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We introduce a method for conducting a targeted, coherent search for compact binary coalescences.

The search is tailored to be used as a follow-up to electromagnetic transients such as gamma-ray bursts.

We derive the coherent search statistic for Gaussian detector noise and discuss the benefits of a coherent,

multidetector search over coincidence methods. To mitigate the effects of nonstationary data, we

introduce a number of signal consistency tests, including the null signal-to-noise ratio, amplitude

consistency, and several �2 tests. We demonstrate the search performance on Gaussian noise and on

data from LIGO’s fourth science run and verify that the signal consistency tests are capable of removing

the majority of noise transients, giving the search an efficiency comparable to that achieved in Gaussian

noise.
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I. INTRODUCTION

There has been excellent progress toward gravitational-
wave astronomy over recent years. The first generation
of large scale gravitational-wave interferometers reached
unprecedented sensitivities and have undertaken extended
science runs. The U.S. Laser Interferometer Gravitational-
wave Observatory (LIGO) [1], the French-Italian Virgo
[2], and the German-British GEO600 [3] detectors now
form a collaborative network of interferometers. The data
from these detectors have been analyzed for gravitational
waves from compact binary coalescence [4], stochastic
background [5], unmodeled burst [6], and pulsar [7]
sources. LIGO’s sixth science run (S6) and Virgo’s second
and third science runs (VSR2 and VSR3) ended in October
2010 and yielded the most sensitive data yet taken; the
analysis of this data is ongoing. In the meantime, the
detectors are being upgraded to their advanced configura-
tions [8–10], with the expectation of a ten-fold improve-
ment in sensitivity. With these sensitivities, it is expected
that gravitational waves will be observed regularly [11].
Furthermore, with a proposed advanced detector in
Japan [12], a possible detector in Australia [13], and
third-generation detectors on the horizon [14], future pros-
pects are promising.

As the gravitational-wave community matures it is es-
sential that a relationship is built between gravitational-
wave (GW) and electromagnetic (EM) astronomers. The
GW emission from a source is likely to provide comple-
mentary information to emission in various EM bands, and
a joint observation is significantly more likely to answer
outstanding astrophysical questions. Already this relation-
ship is beginning to mature. A number of EM transients
have already been followed up in GW data [15–17].

Additionally, infrastructure is also being put in place to
allow for EM follow-up of GW observations [18].
Compact binary coalescences (CBC) are one of the

most promising sources of gravitational waves, and also
an ideal candidate for joint GW-EM astronomy. During
the late stages of inspiral and merger, a compact binary
emits a distinctive, chirping gravitational-wave signal.
Furthermore, CBCs containing at least one neutron
star (NS) are expected to emit electromagnetically.
Specifically, binary neutron stars (BNS) and neutron star-
black hole binaries (NSBH) mergers are the preferred
progenitor model for the short gamma-ray burst (GRB)
[19,20]. It is also possible that these mergers will be
observable electromagnetically as orphan afterglows [19],
optical [21] or radio transients [22]. Since GRBs are well
localized both in time and on the sky by EM observations,
the corresponding GW search can be simplified by reduc-
ing the volume of parameter space relative to an all-sky,
all-time search. Targeted searches for CBC waveforms
associated to short GRBs were performed using data
from LIGO’s fifth science run (S5) and Virgo’s first science
run (VSR1) [15,16].
Coherent search methods have been introduced by

numerous authors [23–25]. In coherent searches, data
from all operational detectors are combined in a coherent
manner before searching for a signal. Additionally, coher-
ent analyses naturally impose the restriction that gravita-
tional waves have only two independent polarizations.
However, primarily for computational reasons, many
searches have instead made use of a coincidence require-
ment—namely that a signal with consistent parameters
is observed in two or more detectors in the network.
Indeed, all previous LIGO and Virgo CBC search result
papers have used a coincidence search [15,16].
Coincidence searches can approach the sensitivity of a
fully coherent analysis, but will generally not achieve the
same sensitivity.
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In this paper, we introduce a targeted coherent analysis
for CBC signals, appropriate for searching for GW from
EM transients such as GRBs. We begin by deriving the
coherent analysis for a templated CBC search. This has
been presented in the literature previously [23]. We present
an alternative derivation based on the F -statistic formal-
ism [26] introduced for continuous-wave analyses and now
widely used. This allows for a more straightforward deri-
vation of the coherent detection statistic. It also allows for a
simple comparison to the coincident search and a straight-
forward derivation of the null stream [27] which by defi-
nition contains no gravitational-wave signal.

The data output by gravitational-wave interferometers
are neither stationary nor Gaussian, but are contaminated
by noise transients of instrumental and environmental ori-
gin. This makes the task of analyzing the data a complex
one, and matched filtering alone is not sufficient to distin-
guish signal from noise—the most significant events by
signal-to-noise ratio (SNR) would typically be due to non-
Gaussian transients or ‘‘glitches’’ in the data. A significant
effort goes into understanding the cause of these glitches
[28] and removing times of poor data quality from the
analysis. While these efforts greatly reduce the number
of glitches they cannot remove them entirely. Therefore the
analysis must also employ methods to distinguish signal
from noise transients. In previous CBC searches, signal
consistency tests [29,30] have proved very effective at
removing the non-Gaussian background. We provide an
overview of the formalism for these �2 consistency tests,
and then extend these tests to the coherent analysis intro-
duced earlier. We demonstrate that these tests continue to
be effective in separating signal from nonstationary noise
in the coherent analysis. In addition, coherent analyses
naturally lend themselves to multidetector consistency
tests, such as the null stream. We describe a number of
consistency tests for the coherent CBC search and again
demonstrate their efficacy.

This paper presents the first implementation of a mod-
eled coherent detection search for CBC signals, which has
been run on real LIGO data. We present results from
running this analysis on both simulated data and real data
from Gaussian data and real detector data taken from
LIGO’s fourth science run (S4). We are able to show that
the signal consistency tests we have implemented are
sufficient to remove the majority of non-Gaussian tran-
sients and render the search almost as sensitive as if the
data were Gaussian and stationary. This search is available
to be used to search for CBCs associated to GRBs in S6 and
VSR2 and VSR3.

The layout of this paper is as follows. In Sec. II, we
describe the formulation of a targeted coherent triggered
search for CBC signals. In Sec. III we discuss an imple-
mentation of the null stream formalism and other multi-
detector consistency tests. In Sec. IV we describe a number
of �2 tests that can be applied in a coherent search to try to

separate and veto glitches. Finally, in Sec. V we outline an
implementation of a targeted, coherent search for CBC and
present results on both simulated and real data.

II. COHERENT MATCHED FILTERING

In this section, we describe the coherent matched-
filtering search for a gravitational-wave signal from a
coalescing binary in data from a network of detectors.
We restrict attention to binaries where the com-
ponent spin can be neglected. The description is primarily
tailored toward searches where the sky location of the
gravitational-wave event is known a priori, as is appropri-
ate when performing a follow-up of an EM transient such
as a GRB [16,19]. Finally, since all previously published
CBC search results [4,31,32] have used a coincidence
search between detectors, we compare the coherent analy-
sis with the multidetector coincident analysis.
The coherent analysis for coalescing binary systems

has been derived previously using a similar method in
[23,33–35]. Our presentation makes use of the F -statistic
formalism, introduced in [26]. This was originally defined
as a method for performing searches for continuous-wave
searches and has been regularly used for this task (see for
example [36]). It was noted in [37] that the F -statistic and
the multiple detector inspiral statistic derived in [33] are
similar and the F -statistic was adapted to searches for
CBC signals in [38].

A. The binary coalescence waveform

The generic binary coalescence waveform depends upon
as many as 17 parameters. However, we restrict attention to
binaries on circular orbits with nonspinning components.
This reduces the parameter space to nine dimensions: the
two component massesM1 andM2; the sky location of the
signal ð�;�Þ; the distance,D, to the signal; the coalescence
time of the signal, to; the orientation of the binary, given by
the inclination �, the polarization angle c and the coales-
cence phase �o. We also assume that the sky location
ð�;�Þ of the signal is known, thereby reducing the number
of unknown parameters to seven.
In the radiation frame, where the gravitational wave

propagates in the eRz -direction, the gravitational waveform
is given by

h ¼ hþeþ þ h�e�; (2.1)

where

eþ ¼ eRx � eRx � eRy � eRy ; e� ¼ eRx � eRy þ eRy � eRx ;

(2.2)

and the waveforms hþ;� depend upon seven parameters

ðM1;M2; to; D; �; c ; �oÞ. The three angles ð�; c ; �oÞ give
the relationship between the radiation frame and the source
frame (in which eSz lies in the direction of the binary’s
angular momentum and eSx along the separation between
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the binary components at to). Even for a known sky loca-
tion, it is necessary to search a seven-dimensional parame-
ter space of signals. Naively covering this space with a grid
of templates would be prohibitively costly [39]. However,
the analysis is greatly simplified by the observation that the
last four parameters enter only as amplitude parameters
which can be analytically maximized over at minimal
cost.1 Specifically, the two polarizations of the waveform
can be expressed as

hþðtÞ ¼ A1h0ðtÞ þA3h�=2ðtÞ
h�ðtÞ ¼ A2h0ðtÞ þA4h�=2ðtÞ:

(2.3)

The two phases of the waveform are written as h0 and h�=2.
These depend upon the physical parameters of the system
(in this case just the masses) as well as the coalescence
time to.

2 A� are constant amplitude terms and are given
explicitly as [35,38]

A1 ¼ Aþ cos2�o cos2c � A� sin2�o sin2c

A2 ¼ Aþ cos2�o sin2c þ A� sin2�o cos2c

A3 ¼ �Aþ sin2�o cos2c � A� cos2�o sin2c

A4 ¼ �Aþ sin2�o sin2c þ A� cos2�o cos2c ;

(2.4)

where

Aþ ¼ Do

D

ð1þ cos2�Þ
2

A� ¼ Do

D
cos�; (2.5)

and Do is a fiducial distance which is used to scale the
amplitudes A� and waveforms h0;�=2. Thus, the ampli-

tudes A� depend upon the distance to the source and the
binary orientation as encoded in the three angles ð�; c ; �0Þ.
For any set of values A�, the expressions (2.4) can be
inverted to obtain the physical parameters, unique up to
reflection symmetry of the system [38].

The gravitational waveform observed in a detector X is

hX ¼ hijDX
ij; (2.6)

where DX
ij denotes the detector response tensor. For an

interferometric detector, in the long wavelength limit, the
response tensor is given by

D X ¼ ðeXx � eXx � eXy � eXy Þ; (2.7)

where the basis vectors eXx and eXy point in the directions

of the arms of the detector. It is often convenient to reex-
press the gravitational-wave signal observed in a given
detector as

hXðtÞ¼Fþð�X;�X;�XÞhþðtÞþF�ð�X;�X;�XÞh�ðtÞ; (2.8)
where the detector response to the two polarizations of the
gravitational wave is encoded in the functions

Fþð�;�; �Þ ¼ � 1

2
ð1þ cos2�Þ cos2� cos2�

� cos� sin2� sin2�; (2.9)

F�ð�;�; �Þ ¼ 1

2
ð1þ cos2�Þ cos2� sin2�

� cos� sin2� cos2�: (2.10)

These response functions depend upon the three angles
ð�X;�X; �XÞ which relate the detector frame to the radia-
tion frame: �X and �X give the sky location relative to the
detector, while �X is the polarization angle between the
detector and the radiation frames. We have, somewhat
unconventionally, allowed for a polarization angle in trans-
forming from source to radiation and radiation to detector
coordinates. In what follows, we will often find it conve-
nient to fix the angle �X by explicitly tying it to the detector
(or equatorial) frame; for example, by maximizing the
detector (or network) sensitivity to the þ polarization.
The angle c then describes the orientation of the source
with respect to this preferred radiation frame.
Since we are considering CBC observed in ground-

based detectors, the time that a potential signal would
spend in the sensitivity band of any detector will be short
(less than 60 s for the initial detectors). Thus the change in
the source’s sky location over the observation time may be
neglected, and the angles ð�X;�X; �XÞ can be treated as
constants. When working with a network of detectors,
it is often useful to work in the equatorial frame. The
location of the source ð�;�; �Þ is measured relative to
this frame, and coalescence time is measured at the
Earth’s center. In this case, the location and orientation
of the detector X are specified by three angles, which we
denote ~�X, and the detector response will depend upon six
angles ð ~�X; �;�; �Þ. Then, the observed signal in a given
detector is3

hXðtÞ ¼ Fþð ~�X; �;�; �ÞhþðtXÞ þ F�ð ~�X; �;�; �Þh�ðtXÞ;
(2.11)

where tX is the time of arrival of the signal at detector X,

tX ¼ t� dtð ~�X; �;�; �Þ; (2.12)

and dt gives the difference in arrival time of the signal
between the geocenter and detector, for the given sky
position.

1This was observed for the inspiral signal in [33] and inde-
pendently for continuous-wave signals in [26].

2This decomposition is actually valid for all binaries in which
the plane of the orbit does not precess. Thus, binary coalescence
waveforms in which the spins are aligned with the orbital
angular momentum can also be expressed in this form.
However, for generic spin configurations, the orbit will precess
and this simple decomposition is no longer applicable

3We do not give the explicit formula for the response function
dependent on the six angles ð ~�X; �;�; �Þ, as the expression is
somewhat lengthy. It can be obtained by performing six succes-
sive rotations to the detector response tensor to transform from
the detector frame, via the equatorial frame, to the radiation
frame. The calculation is detailed in [40].
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Combining the final expressions for the binary coales-
cence waveform (2.3) and the detector response (2.11), we
can express the gravitational waveform observed in a given
detector as

hXðtÞ ¼ A�ðD; c ; �o; �ÞhX�ðtÞ; (2.13)

where the A� are defined in (2.4), hX� are given by

hX1 ðtÞ ¼ FXþh0ðtXÞ hX2 ðtÞ ¼ FX�h0ðtXÞ
hX3 ðtÞ ¼ FXþh�=2ðtXÞ hX4 ðtÞ ¼ FX�h�=2ðtXÞ;

(2.14)

and we use the standard summation convention over the
repeated index �.

B. Multidetector binary coalescence search

Matched-filtering theory [41] provides a method for
determining whether the signal hðt; �Þ, parametrized by
the time and other parameters �, is present in a noisy
data stream. The data output by a detector are

sXðtÞ ¼ nXðtÞ þ hXðt; �Þ; (2.15)

where nXðtÞ is the noise, taken to be Gaussian and sta-
tionary. The noise nXðtÞ of the detectors is characterized by
the noise power spectral density (PSD) SXh ðfÞ as

h~nXðfÞ½~nXðf0Þ�?i ¼ 	ðf� f0ÞSXh ðfÞ: (2.16)

With this, we define the single detector inner product
between two time series aðtÞ and bðtÞ as

ðaXjbXÞ ¼ 4Re
Z 1

0

~aXðfÞ½~bXðfÞ�?
SXh ðfÞ

: (2.17)

Then, the likelihood ratio of there being a signal h present
in the data is given by

�ðhÞ ¼ PðsjhÞ
Pðsj0Þ ¼

e�ðsX�hX jsX�hXÞ=2

e�ðsX jsXÞ=2 : (2.18)

For a known signal h, with no unknown parameters, in
Gaussian noise, the likelihood ratio is optimal in the
Neyman-Pearson sense. However, this statistic is not opti-
mal in the presence of non-Gaussian noise, as is discussed
in greater detail in Secs. III and IV. It is often more
convenient to work with the log-likelihood,

log� ¼ ðsjhÞ � 1

2
ðhjhÞ; (2.19)

and we will do so.
The likelihood ratio for multiple detectors is a straight-

forward generalization of the single detector expression
(2.18). Assuming that the noise in different detectors is
independent, in the sense that

h~nXðfÞ½~nYðf0�?Þi ¼ 	XY	ðf� f0ÞSXh ðfÞ; (2.20)

the multidetector inner product is simply given by the sum
of the single detector contributions4

ðajbÞ :¼ X
X

ðaXjbXÞ: (2.21)

The multidetector log-likelihood is given by

ln� ¼ ðsjhÞ � 1

2
ðhjhÞ: (2.22)

Specializing to the case of binary coalescence, we can
substitute the known waveform parametrization (2.13)
into the general matched filter likelihood ratio (2.22).
The multidetector likelihood ratio becomes

ln� ¼
�
A�ðsjh�Þ � 1

2
A�M�
A


�
; (2.23)

where the matrix M�
 is defined as

M �
 :¼ ðh�jh
Þ: (2.24)

The derivative of (2.23) with respect to A� provides the
values of A� which maximize the likelihood ratio as

Â � ¼ ½M�
ðsjh
Þ�; (2.25)

where, following [42], we take M�
 to be the inverse of
M�
. We then define the maximized ‘‘coherent SNR’’ via

the maximum likelihood ratio as

�2
coh

:¼ 2 ln�jmax ¼ ½ðsjh�ÞM�
ðsjh
Þ�: (2.26)

An identical maximization is performed in the deriva-
tion of the F -statistic, used in searches for gravitational
waves from asymmetric neutron stars [26]. In that context,
the quantity obtained in (2.26) is typically denoted 2F .
However, to make a closer connection to previous CBC
search methods, we denote this quantity �2

coh.

It is not difficult to show that �2
coh follows a �2 distri-

bution with 4 degrees of freedom in the absence of a signal,
and a noncentral �2 distribution (again with 4 degrees of
freedom) when a signal is present. See, for example, [42]
for more details. Furthermore, �2

coh is now a function of

only the waveform components h� and no longer the A�

parameters. Thus four of the original seven waveform
parameters have been analytically maximized, leaving
three to be searched over.
Calculating the maximized likelihood ratio, as well as

estimating the parameters Â�
requires an inversion of the

matrix M�
. CBC signals will spend a large number of

cycles in the sensitive band of the detector and conse-
quently the 0 and �

2 phases will be (close to) orthogonal.

Since the frequency evolves slowly, the amplitudes of the
two phases will be close to equal,5 i.e.,

4Note that we will explicitly write out the summation over
detectors X, and do not use implicit summation over these
indices.

5Indeed, several CBC waveforms are generated directly in the
frequency domain [43], making these equalities exact.
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ðhX0 jhX�=2Þ�0 ðhX�=2jhX�=2Þ� ðhX0 jhX0 Þ¼: ð�XÞ2: (2.27)

Therefore, the matrix M simplifies to

M �
 ¼
A C 0 0
C B 0 0
0 0 A C
0 0 C B

0
BBB@

1
CCCA; (2.28)

where

A ¼ X
X

ð�XFXþÞ2

B ¼ X
X

ð�XFX�Þ2

C ¼ X
X

ð�XFXþÞð�XFX�Þ:

(2.29)

1. Dominant polarization

Since we have included a polarization angle in both the
transformation between equatorial and radiation frame (�)
and between radiation and source frame (c ), we have the
freedom to specify one of these without placing any physi-
cal restriction on the signal. The coherent SNR is further
simplified by introducing a dominant polarization (DP)
frame which renders M�
 diagonal.

Under a rotation of the radiation frame by an angle �DP,
the detector response functions transform as

FXþ ! FDP;X
þ ¼ FXþ cos2�DP þ FX� sin2�DP

FX� ! FDP;X
� ¼ �FXþ sin2�DP þ FX� cos2�DP:

(2.30)

The rotation through �DP will have an identical effect on
all detectors. Thus, there exists a polarization angle �DP

which satisfies

CDP ¼ X
X

ð�XFDP;X
þ Þð�XFDP;X

� Þ ¼ 0: (2.31)

This can be solved to give �DP as

tan4�DP ¼ 2
P

Xð�XFXþÞð�XFX�ÞP
X½ð�XFXþÞ2 � ð�XFX�Þ2�

: (2.32)

This choice serves to diagonalize the matrix M. To
uniquely determine �DP, we impose an additional require-
ment that the network be more sensitive to the þ polariza-
tion than to the � polarization. The value of �DP is a
function of the detector network, the source location and
waveform; in particular, it depends upon FXþ;� and �X.

From now on, we assume that we are working in the
dominant polarization frame and drop the DP superscript
from our expressions.

The concept of the dominant polarization frame has
been introduced previously in unmodeled burst searches
[25,44,45]. While the idea is very similar, the actual im-
plementation is somewhat different.

In the case that both A and B are nonzero, i.e., that
the detector has some sensitivity to both polarizations,
the coherent SNR can be written, in the dominant polar-
ization, as

�2
coh ¼

ðsjFþh0Þ2 þ ðsjFþh�=2Þ2
ðFþh0jFþh0Þ

þ ðsjF�h0Þ2 þ ðsjF�h�=2Þ2
ðF�h0jF�h0Þ : (2.33)

The coherent SNR can then be seen to arise as the
quadrature sum of the power in the two phases of the
waveform (0 and �

2 ) in the two gravitational-wave polar-

izations (þ and �).

2. Synthetic þ and � detectors

In the dominant polarization the coherent SNR is com-
prised of separate þ and � components, with no cross
terms. We can go one step further and interpret the coher-
ent SNR as arising from two synthetic detectors, one
sensitive to only the þ polarization and one sensitive
to only the � polarization. These synthetic detectors are
most easily formed by combining the ‘‘over-whitened’’
data streams oX from the various detectors, where

oXðfÞ ¼ sXðfÞ
SXh ðfÞ

: (2.34)

The over-whitened synthetic data streams are simply

oþ;�ðfÞ ¼
X
X

FXþ;�oXðfÞ; (2.35)

and the power spectra for these over-whitened data
streams are

Sþ;� ¼
�X

X

ðFXþ;�Þ2
SXh ðfÞ

��1
: (2.36)

Using this, the unwhitened synthetic data streams are
given as6

sþ;�ðfÞ ¼
X
X

FXþ;�sXðfÞ
SXh ðfÞ

�X
Y

ðFYþ;�Þ2
SYh ðfÞ

��1
: (2.37)

In terms of these synthetic detectors the detection statistic
becomes

�2
coh ¼

ðsþjh0Þ2þ þ ðsþjh�=2Þ2þ
ðh0jh0Þþ

þ ðs�jh0Þ2� þ ðs�jh�=2Þ2�
ðh0jh0Þ� ; (2.38)

6There is some ambiguity in fixing the overall normalization
of the synthetic detectors. We require that our synthetic detectors
have the same sensitivity to the two polarizations as the original
network did by requiring ðhþ;�

0 jhþ;�
0 Þþ;� ¼ P

XðFXþ;��XÞ2.
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where the subscriptsþ,� on the inner products denote the
fact that the power spectrum of the synthetic detectors is
used in their evaluation.

3. Network degeneracy

In many cases, a detector network is much more sensi-
tive to one gravitational-wave polarization than the other.
In the extreme limit (e.g., colocated and coaligned detec-
tors such as those at the Hanford site) the network is
entirely insensitive to the second polarization. In the domi-
nant polarization frame, the network becomes degenerate
as B ! 0 or equivalentlyX

X

ð�XFX�Þ2 ! 0: (2.39)

Thus the network will only be degenerate if FX� ¼ 0 for all
detectors X. If the network is degenerate then it is easy to
see that the detection statistic will be degenerate as well. In
this case it is logical to remove the � terms from the
detection statistic reducing it to

�2
coh ¼

ðsjFþh0Þ2 þ ðsjFþh�=2Þ2
ðFþh0jFþh0Þ ; (2.40)

which is �2 distributed with 2 degrees of freedom.
In this formalism the coherent SNR changes abruptly

from (2.40) to (2.33). If there is any sensitivity, no matter
how small, to the� polarization, there is an entirely differ-
ent detection statistic. This arises due to maximization
over theA� parameters, allowing them to take any value.
Thus, even though a network may have very little sensi-
tivity to the� polarization, and consequently there be little
chance of observing the waveform in the � polarization,
this is not taken into account in the derivation. A possible
modification is to place an astrophysical prior on the
parameters ðD; �; c ; �0Þ and propagate this to the
distribution of the A� [46]. This would provide a
smooth transition from the degenerate to nondegenerate
search.

C. Comparison with coincident search

The single detector search is a special case of the degen-
erate network (2.40) and can be written as

�2
X ¼ ðsXjh0Þ2 þ ðsXjh�=2Þ2

ð�XÞ2 : (2.41)

A coincidence search requires a signal to be observed in
two or more detectors, without requiring consistency of
the measured waveform amplitudes in the different detec-
tors. In many cases, coincidence searches have made use of
different template banks in the different detectors [4,16,31]
and required coincidence between the recovered mass
parameters [47]. A comparison with the coherent analysis
discussed above is facilitated if we consider a coincident
search where an identical template is used in all detectors,

as was done in an analysis of early LIGO data [48]. In this
case, the multidetector coincident SNR is given by

�2
coinc ¼

X
X

�2
X ¼ X

X

ðsXjh0Þ2 þ ðsXjh�=2Þ2
ð�XÞ2 : (2.42)

This is not immediately comparable to the coherent SNR
given in (2.33). However, both can be recast into similar
forms by writing the coincident SNR as

�2
coinc ¼

X
X;Y

X
i¼0;�=2

�
sX
��������
hi
�X

�
½	XY�

�
sY
��������
hi
�Y

�
; (2.43)

and the coherent SNR can be written as

�2
coh ¼

X
X;Y

X
i¼0;�=2

�
sX
��������
hi
�X

�
½fXþfYþ þ fX�fY��

�
sY
��������
hi
�Y

�
;

(2.44)

where we have defined the orthogonal unit vectors (in
detector space) fXþ, fX� as

fXþ;� ¼ �XFXþ;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Yð�YFYþ;�Þ2

q : (2.45)

The SNR of the coincident search (2.43) is simply the
sum of all power consistent with the template waveform in
each detector. The coherent SNR (2.44) makes use of the
fact that gravitational waves have only two polarizations to
restrict the accumulated SNR to the physical subspace
spanned by fþ and f�. For a signal, the power will lie
entirely in this subspace, while noise in the detectors will
contribute to all components of the coincident SNR. Thus,
the coherent analysis obtains precisely the same contribu-
tion to SNR from the gravitational wave signal, but has
a reduced noise background. Specifically, the coherent
SNR acquires contributions from four noise degrees of
freedom, while the coincident SNR has 2N noise degrees
of freedom, where N indicates the number of active detec-
tors. For a nondegenerate two-detector network, the coin-
cident and coherent SNRs are equal as in this case
fXþfYþ þ fX�fY� ¼ 	XY .
In the case where a network is sensitive to only one

polarization, the coherent SNR is constructed solely from
the fXþ direction and coherent SNR is �2 distributed with
2 degrees of freedom.
Finally, we note that restricting to the coherent SNR can

help to separate transients from gravitational-wave signals
as those transients which do not contribute power to the
signal space will be ignored. However, many noise tran-
sients will contribute to the coherent SNR and more active
methods of removing them are required. These methods
are the focus of Secs. III and IV.

III. SIGNAL CONSISTENCY
BETWEEN DETECTORS

As discussed in the introduction, due to the presence of
non-Gaussian noise transients, it is essential to make use of
signal consistency requirements within search algorithms
to distinguish glitches from gravitational-wave signals.
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Multidetector analyses have made good use of signal
consistency between detectors (see e.g. [25]). A particu-
larly powerful test is the use of a ‘‘null stream’’ [27] which,
by construction, contains no gravitational-wave signal.
Many noise transients will contribute power to the null
stream and can therefore be eliminated as candidate events.
In addition, requiring that the gravitational-wave signal is
recovered consistently between detectors can eliminate
other noise transients; in our case this is equivalent to
imposing restrictions on the recovered values of the pa-

rameters Â�
. These two methods will be considered in

turn. For matched-filtering searches, requiring consistency
between the observed signal and template waveform has
also proven very powerful [29]. A full description of
waveform consistency tests is presented in the next section.

A. Null stream consistency

The gravitational waveform consists of two polariza-
tions. Thus for networks comprising three or more detec-
tors it is possible to construct one or more null data streams
which contain no gravitational-wave signal [27]. In the
context of a coherent search for CBC signals, the null
consistency tests arise quite naturally. In Sec. II C, we
noted that the coherent SNR can be thought of as a
projection of the coincident multidetector SNR onto a
four-dimensional signal subspace. The remaining dimen-
sions in the coincident search do not contain any
gravitational-wave signal, but will be subject to both
Gaussian and non-Gaussian noise. Thus, we can define
the null SNR as

�2
N ¼ �2

coinc � �2
coh ¼

X
X;Y

X
i¼0;�=2

�
sX
��������
hi
�X

�
½NXY�

�
sY
��������
hi
�Y

�
;

(3.1)

where

NXY ¼ 	XY � fXþfYþ � fX�fY�: (3.2)

A gravitational-wave signal matching the template h
will provide no contribution to the null SNR, so we expect
that, for signals, this statistic will be �2 distributed with
(2N � 4) degrees of freedom. A noise transient that is
incoherent across the data streams may give a large
coherent SNR, but it is likely to also give a large null
SNR. Thus requiring a small null SNR will prove effective
at distinguishing incoherent noise transients from real
gravitational-wave signals. Since the definition of the
null SNR (3.1) makes use of the template waveform,
gravitational waveforms which do not match the template
h can contribute to the null SNR.

We can go one step further and introduce synthetic null
detectors in analogy with the syntheticþ and� detectors.
For concreteness, we describe the three-detector case, but
this can be extended in a straightforward manner to larger
networks. When working with a three-detector network,
there is a single null direction

nX ¼ X
Y;Z


XYZf
YþfZ�; (3.3)

where 
XYZ denotes the Levi-Cevita symbol, and the
projection onto the null space is given by NXY ¼ nXnY .
Then, the over-whitened synthetic null detector is

oNðfÞ ¼
X
X

nX

�X o
XðfÞ: (3.4)

The power spectrum of the null stream is7

SNðfÞ ¼
�X

X

ðnXÞ2
ð�XÞ2SXh ðfÞ

��1
(3.5)

and the unwhitened null stream is

sNðfÞ ¼
�X

X

nXsXðfÞ
�XSXh ðfÞ

�
� SNðfÞ: (3.6)

Finally, the null SNR can be written as

�2
N ¼ ðsNjh0Þ2N þ ðsNjh�=2Þ2N

ðh0jh0ÞN : (3.7)

The null SNR described above differs from the multi-
detector null stream formalism introduced in [27] and used
by several other authors. A null stream is constructed to be
a data stream which contains no contribution from the hþ
and h� gravitational waveforms, regardless of the details
of the waveform. To provide a concrete comparison be-
tween the null stream and null SNR, we again restrict
attention to a three detector network. The null stream is
explicitly constructed as

sNullðfÞ ¼
X
X;Y;Z


XYZF
XþFY�sZðfÞ: (3.8)

By comparing the null stream in (3.8) with the synthetic
null detector (3.6), it is clear that these will generically
differ. To get an insight into the differences, consider
a network with two colocated detectors A and B, with
power spectra SAh ðfÞ and SBh ðfÞ, respectively, and a third

detector C which is sensitive to the other polarization of
gravitational waves. For this network, the null stream will
be a combination of only the A and B detector data. The
power spectrum of the null stream is

SNullðfÞ ¼ SAðfÞ þ SBðfÞ; (3.9)

while for the synthetic null detector it is

1

SNðfÞ ¼ 1

ð�AÞ2SAðfÞ þ
1

ð�BÞ2SBðfÞ : (3.10)

7In this case, there is a normalization ambiguity. For the
synthetic plus and cross streams, it was natural to require that
the synthetic detectors have the same sensitivities as the original
network. For the null stream this is not feasible as the network
has zero sensitivity to a signal in the null stream, so we
normalize such that ðh0jh0ÞN ¼ 1.
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Thus, if the power spectra of detectors A and B are
identical, then the two null streams are also identical. In
the extreme case that the sensitivity bands of the two detec-
tors do not overlap at all, then there is no null stream
(SNull ! 1). However, the null SNR need not vanish and
is similar to a two-bin version of the �2 test described in
Sec. IVD. Thus, it is possible to construct scenarios inwhich
these two null stream formulations differ significantly.

For the most part, the power spectra of the ground-based
detectors are rather comparable. So, in general there will
not be a significant difference between these two forms.
There are advantages to both methods. The null stream is
designed to cancel all gravitational-wave signals from the
data, thus making it more robust when the signal is not well
known. However, by making use of the template signal,
there are instances in which the null SNR provides a more
powerful consistency test. Furthermore, it has a computa-
tional benefit in that it does not require the production of
a null stream—all manipulations are performed on the
single-detector SNR data streams which are subsequently
separated into coherent and null components. In practice
we have found very little difference in performance, and
choose to compute the null SNR (3.1) for computational
simplicity.

Finally, we note that both null stream formalisms will
perform optimally only if the three detectors have similar
sensitivities. In the case where one detector is significantly
less sensitive than the others, the null stream will generally
tend to the data of that least sensitive detector. Also, the
null formalisms described here will only completely cancel
a gravitational-wave signal provided that the calibration
of the data streams is accurate; any error in calibration will
lead to a signal surviving in the null stream.

B. Amplitude consistency

The four amplitude parameters A�, encoding the dis-
tance to and orientation of the binary system, can take
any values. Indeed, any set of A� corresponds to unique
values of the distance, inclination angle, coalescence
phase, and polarization angle, up to symmetries of the
system. However, some of these values will be significantly
more likely to occur astrophysically than others. For ex-
ample, the number of binary coalescence events is ex-
pected to be approximately proportional to star formation
rate [11] and consequently should be roughly uniform in
volume. Thus, events are more likely to occur at a greater
distance. Similarly, the gravitational-wave amplitude, at a
fixed distance, is greater for face-on signals than edge-on
ones, as is clear from (2.5). Therefore, we are more likely
to detect face-on signals at a large distance than nearby,
edge-on ones. Consequently, certain values of A� are
astrophysically more likely than others. This can be taken
into account in a Bayesian manner by marginalizing over
an appropriate distribution for the A� rather than per-
forming a maximization [46].

The distribution of noise events will follow its own
characteristic distribution. For Gaussian noise, the
expected distributions of the A� can be explicitly calcu-
lated. Nonstationarities in the data will again produce
a different distribution of amplitudes which cannot be
analytically modeled in a straightforward manner.
Specifically, the majority of transients is caused by a
disturbance or glitch in a single detector with little or no
signal in the other detectors. For networks with three or
more detectors, this will typically be inconsistent with a
coherent signal across the network, leading to a large value
of the null SNR. In certain scenarios, most notably for two-
detector networks, there will be a consistent set of values
for theA�. However, these values carry the characteristic
signature of a glitch. Specifically, the SNR contributions
will typically be consistent with a nearby, close to edge-on
system (A� � 0), with a very specific orientation to pro-
vide essentially no response in all but one detector. Thus,
the glitch distribution of the A� parameters will be sig-
nificantly different from the distribution expected for
gravitational-wave signals. In the remainder of this section,
we explore the possibility of making use of the extracted
A� parameters to distinguish between glitches and sig-
nals. Unlike the null stream, amplitude consistency tests
are available for two detector networks. They should be
especially useful in the case of the two 4 km LIGO instru-
ments, which have similar sensitivities to the majority of
points on the sky.
We have argued that the majority of gravitational-wave

signals will originate from (close to) face-on binaries while
the majority of noise transients will mimic (close to) edge-
on binaries. The recovered value of the inclination angle �
should then serve to separate signals from noise. To inves-
tigate this, we simulated a large number of simulated
CBC signals and a large number of noise glitches, added
Gaussian noise, and plotted the recovered inclination angle
in Fig. 1. The glitches were generated as events with a large
SNR in one detector coincident with Gaussian noise in
a second detector. The signals were separated into two
groups: the first with only face-on binaries (j cos�j ¼ 1)
and the second a uniform distribution over the two sphere
(uniform in cos� and c ) of the binary orientation. In both
cases, they were distributed uniformly in volume and
orbital phase. We also consider two different network
configurations, both containing two equally sensitive
detectors. In the first case one detector is sensitive to þ
and the other to � polarization; in the second case both
detectors have strong and equal sensitivity to the þ polar-
ization and weak but opposite sensitivity to the � polar-
ization—rather typical for the Hanford-Livingston
network. For both sets of signals and choices of network,
there is a clear distinction between signal and glitch dis-
tribution. However, there is a clear downward bias on the
recovered values of �. This can be understood by looking at
the expressions for Aþ and A�. For face-on binaries, these
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will be equal but, in the presence of noise, A� will be
reconstructed to be somewhat smaller than Aþ. A relative
difference of only 5% leads to a recovered inclination of
45�, so even for loud signals there can be large discrepancy
between the actual and recovered inclination angle.

Despite the difference in distribution between signal and
noise, there is also a significant overlap of the populations
at low SNRs. Consequently, any threshold imposed on
the recovered inclination angle is liable to either reject a
fraction of signals or pass a fraction of glitches. It is,
however, quite possible that knowledge of these expected
distributions could be folded into the detection statistic in a
Bayesian manner.

We have found that using the observed SNR in the
individual instruments to be a more effective discriminator

of signal and noise. To demonstrate the efficacy of such an
approach, in Fig. 2 we plot the single-detector SNR as a
function of the coherent SNR for the same population of
glitches and the two classes of signals (face-on and uni-
formly distributed orientation) described above. The
glitches fall into two groups depending upon which detec-
tor suffered the glitch. Since our model detectors are
equally sensitive, then on average one expects each detec-

tor to accrue 1=
ffiffiffi
2

p
of the coherent SNR. Even allowing for

nonoptimally oriented signals and the addition of Gaussian

FIG. 1 (color online). The distribution of the recovered incli-
nation angle plotted against coherent SNR for optimally oriented
signals (open circles), uniformly distributed orientations (blue
crosses), and simulated glitches (red solid circles). The top panel
shows a network configuration which is equally sensitive to both
gravitational-wave polarizations. The bottom panel shows a
configuration which is 5 times more sensitive to the þ polariza-
tion than to the �.

FIG. 2 (color online). The distribution of single-detector SNR
plotted against coherent SNR for optimally oriented signals
(open circles), uniformly oriented signals (blue crosses), and
glitches (red solid circles). The top panel shows a network of two
equally sensitive detectors, where one detector sees only the þ
polarization and the second detector sees only the � polariza-
tion. The bottom panel shows a similar network where both
detectors have strong and equal sensitivity to the þ polarization
and weak but opposite sensitivity to the � polarization. This is
typical for the Hanford-Livingston network. The diagonal solid
black line shows the expected SNR for the optimally oriented
signals. The horizontal dashed black line indicates a SNR of 4.
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noise, the signals follow this expectation. Only a small
number of signals are found with SNRs inconsistent with
the expected values; these are ones that have very specific
orientations. Overall, the signal and glitch populations
are very well separated, at least until the coherent SNR
becomes rather small.

The most effective strategy we have found is to require
that all events have a SNR above 4 in the two most
sensitive detectors in the network. The cut is illustrated
in Fig. 2. This strategy removes the majority of glitch
signals while having a negligible effect on the signal
population at large SNR. For lower SNR the signals
which are lost due to this cut would be unlikely to be
detection candidates as Gaussian noise alone produces
similar events.

IV. COHERENT �2 TESTS

Data from gravitational-wave detectors contain numer-
ous nonstationarities due to both instrumental and
environmental causes. These nonstationarities, or glitches,
typically do not match well with the CBC waveform.
However, they often contain enough power that, even
though the match with the template is poor, a large SNR
is observed. In the previous section, we have seen how the
use of various coherent consistency tests can mitigate this
problem. Additionally, a number of other signal consis-
tency tests have been implemented [29,30] and used in
searches for CBC signals [4,31,32]. These tests are all
designed to eliminate glitches which have a different signal
morphology than the template waveform. This is essen-
tially done by testing whether the detector data orthogonal
to the signal are well described as Gaussian and station-
ary—for a glitch, there will be residual power which does
not match the template waveform. These tests are com-
monly known as ‘‘�2 tests’’ as they construct a statistic
which is �2 distributed in the presence of Gaussian noise
plus a signal matching the template waveform. If the
data contain a glitch, the �2 statistic will generally have
a large value, thereby allowing for differentiation of
signal from nonstationary noise. In this section, we briefly
review the general formulation of �2 tests before present-
ing a detailed description of three such tests which
have been implemented for the coherent search described
in Sec. II.

A. A general framework for �2 tests

Consider the data from a gravitational-wave detector
at a time t which has produced a large SNR when filtered
against a template hðtÞ. Generically, the data sðtÞ can be
decomposed as

sðtÞ ¼ nðtÞ þ AhðtÞ þ BgðtÞ; (4.1)

where nðtÞ represents a Gaussian noise component, hðtÞ is
the template waveform, gðtÞ is an additional non-Gaussian
noise contribution to the data stream, and A and B are

amplitude factors. The glitch contribution gðtÞ is taken to
be the power orthogonal to hðtÞ and both gðtÞ and hðtÞ are
normalized, so that

ðgjgÞ ¼ 1; ðhjhÞ ¼ 1; ðgjhÞ ¼ 0: (4.2)

In order to construct a �2 test, we must introduce an
additional set of waveforms Ti. These waveforms are
required to be orthonormal and orthogonal to h,

ðhjTiÞ ¼ 0; ðTijTjÞ ¼ 	ij: (4.3)

Furthermore, for the �2 test to be effective, the Ti must
have a good overlap with the glitch waveform gðtÞ.
The �2 discriminator is constructed as

�2 ¼ XN
i¼1

ðTijsÞ2: (4.4)

When the data comprise only signal plus Gaussian noise,
i.e. B ¼ 0 in Eq. (4.1),

�2 ¼ XN
i¼1

ðTijnÞ2 (4.5)

and the statistic is the sum of squares of independent
Gaussian variables with zero mean and unit variance.
Thus the test is �2 distributed with N degrees of freedom,
with a mean and variance of

h�2i ¼ N; Varð�2Þ ¼ 2N: (4.6)

This is true for any set of waveforms Ti given the above
assumptions.
In the case where the data are not an exact match to the

signal, we take both A and B nonzero, i.e. any signal or
glitch can be decomposed into a part AhðtÞ proportional
to the template under consideration plus a second orthogo-
nal contribution BgðtÞ. Clearly, for different glitches, the
waveform gðtÞ as well as the amplitude factor B will be
different. In this case the �2 test takes the form

�2 ¼ XN
i¼1

½ðTijnÞ2 þ 2BðTijnÞðTijgÞ þ B2ðTijgÞ2�: (4.7)

This has a mean

h�2i ¼ N þ B2
XN
i

ðTijgÞ2 (4.8)

and a variance

Var ð�2Þ ¼ 2N þ 4B2
X
i

ðTijgÞ2: (4.9)

The �2 test is distributed as a noncentral �2 distri-
bution with N degrees of freedom and a noncentrality
parameter [29]

� ¼ B2
XN
i¼1

ðTijgÞ2: (4.10)
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The challenge in constructing a �2 test is to select the basis
waveforms Ti such they have large overlaps with the
observed glitches in the data. If this is done successfully,
then any glitch producing a large SNR will also give a large
value of �2, inconsistent with a signal in Gaussian noise.

In many cases, there is some uncertainty in the template
waveform. For example, the post-Newtonian (PN) expan-
sion used in generating CBC waveforms is truncated at a
finite (typically 3 or 3.5 PN [49]) order and there will be
differences between this analytically calculated waveform
and the one provided by nature. There are similar uncer-
tainties in waveforms obtained from numerical relativity
simulations [50]. Additionally, to search the full parameter
space of coalescing binaries, a discrete template bank is
used which allows for some mismatch between the tem-
plates and any potential signal within the parameter space
[39]. Normally the template bank is created so that the
mismatch is no larger than 3% at any point in the parameter
space. Finally, there are uncertainties in instrumental cali-
bration [51] which will affect the match between signal and
template.

We model these effects by parametrizing the signal as

HðtÞ ¼ A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
hðtÞ þ 
mðtÞ

�
; (4.11)

where mðtÞ is the component of H that is orthogonal to h
[ðmjhÞ ¼ 0] and 
 encodes the mismatch between signal
and template in the sense that

1� ðHjhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðHjHÞðhjhÞp ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
� 
: (4.12)

In most cases, it is reasonable to assume a mismatch of less
than 5%. The obvious counterexample is when searching
for highly spinning systems using nonspinning waveforms;
see e.g. [52,53].

Since (4.11) is a special case of (4.1) it follows directly
that the mean and variance of the �2 test in the presence of
a mismatched signal are

h�2i ¼ N þ A2
2
XN
i¼1

ðTijmÞ2

Varð�2Þ ¼ 2N þ 4A2
2
XN
i¼1

ðTijmÞ2:
(4.13)

As the SNR of the signal is proportional to A, the expected
�2 value for a mismatched signal increases with the
strength of the signal. However, for mismatched signals
�2 / 
2A2 while for glitches �2 / B2 and provided

A � B the two can be separated. See [29] for a more
detailed discussion.

When introducing the �2 test, we assumed that the Ti

were orthonormal and orthogonal to the template wave-
form h. In practice, this can be difficult to guarantee. The
signal consistency tests discussed in the remainder of
this section are constructed from gravitational waveforms.

If one picks a set of gravitational waveforms, ti, there is no
guarantee that they will be either orthonormal or orthogo-
nal to h. We can, at least, construct waveforms which are
orthogonal to h by introducing

Ti ¼ ti � ðtijhÞhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðtijhÞ2p : (4.14)

While this ensures ðhjTiÞ ¼ 0 it does not guarantee ortho-
normality of the Ti, ðTijTjÞ ¼ 	ij. Thus this method will
not produce a �2 distribution, and will instead form a
generalized �2 distribution. The mean of the distribution
remains N but the variance is increased,

Var ð�2Þ ¼ 2N þ 2
X
i�j

ðTijTjÞ2: (4.15)

It has been found, however, that this does not present a
significant obstacle to using these tests, especially as the
thresholds are tuned empirically [54].

Multidetector �2 tests

In Sec. II, we derived a coherent multidetector search for
coalescing binaries. The search involves filtering four
waveform components h� against the multidetector data

stream. Our initial discussion of �2 tests was limited to the
description of a single phase template waveform h and test
waveforms Ti. The extension to a two-phase waveform
has been described previously [29] and here we extend
that to a four-component waveform across multiple detec-
tors, as is appropriate for this search. We begin by noting
that the four waveform components h� are orthogonal in

the dominant polarization basis. They are, however, not
generally normalized, as

ðh�jh
Þ ¼ M�
 ¼ diagðA; B; A; BÞ; (4.16)

where A and B are defined in (2.29). Thus, we first nor-
malize so that

ðĥ�jĥ
Þ ¼ 	�
: (4.17)

To construct a network �2 test, we require a set of
(four-component) normalized, test waveforms t̂i�. The

components

Ti
� ¼ t̂i� �P


ðt̂i�jĥ
Þĥ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

�ðt̂i�jĥ�Þ2
q ; (4.18)

constructed to be orthogonal to h� are used in the �2 test.

Thus, the coherent, multidetector �2 test is

�2 ¼ X4
�¼1

XN
i¼1

ðTi
�jsÞ2: (4.19)

Provided the test waveforms are orthonormal, in the sense
that

ðTi
�jTj


Þ ¼ 	ij	�
; (4.20)
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the distribution for a signal matching h� plus Gaussian

noise will be �2 distributed with 4N degrees of freedom.
As for the single phase filter, we cannot always guarantee
(4.20) is satisfied, although it is relatively simple to ensure
the four components of a given template are orthogonal.
This means that the statistic will not, in general, be �2

distributed: The mean remains 4N but the variance in-
creases to

Var ð�2Þ ¼ 8Nþ 2
XN
i;j¼1

X4
�;
¼1

½ðTi
�jTj


Þ2�	ij	�
�: (4.21)

B. The coherent bank �2 test

The bank �2 test was designed to test the consistency of
the observed SNR across different templates in the bank at
the time of a candidate signal. It was first described in [30]
for the case of a single detector. A glitch will typically
cause a high SNR in many templates across the bank, while
a real signal will give a well-prescribed distribution of SNR
across the template bank.

The bank �2 makes use of other CBC templates as the
waveforms ti to construct the �2 test. These N templates
are taken from different points across the mass space. In
implementing the bank �2, we choose a fixed set of tem-
plate waveforms ti which remain the same for every tem-
plate h in the search template bank. The bank �2 statistic is
then constructed following (4.18) and (4.19). The test is
most effective when the set of Ti

� is close to orthogonal

[30] so we select templates which are well distributed

across the mass space, ensuring the overlaps ðTi
�jTj


Þ are
small for i � j. Figure 3 shows the distribution of the bank
�2 for a single template filtered against Gaussian noise.
The set of fixed bank waveforms consisted of ten wave-
forms distributed over the full mass parameter space. Using
these waveforms, the deviation from a �2 distribution is
negligible.
For the bank �2 to be effective, glitches in the data must

have a good overlap with a reasonable fraction of the
templates ti. While, in general, it is difficult to predict
the composition of glitches in the data, it seems reasonable
to assume that glitches which produce a large SNR for the
template h will also have a good overlap with other wave-
forms in the template space. Thus, the set of templates
which is spread across the parameter space is suitable.

C. The coherent autocorrelation �2 test

Filtering a gravitational-wave template against data con-
taining a matching signal produces a peak in the SNR at the
time of the signal. Furthermore, there is a characteristic
shape of this peak which depends upon the template wave-
form and also the noise power spectrum of the data. An
example of this autocorrelation for a BNS template is
shown in Fig. 4. A noise transient in the data will produce
a peak in the SNR but it will typically lack the character-
istic shape produced by a genuine CBC signal.
The ‘‘auto’’ �2 test was designed to test the consistency

of the SNR peak [30]. It is a similar test to the bank �2, but
where the bank �2 investigates consistency in SNR across
the mass space, the auto �2 tests for consistency of the
SNR time series. The set of templates ti are chosen to be
the original template h with time shifts 	ti applied. The
values of 	ti are all unique and chosen to be of the same
time scale as the autocorrelation of the template waveform

FIG. 3. The distribution of the bank �2 test for a single
template h, with a bank of size 10. The plot shows the distribu-
tion of the bank veto calculated for every time sample in 128 s of
simulated Gaussian data (with no signal present). In the case that
the ten bank templates are orthogonal, the expected distribution
is �2 with 40 degrees of freedom (shown as the solid black line).
As can be seen, the actual distribution follows the expected one
closely.

FIG. 4 (color online). The single detector autocorrelation of a
gravitational-wave inspiral signal from a 1.4, 1.4 solar mass
BNS. Both phases of the waveform are shown.
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(typically 0.1 s or less) and the duration of nonstationarities
in the data, which is similar.

In Fig. 5, we show the distribution of the auto �2 for a
single template waveform filtered in Gaussian data. For
this result, forty waveforms ti were used, equally spaced
with a 1 ms spacing, and all with coalescence times prior to
that of h. Thus, the auto �2 is testing the consistency of the
SNR time series for 0.04 s prior to the SNR peak. The
overlap ðtijtjÞ depends only upon the difference 	ti � 	tj

and Fig. 4 shows clearly that a significant fraction of the
overlaps are far from zero. Consequently, the auto �2 test
has a distribution with a large deviation from a �2 distri-
bution with 4N degrees of freedom.

D. The coherent �2 test

The ‘‘standard’’ �2 test originally proposed in [29] has
been used as a discriminator in many gravitational-wave
searches for CBCs. Given the template waveforms and the
detector sensitivity, it is possible to predict the accumula-
tion of SNR as a function of frequency. By calculating the
observed SNR contribution from a number of frequency
bins, and comparing to the predicted value, one can con-
struct a �2 consistency test.

Formally, given a template h which produced a candi-
date signal with a SNR of �, calculate N nonoverlapping
frequency windows such that the expected SNR is �=N in
each. Then, calculate the actual SNR �i in each of these
frequency bins and compare with the expected value by
calculating

�2 ¼ N
XN
i

ð�i � �=NÞ2: (4.22)

For a gravitational-wave signal matching the template h
plus Gaussian noise, this statistic will be �2 distributed
with N � 1 degrees of freedom. Written in the form (4.22)
it appears different from the general case we discussed
earlier. In [29] it was shown that it can be reexpressed in
the form (4.4).
This �2 test can be extended to coherent, multidetector

searches. Indeed, in [55], the construction was applied to a
coherent search for continuous gravitational waves. Here,
we present the extension to a coherent CBC search. First,
define

�i
� ¼ ðsjhi

�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�jh�Þ

q (4.23)

to be the SNR contribution in the ith frequency bin to the
SNR.8 The coherent �2 statistic is then constructed as

�2 ¼ N
XN
i¼1

X4
�¼1

ð�i
� � ��=NÞ2: (4.24)

FIG. 5. The distribution of the auto �2 test for a single tem-
plate h, generated with 40 time-shifted templates, with shifts
between 0.001 and 0.04 s. The plot shows the distribution of the
auto veto calculated for every time sample in 128 s of simulated
Gaussian data (with no signal present). In the case that the 40
time-shifted templates are orthogonal, the expected distribution
is �2 with 160 degrees of freedom (shown in black). As can be
seen, the actual distribution differs significantly from this due to
the nonorthogonality of the ti waveforms.

FIG. 6. The distribution of the �2 test for a single template h,
split into 16 nonoverlapping frequency bins. The plot shows the
distribution of the �2 test calculated for every time sample in
128 s of simulated Gaussian data (with no signal present). The
observed distribution of values shows (shown in gray) is an
excellent match with the expected �2 distribution with 60
degrees of freedom (shown in black).

8Strictly speaking the frequency bins for the Fþ and F�
components will be different because, as we have noted
in Eq. (2.36), the PSDs for the synthetic þ and � detectors
are not equal. However, usually the difference between the two is
small enough that it can be safely ignored to avoid computing
twice the number of filters. Alternatively, in [29] a method was
presented for calculating the standard �2 test using unequal
frequency bins; that method could easily be incorporated into
a coherent search.
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As all the components are orthogonal it is easy to
see that this statistic will be exactly �2 distributed with
4ðN � 1Þ degrees of freedom. One can interpret this as the
sum of the single detector �2 values for the h0 and h�=2
waveforms in the synthetic þ and � detectors. Figure 6
shows the distribution of the standard �2, using sixteen
frequency bins. The distribution matches the expected �2

with 60 degrees of freedom.
An alternative approach to applying the �2 test to a

coherent search was proposed in [23]. This approach
involves calculating the �2 values for each of the active
detectors and using these values to veto glitches.

V. IMPLEMENTATION AND PERFORMANCE
OFA COHERENT SEARCH

In this section, we describe an implementation of the
targeted, coherent search for gravitational waves from
CBCs. The search calculates the coherent SNR described
in Sec. II and the various strategies for discriminating
between signal and noise in non-Gaussian, nonstationary
data introduced in Secs. III and IV. We demonstrate the
efficacy of the search by performing test analyses of simu-
lated data and data from LIGO’s S4 run.

A. Implementation of a coherent triggered
search for CBCs

Here, we describe the main steps by which the algo-
rithms described in Secs. II, III, and IV have been imple-
mented. The analysis is available in the LIGO Scientific
Collaboration Applications Library (LAL) suite [56],
and makes use of a large number of tools and methods
previously implemented in that library.

1. Analysis setup

A targeted, coincident search for gravitational waves from
CBCs associated to GRBs has been implemented, and used
in a search of S5 and VSR1 data [16]. The coherent search
pipeline uses many of the same definitions, and much of the
same architecture as the coincidence search pipeline to
determine the analysis details. Specifically, ‘‘on-source’’
time is [� 5, þ1) seconds around the reported time of the
GRB; this is when a gravitational-wave signal would be
expected [20,57] and is the time over which we perform
our search. The noise background is estimated using 1944 s
of ‘‘off-source’’ data split into 324 trials of 6 s length each.
These are used to calculated the significance of any event
occurring in the on-source. As in Ref. [16] we impose a 48 s
‘‘buffer zone’’ between the on-source and off-source regions,
which is not used in the analysis. To obtain an accurate
estimate of the detectors’ power spectra, we only analyze
data from a detector if it has taken at least 2190 s of continu-
ous data around the time of theGRB.Modulo this restriction,
the coherent analysis is designed tomake use of data from all
detectors that were operating at the time of the GRB.

2. Template bank generation

The problem of placing a nonspinning template bank in
ðm1; m2Þ space for a single detector has been extensively
studied [39,58–60]. However, less thought has been
given to the problem of placing an appropriate bank for a
coherent analysis, targeted or otherwise. For the targeted,
coherent SNR statistic, described in Sec. II, the maximi-
zation procedure ensures that we need only place templates
in ðm1; m2Þ space. In the single detector search, the pa-
rameter space metric is independent of the amplitude and
phase parameters that are maximized over. However, for
the coherent analysis, this is generically not the case, and
the metric depends upon the A� parameters [42].
At present, we have not implemented an optimal tem-

plate bank for a coherent analysis. Instead, simply make
use of an overdense template bank generated for one of the
detectors in the network. In the results presented later, we
have used a bank generated with the initial LIGO design
spectrum, with a maximum total mass of 40M	 and a
minimum component mass of 1M	, which are the same
values as used in previous searches for GRBs [16]. While
this method of template placement enables us to demon-
strate the efficiency of the coherent search, it is clearly not
the optimal solution. A simple improvement would involve
placing a template bank appropriate for the (maximally
sensitive) synthetic þ detector defined in Eq. (2.36). For
the relatively common situation where the network is sig-
nificantly more sensitive to the þ polarization than the �,
this will be close to the optimal solution. However, for
network and source configurations which provide good
sensitivity to both polarizations, a more detailed investiga-
tion along the lines of [42] is warranted.

3. Coherent SNR and null streams

The data are read in and conditioned using the
methods and algorithms developed for the S4 search for
post-merger ringdowns from CBCs [61,62]. The data are
then downsampled to a frequency of 4096 Hz and split into
overlapping 256 s segments for analysis. The noise PSDs
are calculated using the same method as in [61].
Each template in the bank is filtered against the data

from each detector to generate the single detector filters
ðsXjhX0;�=2Þ and sensitivities,�X [defined in Eq. (2.27)]. The

algorithms used are taken from the LAL FindChirp library
[63], specifically those written to perform a search for
spinning waveforms [53] using the physical template fam-
ily (PTF) waveforms [64].9 The waveform templates are
generated using the TaylorT4 post-Newtonian approximant
[43]. The single detector filter outputs are shifted in time to
account for the relative delays from the given GRB sky
location. They are then combined to form the coherent and

9This choice stems from the desire to extend this search to
incorporate a single spin. This is particularly appropriate for
NSBH binaries where the spin of the NS can be safely neglected.
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the null SNRs as described by (2.44) and (3.1). A ‘‘trigger’’
is recorded at any time the coherent SNR is greater than 6,
and no louder event occurred in any template in the bank
within 0.1 s.

4. Calculating the �2 tests

The analysis calculates signal based vetoes in the same
manner that it does the coherent SNR: The necessary single
detector filters are constructed and then these are combined
together to create the �2 tests as described in Sec. IV.

Calculating the standard �2 test is computationally ex-
pensive. Therefore this veto is only calculated for a seg-
ment if there is at least one event with SNR above threshold
and values of bank �2, auto �2, and null SNR that do not
immediately lead to it being dismissed as a glitch.

5. Event significance

After the analysis, we have a set of triggers with associ-
ated masses and coalescence times. Each trigger is
characterized by the coherent SNR as well as a number of
other quantities: the null SNR, single detector SNRs, and
values of the �2 tests. In order to identify candidate
gravitational-wave events, these triggers are compared to
those obtained from an identical analysis performed over
the off-source times, and over the off-source data with
simulated gravitational-wave signals added. A simulation
is deemed to have been recovered by the analysis if there is
any trigger within 0.1 s of the signal time; no attempt is
made to guarantee a good match between simulated and
recovered parameters. Although this means that signals
may be found due to a nearby glitch, in practice wefind
that the effect is minimal, particularly when considering
detection candidates, which are louder than all background.

By comparing the observed triggers from the off-source
and simulations, we construct a detection statistic designed
to best separate signal from noise. At present, this is done
by performing a number of simple cuts in various parame-
ters, as described in detail in the remainder of the section.
In the future, we plan to investigate the use of multidimen-
sional classifiers to improve the efficacy of the analysis.
The detection statistic is used to calculate a false alarm
probability for a given on-source observation, by compar-
ing with the off-source results. We use 300 background
trials, allowing for a false alarm probability as low as
3� 10�3 to be assigned to an event. This suffices to
identify GRBs for which an interesting gravitational-
wave trigger has been observed. Realistically a false alarm
probability closer to 10�4 or 10�5 would be required for a
detection candidate. This could be achieved by performing
additional background trials on time-shifted data from the
detectors. This has not yet been implemented.

B. Analysis of simulated data

The analysis was first run on simulated data for the
initial LIGO network, comprising a 4 km detector at the

Livingston site (L1) and 4 km and 2 km detectors at the
Hanford site (H1 and H2, respectively). The coherent
analysis pipeline analyzed a 2048 s stretch of stationary,
Gaussian data as if a GRB had occurred in the middle of
the data stretch.
Figure 7 shows the triggers produced by the pipeline in

the off-source time. The loudest event in the approximately
2000 s of off-source data has a SNR of 7.24. In Gaussian
noise, the signal consistency tests have no power as they
are designed specifically to reduce the effect of non-
Guassian transients in the data.

C. Analysis of real data

A test analysis was also performed on real data taken
from S4. We analyzed an arbitrary stretch of 2048 s of data
for which all three of the LIGO detectors were operating
and ran the analysis as if a GRB had occurred during this
time. The simulated sky location of the GRB was (184.6�,
42.34�) in right ascension and declination, respectively.
For this chosen time and sky location the sensitivities of
the H1 and L1 detectors were roughly equal and the H2
detector was half as sensitive as the other two.
The data from the detectors are neither Gaussian nor

stationary. Thus, the goal of the analysis is to reduce the
background from nonstationary data using the signal con-
sistency tests described in Secs. III and IV. We proceed by
investigating the various signal consistency tests one by
one before combining these cuts into a detection statistic.
The final goal is to obtain a search sensitivity as close as

possible to that obtained in Gaussian data. The sensitivity
is assessed by evaluating the efficiency of observing simu-
lated signals in the data. We make use of a set of simulated

FIG. 7 (color online). The SNR of triggers in the off-source
region plotted against time for an analysis of simulated Gaussian
noise in the initial LIGO (H1, H2, L1) network. The gap in the
middle of the plot contains the on-source region and the buffer;
this is not used in estimating noise background rates. The loudest
trigger occurs with a SNR of 7.24.
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BNS signals (component masses limited to be between 1
and 3M	) all oriented face-on to the detectors. We evaluate
the efficiency of the search as the fraction of simulated
signals observed with a detection statistic greater than any
event in the off-source data.

1. Coherent SNR

Figure 8 shows the coherent SNR of triggers produced
during the analysis of the S4 data. It clearly demonstrates
that the data are not well characterized by Gaussian noise
alone. A number of loud transients are present in the data
and show up as short duration peaks of large SNR. The
largest of these has a SNR of almost 40. If events were
ranked by coherent SNR, a signal would have to be very
loud to stand out above this non-Gaussian background. In
addition to the loud peaks there are also a large number of
smaller non-Gaussian peaks that occur rather frequently in
the data. All of these affect the sensitivity of the search.

2. Null SNR

Figure 9 shows the performance of the null stream for
both simulated signals and background noise. The ability
of the null SNR to distinguish signal from noise is rela-
tively poor in this example. The mock GRB analysis uses
data from the two Hanford detectors and the detector at
Livingston. As the two Hanford detectors are aligned, the
null stream is derived from a combination of these detec-
tors; the Livingston detector does not contribute. The loud-
est glitches during the time of this analysis originated in
L1, and therefore do not contribute to the null SNR.

However, quieter glitches in the Hanford detectors at a
SNR around 10 do produce a large null SNR. Any trigger
with a null SNR greater than 5.25 is eliminated from the
analysis. In this example analysis, this removes a small
fraction of the background and none of the simulated
signals.

3. Single detector SNR

The most straightforward, and most effective, amplitude
consistency test we have found is the requirement of a SNR
greater than 4 in the two most sensitive detectors, in this
analysis, the L1 and H1 detectors. Figure 10 demonstrates
that this is a particularly effective strategy for removing
noise glitches. Triggers arising due to glitches in the L1
detector have large coherent SNR but a negligible contri-
bution from H1 and are consequently discarded. The single
detector SNR threshold is very effective at removing back-
ground triggers—particularly those associated to glitches
in L1. There is some loss of simulated signals, but these
generally have a small enough SNR as to be indistinguish-
able from the background, even in Gaussian noise.

4. �2 tests

In Sec. IV we introduced three �2 tests designed to
separate signals from noise glitches in the data. Figure 11
shows the distribution of the bank �2 for every time sample
for a single template. This is directly comparable to Fig. 3
which shows the same for Gaussian data. The deviation
from the predicted �2 distribution is due to the non-
Gaussianity of the data.
The distribution of bank and auto �2 for both simulated

signals and noise triggers is shown in Fig. 12. Both of these

FIG. 8 (color online). The SNR of triggers in the off-source
region plotted against time for an analysis of a mock S4 GRB.
The axes on the plot are chosen to be identical to those for Fig. 7
to make the plots easier to compare. The S4 data have a large
number of non-Gaussian features. The largest of these peaks
extends to a coherent SNR of 40, although non-Gaussian struc-
ture is visible at SNRs as low as 7.

FIG. 9 (color online). The distribution of the null SNR plotted
against coherent SNR. The solid line at null SNR of 5.25 is the
line above which triggers are vetoed. The dashed line at 3.5 is the
line above which triggers are downweighted (see Sec. VC 5).
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tests are effective at separating the simulated signals from
noise transients. In order to quantify this, we make use of
the newSNR formalism that was developed for the latest
coincident searches for CBCs [65,66]. For a signal match-
ing the template waveform, the expected value of �2 is one
per degree of freedom, while for noise transients this will
be larger. The idea is to downweight the significance of
noise triggers with large �2 values relative to signals. This
is achieved by introducing the ‘‘newSNR’’:

�new ¼
8<
:
�; �2 
 ndof

�

½ð1þð �2

ndof
Þ4=3Þ=2�1=4

; �2 > ndof ; (5.1)

where ndof is the number of degrees of freedom of the �2

test. For signals, newSNR will be similar to the SNR, while

noise transients with a large �2 value are significantly
downweighted.
The newSNR can be calculated with all of the �2 tests

introduced in Sec. IV. Any trigger with either an auto or
bank newSNR less than 6 is discarded. The curves in
Fig. 12 show this newSNR threshold for the two �2 tests.
Finally, we turn to the standard �2 test. As this is rather
costly to compute, we only do so for triggers which
have passed all of the previously described thresholds (on
coherent, null, and single detector SNR, bank and auto
newSNR). Figure 13 shows the distribution of the standard
�2 test for simulated signals and noise. The preceding
tests have succeeded in removing the vast majority of
non-Gaussian triggers from the data. A threshold of 6 on
newSNR serves to eliminate a few more.
We have found that the standard �2 is the most effective

of our �2 tests at separating signal from background, so we
also make use of it in the final ranking of events. Figure 13
shows contours of constant newSNR which will be used in
the final ranking.

5. Detection statistic

In the preceding discussion, we have imposed a number
of cuts on the initial candidate events produced by the
analysis pipeline. Let us briefly recap those cuts.
(1) Coherent SNR: generate a trigger at any time for

which � > 6. Only keep the loudest trigger in each
0.1 s.

(2) Null SNR: discard any triggers with �N > 5:25.
(3) Single detector SNR: discard any triggers for which

�H1 < 4 or �L1 < 4.
(4) �2 tests: discard any triggers for which �new < 6 for

the bank or auto �2.

FIG. 10 (color online). The distribution of single detector SNR
for the more sensitive H1 and L1 detectors, plotted against
coherent SNR. The top panel shows the H1 SNR, the bottom
panel shows the L1 SNR. The horizontal line indicates SNR ¼
4. Below this line triggers will be vetoed. The inclined dark gray
line indicates the expected SNR of these face-on simulated
signals.

FIG. 11. The distribution of the bank �2 test for a single
template h, with a bank of size 10. The plot shows the distribu-
tion of the bank veto calculated for every time sample in 128 s of
data. The observed distribution is inconsistent with the expected
result in Gaussian noise (the black curve).
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Finally, we rank the remaining triggers based on the
newSNR calculated using the standard �2 and the null
SNR:

(5) Detection statistic: rank remaining triggers using a
detection statistic �det given by

�det ¼
8<
:
�new; �N 
 3:5
�new

�N�2:5 ; 3:5< �N < 5:25 : (5.2)

The length of time a CBC spends in the sensitive band of
the detector varies greatly with the mass, and it has been
found that the shorter, high-mass templates are more sus-
ceptible to occurring with large SNR at the time of glitches
[67]. Also, the various signal consistency tests are less
effective for these short templates. Therefore, we follow
Ref. [67] and split the template bank into three regions

based on the chirp mass of the template, and calculate the
false alarm probability for each mass bin separately:
(6) False alarm probability: for each trigger, calculate

the false alarm probability by counting the fraction
of off-source trials with a louder trigger in the same
mass bin.

It is this false alarm probability which allows us to assess
the significance of any events in the on-source data.

6. Performance of search

To quantitatively assess the sensitivity of the analysis we
evaluate the efficiency of recovering simulated signals at a
fixed false alarm probability. Any simulated signal which
is found louder than the loudest off-source event is con-
sidered as found by the analysis—this ensures that the false
alarm probability is less than 1 in 324 (the number of off-
source trials). We use a population of optimally oriented
BNS signals from the location of the fake GRB. Since all
BNS injections are recovered with triggers in the low-mass
bin (with chirp mass less than 3:5M	), we compare to off-
source triggers in that bin.
Figure 14 shows the efficiency with which simulated

signals are recovered as a function of distance for a variety
of search methods. We begin by considering the sensitivity
of a search in Gaussian noise; this will provide a bench-
mark against which to compare the searches in real data.
The largest SNR recorded in the analysis of simulated,
Gaussian data was 7.24 (see Fig. 7). Thus, the efficiency
of a search in Gaussian data is given by the fraction of
simulations found with a SNR greater than this. We have
seen that the real detector data are not Gaussian, so only if
the signal consistency tests are perfectly able to separate

FIG. 12 (color online). The distribution of bank (top panel)
and auto (bottom panel) �2 test plotted against SNR. There is a
clear separation between simulated signal and background at
coherent SNRs above 10. The solid line shows the line of
newSNR ¼ 6. Triggers with newSNR < 6 (above and to the
left of the line) are discarded.

FIG. 13 (color online). The distribution of standard �2 test
plotted against SNR. The majority of the background has already
been removed by utilizing other signal consistency tests. The
dashed lines show contours of newSNR, with the value of
newSNR increasing toward the bottom right of the plot. The
solid line shows the line of newSNR ¼ 6; triggers above this
line are discarded.
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signals from noise transients can we hope to achieve a
similar sensitivity in real data.

If we were to use only coherent SNR to rank events, and
ignore all signal consistency tests, the sensitivity of the
search would be about a factor of 2 worse than in Gaussian
data. This is expected as the loudest low-mass trigger had a
coherent SNR of 12.88, almost double the value observed
in Gaussian noise. Once all of the signal consistency tests
are taken into account, the loudest off-source event has a
detection statistic of 7.41. Any simulated signal which
produces a trigger which passes all signal consistency
cuts and has �det > 7:41 is considered found. The use of
signal consistency tests and a new detection statistic
greatly improves the sensitivity of the search. The distance
at which 50% efficiency is achieved is only about 10% less
than in Gaussian noise. The 10% loss in sensitivity can be
attributed to a slightly louder off-source event (7.41 rather
than 7.24) and a small number of the simulated signals
being vetoed by the signal consistency cuts.

Finally, we would like to illustrate the benefits of a
coherent search over a coincidence search. A coincidence
search filters each detector independently and records
single detector triggers before searching for coincidence
between the triggers in different detectors. For the initial
LIGO network, signals close to detection threshold would
be unlikely to been seen in the less sensitive H2 detector.
Specifically, for a signal with a coherent SNR of 7.5,
the expected SNR in H2 would be around 2.5 which would

be insufficient to generate a trigger. Therefore the sensi-
tivity of a coincidence search would be limited by events
observable in the two detector H1-L1 network. For a
two detector search, the coherent and coincident SNRs
are equal, and the null stream test is not available.
Consequently, the performance of two-detector coherent
and coincident searches should be comparable. The effi-
ciency of this two-detector search is also shown in Fig. 14;
it is about 10% less sensitive than the three-detector co-
herent search. This demonstrates that the coherent analysis,
which incorporates the H2 data, can increase the distance
reach of the search by 10%. For a network of three ap-
proximately equally sensitive detectors, we would expect
an even greater sensitivity improvement from employing
coherent techniques.

VI. DISCUSSION

We have presented a formulation of a targeted coherent
search for compact binary coalescences. For Gaussian
noise, the coherent SNR would be ideal for separating
signals from the noise background. However, since data
from gravitational-wave interferometers are neither
Gaussian nor stationary, we have also discussed a number
of methods of separating the nonstationary noise back-
ground from the signal population. These tests include
various �2 tests, which were originally designed for use
in single detectors. We have extended them to the network
analysis and demonstrated their continued efficacy.
Additionally, the coherent analysis naturally allows for
tests which are not readily available in the coincidence
case. The most significant of these is the null SNR which
can be used to reject events which are not consistent with
two gravitational-wave polarizations. We also explored
consistency tests between the recovered amplitudes of
the gravitational wave and found that a simple SNR thresh-
old on the two most sensitive detectors gave excellent
results. There are various other glitch rejection techniques,
which have been recently discussed in the literature
[68–70], and it might be possible to utilize such methods
to improve the coherent search described here.
The analysis described in this paper has been imple-

mented and in the final section we showed results of a test
run. This made use of the S4 data from the LIGO detectors.
Although the data were far from Gaussian, after the appli-
cation of all of the signal consistency tests, the results were
remarkably close to what would be expected in Gaussian
noise. This analysis is available to be used in searches for
GW inspiral signals associated with GRBs in more recent
LIGO and Virgo data, such as S6 and VSR2 and VSR3.
There are a number of ways in which this analysis could

be enhanced to broaden its use and increase its sensitivity.
First, a number of GRBs, particularly those observed by
Fermi [71] and IPN [72], are not localized sufficiently
accurately that the error box can be treated as a point on
the sky. Thus, it would be nice to extend this analysis to

FIG. 14 (color online). Efficiency of injection recovery is
shown against distance at a false alarm probability of less than
1 in 324. This is calculated from a set of simulated signals in real
data. The efficiency is shown for four different cases: (i) signals
found above a SNR of 7.24, the loudest background trigger in
Gaussian noise (black solid line); (ii) signals found above a SNR
of 12.88, the loudest background trigger in real noise (red dashed
line); (iii) signals found with a value of the detection statistic
[given by Eq. (5.2)] above 7.41, the loudest background event
(blue dot-dashed line); and (iv) signals found louder than all
background in an H1-L1 search (green dotted line).
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cover a region of the sky. This would require looping over
the relevant sky points, incorporating the correct detector
sensitivities Fþ;� and time delays. In principle, this would

not greatly slow down the analysis as the majority of time
is taken in performing the single-detector filters and these
would not need to be recalculated. As well as looking at a
patch on the sky, the analysis could be extended to cover
the whole sky, as appropriate for an untriggered search.
This brings in a host of new complications which have
been met and dealt with by other coherent search methods
[24,25]. In order to obtain a good estimate of the back-
ground for an all-sky, untriggered search, we would need to
implement background estimation and time shifting the
data would likely be the best way to do this.

The F -statistic technique described in Sec. II B is for-
mulated by maximizing over the extrinsic parameters of
the system. From a Bayesian perspective this would imply
that we have placed a uniform prior on the distributions of
the A�. If instead we were to place an astrophysical prior
on these amplitudes based on the expected distributions of
ðD; �; c ; �0Þ we would expect to increase the efficiency of
the search [46]. Alternatively, since GRBs are thought to be
rather tightly beamed, it is reasonable to take them as being
face-on, or close to. In this case, the gravitational waves
are circularly polarized and there is, in effect, only a single
polarization. This opens the possibility of limiting the
signal space to just this one polarization and adding an
extra ‘‘null’’ test.

The progenitors of short GRBs are thought to be BNS or
NSBH. The search we have described is ideal for the BNS
case as the spins of the neutron stars are unlikely to have a
significant effect on the waveform. However, when one
of the components of the binary is a black hole, the spin
could be large. Furthermore, the mass ratio is likely to be
relatively large. In this case, the spin of the black hole can
have a significant effect on the observed waveform [64].
Consequently, we would like to extend this search to
incorporate spin effects. The infrastructure described in
this paper can already accept spinning waveforms, but
the implementation of signal based vetoes proves some-
what more complex. Work is underway on this [73].
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