonic excitations after a revision of the role of the
discrete symmetries. In spite of this known fact, however,
we showed that these modes are negative-normed states
(ghosts) and with mass comparable to the Planck mass.
This fact warns of possible inconsistencies in the quantum
version of the model. Nevertheless, in the search for small
deviations in low-energy processes, where the problematic
mode should not be excited, one may obtain consistent
results if the effective model is viewed as a relic of a more
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fundamental (and consistent) theory. The last case, where
v0 � 0 and ~v ¼ 0, which was the subject of an investiga-
tion in [8], revealed, in the limiting case of Einstein-Hilbert
Chern-Simons gravity, there are no other propagating
modes beside the massless graviton. It is in agreement
with the results by Jackiw and Pi that the two polarizations
of the graviton propagate independently. The general be-
havior of ðcurvatureÞ2 terms is not altered by the LV Chern-
Simons term, in the sense that the R2 term propagates a
nonghost massive spin-0 and the ðRabÞ2 term propagates a
massive spin-2 ghost. The higher derivative Ricci-Cotton
term brings unavoidable ghost modes.

Another interesting pursuit is to tackle an analogous
problem, but in the first order formalism, where the viel-
bein and the spin connection are understood to be inde-
pendent fields. In such a situation, we expect that the
difficulty in the calculations shall be greatly increased,
since in the analogous problem with dynamical torsion
there is a plethora of propagating modes, 2þ, 2�, 1þ, 1�,
0þ, 0� [25,39] in which, with LV, the spin modes would be
split into spin polarization modes. In spite of this difficulty,
this problem would be rather interesting, since, in this
formalism, there is the possibility of considering, beside
the usual Chern-Simons term in the first-order formalism
�abcdvdðRabef!c

ef þ 2
3!af

g!bg
e!ce

fÞ, other combina-

tions that have not been considered previously:
�abcdvaTbc

eRde, �abcdvaRTbcd, and �abcdvaTbe
eRcd.

Also, torsion effects could reveal interesting consequences
in this scenario.
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APPENDIX A: DEGREE-OF-FREEDOM
PROJECTION-OPERATORS

In order to analyze the particle spectrum of the
model and the nature of its associated particles, the
attainment of the propagator becomes a primary goal.
With the propagator at hand, one reads off the masses of
the particles and may verify the positiveness of the resi-
dues of the propagators at the corresponding poles, so as
to determine conditions for the absence of ghosts. A
suitable method to obtain the propagator and identify the
particle content of the models is the one based on the spin
projector operators [25,32,33,39]. In four dimensions, in
the second-order formalism, one has the Barnes-Rivers
operators that form a complete orthonormal basis
of operators for models with Lorentz and CPT
invariances:

Pð2Þab;cd¼1

2
ð�ac�bdþ�ad�bcÞ�1

3
�ab�cd; (A1a)

Pð1Þab;cd¼1

2
ð�ac!bdþ�ad!bcþ�bc!adþ�bd!acÞ;

(A1b)

P11ð0Þab;cd¼1

3
�ab�cd; P12ð0Þab;cd¼ 1ffiffiffi

3
p �ab!cd; (A1c)

P21ð0Þab;cd¼ 1ffiffiffi
3

p !ab�cd; P22ð0Þab;cd¼!ab!cd: (A1d)

However, when one adds terms that spoil these symme-
tries, one must enlarge the basis in order to accommodate
the new operators that appear in the linearized Lagrangian.
Since we wish to keep the background vector arbitrary, we
define a complete basis of operators that splits the funda-
mental fields according to their individual degrees of free-
dom. This is more convenient because different choices for
the background vector may lead to different particle spe-
cies, once the symmetry group that survives from the
breaking of Lorentz-symmetry depends on the explicit
form of the background vector.
As a starting point to set up a suitable basis of degree-of-

freedom operators, we can decompose the Barnes-Rivers
operators in order to accommodate LVoperators, such as

Sab;cd ¼ 1

2
ð�acSbd þ �adSbc þ �bcSad þ �bdSacÞ; (A2)

where Sab ¼ �abcdv
c@d, which comes from the C-S and

R-C LV terms (in the linearized version of the theory).
A first hint to solving this task is to notice that the Sab;cd

operator ‘‘lives’’ entirely in the spin-2 sector. This is seen
from the fact that Sab;cd is annihilated by the spin-1 and

spin-0 operators, but remains unchanged by the spin-2
projection-operator, as shown in the following relations:

Pð2Þab;cdScd;ef ¼ Sab;ef (A3a)

Pð1Þab;cdScd;ef ¼ 0 (A3b)

Pijð0Þab;cdScd;ef ¼ 0; i; j ¼ 1; 2: (A3c)

With these remarks, we shall pursue the task of the
attainment of the basis of degree-of-freedom operators
for gravity models, but first it is necessary to classify the
building blocks.

1. Building blocks

In a context of LV, there is the need for redefining the
building blocks of the projection-operators. This can be
motivated by the decomposition of the Lorentz-breaking
vector, va, into a term proportional to the momentum and
an orthogonal component,
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va ¼ ðv � pÞ
p2

pa þ
ffiffiffiffiffiffi
p2�
p2

s
ea3 ; (A4)

where pa is the relativistic 4-momentum assumed to be
timelike and p2� ¼ ðv � pÞ2 � v2p2. Nevertheless, the
whole discussion can take place in the case of a lightlike
momentum, necessary for the analysis of the massless
poles (Sec. IVA).

The building blocks for the operators can be built up
from pa and three other orthonormal spacelike vectors.
Without loss of generality, we may choose one of them

as ea3 ¼
ffiffiffiffi
p2

p2�

r
½va � ðv�pÞ

p2 pa� and another two vectors, ea1 and
ea2 , orthogonal to each other and orthogonal to pa and ea3 .
We assume that p2� � 0, since p2� ¼ 0 implies that vakpa

and so the C-S and R-C terms necessarily vanish.
With these vectors, one may define the following

projection-operators:

!ab ¼ papb

p2
; (A5a)

�ab ¼ �ea1e
b
1 ; (A5b)

ab ¼ �ea2e
b
2 ; (A5c)


ab ¼ �ea3e
b
3

¼ � 1

p2�
½p2vavb � ðv � pÞðpavb þ vapbÞ

þ ðv � pÞ2!ab�: (A5d)

One should notice that the transverse operator, �ab, can be
related to these operators by

�ab 
 �ab �!ab ¼ �ab þ ab þ 
ab: (A6)

The operator for the LV Chern-Simons term, Sab ¼
i�abcdvcpd, may also be written in terms of the building
blocks. Using (A4) and (A6), one actually shows that

Sab ¼ i
ffiffiffiffiffiffi
p2�

q
ðea1eb2 � ea2e

b
1Þ: (A7)

With the basis (A5a)–(A5d) at hand, one could carry out
the task of getting the propagator of the Maxwell-Chern-
Simons LV theory, eventually with a massive term

L ¼ � 1

4
FabF

ab �M2

2
AaA

a þ 1

4
�abcdvaAbFcd: (A8)

This problem has been considered in [22,23] using differ-
ent approaches. Instead, let us move on to deeper waters
and tackle a related problem in gravity.

2. Degree-of-freedom operators for gravity models

The spin-2 sector operators result from the decomposition
of the operatorPð2Þab;cd ¼ 1

2 ð�ac�bd þ �ad�bcÞ � 1
3�ab�cd.

A more efficient method to decomposing this spin
projection-operator into orthogonal subcomponents
can be achieved by its decomposition in normalized

eigenvectors, c ðiÞ
ab:

Pð2Þab;cd ¼
X
i

c ðiÞ
abc

ðiÞ
cd (A9)

(for arbitrary spin, this decomposition must include a factor

coming from the parity P of the spin sector: PijðJÞ ¼
ð�1ÞPPic

ðiÞc ðiÞ), where

Pð2Þab;cdc ðiÞcd ¼ c ðiÞ
ab: (A10)

With these eigenvectors at hand, one can define the full set of
degree-of-freedom projectors and mapping operators:

Pij ¼ c ðiÞc ðjÞ: (A11)

A remark that has already been made in [39] is that the
projection operator basis is defined up to a rotation trans-
formation. In fact, a rotation of the eigenvector basis,

~c ðiÞ ¼ X
j

Uijc
ðjÞ; (A12)

with Uij orthogonal (UUT ¼ 1), redefines rotated projec-

tors

~P ij ¼ ~c ðiÞ ~c ðjÞ ¼ Uikc
ðkÞUjlc

ðlÞ ¼ UikPklU
T
lj: (A13)

However, the completeness relation may be used and,
therefore, the spin-projectors remain unaltered:

~P ¼ X
i

~c ðiÞ ~c ðiÞ ¼ X
i;k;l

UikUilc
ðkÞc ðlÞ ¼X

i

c ðiÞc ðiÞ ¼ P:

(A14)

A convenient choice of eigenvectors helpful in the com-
parison with the 3-dimensional analog theory is given
below:

c ð1Þ
ab ¼ 1ffiffiffi

2
p ðe1ae2b þ e2ae1bÞ; (A15a)

c ð2Þ
ab ¼ 1ffiffiffi

2
p ðe1ae3b þ e3ae1bÞ; (A15b)

c ð3Þ
ab ¼ 1ffiffiffi

2
p ðe2ae3b þ e3ae2bÞ; (A15c)

c ð4Þ
ab ¼ 1ffiffiffi

2
p ð�ab � abÞ; (A15d)

c ð5Þ
ab ¼ 1ffiffiffi

6
p ð�ab þ ab � 2
abÞ: (A15e)

With the eigenvectors (A15a)–(A15e), the degree-of-
freedom operators are built up by the relation (A11). The
projection-operators are then cast as
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P11ð2Þab;cd ¼ c ð1Þ
abc

ð1Þ
cd ¼ 1

2
ð�acbd þ �adbc þ ac�bd þ ad�bcÞ; (A16a)

P22ð2Þab;cd ¼ c ð2Þ
abc

ð2Þ
cd ¼ 1

2
ð�ac
bd þ �ad
bc þ 
ac�bd þ 
ad�bcÞ; (A16b)

P33ð2Þab;cd ¼ c ð3Þ
abc

ð3Þ
cd ¼ 1

2
ð
acbd þ 
adbc þ ac
bd þ ad
bcÞ; (A16c)

P44ð2Þab;cd ¼ c ð4Þ
abc

ð4Þ
cd ¼ 1

2
ð�ab�cd þ abcdÞ � 1

2
ð�abcd þ ab�cdÞ; (A16d)

P55ð2Þab;cd ¼ c ð5Þ
abc

ð5Þ
cd ¼ 1

6
½�ab�cd þ abcd þ 4
ab
cd þ �abcd þ ab�cd (A16e)

� 2ð�ab
cd þ 
ab�cdÞ � 2ðab
cd þ 
abcdÞ�: (A16f)

Accordingly, the mapping operators are given by
Pijð2Þab;cd ¼ c ðiÞ

abc
ðjÞ
cd (i � j). For example,

P14ð2Þab;cd ¼ c ð1Þ
abc

ð4Þ
cd ¼ 1

2
ðe1ae2b þ e2ae1bÞð�cd � cdÞ:

(A17)

However, the mapping operators may be expressed
in terms of �, va, �, and  so as to facilitate the
expansion of the wave operator in terms of the
degree-of-freedom operators (9). For P14ð2Þ, one can
show that

P14ð2Þab;cd ¼ 1

2
�efghð�acbf�de þ �bdaf�ce

� bd�aecf � ac�bedfÞ
vgphffiffiffiffiffiffi
p2�

p : (A18)

The other mapping operators can be expressed, if desired,
in an analogous manner.

As already remarked, the linearized model is invariant
under the gauge transformation (6). For this reason, the
spin-1 sector was fully suppressed from our discussion. In
spite of this, the spin-1 sector may be important for a
gravitational theory without gauge symmetry or with
more propagating fields. For completeness, we present in
this appendix the spin-1 sector degree-of-freedom opera-
tors. They are built up along the same lines as the spin-2
sector; the projectors are cast as

P11ð1Þab;cd¼1

2
ð�ac!bdþ�bc!adþ�ad!bcþ�bd!acÞ;

(A19a)

P22ð1Þab;cd¼1

2
ðac!bdþbc!adþad!bcþbd!acÞ;

(A19b)

P33ð1Þab;cd¼1

2
ð
ac!bdþ
bc!adþ
ad!bcþ
bd!acÞ:

(A19c)

APPENDIX B: AN ALTERNATIVE METHOD FOR
THE ATTAINMENT OF PROPAGATORS

In previous works, the derivation of the propagators for
gravity models with LV was also considered [35], but using
the algebraic method without decomposition into degree-
of-freedom operators. Therefore, it is worthwhile to verify
the consistency of our resulting propagators. This compari-
son can be made by noting that the C-S operator can be cast
in the following form:

Sab;cd ¼ i
ffiffiffiffiffiffi
p2�

q
½�2P14ð2Þab;cd þ 2P41ð2Þab;cd � P23ð2Þab;cd

þ P32ð2Þab;cd�:

Such a decomposition clears up a fact, not obvious at
first sight, that the operator Sab;cd is made up of two

reducible components:

ð
SÞab;cd¼1

2
ð
acSbdþ
adSbcþ
bcSadþ
bdSacÞ

¼�i
ffiffiffiffiffiffi
p2�

q
½P23ð2Þab;cd�P32ð2Þab;cd�; (B1)

ð�
SÞab;cd¼1

2
ðð�ac�
acÞSbdþð�ad�
adÞSbc

þð�bc�
bcÞSadþð�bd�
bdÞSacÞ
¼�2i

ffiffiffiffiffiffi
p2�

q
½P14ð2Þab;cd�P41ð2Þab;cd�: (B2)

One can also show that other two key operators, ð
SÞ2ab;cd
and ð�
SÞ2ab;cd, can be written either in terms of �, 
, and S

or Pijð2Þ, according to convenience:

ð
SÞ2ab;cd¼p2�
�
1

2
ð�ac
bdþ�ad
bcþ
ac�bdþ
ad�bcÞ

�ð
ac
bdþ
ad
bcÞ
�

¼p2�½P22ð2Þab;cdþP33ð2Þab;cd�; (B3)
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ð�
SÞ2ab;cd¼p2�½ð�ac�
acÞð�bd�
bdÞ
þð�ad�
adÞð�bc�
bcÞ��ðSacSbdþSadSbcÞ

¼4p2�½P11ð2Þab;cdþP44ð2Þab;cd�: (B4)

With the operators (B1)–(B4), one can show, by direct
inspection, that the following multiplication table is
fulfilled:

Restricting the discussion for the spin-2 sector, the
problem of calculating the propagator is reduced to the
problem of solving the linear problem

ðxPð2Þþy
Sþzð
SÞ2þu�
Sþvð�
SÞ2ÞðaPð2Þ
þbSð2ÞÞ
Pð2Þ; (B5)

for which the table above is very helpful. The general
solution is given by

x¼ 1

a
; y¼ b

b2p2��a2
; z¼�1

a

b2

b2p2��a2
;

u¼ b

4b2p2��a2
; v¼�1

a

b2

4b2p2��a2
:

(B6)

For the wave operator (8), we have a ¼ 1
2p

2ð�þ �p2Þ and
b ¼ 1

4 ð�p2 þ �p4Þ, so it can be verified that this coincides

with the result obtained with the orthogonal basis of
operators as done in Sec. III.
A first remark that must be made is that, without defining

an orthonormal basis of operators, there are some ambi-
guities for choosing the fundamental blocks that close the
algebra of operators, such as the one in Table I. In this way,
such a procedure to obtain the propagator may yield re-
dundant operators that harm the task of inverting the wave
operator. Another remark is that, even with the propagator
at hand, the use of a nonorthonormal basis also renders
difficult the physical interpretation of the propagating
modes, since, as discussed in the Sec. IV, the degree-of-
freedom basis of operators allows the splitting of the
propagator into independent sectors that result in a direct
identification of the spins of the propagating particles.

[1] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).
[2] C. Rovelli, Living Rev. Relativity 1, 1 (1998).
[3] P. Horava, Phys. Rev. D 79, 084008 (2009).
[4] V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683

(1989).
[5] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[6] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[7] S. Deser and P. van Nieuwenhuizen, Phys. Rev. D 10, 401

(1974).
[8] R. Jackiw and S.Y. Pi, Phys. Rev. D 68, 104012

(2003).
[9] S. Alexander and N. Yunes, Phys. Rep. 480, 1

(2009).
[10] A. F. Ferrari and A.Y. Petrov, arXiv:1008.1497.
[11] C. Furtado, J. R. Nascimento, A. Y. Petrov, and A. F.

Santos, arXiv:1005.1911.
[12] H. Ahmedov and A.N. Aliev, Phys. Lett. B 690, 196

(2010).
[13] U. Ertem, arXiv:0912.1433.
[14] M. Li, Y. F. Cai, X. Wang, and X. Zhang, Phys. Lett. B

680, 118 (2009).
[15] S. Alexander and N. Yunes, Phys. Rev. D 77, 124040

(2008).
[16] M.B. Cantcheff, Phys. Rev. D 78, 025002 (2008).
[17] S. Nojiri and S.D. Odintsov, Phys. Lett. B 691, 60

(2010).
[18] S. Nojiri and S.D. Odintsov, Phys. Rev. D 83, 023001

(2011).

[19] A. Ghodsi and E. Hatefi, Phys. Rev. D 81, 044016
(2010).

[20] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum,
R. F. Carswell, and M. B. Bainbridge, arXiv:1008.3907.

[21] V. A. Kostelecky and M. Mewes, Astrophys. J. 689, L1
(2008).

[22] A. P. Baeta Scarpelli, H. Belich, J. L. Boldo, and J. A.
Helayel-Neto, Phys. Rev. D 67, 085021 (2003).

[23] C. Adam and F. R. Klinkhamer, Nucl. Phys. B607, 247
(2001).

[24] C. A. Hernaski, B. Pereira-Dias, and A.A. Vargas-Paredes,
Phys. Lett. A 374, 3410 (2010).

[25] C. A. Hernaski, A. A. Vargas-Paredes, and J. A. Helayel-

Neto, Phys. Rev. D 80, 124012 (2009).
[26] J. A. Helayel-Neto, C. A. Hernaski, B. Pereira-Dias, A. A.

Vargas-Paredes, and V. J. Vasquez-Otoya, Phys. Rev. D 82,
064014 (2010).

[27] D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760
(1997).

[28] T. P. Sotiriou, M. Visser, and S. Weinfurtner, J. High
Energy Phys. 10 (2009) 033.

[29] S. Liberati and L. Maccione, Annu. Rev. Nucl. Part. Sci.
59, 245 (2009).

[30] S. Deser and R. Jackiw, Phys. Lett. B 451, 73
(1999).

[31] V. A. Kostelecky, Phys. Rev. D 69, 105009 (2004).
[32] R. J. Rivers, Nuovo Cimento 34, 386 (1964).
[33] D. E. Neville, Phys. Rev. D 18, 3535 (1978).

TABLE I. Multiplication table of spin-2 operators.

Pð2Þcd;ef ð
SÞcd;ef ð
SÞ2cd;ef ð�
SÞcd;ef ð�
SÞ2cd;ef
Pð2Þab;cd Pð2Þ 
S ð
SÞ2 �
S ð�
SÞ2
ð
SÞab;cd 
S ð
SÞ2 p2�ð
SÞ 0 0

ð
SÞ2ab;cd ð
SÞ2 p2�ð
SÞ p2�ð
SÞ2 0 0

ð�
SÞab;cd �
S 0 0 ð�
SÞ2 4p2�ð�
SÞ
ð�
SÞ2ab;cd ð�
SÞ2 0 0 4p2�ð�
SÞ 4p2�ð�
SÞ2

PROBING THE EFFECTS OF LORENTZ-SYMMETRY . . . PHYSICAL REVIEW D 83, 084011 (2011)

084011-11

http://dx.doi.org/10.1103/PhysRevLett.57.2244
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRevD.39.683
http://dx.doi.org/10.1103/PhysRevD.39.683
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1103/PhysRevD.10.401
http://dx.doi.org/10.1103/PhysRevD.10.401
http://dx.doi.org/10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1016/j.physrep.2009.07.002
http://dx.doi.org/10.1016/j.physrep.2009.07.002
http://arXiv.org/abs/1008.1497
http://arXiv.org/abs/1005.1911
http://dx.doi.org/10.1016/j.physletb.2010.05.021
http://dx.doi.org/10.1016/j.physletb.2010.05.021
http://arXiv.org/abs/0912.1433
http://dx.doi.org/10.1016/j.physletb.2009.08.053
http://dx.doi.org/10.1016/j.physletb.2009.08.053
http://dx.doi.org/10.1103/PhysRevD.77.124040
http://dx.doi.org/10.1103/PhysRevD.77.124040
http://dx.doi.org/10.1103/PhysRevD.78.025002
http://dx.doi.org/10.1016/j.physletb.2010.06.007
http://dx.doi.org/10.1016/j.physletb.2010.06.007
http://dx.doi.org/10.1103/PhysRevD.83.023001
http://dx.doi.org/10.1103/PhysRevD.83.023001
http://dx.doi.org/10.1103/PhysRevD.81.044016
http://dx.doi.org/10.1103/PhysRevD.81.044016
http://arXiv.org/abs/1008.3907
http://dx.doi.org/10.1086/595815
http://dx.doi.org/10.1086/595815
http://dx.doi.org/10.1103/PhysRevD.67.085021
http://dx.doi.org/10.1016/S0550-3213(01)00161-4
http://dx.doi.org/10.1016/S0550-3213(01)00161-4
http://dx.doi.org/10.1016/j.physleta.2010.06.048
http://dx.doi.org/10.1103/PhysRevD.80.124012
http://dx.doi.org/10.1103/PhysRevD.82.064014
http://dx.doi.org/10.1103/PhysRevD.82.064014
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1088/1126-6708/2009/10/033
http://dx.doi.org/10.1088/1126-6708/2009/10/033
http://dx.doi.org/10.1146/annurev.nucl.010909.083640
http://dx.doi.org/10.1146/annurev.nucl.010909.083640
http://dx.doi.org/10.1016/S0370-2693(99)00216-6
http://dx.doi.org/10.1016/S0370-2693(99)00216-6
http://dx.doi.org/10.1103/PhysRevD.69.105009
http://dx.doi.org/10.1007/BF02734585
http://dx.doi.org/10.1103/PhysRevD.18.3535


[34] O.W. Greenberg, Phys. Rev. Lett. 89, 231602
(2002).

[35] J. L. Boldo, J. A. Helayel-Neto, L.M. de Moraes, C.A. G.
Sasaki, and V. J. Vasquez Otoya, Phys. Lett. B 689, 112
(2010).

[36] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982); 185, 406(E) (1988); 281, 409
(2000).

[37] H. Belich, J. L. Boldo, L. P. Colatto, J. A. Helayel-Neto,
and A. L.M. Nogueira, Phys. Rev. D 68, 065030
(2003).

[38] A. P. Baeta Scarpelli, H. Belich, J. L. Boldo, L. P. Colatto,
J. A. Helayel-Neto, and A. L.M. Nogueira, Nucl. Phys. B,
Proc. Suppl. 127, 105 (2004).

[39] E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21,
3269 (1980).
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